JP6724614B2 - Crystal growth equipment - Google Patents

Crystal growth equipment Download PDF

Info

Publication number
JP6724614B2
JP6724614B2 JP2016136303A JP2016136303A JP6724614B2 JP 6724614 B2 JP6724614 B2 JP 6724614B2 JP 2016136303 A JP2016136303 A JP 2016136303A JP 2016136303 A JP2016136303 A JP 2016136303A JP 6724614 B2 JP6724614 B2 JP 6724614B2
Authority
JP
Japan
Prior art keywords
crucible
crystal
base
crucible base
contact area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016136303A
Other languages
Japanese (ja)
Other versions
JP2018002573A (en
JP2018002573A5 (en
Inventor
亮太 山木
亮太 山木
憲治 村下
憲治 村下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016136303A priority Critical patent/JP6724614B2/en
Publication of JP2018002573A publication Critical patent/JP2018002573A/en
Publication of JP2018002573A5 publication Critical patent/JP2018002573A5/ja
Application granted granted Critical
Publication of JP6724614B2 publication Critical patent/JP6724614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、結晶育成装置に関する。 The present invention relates to a crystal growing device.

通信機器の信号ノイズ除去用の表面弾性波フィルター(Surface Acoustic Wave Filter、SAWフィルター)の材料として利用されているニオブ酸リチウムやタンタル酸リチウムの酸化物単結晶は、結晶特性が良好で、大きな結晶径のものが得られるチョクラルスキー法により育成するのが一般的である。チョクラルスキー法は、貴金属製ルツボ内で原料を溶融させ、種結晶を原料融液の表面に接触させ、引き上げ軸で回転させながら引き上げることで、種結晶と同一方位の円柱状の単結晶を成長させる方法である。

Oxide single crystals of lithium niobate and lithium tantalate, which are used as materials for surface acoustic wave filters (SAW filters) for removing signal noise of communication equipment, have good crystal characteristics and are large crystals. It is general to grow by the Czochralski method that can obtain the thing of a diameter. The Czochralski method melts a raw material in a precious metal crucible, brings the seed crystal into contact with the surface of the raw material melt, and pulls it while rotating it with a pulling shaft to form a cylindrical single crystal in the same direction as the seed crystal. It is a method of growing.

特許文献1、特許文献2では、セラミック製耐火物内の底部にアルミナ製のルツボ台を設置し、その上にルツボを設置した酸化物単結晶の育成装置が提案されている。 Patent Documents 1 and 2 propose an oxide single crystal growth device in which a crucible table made of alumina is installed at the bottom of a ceramic refractory and a crucible is installed thereon.

特開平7−187880号公報JP-A-7-187880 特開2003−165796号公報JP, 2003-165796, A

しかしながら、結晶育成技術が発達して結晶の長尺化が進むにつれ、特許文献1、特許文献2に記載の育成装置の構成では、単結晶育成中にルツボの底から原料融液が固化するという現象により、育成中の結晶のテール部とルツボ底の固化した結晶が接触し、結晶の長尺化が困難になるという問題があった。 However, as the crystal growth technique has been developed and the length of the crystal has been lengthened, the raw material melt is solidified from the bottom of the crucible during the single crystal growth in the configurations of the growth devices described in Patent Documents 1 and 2. Due to the phenomenon, the tail portion of the growing crystal comes into contact with the solidified crystal of the crucible bottom, which makes it difficult to increase the length of the crystal.

本発明はこのような問題点に着目してなされたもので、酸化物単結晶の結晶育成中のルツボの底面からの原料融液の固化を抑制し、単結晶の長尺化が可能な結晶育成装置を提供することを目的とする。 The present invention has been made in view of such problems, a crystal capable of lengthening the single crystal by suppressing solidification of the raw material melt from the bottom surface of the crucible during crystal growth of the oxide single crystal. The purpose is to provide a growing device.

上記目的を達成するため、本発明の一態様に係る結晶育成装置は、面を有するイリジウム製のルツボと、
該ルツボを設置可能であり、前記底面との接触面積比が、前記底面に対して10〜38%である設置面を有するジルコニア製のルツボ台と、を有し、
前記ルツボ台の前記設置面は、窪み形状部を有し、
前記ルツボ台は、積み重ね可能な複数のルツボ台部材からなり、
前記複数のルツボ台部材は、同一形状である。

To achieve the above object, the crystal growing apparatus according to an embodiment of the present invention, the iridium crucible having a bottom surface,
Can be disposed the crucible, the contact area ratio of the bottom, have a, a crucible stand made of zirconia having an installation surface is 10 to 38% relative to the bottom surface,
The installation surface of the crucible base has a recess-shaped portion,
The crucible base comprises a plurality of stackable crucible base members,
Wherein the plurality of crucible base member, Ru same shape der.

