JP2017114725A - Method for raising lithium tantalate single crystal - Google Patents

Method for raising lithium tantalate single crystal Download PDF

Info

Publication number
JP2017114725A
JP2017114725A JP2015251992A JP2015251992A JP2017114725A JP 2017114725 A JP2017114725 A JP 2017114725A JP 2015251992 A JP2015251992 A JP 2015251992A JP 2015251992 A JP2015251992 A JP 2015251992A JP 2017114725 A JP2017114725 A JP 2017114725A
Authority
JP
Japan
Prior art keywords
crucible
crystal
reflector
single crystal
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015251992A
Other languages
Japanese (ja)
Other versions
JP6593157B2 (en
Inventor
杉山 正史
Masashi Sugiyama
正史 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015251992A priority Critical patent/JP6593157B2/en
Publication of JP2017114725A publication Critical patent/JP2017114725A/en
Application granted granted Critical
Publication of JP6593157B2 publication Critical patent/JP6593157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for raising a lithium tantalate (LT) single crystal that improves productivity by suppressing cracks liable to occur when raising a large-sized crystal having a crystal diameter of 4 inches or more.SOLUTION: A crucible 3 and a doughnut-plate type reflector 9 made of a noble metal at the top edge of the crucible are installed. A seed crystal is brought into contact with raw material melt in the crucible melted by high-frequency heating and drawn up while being rotated to raise a LT crystal 11 having a crystal diameter of 4 inches or more. An outside diameter (a) of the reflector and an outside diameter (b) of the crucible are set to satisfy the relation: 0 (mm)≤a-b≤5 (mm). By this setting, a gap hardly occurs between the crucible and the reflector and thus a sharp-angle part to cause intensive heating is prevented from being exposed. Heating of a trunk part of the crystal by the reflector is thus alleviated to prevent cracks.SELECTED DRAWING: Figure 1

Description

本発明は、表面弾性波素子等に用いられるタンタル酸リチウム単結晶の育成方法に係り、特に、結晶直径が4インチ以上の大型結晶育成時に発生し易いクラックを抑制してその生産性を改善したタンタル酸リチウム単結晶の育成方法に関するものである。   The present invention relates to a method for growing a lithium tantalate single crystal used for a surface acoustic wave device or the like, and in particular, suppresses cracks that are likely to occur when growing a large crystal having a crystal diameter of 4 inches or more, thereby improving its productivity. The present invention relates to a method for growing a lithium tantalate single crystal.

タンタル酸リチウム(以下、LTと略称することがある)結晶は、融点が約1650℃、キュリー温度が約600℃の強誘電体であり、この結晶を用いて製造されたタンタル酸リチウム基板の用途は、主に、携帯電話の送受信用デバイスに用いられる表面弾性波(SAW)フィルタの材料である。   A lithium tantalate (hereinafter sometimes abbreviated as LT) crystal is a ferroelectric having a melting point of about 1650 ° C. and a Curie temperature of about 600 ° C., and uses of the lithium tantalate substrate manufactured using this crystal Is a surface acoustic wave (SAW) filter material mainly used for transmitting and receiving devices of mobile phones.

そして、タンタル酸リチウム単結晶は「チョクラルスキー法」で育成するのが一般的である。以下「チョクラルスキー法」による育成方法を説明すると、この方法に用いられる育成炉は、イリジウム等の貴金属製坩堝と、当該坩堝を囲むように設けられた耐火物(断熱材)と、坩堝上端に設置されたドーナツ板形状の貴金属製リフレクターと、当該リフレクター上に設けられかつ坩堝上部の温度勾配を適切に保つためのヒータ機能を持たせた円筒状のアフターヒーターを備えており、上記坩堝内に充填した原料となるタンタル酸リチウム結晶の塊を高周波誘導加熱によって融解させ、この原料融液に種結晶を接触させた後、所定の回転数で種結晶を回転させつつ上方に引き上げることでタンタル酸リチウム単結晶の育成がなされている(例えば、特許文献1、2参照)。   The lithium tantalate single crystal is generally grown by the “Czochralski method”. The growth method using the “Czochralski method” will be described below. The growth furnace used in this method is a crucible made of noble metal such as iridium, a refractory (heat insulating material) provided so as to surround the crucible, and the upper end of the crucible. A donut plate-shaped noble metal reflector installed on the reflector and a cylindrical after-heater provided on the reflector and having a heater function for properly maintaining the temperature gradient at the top of the crucible. After melting a mass of lithium tantalate crystal, which is a raw material filled in, by high-frequency induction heating, bringing the seed crystal into contact with this raw material melt, tantalum is pulled up while rotating the seed crystal at a predetermined rotational speed. A lithium acid single crystal has been grown (for example, see Patent Documents 1 and 2).

