JP2018002573A - Crystal growth apparatus - Google Patents

Crystal growth apparatus Download PDF

Info

Publication number
JP2018002573A
JP2018002573A JP2016136303A JP2016136303A JP2018002573A JP 2018002573 A JP2018002573 A JP 2018002573A JP 2016136303 A JP2016136303 A JP 2016136303A JP 2016136303 A JP2016136303 A JP 2016136303A JP 2018002573 A JP2018002573 A JP 2018002573A
Authority
JP
Japan
Prior art keywords
crucible
crystal
crystal growth
crucible base
growth apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016136303A
Other languages
Japanese (ja)
Other versions
JP2018002573A5 (en
JP6724614B2 (en
Inventor
亮太 山木
Ryota Yamaki
亮太 山木
憲治 村下
Kenji Murashita
憲治 村下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016136303A priority Critical patent/JP6724614B2/en
Publication of JP2018002573A publication Critical patent/JP2018002573A/en
Publication of JP2018002573A5 publication Critical patent/JP2018002573A5/ja
Application granted granted Critical
Publication of JP6724614B2 publication Critical patent/JP6724614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a crystal growth apparatus capable of suppressing solidification of row material melt from a bottom surface of a crucible during crystal growth of an oxide single crystal, and thereby elongating the single crystal.SOLUTION: A crystal growth apparatus has a crucible 30 having a prescribed bottom surface 31, and a crucible stand 40 on which the crucible can be installed, the crucible stand having an installation surface 41 with a contact area ratio with the bottom surface being 10-38% with respect to the bottom surface.SELECTED DRAWING: Figure 2

Description

本発明は、結晶育成装置に関する。   The present invention relates to a crystal growth apparatus.

通信機器の信号ノイズ除去用の表面弾性波フィルター(Surface Acoustic Wave Filter、SAWフィルター)の材料として利用されているニオブ酸リチウムやタンタル酸リチウムの酸化物単結晶は、結晶特性が良好で、大きな結晶径のものが得られるチョクラルスキー法により育成するのが一般的である。チョクラルスキー法は、貴金属製ルツボ内で原料を溶融させ、種結晶を原料融液の表面に接触させ、ルツボ支持棒で回転させながら引き上げることで、種結晶と同一方位の円柱状の単結晶を成長させる方法である。   Lithium niobate and lithium tantalate oxide single crystals, which are used as materials for surface acoustic wave filters (SAW filters) for removing signal noise in communication equipment, have good crystal characteristics and are large crystals. It is common to grow by the Czochralski method that can obtain a diameter. In the Czochralski method, a raw material is melted in a precious metal crucible, and the seed crystal is brought into contact with the surface of the raw material melt and pulled up while being rotated by a crucible support rod. Is a way to grow.

特許文献1、特許文献2では、セラミック製耐火物内の底部にアルミナ製のルツボ台を設置し、その上にルツボを設置した酸化物単結晶の育成装置が提案されている。   Patent Document 1 and Patent Document 2 propose an oxide single crystal growth apparatus in which an alumina crucible base is installed at the bottom of a ceramic refractory and a crucible is installed thereon.

特開平7−187880号公報JP-A-7-187880 特開2003−165796号公報JP 2003-165996 A

しかしながら、結晶育成技術が発達して結晶の長尺化が進むにつれ、特許文献1、特許文献2に記載の育成装置の構成では、単結晶育成中にルツボの底から原料融液が固化するという現象により、育成中の結晶のテール部とルツボ底の固化した結晶が接触し、結晶の長尺化が困難になるという問題があった。   However, as the crystal growth technique develops and the lengthening of the crystal proceeds, in the configuration of the growth apparatus described in Patent Document 1 and Patent Document 2, the raw material melt is solidified from the bottom of the crucible during single crystal growth. Due to the phenomenon, the tail portion of the growing crystal comes into contact with the solidified crystal at the bottom of the crucible, which makes it difficult to lengthen the crystal.

本発明はこのような問題点に着目してなされたもので、酸化物単結晶の結晶育成中のルツボの底面からの原料融液の固化を抑制し、単結晶の長尺化が可能な結晶育成装置を提供することを目的とする。   The present invention has been made paying attention to such problems, and is capable of suppressing the solidification of the raw material melt from the bottom surface of the crucible during the crystal growth of the oxide single crystal and enabling the lengthening of the single crystal. An object is to provide a training apparatus.

上記目的を達成するため、本発明の一態様に係る結晶育成装置は、所定の底面を有するルツボと、
該ルツボを設置可能であり、前記底面との接触面積比が、前記底面に対して10〜38%である設置面を有するルツボ台と、を有する。
To achieve the above object, a crystal growth apparatus according to an aspect of the present invention includes a crucible having a predetermined bottom surface,
The crucible can be installed, and a crucible base having an installation surface whose contact area ratio with the bottom surface is 10 to 38% with respect to the bottom surface.

本発明によれば、ルツボ底面と接するルツボ台の接触面積を最適化し、ルツボ底面の熱伝導を抑制することにより、ルツボ底面からの原料融液の固化を抑制することができる。   According to the present invention, solidification of the raw material melt from the bottom surface of the crucible can be suppressed by optimizing the contact area of the crucible base in contact with the bottom surface of the crucible and suppressing the heat conduction of the bottom surface of the crucible.