本発明によれば、ルツボ底面と接するルツボ台の接触面積を最適化し、ルツボ底面の熱伝導を抑制することにより、ルツボ底面からの原料融液の固化を抑制することができる。 According to the present invention, it is possible to suppress solidification of the raw material melt from the bottom surface of the crucible by optimizing the contact area of the crucible base in contact with the bottom surface of the crucible and suppressing the heat conduction of the bottom surface of the crucible.

本発明の第1の実施形態に係る結晶育成装置を示した図である。It is the figure which showed the crystal growth apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る結晶育成装置のルツボ台の一例を示した図である。It is the figure which showed an example of the crucible stand of the crystal growth apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る結晶育成装置の一例を示した図である。It is the figure which showed an example of the crystal growth apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る結晶育成装置のルツボ台部材の一例を示した図である。It is the figure which showed an example of the crucible stand member of the crystal growth apparatus which concerns on the 2nd Embodiment of this invention. 実施例1と比較例1の結晶育成中の結晶重量とルツボ底温度降下量のグラフである。3 is a graph of a crystal weight and a crucible bottom temperature drop during crystal growth in Example 1 and Comparative Example 1.

以下、図面を参照して、本発明を実施するための形態の説明を行う。 Embodiments for carrying out the present invention will be described below with reference to the drawings.

[結晶育成装置の構成]
図1は、酸化物単結晶等の単結晶の育成に用いられる本発明の第1の実施形態に係る結晶育成装置を示した図である。
[Structure of crystal growth device]
FIG. 1 is a diagram showing a crystal growing apparatus according to a first embodiment of the present invention used for growing a single crystal such as an oxide single crystal.

一般的な育成装置は、ワークコイル10と、セラミック製耐火物20と、ルツボ30と、ルツボ台40と、断熱材50と、引き上げ軸60と、蓋70と、リフレクター90と、種結晶保持治具120と、アフターヒーター130とを有する。また、図1において、関連構成要素として、種結晶80と、融液100と、単結晶110とが示されている。 A general growing apparatus includes a work coil 10, a ceramic refractory 20, a crucible 30, a crucible stand 40, a heat insulating material 50, a pulling shaft 60, a lid 70, a reflector 90, and a seed crystal holding treatment. It has a tool 120 and an after-heater 130. Further, in FIG. 1, a seed crystal 80, a melt 100, and a single crystal 110 are shown as related components.

ルツボ30は、結晶原料の融液100を保持するための容器である。なお、結晶原料は、加熱されて溶解し、融液100となっている。ルツボ30は、例えば、イリジウム製であってもよい。ルツボ30は、底面31を有し、底面31がルツボ台40の設置面41上に設置されることにより支持される。 The crucible 30 is a container for holding the melt 100 of the crystal raw material. The crystal raw material is heated and melted to form a melt 100. The crucible 30 may be made of iridium, for example. The crucible 30 has a bottom surface 31, and the bottom surface 31 is supported by being installed on the installation surface 41 of the crucible base 40.

セラミック製耐火物20は、ルツボ30を含む全体を囲む手段であり、ルツボ30を含む全体を収容可能な容器に類似した構成を有する。なお、セラミック製耐火物20は、文字通りセラミックからなる。 The ceramic refractory 20 is a means for enclosing the entire crucible 30 and has a structure similar to a container capable of accommodating the entire crucible 30. The ceramic refractory 20 is literally made of ceramic.

ルツボ台40は、セラミック製耐火物20の底面上に設置され、その上面41にルツボ30を設置可能に設けられる。ルツボ台40の上面41は、ルツボ30を設置可能な面であるから、ルツボ設置面41と呼んでもよい。ルツボ台40の表面には、窪み形状部が形成され、ルツボ30の底面31との接触面積を減少させる構成となっている。なお、この点は後述する。 The crucible stand 40 is installed on the bottom surface of the ceramic refractory material 20, and the crucible 30 can be installed on the upper surface 41 thereof. Since the upper surface 41 of the crucible base 40 is a surface on which the crucible 30 can be installed, it may be referred to as a crucible installation surface 41. A depression-shaped portion is formed on the surface of the crucible base 40 to reduce the contact area with the bottom surface 31 of the crucible 30. Note that this point will be described later.

断熱材50は、ルツボ30を囲むように設置され、ルツボ30の熱の外部への放出を防ぐ機能を有する。 The heat insulating material 50 is installed so as to surround the crucible 30 and has a function of preventing heat of the crucible 30 from being released to the outside.

リフレクター90は、ルツボ30の上端面に沿って取り付けられ、ドーナツ板形状を有する。 The reflector 90 is attached along the upper end surface of the crucible 30 and has a donut plate shape.

アフターヒーター130は、リフレクター90に取り付けられ、円筒形状を有する。 The after-heater 130 is attached to the reflector 90 and has a cylindrical shape.

引き上げ軸60は、単結晶110を引き上げるための回転軸であり、ルツボ30の中央部に設けられる。 The pulling shaft 60 is a rotating shaft for pulling the single crystal 110, and is provided at the center of the crucible 30.