ところで、結晶の引き上げ軸の方向は、表面弾性波の伝搬速度および伝搬損失の関係から、36°〜50°回転Y軸(以降、オフ角と称す)方向に切り出された種結晶の方位と同一となるように設定される。このようにして結晶を成長させた場合、オフ角が大きくなると引き上げた単結晶にクラックが発生し易く、特に、結晶直径が4インチ以上の大型の結晶育成時にクラックの発生が顕著となり、生産性を低下させる問題が存在した。   By the way, the direction of the crystal pulling axis is the same as the orientation of the seed crystal cut in the direction of the Y-axis (hereinafter referred to as the off angle) rotated by 36 ° to 50 ° from the relationship between the propagation speed and propagation loss of surface acoustic waves. Is set to be When the crystal is grown in this way, cracks are likely to occur in the pulled single crystal when the off-angle increases, and in particular, cracks become prominent when growing large crystals with a crystal diameter of 4 inches or more, and productivity is increased. There was a problem of lowering.

特開平10−36193号公報Japanese Patent Laid-Open No. 10-36193 特開平09−20584号公報JP 09-20584 A

本発明はこのような問題点に着目してなされたもので、その課題とするところは、結晶直径が4インチ以上の大型結晶育成時においてもクラックの発生が抑制されたタンタル酸リチウムの育成方法を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that a method for growing lithium tantalate in which generation of cracks is suppressed even when a large crystal having a crystal diameter of 4 inches or more is grown. Is to provide.

そこで、上記課題を解決するためクラック発生の原因について本発明者が鋭意検討を行ったところ、タンタル酸リチウム単結晶の直胴部を育成しているとき、上記貴金属製リフレクターの開口縁近傍に位置する結晶直胴部の側面に大きな圧縮応力が生じており、圧縮応力により結晶直胴部の内部に転位が発生する結果、この転位の集積がクラックの起源(原因)になっていることを突き止めるに至った。   Therefore, when the present inventors diligently investigated the cause of the occurrence of cracks in order to solve the above problems, when the straight body portion of the lithium tantalate single crystal was grown, it was positioned near the opening edge of the noble metal reflector. As a result, a large compressive stress is generated on the side of the straight body of the crystal, and as a result of dislocations occurring inside the straight body of the crystal due to the compressive stress, it is determined that this accumulation of dislocations is the origin of the crack. It came to.

すなわち、直胴部育成の前工程である「結晶の種付け時」および「結晶肩部の育成時」において、坩堝上端に設置されるドーナツ板形状の貴金属製リフレクターは、結晶の急成長を抑制するため融液表面の動径方向に適度な温度勾配を持たせるように作用している。しかし、タンタル酸リチウム単結晶の直胴部を育成しているとき、高周波の作用によって貴金属製リフレクターの開口縁部が高温になっているため、リフレクターの開口縁近傍に位置することになる結晶直胴部の側面はリフレクターによって加熱される結果、結晶直胴部における中心部の温度より側面外周部の温度が高くなることから結晶側面に上記圧縮応力が生じる。   In other words, the donut-plate-shaped noble metal reflector placed at the top of the crucible suppresses rapid crystal growth at the time of crystal seeding and crystal shoulder growth, which is the pre-process of straight body growth. Therefore, it acts so as to have an appropriate temperature gradient in the radial direction of the melt surface. However, when growing the straight body of the lithium tantalate single crystal, the opening edge of the noble metal reflector is heated due to the action of high frequency, so that the crystal straight line located near the opening edge of the reflector As a result of heating the side surface of the body part by the reflector, the temperature of the outer peripheral part of the side surface becomes higher than the temperature of the center part in the crystal body part, so that the compressive stress is generated on the crystal side surface.

そこで、リフレクターの形状を最適化し、結晶側面に生じる圧縮応力を低減させることで上記クラックが抑制されるとの予測の下、本発明者が鋭意検討を行なった結果、本発明を完成するに至った。   Therefore, the present inventors have intensively studied under the expectation that the crack is suppressed by optimizing the shape of the reflector and reducing the compressive stress generated on the crystal side face, and as a result, the present invention has been completed. It was.