本発明の第1の実施形態に係る結晶育成装置を示した図である。It is the figure which showed the crystal growth apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る結晶育成装置のルツボ台の一例を示した図である。It is the figure which showed an example of the crucible stand of the crystal growth apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る結晶育成装置の一例を示した図である。It is the figure which showed an example of the crystal growth apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る結晶育成装置のルツボ台部材の一例を示した図である。It is the figure which showed an example of the crucible base member of the crystal growing apparatus which concerns on the 2nd Embodiment of this invention. 実施例1と比較例1の結晶育成中の結晶重量とルツボ底温度降下量のグラフである。6 is a graph of crystal weight and crucible bottom temperature drop during crystal growth in Example 1 and Comparative Example 1.

以下、図面を参照して、本発明を実施するための形態の説明を行う。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

[結晶育成装置の構成]
図1は、酸化物単結晶等の単結晶の育成に用いられる本発明の第1の実施形態に係る結晶育成装置を示した図である。
[Configuration of crystal growth equipment]
FIG. 1 is a diagram showing a crystal growth apparatus according to a first embodiment of the present invention used for growing a single crystal such as an oxide single crystal.

一般的な育成装置は、ワークコイル10と、セラミック製耐火物20と、ルツボ30と、ルツボ台40と、断熱材50と、引き上げ軸60と、蓋70と、リフレクター90と、種結晶保持治具120と、アフターヒーター130とを有する。また、図1において、関連構成要素として、種結晶80と、融液100と、単結晶110とが示されている。   A general growing apparatus includes a work coil 10, a ceramic refractory 20, a crucible 30, a crucible base 40, a heat insulating material 50, a lifting shaft 60, a lid 70, a reflector 90, and a seed crystal holding treatment. The tool 120 and the after heater 130 are provided. Moreover, in FIG. 1, the seed crystal 80, the melt 100, and the single crystal 110 are shown as a related component.

ルツボ30は、結晶原料の融液100を保持するための容器である。なお、結晶原料は、加熱されて溶解し、融液100となっている。ルツボ30は、例えば、イリジウム製であってもよい。ルツボ30は、底面31を有し、底面31がルツボ台40の設置面41上に設置されることにより支持される。   The crucible 30 is a container for holding the crystal material melt 100. Note that the crystal raw material is melted by heating to form a melt 100. The crucible 30 may be made of, for example, iridium. The crucible 30 has a bottom surface 31 and is supported by the bottom surface 31 being installed on the installation surface 41 of the crucible base 40.

セラミック製耐火物20は、ルツボ30を含む全体を囲む手段であり、ルツボ30を含む全体を収容可能な容器に類似した構成を有する。なお、セラミック製耐火物20は、文字通りセラミックからなる。   The ceramic refractory 20 is a means for enclosing the whole including the crucible 30 and has a configuration similar to a container capable of accommodating the whole including the crucible 30. The ceramic refractory 20 is literally made of ceramic.

ルツボ台40は、セラミック製耐火物20の底面上に設置され、その上面41にルツボ30を設置可能に設けられる。ルツボ台40の上面41は、ルツボ30を設置可能な面であるから、ルツボ設置面41と呼んでもよい。ルツボ台40の表面には、窪み形状部が形成され、ルツボ30の底面31との接触面積を減少させる構成となっている。なお、この点は後述する。   The crucible base 40 is installed on the bottom surface of the ceramic refractory 20, and the crucible 30 is installed on the top surface 41 of the crucible base 40. Since the upper surface 41 of the crucible base 40 is a surface on which the crucible 30 can be installed, it may be called the crucible installation surface 41. A concave portion is formed on the surface of the crucible base 40 to reduce the contact area with the bottom surface 31 of the crucible 30. This point will be described later.

断熱材50は、ルツボ30を囲むように設置され、ルツボ30の熱の外部への放出を防ぐ機能を有する。   The heat insulating material 50 is installed so as to surround the crucible 30 and has a function of preventing the heat of the crucible 30 from being released to the outside.

リフレクター90は、ルツボ30の上端面に沿って取り付けられ、ドーナツ板形状を有する。   The reflector 90 is attached along the upper end surface of the crucible 30 and has a donut plate shape.

アフターヒーター130は、リフレクター90に取り付けられ、円筒形状を有する。   The after heater 130 is attached to the reflector 90 and has a cylindrical shape.

引き上げ軸60は、単結晶110を引き上げるための回転軸であり、ルツボ30の中央部に設けられる。   The pulling shaft 60 is a rotating shaft for pulling up the single crystal 110 and is provided at the center of the crucible 30.

蓋70は、アフターヒーター130の上端部を塞ぐように設けられ、中央には、引き上げ軸60を通すための開口部71が設けられる。   The lid 70 is provided so as to close the upper end portion of the after heater 130, and an opening 71 for passing the lifting shaft 60 is provided in the center.