蓋70は、アフターヒーター130の上端部を塞ぐように設けられ、中央には、引き上げ軸60を通すための開口部71が設けられる。 The lid 70 is provided so as to close the upper end of the after-heater 130, and an opening 71 for allowing the pull-up shaft 60 to pass through is provided at the center.

種結晶保持治具120は、種結晶80を保持するための治具であり、引き上げ軸60の下方側(下端部)に設けられる。 The seed crystal holding jig 120 is a jig for holding the seed crystal 80, and is provided on the lower side (lower end portion) of the pulling shaft 60.

ワークコイル10は、セラミック製耐火物20の更に外側に、セラミック製耐火物20を囲むように設けられ、ルツボ30を誘導加熱し、内部に充填された原料を融解させ、融液100とする役割を有する。 The work coil 10 is provided outside the ceramic refractory material 20 so as to surround the ceramic refractory material 20, induction-heats the crucible 30, and melts the raw material filled inside to form the melt 100. Have.

図2は、本発明の第1の実施形態に係る結晶育成装置のルツボ台40の一例を示した図である。ルツボ台40の上面(ルツボ設置面)41には、窪み形状部42が形成されている。窪み形状部42は、図2においては、同心円状の複数の円形溝として構成されている。これにより、ルツボ台40の上面41と、上面41上に設置されるルツボ30の底面31との接触面積を減少させることができる。そして、ルツボ30の底面31からルツボ台40を介して熱が放出することにより、ルツボ底面31の温度が低下し、ルツボ底面31付近の融液100が固化するという現象の発生を抑制することができる。 FIG. 2 is a diagram showing an example of the crucible table 40 of the crystal growing apparatus according to the first embodiment of the present invention. A depression-shaped portion 42 is formed on the upper surface (crucible installation surface) 41 of the crucible base 40. The recessed portion 42 is configured as a plurality of concentric circular grooves in FIG. Accordingly, the contact area between the upper surface 41 of the crucible base 40 and the bottom surface 31 of the crucible 30 installed on the upper surface 41 can be reduced. Then, by releasing heat from the bottom surface 31 of the crucible 30 via the crucible base 40, the temperature of the crucible bottom surface 31 is lowered, and the occurrence of the phenomenon that the melt 100 near the crucible bottom surface 31 is solidified can be suppressed. it can.

本発明の第1の実施形態に係るルツボ台40においては、ルツボ30の底面31とルツボ30を設置するルツボ台40の上面41との接触面積比が、ルツボ底面31に対して10〜38%(ルツボ台の接触面積/ルツボ底面積×100)となるように設定する。図1に示される通り、ルツボ台40の上面41は、ルツボ30の底面31よりも全体の面積が小さいので、窪み形状部42が形成されていない総ての平坦面がルツボ30の底面31と接触する。よって、上面41の全体のうち、平坦面の部分が、ルツボ30の底面積の10〜38%となるように設定すれば、上述の条件を満たすことになる。 In the crucible base 40 according to the first embodiment of the present invention, the contact area ratio between the bottom surface 31 of the crucible 30 and the upper surface 41 of the crucible base 40 on which the crucible 30 is installed is 10 to 38% with respect to the bottom surface 31 of the crucible. The contact area of the crucible base/the bottom area of the crucible×100 is set. As shown in FIG. 1, since the entire top surface 41 of the crucible base 40 has a smaller area than the bottom surface 31 of the crucible 30, all flat surfaces on which the recessed portions 42 are not formed are the bottom surface 31 of the crucible 30. Contact. Therefore, if the flat surface portion of the entire upper surface 41 is set to be 10 to 38% of the bottom area of the crucible 30, the above condition is satisfied.

このように、ルツボ30の底面31とルツボ台40の上面41との接触面積がルツボ底面積に対して10%以上であれば、ルツボ30をルツボ台40に安定して載置でき、ルツボ底面31の温度変化を抑制し、保温性を確保できる。 As described above, if the contact area between the bottom surface 31 of the crucible 30 and the upper surface 41 of the crucible base 40 is 10% or more of the crucible bottom area, the crucible 30 can be stably placed on the crucible base 40, and the crucible bottom surface can be stably placed. The temperature change of 31 can be suppressed and the heat retention can be secured.

また、ルツボ30の底面31とルツボ台40の上面41との接触面積は、ルツボ底面積に対して38%以下とする。ルツボ30の底面31とルツボ台40の接触面積が38%を超えると、ルツボ底面31からルツボ台40に熱が放出され易くなり、ルツボ底面31の保温性が低下することから、ルツボ底面31の原料融液が固化し易くなる。例えば、ルツボ台40の上面41のルツボ30の底面31の面積に対する接触面積比は、12〜36%であることが好ましい。 The contact area between the bottom surface 31 of the crucible 30 and the upper surface 41 of the crucible base 40 is 38% or less of the bottom area of the crucible. When the contact area between the bottom surface 31 of the crucible 30 and the crucible base 40 exceeds 38%, heat is easily released from the crucible bottom surface 31 to the crucible base 40, and the heat retention property of the crucible bottom surface 31 is reduced. The raw material melt easily solidifies. For example, the contact area ratio of the upper surface 41 of the crucible base 40 to the area of the bottom surface 31 of the crucible 30 is preferably 12 to 36%.