すなわち、本発明は、
坩堝と該坩堝の上端に設置されたドーナツ板形状の貴金属製リフレクターを備え、高周波誘導加熱により融解された坩堝内の原料融液に種結晶を接触させ、かつ、上記種結晶を回転させつつ上方に引き上げることで結晶直径が4インチ以上のタンタル酸リチウム単結晶を育成する方法において、
上記貴金属製リフレクターにおける外周部分の坩堝外周縁からのはみ出し量を、0mm以上2.5mm以下に設定することを特徴とするものであり、
ドーナツ板形状の貴金属製リフレクターの外径と坩堝の外径との関係に言い換えると、
上記リフレクターの外径をa(mm)、坩堝の外径をb(mm)としたとき、
0(mm)≦a−b≦5(mm)の条件を満たすように設定することを特徴とするものである。
That is, the present invention
A crucible and a doughnut-shaped noble metal reflector installed at the upper end of the crucible, the seed crystal is brought into contact with the raw material melt in the crucible melted by high frequency induction heating, and the seed crystal is rotated upward In a method for growing a lithium tantalate single crystal having a crystal diameter of 4 inches or more by pulling up to
The amount of protrusion from the outer peripheral edge of the outer peripheral portion of the noble metal reflector is set to 0 mm or more and 2.5 mm or less,
In other words, the relationship between the outer diameter of the doughnut-shaped noble metal reflector and the outer diameter of the crucible,
When the outer diameter of the reflector is a (mm) and the outer diameter of the crucible is b (mm),
It is set to satisfy the condition of 0 (mm) ≦ a−b ≦ 5 (mm).

本発明に係るタンタル酸リチウム単結晶の育成方法によれば、
リフレクターの外径をa(mm)、坩堝の外径をb(mm)としたとき、
0(mm)≦a−b≦5(mm)の条件を満たすように設定され、
貴金属製リフレクターにおける外周部分の坩堝外周縁からのはみ出し量を無くすか少なくすることで、高周波誘導加熱の特徴の一つであるエッジ効果による「鋭角部」での加熱集中が減少し、貴金属製リフレクターの温度上昇を抑えることが可能となる。
According to the method for growing a lithium tantalate single crystal according to the present invention,
When the outer diameter of the reflector is a (mm) and the outer diameter of the crucible is b (mm),
It is set to satisfy the condition of 0 (mm) ≦ ab−5 (mm),
By eliminating or reducing the amount of protrusion of the outer periphery of the noble metal reflector from the outer periphery of the crucible, the concentration of heating at the “sharp corner” due to the edge effect, which is one of the characteristics of high-frequency induction heating, is reduced. Temperature rise can be suppressed.

これにより貴金属製リフレクターによる結晶直胴部の側面加熱が抑制され、上記直胴部における中心部の温度と側面外周部の温度との差が小さくなる結果、タンタル酸リチウム単結晶直胴部の側面に生ずる圧縮応力が低減されるため、タンタル酸リチウム単結晶に発生するクラックを抑制することが可能となる。   As a result, side heating of the straight body of the crystal by the noble metal reflector is suppressed, and the difference between the temperature of the central portion and the temperature of the outer peripheral portion of the straight body is reduced. As a result, the side surface of the lithium tantalate single crystal straight body Therefore, it is possible to suppress cracks generated in the lithium tantalate single crystal.

タンタル酸リチウム単結晶の育成方法に用いられる育成装置の一例を示す概略構成断面図。1 is a schematic cross-sectional view showing an example of a growth apparatus used in a method for growing a lithium tantalate single crystal.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明に係るタンタル酸リチウム単結晶の育成方法は、坩堝内に収容された原料融液に種結晶を接触させて引き上げる「チョクラルスキー法」の常法に従って行うものであり、イリジウム等から成る貴金属製坩堝の上端に設置されるドーナツ板形状の貴金属製リフレクターについて、その外周部分の坩堝外周縁からのはみ出し量を0mm以上、2.5mm以下に設定することを特徴とする。すなわち、上記リフレクターの外径をa(mm)、坩堝の外径をb(mm)としたとき、0(mm)≦a−b≦5(mm)の条件を満たすように設定することを特徴とするものである。   The method for growing a lithium tantalate single crystal according to the present invention is carried out in accordance with an ordinary method of the “Czochralski method” in which a seed crystal is brought into contact with a raw material melt contained in a crucible and is made of iridium or the like. The donut plate-shaped noble metal reflector installed at the upper end of the noble metal crucible is characterized in that the amount of protrusion of the outer peripheral portion from the outer periphery of the crucible is set to 0 mm or more and 2.5 mm or less. That is, when the outer diameter of the reflector is a (mm) and the outer diameter of the crucible is b (mm), the reflector is set to satisfy the condition of 0 (mm) ≦ ab−5 (mm). It is what.