種結晶保持治具120は、種結晶80を保持するための治具であり、引き上げ軸60の下方側(下端部)に設けられる。   The seed crystal holding jig 120 is a jig for holding the seed crystal 80 and is provided on the lower side (lower end portion) of the pulling shaft 60.

ワークコイル10は、セラミック製耐火物20の更に外側に、セラミック製耐火物20を囲むように設けられ、ルツボ30を誘導加熱し、内部に充填された原料を融解させ、融液100とする役割を有する。   The work coil 10 is provided on the outer side of the ceramic refractory 20 so as to surround the ceramic refractory 20, inductively heats the crucible 30, melts the raw material filled therein, and forms a melt 100. Have

図2は、本発明の第1の実施形態に係る結晶育成装置のルツボ台40の一例を示した図である。ルツボ台40の上面(ルツボ設置面)41には、窪み形状部42が形成されている。窪み形状部42は、図2においては、同心円状の複数の円形溝として構成されている。これにより、ルツボ台40の上面41と、上面41上に設置されるルツボ30の底面31との接触面積を減少させることができる。そして、ルツボ30の底面31からルツボ台40を介して熱が放出することにより、ルツボ底面31の温度が低下し、ルツボ底面31付近の融液100が固化するという現象の発生を抑制することができる。   FIG. 2 is a view showing an example of the crucible base 40 of the crystal growth apparatus according to the first embodiment of the present invention. A recess-shaped portion 42 is formed on the upper surface (crucible installation surface) 41 of the crucible base 40. In FIG. 2, the recessed portion 42 is configured as a plurality of concentric circular grooves. Thereby, the contact area of the upper surface 41 of the crucible base 40 and the bottom surface 31 of the crucible 30 installed on the upper surface 41 can be reduced. Then, heat is released from the bottom surface 31 of the crucible 30 through the crucible base 40, thereby suppressing the occurrence of the phenomenon that the temperature of the crucible bottom surface 31 decreases and the melt 100 near the crucible bottom surface 31 is solidified. it can.

本発明の第1の実施形態に係るルツボ台40においては、ルツボ30の底面31とルツボ30を設置するルツボ台40の上面41との接触面積比が、ルツボ底面31に対して10〜38%(ルツボ台の接触面積/ルツボ底面積×100)となるように設定する。図1に示される通り、ルツボ台40の上面41は、ルツボ30の底面31よりも全体の面積が小さいので、窪み形状部42が形成されていない総ての平坦面がルツボ30の底面31と接触する。よって、上面41の全体のうち、平坦面の部分が、ルツボ30の底面積の10〜38%となるように設定すれば、上述の条件を満たすことになる。   In the crucible base 40 according to the first embodiment of the present invention, the contact area ratio between the bottom surface 31 of the crucible 30 and the top surface 41 of the crucible base 40 on which the crucible 30 is installed is 10 to 38% with respect to the bottom surface 31 of the crucible. (Crucible base contact area / crucible bottom area × 100). As shown in FIG. 1, the upper surface 41 of the crucible base 40 has a smaller overall area than the bottom surface 31 of the crucible 30, so that all flat surfaces on which the recessed portions 42 are not formed are the same as the bottom surface 31 of the crucible 30. Contact. Therefore, if the flat surface portion of the entire upper surface 41 is set to be 10 to 38% of the bottom area of the crucible 30, the above condition is satisfied.

このように、ルツボ30の底面31とルツボ台40の上面41との接触面積がルツボ底面積に対して10%以上であれば、ルツボ30をルツボ台40に安定して載置でき、ルツボ底面31の温度変化を抑制し、保温性を確保できる。   Thus, if the contact area between the bottom surface 31 of the crucible 30 and the top surface 41 of the crucible base 40 is 10% or more with respect to the crucible bottom area, the crucible 30 can be stably placed on the crucible base 40 and the bottom surface of the crucible. The temperature change of 31 can be suppressed and heat retention can be ensured.

また、ルツボ30の底面31とルツボ台40の上面41との接触面積は、ルツボ底面積に対して38%以下とする。ルツボ30の底面31とルツボ台40の接触面積が38%を超えると、ルツボ底面31からルツボ台40に熱が放出され易くなり、ルツボ底面31の保温性が低下することから、ルツボ底面31の原料融液が固化し易くなる。例えば、ルツボ台40の上面41のルツボ30の底面31の面積に対する接触面積比は、12〜36%であることが好ましい。   The contact area between the bottom surface 31 of the crucible 30 and the top surface 41 of the crucible base 40 is set to 38% or less with respect to the crucible bottom area. When the contact area between the bottom surface 31 of the crucible 30 and the crucible base 40 exceeds 38%, heat is easily released from the bottom surface 31 of the crucible to the crucible base 40, and the heat retaining property of the bottom surface 31 of the crucible is reduced. The raw material melt is easily solidified. For example, the contact area ratio of the upper surface 41 of the crucible base 40 to the area of the bottom surface 31 of the crucible 30 is preferably 12 to 36%.