本発明の第1の実施形態に係るルツボ台40は、ルツボ底面31との接触面となるルツボ台40の上面41に、窪み形状部42を形成することにより、ルツボ30を安定にルツボ台40に載置できる大きさを確保しつつ、ルツボ底面31との接触面積を制御することができる。 The crucible base 40 according to the first embodiment of the present invention stably forms the crucible base 40 by forming the recessed portion 42 on the upper surface 41 of the crucible base 40 that is the contact surface with the crucible bottom surface 31. It is possible to control the contact area with the crucible bottom surface 31 while ensuring a size that can be mounted on the crucible.

また、図2に示すように、窪み形状部42は、同心円状の溝としてもよい。かかる構成により、円形の底面31を有するルツボ30を確実に支持しつつ、ルツボ30の底面31とルツボ台40の上面41との接触面積を減少させることができる。より詳細には、結晶育成装置は、一般的にルツボ30の周囲を加熱し原料を溶融させているため、原料融液100はルツボ30内で自然対流し、温度の低下した原料融液100の対流がルツボ30の中央に向かって起こる。そのため、原料融液30の固化はルツボ30の中心から起こり易く、ルツボ30の中央部とルツボ台40の中央部とは接触していないことが望ましい。図2に示す同心円状の溝は、そのような対流の影響を抑制することができ、好ましい窪み形状部42の構成の1つである。 Further, as shown in FIG. 2, the recessed shape portion 42 may be a concentric groove. With this configuration, the contact area between the bottom surface 31 of the crucible 30 and the upper surface 41 of the crucible base 40 can be reduced while reliably supporting the crucible 30 having the circular bottom surface 31. More specifically, since the crystal growing apparatus generally heats the periphery of the crucible 30 to melt the raw material, the raw material melt 100 spontaneously convects in the crucible 30 and the temperature of the raw material melt 100 decreases. Convection occurs toward the center of the crucible 30. Therefore, solidification of the raw material melt 30 is likely to occur from the center of the crucible 30, and it is desirable that the central portion of the crucible 30 and the central portion of the crucible base 40 do not contact each other. The concentric grooves shown in FIG. 2 can suppress the influence of such convection, and is one of the preferable configurations of the hollow shape portion 42.

但し、窪み形状部42の形状は、同心円状の複数の溝に限定される訳ではなく、用途に応じて種々の窪み形状パターンとすることができる。 However, the shape of the depression-shaped portion 42 is not limited to the plurality of concentric grooves, and various depression-shaped patterns can be used according to the application.

また、ルツボ台40はアルミナ等の高温に耐え得る種々の材料から構成されてよいが、ジルコニア製であることが好ましい。ジルコニアは他のセラミックスに比べ熱伝導率が低いため、ルツボ底面の保温性を上げるのに適している。 The crucible base 40 may be made of various materials such as alumina that can withstand high temperature, but is preferably made of zirconia. Since zirconia has a lower thermal conductivity than other ceramics, it is suitable for increasing the heat retention of the bottom of the crucible.

図3は、本発明の第2の実施形態に係る結晶育成装置の一例を示した図である。なお、図3においては、第1の実施形態に係る結晶育成装置と異なる部分のみを示し、共通部分の図示は省略しているが、それらの箇所には図1の構成を適用できる。また、図3において、第1の実施形態に係る結晶育成装置と共通の構成要素については、同一の参照符号を付し、その説明を省略する。 FIG. 3 is a diagram showing an example of a crystal growing apparatus according to the second embodiment of the present invention. Note that, in FIG. 3, only parts different from the crystal growth apparatus according to the first embodiment are shown and common parts are omitted, but the configuration of FIG. 1 can be applied to those parts. Further, in FIG. 3, the same components as those of the crystal growth apparatus according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.

第2の実施形態に係る結晶育成装置のルツボ台45は、複数のルツボ台部材46を重ねて構成している点で、1個の部材で構成している第1の実施形態に係る結晶育成装置のルツボ台40と異なっている。図3においては、6個のルツボ台部材46が積み重ねられ、1個のルツボ台45を構成している。 The crucible base 45 of the crystal growing apparatus according to the second embodiment is configured by stacking a plurality of crucible base members 46, and is configured by one member. It is different from the crucible base 40 of the device. In FIG. 3, six crucible base members 46 are stacked to form one crucible base 45.