ドーナツ板形状の貴金属製リフレクターの外径aを上記坩堝の外径bより小さく設定(すなわち、a<b)した場合、坩堝壁の肉厚を考慮しても、操業中の繰り返し利用による坩堝の変形により、坩堝上端にリフレクターを設置したときに坩堝内周縁部とリフレクター外周縁部間の一部に隙間ができてしまう。この隙間部分では、リフレクターの外周縁および坩堝の内周縁が上記「鋭角部」となり、高周波誘導加熱が集中して発熱状態の対称性が失われるため坩堝内における融液の対流が複雑になる。この場合、結晶育成に重要な若干の凸形状の固液界面形状を維持することが困難になるため、多結晶化するリスクが高くなる。   When the outer diameter “a” of the doughnut-shaped noble metal reflector is set smaller than the outer diameter “b” of the crucible (that is, a <b), even if the wall thickness of the crucible is taken into consideration, Due to the deformation, when the reflector is installed at the upper end of the crucible, a gap is formed in a part between the inner peripheral edge of the crucible and the outer peripheral edge of the reflector. In this gap portion, the outer peripheral edge of the reflector and the inner peripheral edge of the crucible become the “acute angle part”, and high-frequency induction heating is concentrated and the symmetry of the heat generation state is lost, so the convection of the melt in the crucible becomes complicated. In this case, since it becomes difficult to maintain a slightly convex solid-liquid interface shape important for crystal growth, the risk of polycrystallization increases.

また、リフレクターの外径aが坩堝の外径bと等しい(a=b)場合が最も理想的ではあるが、上記同様、坩堝の変形による隙間の発生が懸念されるため、リフレクターの外径には若干の余裕をもたせてもよい。この場合、リフレクターにおける外周部分の坩堝外周縁からのはみ出し量は2.5mm以下とする。2.5mmを超えると、高周波誘導加熱によるリフレクター外周部の温度上昇が大きくなり過ぎて伝熱による育成中の結晶直胴部側面の加熱が大きくなり、結晶側面に過度の応力が生じてしまう。   Moreover, the case where the outer diameter a of the reflector is equal to the outer diameter b of the crucible (a = b) is most ideal, but as described above, since there is a concern about the generation of a gap due to the deformation of the crucible, the outer diameter of the reflector is increased. May have some margin. In this case, the amount of protrusion from the outer peripheral edge of the outer peripheral portion of the reflector is 2.5 mm or less. If it exceeds 2.5 mm, the temperature rise at the reflector outer periphery due to high-frequency induction heating becomes too large, and heating of the crystal straight body side surface during growth due to heat transfer increases, resulting in excessive stress on the crystal side surface.

以下、本発明の実施例について比較例を挙げて具体的に説明するが、本発明は以下の実施例により何ら制限されるものではない。尚、実施例等においてタンタル酸リチウム単結晶を育成する装置としては、図1に示す以下の育成装置を使用した。   Examples of the present invention will be specifically described below with reference to comparative examples, but the present invention is not limited to the following examples. In the examples and the like, the following growth apparatus shown in FIG. 1 was used as an apparatus for growing a lithium tantalate single crystal.