本発明の第1の実施形態に係るルツボ台40は、ルツボ底面31との接触面となるルツボ台40の上面41に、窪み形状部42を形成することにより、ルツボ30を安定にルツボ台40に載置できる大きさを確保しつつ、ルツボ底面31との接触面積を制御することができる。   In the crucible base 40 according to the first embodiment of the present invention, the crucible base 40 is stably formed by forming the recessed portion 42 on the upper surface 41 of the crucible base 40 that is a contact surface with the crucible bottom surface 31. It is possible to control the contact area with the crucible bottom surface 31 while ensuring a size that can be placed on the crucible.

また、図2に示すように、窪み形状部42は、同心円状の溝としてもよい。かかる構成により、円形の底面31を有するルツボ30を確実に支持しつつ、ルツボ30の底面31とルツボ台40の上面41との接触面積を減少させることができる。より詳細には、結晶育成装置は、一般的にルツボ30の周囲を加熱し原料を溶融させているため、原料融液100はルツボ30内で自然対流し、温度の低下した原料融液100の対流がルツボ30の中央に向かって起こる。そのため、原料融液30の固化はルツボ30の中心から起こり易く、ルツボ30の中央部とルツボ台40の中央部とは接触していないことが望ましい。図2に示す同心円状の溝は、そのような対流の影響を抑制することができ、好ましい窪み形状部42の構成の1つである。   In addition, as shown in FIG. 2, the recessed portion 42 may be a concentric groove. With such a configuration, the contact area between the bottom surface 31 of the crucible 30 and the top surface 41 of the crucible base 40 can be reduced while reliably supporting the crucible 30 having the circular bottom surface 31. More specifically, since the crystal growth apparatus generally heats the surroundings of the crucible 30 to melt the raw material, the raw material melt 100 naturally convects in the crucible 30 and the temperature of the raw material melt 100 with a lowered temperature is reduced. Convection occurs toward the center of the crucible 30. Therefore, solidification of the raw material melt 30 is likely to occur from the center of the crucible 30 and it is desirable that the central portion of the crucible 30 and the central portion of the crucible base 40 are not in contact with each other. The concentric groove shown in FIG. 2 can suppress the influence of such convection, and is one of the preferable configurations of the recessed portion 42.

但し、窪み形状部42の形状は、同心円状の複数の溝に限定される訳ではなく、用途に応じて種々の窪み形状パターンとすることができる。   However, the shape of the recessed portion 42 is not limited to a plurality of concentric grooves, and can be various recessed shape patterns depending on the application.

また、ルツボ台40はアルミナ等の高温に耐え得る種々の材料から構成されてよいが、ジルコニア製であることが好ましい。ジルコニアは他のセラミックスに比べ熱伝導率が低いため、ルツボ底面の保温性を上げるのに適している。   The crucible base 40 may be made of various materials that can withstand high temperatures such as alumina, but is preferably made of zirconia. Since zirconia has a lower thermal conductivity than other ceramics, it is suitable for increasing the heat retention of the bottom of the crucible.

図3は、本発明の第2の実施形態に係る結晶育成装置の一例を示した図である。なお、図3においては、第1の実施形態に係る結晶育成装置と異なる部分のみを示し、共通部分の図示は省略しているが、それらの箇所には図1の構成を適用できる。また、図3において、第1の実施形態に係る結晶育成装置と共通の構成要素については、同一の参照符号を付し、その説明を省略する。   FIG. 3 is a diagram showing an example of a crystal growth apparatus according to the second embodiment of the present invention. In FIG. 3, only the parts different from the crystal growth apparatus according to the first embodiment are shown, and the common parts are not shown, but the configuration of FIG. 1 can be applied to those parts. In FIG. 3, the same reference numerals are assigned to the same components as those of the crystal growth apparatus according to the first embodiment, and the description thereof is omitted.

第2の実施形態に係る結晶育成装置のルツボ台45は、複数のルツボ台部材46を重ねて構成している点で、1個の部材で構成している第1の実施形態に係る結晶育成装置のルツボ台40と異なっている。図3においては、6個のルツボ台部材46が積み重ねられ、1個のルツボ台45を構成している。   The crucible base 45 of the crystal growth apparatus according to the second embodiment is composed of a single member in that the plurality of crucible base members 46 are overlapped, and the crystal growth according to the first embodiment is configured. Different from the crucible base 40 of the apparatus. In FIG. 3, six crucible base members 46 are stacked to constitute one crucible base 45.

図4は、ルツボ台部材46の一例を示した図である。図4に示すように、ルツボ台部材46は、厚さが薄くなった点が異なるが、上面47に窪み形状部48が形成されている点で、第1の実施形態におけるルツボ台40と共通する。また、図4においては、窪み形状部48は同心円状の複数の溝であり、かかる点も第1の実施形態におけるルツボ台40と同様である。   FIG. 4 is a view showing an example of the crucible base member 46. As shown in FIG. 4, the crucible base member 46 is different from the crucible base member 46 in the first embodiment in that the thickness of the crucible base member 46 is reduced, but a recessed portion 48 is formed on the upper surface 47. To do. Moreover, in FIG. 4, the hollow shape part 48 is a plurality of concentric grooves, and this point is the same as that of the crucible base 40 in the first embodiment.