図4は、ルツボ台部材46の一例を示した図である。図4に示すように、ルツボ台部材46は、厚さが薄くなった点が異なるが、上面47に窪み形状部48が形成されている点で、第1の実施形態におけるルツボ台40と共通する。また、図4においては、窪み形状部48は同心円状の複数の溝であり、かかる点も第1の実施形態におけるルツボ台40と同様である。 FIG. 4 is a diagram showing an example of the crucible base member 46. As shown in FIG. 4, the crucible base member 46 is different from the crucible base 40 in the first embodiment in that the crucible base member 46 is different in that the thickness is reduced, but that the upper surface 47 has a recessed portion 48. To do. Further, in FIG. 4, the recessed shape portion 48 is a plurality of concentric circular grooves, and this point is also the same as the crucible base 40 in the first embodiment.

図3において、ルツボを設置するルツボ台部材46を1つ目とすると、1つ目のルツボ台部材46は、ルツボ30を安定して設置できる大きさであれば良く、ルツボ30とルツボ周囲の断熱材とを接触させるとより保温効果が高まる。 In FIG. 3, assuming that the crucible base member 46 on which the crucible is installed is the first, the first crucible base member 46 may be of a size that allows the crucible 30 to be installed stably, and the crucible 30 and the surroundings of the crucible may be arranged. The heat retention effect is further enhanced by contacting with a heat insulating material.

2つ目以降のルツボ台部材46は、1つ目のルツボ台部材46の下に設置し、1つ目のルツボ台部材46よりも直径が大きいものが好ましい。これは断熱材50としてジルコニアバブルなどの中空ビーズを長期間にわたり繰り返し使用した場合、結晶育成中に断熱材50が熱的変化を起こし、塊や空洞ができることから温度勾配の対称性が崩れ、結晶育成の収率が悪化する。よって、2つ目以降のルツボ台部材46は、断熱材50の代替としての役割を果たせるよう、1つ目のルツボ台部材46よりも上面47が大きいルツボ台部材46を設置することが好ましい。 The second and subsequent crucible base members 46 are preferably installed below the first crucible base member 46 and have a diameter larger than that of the first crucible base member 46. This is because when hollow beads such as zirconia bubbles are repeatedly used as the heat insulating material 50 for a long period of time, the heat insulating material 50 undergoes a thermal change during crystal growth, and lumps and cavities are formed, so that the symmetry of the temperature gradient is broken, and the crystal The yield of cultivation deteriorates. Therefore, it is preferable that the second and subsequent crucible base members 46 be provided with the crucible base member 46 having a larger upper surface 47 than that of the first crucible base member 46 so as to serve as a substitute for the heat insulating material 50.

但し、図3に示されるように、2つ目以降のルツボ台部材46は、1つ目のルツボ台部材46と同一形状であってもよい。この場合、窪み形状部48も同一形状であってもよい。 However, as shown in FIG. 3, the second and subsequent crucible base members 46 may have the same shape as the first crucible base member 46. In this case, the recess-shaped portion 48 may also have the same shape.

なお、ルツボ台部材46も、アルミナ等の高温に耐え得る種々の材料から構成されてよいが、第1の実施形態と同様、ジルコニア製であることが好ましい。 The crucible base member 46 may be made of various materials such as alumina that can withstand high temperatures, but it is preferably made of zirconia as in the first embodiment.

[酸化物単結晶育成手順]
酸化物単結晶の育成方法は特に限定されるものではなく公知の技術が利用できる。一例として、酸化物単結晶を育成する手順を示す。
[Procedure for growing oxide single crystal]
The method for growing the oxide single crystal is not particularly limited, and known techniques can be used. As an example, a procedure for growing an oxide single crystal will be shown.

粗粉砕した原料をルツボ30に充填し、ワークコイル10でルツボ30を誘電加熱し溶融する。 The roughly crushed raw material is filled in the crucible 30, and the work coil 10 dielectrically heats and melts the crucible 30.

次に、溶融した原料の融液100に種結晶80を接触させると共に、種結晶80を回転させつつ引き上げ軸60で上方へ引き上げることで単結晶110を育成する。単結晶110の引き上げの際、ルツボ30の底面からルツボ台40、45を介した放熱を抑制することができ、1回の引き上げで育成できる単結晶110を長尺化することができる。これにより、結晶育成の生産性を高めることができる。 Next, the seed crystal 80 is brought into contact with the melt 100 of the melted raw material, and the single crystal 110 is grown by rotating the seed crystal 80 and pulling it upward with the pulling shaft 60. When pulling the single crystal 110, heat radiation from the bottom surface of the crucible 30 via the crucible platforms 40 and 45 can be suppressed, and the single crystal 110 that can be grown by one pull can be elongated. Thereby, the productivity of crystal growth can be improved.

以下、本発明の実施例について比較例を挙げて具体的に説明するが、本発明は以下の実施例により何ら制限されるものではない。 EXAMPLES Hereinafter, examples of the present invention will be specifically described with reference to comparative examples, but the present invention is not limited to the following examples.