すなわち、この育成装置は、図1に示すようにセラミックス製の坩堝台2と、上記坩堝台2の底部に設置されかつイリジウム製の坩堝3が配置されるアルミナ台4と、上記坩堝3を囲むように設置された断熱材5と、上記坩堝3の開放縁上に沿って取り付けられたドーナツ板形状のイリジウム製リフレクター9と、上記リフレクター9上に取り付けられた円筒状のイリジウム製アフターヒーター13と、上記アフターヒーター13の上方開放縁上に取り付けられかつ中央に引き上げ軸6を通すための開口部が設けられた蓋7と、上記引き上げ軸6の下方側に設けられかつ種結晶8を保持するための種結晶保持治具12と、上記坩堝台2を囲むように設けられかつ坩堝3を誘導加熱して内部に充填された原料を融解させる加熱コイル(高周波コイル)1とでその主要部が構成されており、上記原料の融液10に種結晶8を接触させると共に種結晶8を回転させつつ上方へ引き上げることで単結晶11を育成するものである。   That is, this growing apparatus surrounds the crucible 3 as shown in FIG. 1, the ceramic crucible base 2, the alumina base 4 installed at the bottom of the crucible base 2 and on which the iridium crucible 3 is disposed. A heat insulating material 5 installed in this manner, a donut-shaped iridium reflector 9 attached along the open edge of the crucible 3, and a cylindrical iridium afterheater 13 attached on the reflector 9 A lid 7 provided on the upper open edge of the after-heater 13 and provided with an opening for passing the lifting shaft 6 in the center; and a lower side of the lifting shaft 6 and holding the seed crystal 8 And a heating coil (high frequency coil) which is provided so as to surround the crucible base 2 and melts the raw material filled in the crucible 3 by induction heating. Le) 1 and its has the main part is composed of, in which a single crystal is grown 11 by pulling upward while rotating the seed crystal 8 with contacting a seed crystal 8 in the melt 10 of the material.

[実施例1]
外寸直径(すなわち、外径)175mmφ、内寸高さ170mm、肉厚2.5mmのイリジウム製坩堝3の開放縁上に、内径140mmφ、外径175mmφ、厚さ1.5mmのドーナツ板形状のイリジウム製リフレクター9を取り付け、更に、上記リフレクター9上に、直径147mmφ、高さ150mm(肉厚1mm)の円筒状のイリジウム製アフターヒーター13を取り付けた。
[Example 1]
On the open edge of an iridium crucible 3 having an outer diameter (ie, outer diameter) of 175 mmφ, an inner dimension height of 170 mm, and a wall thickness of 2.5 mm, a donut plate shape having an inner diameter of 140 mmφ, an outer diameter of 175 mmφ, and a thickness of 1.5 mm An iridium reflector 9 was attached, and a cylindrical iridium afterheater 13 having a diameter of 147 mmφ and a height of 150 mm (thickness 1 mm) was attached on the reflector 9.

そして、上記坩堝3内にコングルエント組成、すなわち、組成ずれ(組成揺らぎ)がなく均一な組成の結晶を容易に得ることができる調和溶融(一致溶融)で調合したLT仮焼粉を充填して、約1700℃で融解させた。その後、融液温度をLTの融点(1650℃)付近に調整し、種結晶を10rpmで回転させながら融液表面に接触させ、十分に馴染ませた後、引上げを開始した。この際、種結晶8の方位は42°回転Y軸とし、結晶直径105mm、直胴長90mmである単結晶の引き上げを行った。   Then, the crucible 3 is filled with a confluent composition, that is, LT calcined powder prepared by harmonic melting (coincidence melting) that can easily obtain crystals having a uniform composition without composition deviation (composition fluctuation), It was melted at about 1700 ° C. Thereafter, the melt temperature was adjusted to the vicinity of the melting point (1650 ° C.) of LT, and the seed crystal was brought into contact with the melt surface while rotating at 10 rpm. At this time, the orientation of the seed crystal 8 was 42 ° rotation Y axis, and the single crystal having a crystal diameter of 105 mm and a straight body length of 90 mm was pulled up.

尚、実施例1に係るリフレクター9においては、その外周部分の坩堝3外周縁からのはみ出し量は0mm、すなわち、リフレクター9の外径をa(mm)、坩堝3の外径をb(mm)とした場合、(a−b)=175mm−175mm=0(mm)となる。   In addition, in the reflector 9 which concerns on Example 1, the protrusion amount from the crucible 3 outer periphery of the outer peripheral part is 0 mm, ie, the outer diameter of the reflector 9 is a (mm), and the outer diameter of the crucible 3 is b (mm). In this case, (a−b) = 175 mm−175 mm = 0 (mm).

そして、実施例1に係る条件での結晶引き上げを10回実施したところ、全ての実施においてクラックのないLT単結晶が得られた。   And when the crystal pulling on the conditions which concern on Example 1 was implemented 10 times, the LT single crystal without a crack was obtained in all implementation.