図3において、ルツボを設置するルツボ台部材46を1つ目とすると、1つ目のルツボ台部材46は、ルツボ30を安定して設置できる大きさであれば良く、ルツボ30とルツボ周囲の断熱材とを接触させるとより保温効果が高まる。   In FIG. 3, if the first crucible base member 46 for installing the crucible is the first, the first crucible base member 46 may be of a size that allows the crucible 30 to be stably installed. When it is brought into contact with the heat insulating material, the heat retaining effect is further increased.

2つ目以降のルツボ台部材46は、1つ目のルツボ台部材46の下に設置し、1つ目のルツボ台部材46よりも直径が大きいものが好ましい。これは断熱材50としてジルコニアバブルなどの中空ビーズを長期間にわたり繰り返し使用した場合、結晶育成中に断熱材50が熱的変化を起こし、塊や空洞ができることから温度勾配の対称性が崩れ、結晶育成の収率が悪化する。よって、2つ目以降のルツボ台部材46は、断熱材50の代替としての役割を果たせるよう、1つ目のルツボ台部材46よりも上面47が大きいルツボ台部材46を設置することが好ましい。   The second and subsequent crucible base members 46 are preferably installed below the first crucible base member 46 and have a larger diameter than the first crucible base member 46. This is because, when hollow beads such as zirconia bubbles are repeatedly used as the heat insulating material 50 over a long period of time, the heat insulating material 50 undergoes a thermal change during crystal growth, resulting in the formation of lumps and cavities, so that the symmetry of the temperature gradient collapses, The yield of breeding deteriorates. Therefore, it is preferable to install the crucible base member 46 having the upper surface 47 larger than the first crucible base member 46 so that the second and subsequent crucible base members 46 can serve as an alternative to the heat insulating material 50.

但し、図3に示されるように、2つ目以降のルツボ台部材46は、1つ目のルツボ台部材46と同一形状であってもよい。この場合、窪み形状部48も同一形状であってもよい。   However, as shown in FIG. 3, the second and subsequent crucible base members 46 may have the same shape as the first crucible base member 46. In this case, the hollow shape part 48 may also be the same shape.

なお、ルツボ台部材46も、アルミナ等の高温に耐え得る種々の材料から構成されてよいが、第1の実施形態と同様、ジルコニア製であることが好ましい。   The crucible base member 46 may also be made of various materials that can withstand high temperatures, such as alumina, but is preferably made of zirconia as in the first embodiment.

[酸化物単結晶育成手順]
酸化物単結晶の育成方法は特に限定されるものではなく公知の技術が利用できる。一例として、酸化物単結晶を育成する手順を示す。
[Oxide single crystal growth procedure]
The method for growing the oxide single crystal is not particularly limited, and a known technique can be used. As an example, a procedure for growing an oxide single crystal is shown.

粗粉砕した原料をルツボ30に充填し、ワークコイル10でルツボ30を誘電加熱し溶融する。   The coarsely crushed raw material is filled in the crucible 30, and the crucible 30 is dielectrically heated by the work coil 10 and melted.

次に、溶融した原料の融液100に種結晶80を接触させると共に、種結晶80を回転させつつ引き上げ軸60で上方へ引き上げることで単結晶110を育成する。単結晶110の引き上げの際、ルツボ30の底面からルツボ台40、45を介した放熱を抑制することができ、1回の引き上げで育成できる単結晶110を長尺化することができる。これにより、結晶育成の生産性を高めることができる。   Next, the single crystal 110 is grown by bringing the seed crystal 80 into contact with the melted raw material melt 100 and pulling the seed crystal 80 upward by the pulling shaft 60 while rotating the seed crystal 80. When pulling up the single crystal 110, heat radiation from the bottom of the crucible 30 through the crucible bases 40 and 45 can be suppressed, and the single crystal 110 that can be grown by one pulling can be elongated. Thereby, the productivity of crystal growth can be increased.

以下、本発明の実施例について比較例を挙げて具体的に説明するが、本発明は以下の実施例により何ら制限されるものではない。   Examples of the present invention will be specifically described below with reference to comparative examples, but the present invention is not limited to the following examples.

[実施例1]
図1に示す結晶育成装置において、直径205mm、高さ180mmのルツボ(イリジウム製)底面に対して、直径130mmのルツボ台(ジルコニア製)の接触面積比(%)(ルツボ台の接触面積/ルツボ底面積×100)が26%となるように同心円状に溝を形成した(図2参照)。
[Example 1]
1, the contact area ratio (%) of the crucible base (made of zirconia) having a diameter of 130 mm to the bottom surface of the crucible (made of iridium) having a diameter of 205 mm and a height of 180 mm (contact area of the crucible base / crucible) Grooves were formed concentrically so that the bottom area × 100) was 26% (see FIG. 2).

ルツボ内に、組成比がLi/Ta=0.943(モル比)の焼成原料を30kg入れ、溶融させた後、チョクラルスキー法により、直径6インチのタンタル酸リチウム単結晶の育成を行った。   In a crucible, 30 kg of a firing raw material having a composition ratio of Li / Ta = 0.944 (molar ratio) was put and melted, and then a lithium tantalate single crystal having a diameter of 6 inches was grown by the Czochralski method. .