[実施例1]
図1に示す結晶育成装置において、直径205mm、高さ180mmのルツボ(イリジウム製)底面に対して、直径130mmのルツボ台(ジルコニア製)の接触面積比(%)(ルツボ台の接触面積/ルツボ底面積×100)が26%となるように同心円状に溝を形成した(図2参照)。
[Example 1]
In the crystal growing apparatus shown in FIG. 1, the contact area ratio (%) of the crucible base (made of zirconia) having a diameter of 130 mm to the bottom surface of the crucible (made of iridium) having a diameter of 205 mm and a height of 180 mm (contact area of crucible/crucible) Grooves were formed concentrically so that the bottom area×100) was 26% (see FIG. 2).

ルツボ内に、組成比がLi/Ta=0.943(モル比)の焼成原料を30kg入れ、溶融させた後、チョクラルスキー法により、直径6インチのタンタル酸リチウム単結晶の育成を行った。 30 kg of a firing material having a composition ratio of Li/Ta=0.943 (molar ratio) was placed in the crucible and melted, and then a 6-inch diameter lithium tantalate single crystal was grown by the Czochralski method. ..

引上げ結晶重量、結晶の直胴部長さ、ルツボ底温度降下量を表1に示す。 Table 1 shows the weight of the pulled crystal, the length of the straight body of the crystal, and the amount of temperature drop in the crucible bottom.

その結果、育成できたタンタル酸リチウム単結晶の重量は17.4kg、直胴長は83mm、結晶育成開始から育成終了までのルツボ底面の温度降下量は、−13.5℃であった。 As a result, the weight of the grown lithium tantalate single crystal was 17.4 kg, the straight body length was 83 mm, and the temperature drop on the bottom surface of the crucible from the start of crystal growth to the end of growth was -13.5°C.

[実施例2]
図1に示す単結晶育成装置において、直径205mm、高さ180mmのルツボ(イリジウム製)底面に対して、直径130mmのルツボ台(ジルコニア製)の接触面積比(%)(ルツボ台の接触面積/ルツボ底面積×100)が36%となるように同心円状に溝を形成した(図2参照)。
[Example 2]
In the single crystal growth apparatus shown in FIG. 1, the contact area ratio (%) of the crucible table (made of zirconia) having a diameter of 130 mm to the bottom surface of the crucible (made of iridium) having a diameter of 205 mm and a height of 180 mm (contact area of the crucible table/ Grooves were formed concentrically so that the crucible bottom area×100) was 36% (see FIG. 2).

ルツボ内に、組成比がLi/Ta=0.943(モル比)の焼成原料を30kg入れ、溶融させた後、チョクラルスキー法により、直径6インチのタンタル酸リチウム単結晶の育成を行った。 30 kg of a firing material having a composition ratio of Li/Ta=0.943 (molar ratio) was placed in the crucible and melted, and then a 6-inch diameter lithium tantalate single crystal was grown by the Czochralski method. ..

実施例1と同様に育成中の温度調査を行った。 The temperature was investigated during the growth in the same manner as in Example 1.

その結果、表1に示されるように、育成できたタンタル酸リチウム単結晶の重量は17.3kg、直胴長は83mm、結晶育成開始から育成終了までのルツボ底面の温度降下量は、−18.3℃であった。 As a result, as shown in Table 1, the weight of the grown lithium tantalate single crystal was 17.3 kg, the straight body length was 83 mm, and the temperature drop amount of the crucible bottom surface from the crystal growth start to the growth end was −18. It was 0.3°C.

[実施例3]
図1に示す単結晶育成装置において、直径205mm、高さ180mmのルツボ(イリジウム製)底面に対して、直径130mmのルツボ台(ジルコニア製)の接触面積比(%)(ルツボ台の接触面積/ルツボ底面積×100)が12%となるように同心円状に溝を形成した(図2参照)。
[Example 3]
In the single crystal growth apparatus shown in FIG. 1, the contact area ratio (%) of the crucible table (made of zirconia) having a diameter of 130 mm to the bottom surface of the crucible (made of iridium) having a diameter of 205 mm and a height of 180 mm (contact area of the crucible table/ Grooves were formed concentrically so that the crucible bottom area×100) was 12% (see FIG. 2).

ルツボ内に、組成比がLi/Ta=0.943(モル比)の焼成原料を30kg入れ、溶融させた後、チョクラルスキー法により、直径6インチのタンタル酸リチウム単結晶の育成を行った。 30 kg of a firing material having a composition ratio of Li/Ta=0.943 (molar ratio) was placed in the crucible and melted, and then a 6-inch diameter lithium tantalate single crystal was grown by the Czochralski method. ..

実施例1と同様に育成中の温度調査を行った。 The temperature was investigated during the growth in the same manner as in Example 1.

その結果、表1に示されるように、育成できたタンタル酸リチウム単結晶の重量は17.8kg、直胴長は85mm、結晶育成開始から育成終了までのルツボ底面の温度降下量は、−5.3℃であった。 As a result, as shown in Table 1, the weight of the grown lithium tantalate single crystal was 17.8 kg, the straight body length was 85 mm, and the temperature drop amount of the crucible bottom surface from the crystal growth start to the growth end was −5. It was 0.3°C.