[実施例2]
ドーナツ板形状のイリジウム製リフレクター9の外径を177mmφとした以外は実施例1と同等の条件で単結晶の引き上げを行った。
[Example 2]
The single crystal was pulled up under the same conditions as in Example 1 except that the outer diameter of the iridium reflector 9 having a donut shape was changed to 177 mmφ.

尚、実施例2に係るリフレクター9においては、その外周部分の坩堝3外周縁からのはみ出し量は1mm、すなわち、リフレクター9の外径をa(mm)、坩堝3の外径をb(mm)とした場合、(a−b)=177mm−175mm=2(mm)となる。   In the reflector 9 according to Example 2, the amount of protrusion of the outer peripheral portion from the outer peripheral edge of the crucible 3 is 1 mm, that is, the outer diameter of the reflector 9 is a (mm) and the outer diameter of the crucible 3 is b (mm). In this case, (a−b) = 177 mm−175 mm = 2 (mm).

そして、この条件での結晶引き上げを10回実施したところ、8回の実施においてクラックのないLT単結晶が得られた。   Then, when crystal pulling was performed 10 times under these conditions, an LT single crystal without cracks was obtained in 8 times.

[実施例3]
ドーナツ板形状のイリジウム製リフレクター9の外径を179mmφとした以外は実施例1と同等の条件で単結晶の引き上げを行った。
[Example 3]
The single crystal was pulled up under the same conditions as in Example 1 except that the outer diameter of the iridium reflector 9 having a donut shape was changed to 179 mmφ.

尚、実施例3に係るリフレクター9においては、その外周部分の坩堝3外周縁からのはみ出し量は2mm、すなわち、リフレクター9の外径をa(mm)、坩堝3の外径をb(mm)とした場合、(a−b)=179mm−175mm=4(mm)となる。   In addition, in the reflector 9 which concerns on Example 3, the protrusion amount from the crucible 3 outer periphery of the outer peripheral part is 2 mm, ie, the outer diameter of the reflector 9 is a (mm), and the outer diameter of the crucible 3 is b (mm). In this case, (a−b) = 179 mm−175 mm = 4 (mm).

そして、この条件での結晶引き上げを10回実施したところ、8回の実施においてクラックのないLT単結晶が得られた。   Then, when crystal pulling was performed 10 times under these conditions, an LT single crystal without cracks was obtained in 8 times.

[実施例4]
ドーナツ板形状のイリジウム製リフレクター9の外径を180mmφとした以外は実施例1と同等の条件で単結晶の引き上げを行った。
[Example 4]
The single crystal was pulled up under the same conditions as in Example 1 except that the outer diameter of the iridium reflector 9 having a donut shape was changed to 180 mmφ.

尚、実施例4に係るリフレクター9においては、その外周部分の坩堝3外周縁からのはみ出し量は2.5mm、すなわち、リフレクター9の外径をa(mm)、坩堝3の外径をb(mm)とした場合、(a−b)=180mm−175mm=5(mm)となる。   In the reflector 9 according to Example 4, the amount of protrusion of the outer peripheral portion from the outer periphery of the crucible 3 is 2.5 mm, that is, the outer diameter of the reflector 9 is a (mm), and the outer diameter of the crucible 3 is b ( mm), (a−b) = 180 mm−175 mm = 5 (mm).

そして、この条件での結晶引き上げを10回実施したところ、8回の実施においてクラックのないLT単結晶が得られた。   Then, when crystal pulling was performed 10 times under these conditions, an LT single crystal without cracks was obtained in 8 times.

[比較例1]
ドーナツ板形状のイリジウム製リフレクター9の外径を181mmφとした以外は実施例1と同等の条件で単結晶の引き上げを行った。
[Comparative Example 1]
The single crystal was pulled up under the same conditions as in Example 1 except that the outer diameter of the iridium reflector 9 having a donut shape was changed to 181 mmφ.

尚、比較例1に係るリフレクター9においては、その外周部分の坩堝3外周縁からのはみ出し量は3mm、すなわち、リフレクター9の外径をa(mm)、坩堝3の外径をb(mm)とした場合、(a−b)=181mm−175mm=6(mm)となる。   In addition, in the reflector 9 which concerns on the comparative example 1, the protrusion amount from the crucible 3 outer periphery of the outer peripheral part is 3 mm, ie, the outer diameter of the reflector 9 is a (mm), and the outer diameter of the crucible 3 is b (mm). In this case, (a−b) = 181 mm−175 mm = 6 (mm).