引上げ結晶重量、結晶の直胴部長さ、ルツボ底温度降下量を表1に示す。   Table 1 shows the weight of the pulled crystal, the length of the straight body of the crystal, and the temperature drop at the bottom of the crucible.

その結果、育成できたタンタル酸リチウム単結晶の重量は17.4kg、直胴長は83mm、結晶育成開始から育成終了までのルツボ底面の温度降下量は、−13.5℃であった。 As a result, the weight of the grown lithium tantalate single crystal was 17.4 kg, the length of the straight cylinder was 83 mm, and the temperature drop at the bottom of the crucible from the start of crystal growth to the end of growth was -13.5 ° C.

[実施例2]
図1に示す単結晶育成装置において、直径205mm、高さ180mmのルツボ(イリジウム製)底面に対して、直径130mmのルツボ台(ジルコニア製)の接触面積比(%)(ルツボ台の接触面積/ルツボ底面積×100)が36%となるように同心円状に溝を形成した(図2参照)。
[Example 2]
In the single crystal growing apparatus shown in FIG. 1, the contact area ratio (%) of the crucible base (made of zirconia) having a diameter of 130 mm to the bottom face of the crucible (made of iridium) having a diameter of 205 mm and a height of 180 mm (contact area of the crucible base / Grooves were formed concentrically so that the crucible bottom area × 100) was 36% (see FIG. 2).

ルツボ内に、組成比がLi/Ta=0.943(モル比)の焼成原料を30kg入れ、溶融させた後、チョクラルスキー法により、直径6インチのタンタル酸リチウム単結晶の育成を行った。   In a crucible, 30 kg of a firing raw material having a composition ratio of Li / Ta = 0.944 (molar ratio) was put and melted, and then a lithium tantalate single crystal having a diameter of 6 inches was grown by the Czochralski method. .

実施例1と同様に育成中の温度調査を行った。   In the same manner as in Example 1, a temperature survey during the growth was performed.

その結果、表1に示されるように、育成できたタンタル酸リチウム単結晶の重量は17.3kg、直胴長は83mm、結晶育成開始から育成終了までのルツボ底面の温度降下量は、−18.3℃であった。   As a result, as shown in Table 1, the weight of the grown lithium tantalate single crystal was 17.3 kg, the straight body length was 83 mm, and the temperature drop at the bottom of the crucible from the start of crystal growth to the end of growth was −18 It was 3 ° C.

[実施例3]
図1に示す単結晶育成装置において、直径205mm、高さ180mmのルツボ(イリジウム製)底面に対して、直径130mmのルツボ台(ジルコニア製)の接触面積比(%)(ルツボ台の接触面積/ルツボ底面積×100)が12%となるように同心円状に溝を形成した(図2参照)。
[Example 3]
In the single crystal growing apparatus shown in FIG. 1, the contact area ratio (%) of the crucible base (made of zirconia) having a diameter of 130 mm to the bottom face of the crucible (made of iridium) having a diameter of 205 mm and a height of 180 mm (contact area of the crucible base / Grooves were formed concentrically so that the crucible bottom area × 100) was 12% (see FIG. 2).

ルツボ内に、組成比がLi/Ta=0.943(モル比)の焼成原料を30kg入れ、溶融させた後、チョクラルスキー法により、直径6インチのタンタル酸リチウム単結晶の育成を行った。   In a crucible, 30 kg of a firing raw material having a composition ratio of Li / Ta = 0.944 (molar ratio) was put and melted, and then a lithium tantalate single crystal having a diameter of 6 inches was grown by the Czochralski method. .

実施例1と同様に育成中の温度調査を行った。   In the same manner as in Example 1, a temperature survey during the growth was performed.

その結果、表1に示されるように、育成できたタンタル酸リチウム単結晶の重量は17.8kg、直胴長は85mm、結晶育成開始から育成終了までのルツボ底面の温度降下量は、−5.3℃であった。   As a result, as shown in Table 1, the weight of the grown lithium tantalate single crystal was 17.8 kg, the straight body length was 85 mm, and the temperature drop at the bottom of the crucible from the start of crystal growth to the end of growth was −5 It was 3 ° C.

[比較例1]
図1に示す単結晶育成装置において、直径130mm、高さ180mmのルツボ台(ジルコニア製)に直径205mmのルツボ(イリジウム製)を設置した。ルツボ台上面に溝は形成していないため、接触面積比(%)(ルツボ台の接触面積/ルツボ底面積×100)は40%となる。
[Comparative Example 1]
In the single crystal growing apparatus shown in FIG. 1, a crucible (made of iridium) having a diameter of 205 mm was placed on a crucible base (made of zirconia) having a diameter of 130 mm and a height of 180 mm. Since no grooves are formed on the upper surface of the crucible base, the contact area ratio (%) (the contact area of the crucible base / the crucible bottom area × 100) is 40%.