[比較例1]
図1に示す単結晶育成装置において、直径130mm、高さ180mmのルツボ台(ジルコニア製)に直径205mmのルツボ(イリジウム製)を設置した。ルツボ台上面に溝は形成していないため、接触面積比(%)(ルツボ台の接触面積/ルツボ底面積×100)は40%となる。
[Comparative Example 1]
In the single crystal growth apparatus shown in FIG. 1, a crucible (made of iridium) having a diameter of 205 mm was installed on a crucible table (made of zirconia) having a diameter of 130 mm and a height of 180 mm. Since no groove is formed on the upper surface of the crucible table, the contact area ratio (%) (contact area of crucible table/crucible bottom area×100) is 40%.

ルツボ内に、組成比がLi/Ta=0.943(モル比)の焼成原料を30kg入れ、溶融させた後、チョクラルスキー法により、直径6インチのタンタル酸リチウム単結晶の育成を行った。 30 kg of a firing material having a composition ratio of Li/Ta=0.943 (molar ratio) was placed in the crucible and melted, and then a 6-inch diameter lithium tantalate single crystal was grown by the Czochralski method. ..

実施例1と同様に育成中の温度調査を行った。 The temperature was investigated during the growth in the same manner as in Example 1.

その結果、表1に示されるように、育成できたタンタル酸リチウム単結晶の重量は16.6kg、直胴長は75mm、結晶育成開始から育成終了までのルツボ底面の温度降下量は、−21.5℃であった。 As a result, as shown in Table 1, the weight of the grown lithium tantalate single crystal was 16.6 kg, the straight body length was 75 mm, and the temperature drop amount of the crucible bottom surface from the crystal growth start to the growth end was -21. It was 0.5°C.

[実施例に基づく考察]
表1にまとめた通り、接触面積比を適切にすることで、ルツボ底の温度が下がりにくくなり、保温効果があることが分かった。それによりルツボ底からの原料固化領域と単結晶が接触する際の単結晶重量が増加し、より直胴部の長い6インチタンタル酸リチウム単結晶が得られることが確認された。特に、ルツボの底面積全体に対する、ルツボ台の上面とルツボの底面の接触面積が12%以上36%以下であるときに、ルツボの底面の温度の低下量を低減させ、直胴部の長さを長尺化できることが分かる。
[Consideration based on Examples]
As summarized in Table 1, it was found that by appropriately adjusting the contact area ratio, the temperature at the bottom of the crucible was less likely to decrease, and there was a heat retention effect. As a result, it was confirmed that the weight of the single crystal when the raw material solidified region from the crucible bottom comes into contact with the single crystal increased, and a 6-titanium lithium titanate single crystal having a longer straight body portion was obtained. In particular, when the contact area between the top surface of the crucible and the bottom surface of the crucible is 12% or more and 36% or less with respect to the entire bottom area of the crucible, the amount of decrease in the temperature of the bottom surface of the crucible is reduced, and the length of the straight body portion is reduced. It can be seen that the length can be made longer.

また図5に実施例1と比較例1の結晶育成中の結晶重量とルツボ底温度降下量のグラフを示す。結晶育成において結晶が生成すると潜熱が放出し、原料融液の温度が上昇することが知られている。図5において、結晶重量が1000gを超えた付近でルツボ温度降下量が上昇した時点(図中A、B)が、結晶生成を表している。実施例1(A)と比較例1(B)では、結晶生成による潜熱の放出が実施例1(A)の方が遅く表れていることがわかる。このことから、実施例1ではルツボ底の保温性が維持され、ルツボ底の原料融液の固化(結晶生成)が抑制できたため、従来よりも直胴部長さの長い長尺結晶を育成できた。 Further, FIG. 5 shows a graph of the crystal weight and the crucible bottom temperature drop during the crystal growth of Example 1 and Comparative Example 1. It is known that when crystals are generated during crystal growth, latent heat is released and the temperature of the raw material melt rises. In FIG. 5, the point of time when the amount of drop in the crucible temperature rises near the point where the weight of the crystal exceeds 1000 g (A and B in the figure) represents crystal formation. It can be seen that in Example 1(A) and Comparative Example 1(B), the release of latent heat due to crystal formation appears later in Example 1(A). From this, in Example 1, since the heat-retaining property of the crucible bottom was maintained and the solidification (crystal formation) of the raw material melt of the crucible bottom could be suppressed, it was possible to grow a long crystal having a longer straight body portion than the conventional one. ..

このように、本実施例に係る結晶育成装置によれば、従来よりも結晶を長尺化して育成することができ、生産性を向上させることができる。 As described above, according to the crystal growing apparatus of the present embodiment, it is possible to grow crystals with a longer length than in the conventional case, and it is possible to improve productivity.