そして、この条件での結晶引き上げを10回実施したところ、クラックのないLT単結晶を得ることができたのは5回であった。   Then, when crystal pulling was performed 10 times under these conditions, it was possible to obtain an LT single crystal without cracks 5 times.

[比較例2]
ドーナツ板形状のイリジウム製リフレクター9の外径を174mmφとした以外は実施例1と同等の条件で単結晶の引き上げを行った。
[Comparative Example 2]
The single crystal was pulled up under the same conditions as in Example 1 except that the outer diameter of the iridium reflector 9 having a donut shape was changed to 174 mmφ.

本比較例2においては、リフレクター9の外径が坩堝3の外径より小さく、リフレクター9の外径をa(mm)、坩堝3の外径をb(mm)とした場合、
(a−b)=174mm−175mm=−1(mm)となる。
In this comparative example 2, when the outer diameter of the reflector 9 is smaller than the outer diameter of the crucible 3, the outer diameter of the reflector 9 is a (mm), and the outer diameter of the crucible 3 is b (mm).
(Ab) = 174 mm-175 mm = -1 (mm).

坩堝の肉厚が2.5mmであるため、繰り返し使用により徐々に坩堝の変形は見られたものの、7回目の結晶引き上げまでは坩堝とリフレクター間に隙間が生ずることはなく、クラックのないLT単結晶を得ることができた。しかし、その後、坩堝とリフレクター間に隙間が生じたため、以降、3回の引き上げ試験を実施したが、結晶底部から約40mmの範囲において多結晶化が見られた。   Since the crucible has a thickness of 2.5 mm, although the crucible was gradually deformed by repeated use, there was no gap between the crucible and the reflector until the seventh crystal pulling, and there was no crack. Crystals could be obtained. However, since a gap was generated between the crucible and the reflector thereafter, three pulling tests were performed thereafter, and polycrystallization was observed in a range of about 40 mm from the bottom of the crystal.

『確 認』
上記結果から、実施例1〜4によればクラックのないタンタル酸リチウム単結晶を高い収率で製造することができることが確認される。
"Confirmation"
From the above results, it is confirmed that according to Examples 1 to 4, a lithium tantalate single crystal without cracks can be produced in a high yield.

本発明によれば、タンタル酸リチウム単結晶のクラックが抑制されてウエハーの取得可能枚数を大幅に増大させることが可能となるため、表面弾性波素子等に用いられるタンタル酸リチウム単結晶の育成に利用される産業上の利用可能性を有している。   According to the present invention, since the crack of the lithium tantalate single crystal is suppressed and the number of wafers that can be obtained can be greatly increased, the lithium tantalate single crystal used for the surface acoustic wave device or the like can be grown. Has industrial applicability.

1 加熱コイル(高周波コイル)
2 セラミックス製の坩堝台
3 坩堝
4 アルミナ台
5 断熱材
6 引き上げ軸
7 蓋
8 種結晶
9 リフレクター
10 融液
11 単結晶
12 種結晶保持治具
13 アフターヒーター
1 Heating coil (high frequency coil)
2 Ceramic crucible base 3 Crucible 4 Alumina base 5 Heat insulating material 6 Lifting shaft 7 Lid 8 Seed crystal 9 Reflector 10 Melt 11 Single crystal 12 Seed crystal holding jig 13 After heater

Claims (1)