ルツボ内に、組成比がLi/Ta=0.943(モル比)の焼成原料を30kg入れ、溶融させた後、チョクラルスキー法により、直径6インチのタンタル酸リチウム単結晶の育成を行った。   In a crucible, 30 kg of a firing raw material having a composition ratio of Li / Ta = 0.944 (molar ratio) was put and melted, and then a lithium tantalate single crystal having a diameter of 6 inches was grown by the Czochralski method. .

実施例1と同様に育成中の温度調査を行った。   In the same manner as in Example 1, a temperature survey during the growth was performed.

その結果、表1に示されるように、育成できたタンタル酸リチウム単結晶の重量は16.6kg、直胴長は75mm、結晶育成開始から育成終了までのルツボ底面の温度降下量は、−21.5℃であった。   As a result, as shown in Table 1, the weight of the grown lithium tantalate single crystal was 16.6 kg, the straight body length was 75 mm, and the temperature drop at the bottom of the crucible from the start of crystal growth to the end of growth was -21. It was 5 ° C.

[実施例に基づく考察]
表1にまとめた通り、接触面積比を適切にすることで、ルツボ底の温度が下がりにくくなり、保温効果があることが分かった。それによりルツボ底からの原料固化領域と単結晶が接触する際の単結晶重量が増加し、より直胴部の長い6インチタンタル酸リチウム単結晶が得られることが確認された。特に、ルツボの底面積全体に対する、ルツボ台の上面とルツボの底面の接触面積が12%以上36%以下であるときに、ルツボの底面の温度の低下量を低減させ、直胴部の長さを長尺化できることが分かる。
[Consideration based on Examples]
As summarized in Table 1, it was found that adjusting the contact area ratio makes it difficult to lower the temperature at the bottom of the crucible and has a heat retaining effect. As a result, it was confirmed that the weight of the single crystal when the raw material solidified region from the bottom of the crucible and the single crystal contact each other increased, and a 6-inch lithium tantalate single crystal having a longer straight body was obtained. In particular, when the contact area between the upper surface of the crucible base and the bottom surface of the crucible is 12% or more and 36% or less with respect to the entire bottom area of the crucible, the amount of decrease in the temperature of the bottom surface of the crucible is reduced, and the length of the straight body portion It can be seen that the length can be increased.

また図5に実施例1と比較例1の結晶育成中の結晶重量とルツボ底温度降下量のグラフを示す。結晶育成において結晶が生成すると潜熱が放出し、原料融液の温度が上昇することが知られている。図5において、結晶重量が1000gを超えた付近でルツボ温度降下量が上昇した時点(図中A、B)が、結晶生成を表している。実施例1(A)と比較例1(B)では、結晶生成による潜熱の放出が実施例1(A)の方が遅く表れていることがわかる。このことから、実施例1ではルツボ底の保温性が維持され、ルツボ底の原料融液の固化(結晶生成)が抑制できたため、従来よりも直胴部長さの長い長尺結晶を育成できた。   FIG. 5 shows a graph of crystal weight and crucible bottom temperature drop during crystal growth in Example 1 and Comparative Example 1. It is known that when crystals are formed during crystal growth, latent heat is released and the temperature of the raw material melt rises. In FIG. 5, the time (A and B in the figure) when the crucible temperature drop increases in the vicinity of the crystal weight exceeding 1000 g represents crystal formation. In Example 1 (A) and Comparative Example 1 (B), it can be seen that the release of latent heat due to crystal formation appears slower in Example 1 (A). From this, in Example 1, the heat retaining property of the crucible bottom was maintained, and solidification (crystal formation) of the raw material melt at the bottom of the crucible could be suppressed. .

このように、本実施例に係る結晶育成装置によれば、従来よりも結晶を長尺化して育成することができ、生産性を向上させることができる。   As described above, according to the crystal growing apparatus according to the present embodiment, it is possible to grow a crystal longer than the conventional one, and it is possible to improve productivity.

以上、本発明の好ましい実施形態及び実施例について詳説したが、本発明は、上述した実施形態及び実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施形態及び実施例に種々の変形及び置換を加えることができる。   The preferred embodiments and examples of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments and examples, and the above-described embodiments and examples can be performed without departing from the scope of the present invention. Various modifications and substitutions can be made to the embodiments.

10 ワークコイルコイル
20 セラミック製耐火物
30 ルツボ
31 底面
40、45 ルツボ台
41、47 上面(設置面)
42、48 窪み形状部
46 ルツボ台部材
50 断熱材
60 引き上げ軸
70 蓋
80 種結晶
90 リフレクター
100 融液
110 単結晶
120 種結晶保持治具
130 アフターヒーター
10 Work coil Coil 20 Ceramic refractory 30 Crucible 31 Bottom 40, 45 Crucible base 41, 47 Upper surface (installation surface)
42, 48 Recessed portion 46 Crucible base member 50 Insulating material 60 Lifting shaft 70 Lid 80 Seed crystal 90 Reflector 100 Melt 110 Single crystal 120 Seed crystal holding jig 130 After heater

Claims (9)