坩堝と該坩堝の上端に設置されたドーナツ板形状の貴金属製リフレクターを備え、高周波誘導加熱により融解された坩堝内の原料融液に種結晶を接触させ、かつ、上記種結晶を回転させつつ上方に引き上げることで結晶直径が4インチ以上のタンタル酸リチウム単結晶を育成する方法において、
上記リフレクターの外径をa(mm)、坩堝の外径をb(mm)としたとき、
0(mm)≦a−b≦5(mm)の条件を満たすように設定することを特徴とするタンタル酸リチウム単結晶の製造方法。
A crucible and a doughnut-shaped noble metal reflector installed at the upper end of the crucible, the seed crystal is brought into contact with the raw material melt in the crucible melted by high frequency induction heating, and the seed crystal is rotated upward In a method for growing a lithium tantalate single crystal having a crystal diameter of 4 inches or more by pulling up to
When the outer diameter of the reflector is a (mm) and the outer diameter of the crucible is b (mm),
A method for producing a lithium tantalate single crystal, which is set so as to satisfy a condition of 0 (mm) ≦ ab ≦ 5 (mm).
JP2015251992A 2015-12-24 2015-12-24 Method for growing lithium tantalate single crystals Active JP6593157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015251992A JP6593157B2 (en) 2015-12-24 2015-12-24 Method for growing lithium tantalate single crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015251992A JP6593157B2 (en) 2015-12-24 2015-12-24 Method for growing lithium tantalate single crystals

Publications (2)

Publication Number Publication Date
JP2017114725A true JP2017114725A (en) 2017-06-29
JP6593157B2 JP6593157B2 (en) 2019-10-23

Family

ID=59233156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015251992A Active JP6593157B2 (en) 2015-12-24 2015-12-24 Method for growing lithium tantalate single crystals

Country Status (1)

Country Link
JP (1) JP6593157B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167253A (en) * 2018-03-22 2019-10-03 住友金属鉱山株式会社 Afterheater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920584A (en) * 1995-06-30 1997-01-21 Shin Etsu Chem Co Ltd Production of oxide single crystal
JPH09328400A (en) * 1996-06-03 1997-12-22 Shin Etsu Chem Co Ltd Production of lithium tantalate single crystal
JPH09328394A (en) * 1996-06-07 1997-12-22 Shin Etsu Chem Co Ltd Production of oxide single crystal
CN1311356A (en) * 2000-02-24 2001-09-05 东芝株式会社 Method and equipment for producing single crystal of oxides
JP2013001581A (en) * 2011-06-13 2013-01-07 Sumitomo Metal Mining Co Ltd Method for growing lithium tantalate single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920584A (en) * 1995-06-30 1997-01-21 Shin Etsu Chem Co Ltd Production of oxide single crystal
JPH09328400A (en) * 1996-06-03 1997-12-22 Shin Etsu Chem Co Ltd Production of lithium tantalate single crystal
JPH09328394A (en) * 1996-06-07 1997-12-22 Shin Etsu Chem Co Ltd Production of oxide single crystal
CN1311356A (en) * 2000-02-24 2001-09-05 东芝株式会社 Method and equipment for producing single crystal of oxides
JP2013001581A (en) * 2011-06-13 2013-01-07 Sumitomo Metal Mining Co Ltd Method for growing lithium tantalate single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167253A (en) * 2018-03-22 2019-10-03 住友金属鉱山株式会社 Afterheater

Also Published As

Publication number Publication date
JP6593157B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
TWI443235B (en) SiC single crystal manufacturing method and manufacturing device
JPWO2008146371A1 (en) Silicon single crystal pulling device
JP6451700B2 (en) Oxide single crystal growth method
JP6593157B2 (en) Method for growing lithium tantalate single crystals
JP2013001581A (en) Method for growing lithium tantalate single crystal
JP2018002568A (en) Raising method of lithium tantalate single crystal
JP7271843B2 (en) Method for producing lithium tantalate single crystal
JP7271842B2 (en) Method for producing lithium tantalate single crystal
WO2004092456A1 (en) Single crystal producing method
JP2019127411A (en) Method for making single domain of lithium niobate monocrystal
JP7310339B2 (en) Method for growing lithium niobate single crystal
JP6520642B2 (en) Method of growing lithium tantalate single crystal
JP2011079693A (en) Apparatus for producing semiconductor single crystal
JP7294063B2 (en) Oxide single crystal growth method
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
JP2019052066A (en) Raising method of oxide single crystal
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
JP6439733B2 (en) Nonmagnetic garnet single crystal growth method
JP2019052067A (en) Single crystal growth apparatus
JP2018100202A (en) METHOD FOR GROWING LiNbO3 SINGLE CRYSTAL
JP2019123645A (en) Graphite heater for manufacturing single crystal and apparatus for pulling single crystal
JP2006282426A (en) Langasite single crystal and its production method
JP2018002573A (en) Crystal growth apparatus
JP2011225408A (en) Method for manufacturing silicon single crystal
JP7275674B2 (en) Method for growing lithium niobate single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6593157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150