所定の底面を有するルツボと、
該ルツボを設置可能であり、前記底面との接触面積比が、前記底面に対して10〜38%である設置面を有するルツボ台と、を有する結晶育成装置。
A crucible having a predetermined bottom surface;
A crystal growing apparatus comprising: a crucible base on which the crucible can be installed, and a ratio of a contact area with the bottom surface is 10 to 38% with respect to the bottom surface.
前記ルツボ台の前記設置面は、窪み形状部を有する請求項1に記載の結晶育成装置。   The crystal growth apparatus according to claim 1, wherein the installation surface of the crucible base has a recessed portion. 前記窪み形状部は、同心円状の溝である請求項2に記載の結晶育成装置。   The crystal growth apparatus according to claim 2, wherein the hollow portion is a concentric groove. 前記ルツボ台は、積み重ね可能な複数のルツボ台部材からなる請求項2又は3に記載の結晶育成装置。   The crystal growth apparatus according to claim 2 or 3, wherein the crucible base includes a plurality of crucible base members that can be stacked. 前記複数のルツボ台部材は、同一形状である請求項4に記載の結晶育成装置。   The crystal growing apparatus according to claim 4, wherein the plurality of crucible base members have the same shape. 前記窪み形状部は、同一形状である請求項5に記載の結晶育成装置。   The crystal growing device according to claim 5, wherein the hollow shape portions have the same shape. 前記複数のルツボ台部材のうち、前記ルツボに接触していない前記ルツボ台部材は、前記ルツボに接触している前記ルツボ台部材よりも大きい設置面を有する請求項4に記載の結晶育成装置。   The crystal growth apparatus according to claim 4, wherein the crucible base member that is not in contact with the crucible has a larger installation surface than the crucible base member that is in contact with the crucible among the plurality of crucible base members. 前記ルツボ台は、ジルコニアからなる請求項1乃至6のいずれか一項に記載の結晶育成装置。   The crystal growth apparatus according to any one of claims 1 to 6, wherein the crucible base is made of zirconia. 前記ルツボ台の前記底面との接触面積比は、前記底面に対して12〜36%である請求項1乃至7のいずれか一項に記載の結晶育成装置。   The crystal growth apparatus according to any one of claims 1 to 7, wherein a ratio of a contact area with the bottom surface of the crucible base is 12 to 36% with respect to the bottom surface.
JP2016136303A 2016-07-08 2016-07-08 Crystal growth equipment Active JP6724614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016136303A JP6724614B2 (en) 2016-07-08 2016-07-08 Crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016136303A JP6724614B2 (en) 2016-07-08 2016-07-08 Crystal growth equipment

Publications (3)

Publication Number Publication Date
JP2018002573A true JP2018002573A (en) 2018-01-11
JP2018002573A5 JP2018002573A5 (en) 2019-04-18
JP6724614B2 JP6724614B2 (en) 2020-07-15

Family

ID=60947578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016136303A Active JP6724614B2 (en) 2016-07-08 2016-07-08 Crystal growth equipment

Country Status (1)

Country Link
JP (1) JP6724614B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202923A (en) * 2018-05-25 2019-11-28 住友金属鉱山株式会社 Single crystal growth apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202923A (en) * 2018-05-25 2019-11-28 住友金属鉱山株式会社 Single crystal growth apparatus

Also Published As

Publication number Publication date
JP6724614B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
KR102049710B1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL AND PRODUCTION DEVICE
TWI443235B (en) SiC single crystal manufacturing method and manufacturing device
US20180171506A1 (en) Seed crystal holder, crystal growing device, and crystal growing method
JP2018145071A (en) Crystal growth apparatus
JP6121422B2 (en) System with additional lateral heat source for making crystalline materials by directional solidification
JP2019147698A (en) Apparatus and method for growing crystal
JP2018002573A (en) Crystal growth apparatus
JP6834493B2 (en) Oxide single crystal growing device and growing method
JP6190070B2 (en) Crystal production method
JPWO2013161999A1 (en) Holder, crystal growth method and crystal growth apparatus
KR101464561B1 (en) Sapphire ingot growing apparatus and rod heater using the same
JP2018002568A (en) Raising method of lithium tantalate single crystal
JP6805886B2 (en) Crystal growth device
JP6593157B2 (en) Method for growing lithium tantalate single crystals
JP6702249B2 (en) Oxide single crystal manufacturing method and oxide single crystal pulling apparatus
JP2010265150A (en) Method for producing sapphire single crystal and method for producing seed crystal
JP2019043788A (en) Method and apparatus for growing single crystal
JP7106978B2 (en) CRYSTAL GROWING APPARATUS AND SINGLE CRYSTAL MANUFACTURING METHOD
JP5949601B2 (en) Multi-layered heat reflector and oxide single crystal growth apparatus using the same
KR20190075411A (en) Crucible Member Capable of Removing Lineage Defect, Apparatus and Method for Growing Sapphire Single Crystal of High Quality Using the Same
JP2019026492A (en) Deformation prevention body and single crystal growth apparatus
JP2018203563A (en) Production method of magnetostrictive material
JP5951132B2 (en) Apparatus for producing single crystals by crystallization of single crystals in the melting region
JP6520642B2 (en) Method of growing lithium tantalate single crystal
KR101267981B1 (en) Apparatus of growing for single crystal

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R150 Certificate of patent or registration of utility model

Ref document number: 6724614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150