以上、本発明の好ましい実施形態及び実施例について詳説したが、本発明は、上述した実施形態及び実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施形態及び実施例に種々の変形及び置換を加えることができる。 Although the preferred embodiments and examples of the present invention have been described above in detail, the present invention is not limited to the above-described embodiments and examples, and the above-described embodiments and without departing from the scope of the present invention Various modifications and substitutions can be added to the embodiment.

10 ワークコイルコイル
20 セラミック製耐火物
30 ルツボ
31 底面
40、45 ルツボ台
41、47 上面(設置面)
42、48 窪み形状部
46 ルツボ台部材
50 断熱材
60 引き上げ軸
70 蓋
80 種結晶
90 リフレクター
100 融液
110 単結晶
120 種結晶保持治具
130 アフターヒーター
10 Work Coil Coil 20 Ceramic Refractory 30 Crucible 31 Bottom 40, 45 Crucible 41, 47 Top (Installation Surface)
42, 48 Dimple-shaped portion 46 Crucible base member 50 Heat insulating material 60 Pulling shaft 70 Lid 80 Seed crystal 90 Reflector 100 Melt 110 Single crystal 120 Seed crystal holding jig 130 After heater

Claims (5)

面を有するイリジウム製のルツボと、
該ルツボを設置可能であり、前記底面との接触面積比が、前記底面に対して10〜38%である設置面を有するジルコニア製のルツボ台と、を有し、
前記ルツボ台の前記設置面は、窪み形状部を有し、
前記ルツボ台は、積み重ね可能な複数のルツボ台部材からなり、
前記複数のルツボ台部材は、同一形状である結晶育成装置。
Iridium crucible having a bottom surface,
Can be disposed the crucible, the contact area ratio of the bottom, have a, a crucible stand made of zirconia having an installation surface is 10 to 38% relative to the bottom surface,
The installation surface of the crucible base has a recess-shaped portion,
The crucible base comprises a plurality of stackable crucible base members,
Wherein the plurality of crucible base member is the same shape der Ru crystal growth apparatus.
前記窪み形状部は、同一形状である請求項に記載の結晶育成装置。 The recess-shaped portion, the crystal growing apparatus according to claim 1 have the same shape. 底面を有するイリジウム製のルツボと、
該ルツボを設置可能であり、前記底面との接触面積比が、前記底面に対して10〜38%である設置面を有するジルコニア製のルツボ台と、を有し、
前記ルツボ台の前記設置面は、窪み形状部を有し、
前記ルツボ台は、積み重ね可能な複数のルツボ台部材からなり、
前記複数のルツボ台部材のうち、前記ルツボに接触していない前記ルツボ台部材は、前記ルツボに接触している前記ルツボ台部材よりも大きい設置面を有する結晶育成装置。
An iridium crucible having a bottom surface,
The crucible can be installed, and the contact area ratio with the bottom surface has a crucible base made of zirconia having an installation surface that is 10 to 38% with respect to the bottom surface,
The installation surface of the crucible base has a recess-shaped portion,
The crucible base comprises a plurality of stackable crucible base members,
Wherein among the plurality of crucibles base member, said crucible base member which is not in contact with the crucible, crystal growth apparatus that having a large mounting surface than the crucible base member in contact with the crucible.
前記窪み形状部は、同心円状の溝である請求項1乃至3のいずれか一項に記載の結晶育成装置。 The crystal growing device according to any one of claims 1 to 3 , wherein the recess-shaped portion is a concentric circular groove. 前記ルツボ台の前記底面との接触面積比は、前記底面に対して12〜36%である請求項1乃至のいずれか一項に記載の結晶育成装置。 The crystal growing apparatus according to any one of claims 1 to 4 , wherein a contact area ratio of the crucible table with the bottom surface is 12 to 36% with respect to the bottom surface.
JP2016136303A 2016-07-08 2016-07-08 Crystal growth equipment Active JP6724614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016136303A JP6724614B2 (en) 2016-07-08 2016-07-08 Crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016136303A JP6724614B2 (en) 2016-07-08 2016-07-08 Crystal growth equipment

Publications (3)

Publication Number Publication Date
JP2018002573A JP2018002573A (en) 2018-01-11
JP2018002573A5 JP2018002573A5 (en) 2019-04-18
JP6724614B2 true JP6724614B2 (en) 2020-07-15

Family

ID=60947578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016136303A Active JP6724614B2 (en) 2016-07-08 2016-07-08 Crystal growth equipment

Country Status (1)

Country Link
JP (1) JP6724614B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202923A (en) * 2018-05-25 2019-11-28 住友金属鉱山株式会社 Single crystal growth apparatus

Also Published As

Publication number Publication date
JP2018002573A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US20180171506A1 (en) Seed crystal holder, crystal growing device, and crystal growing method
JP2018145071A (en) Crystal growth apparatus
JP6724614B2 (en) Crystal growth equipment
JP6121422B2 (en) System with additional lateral heat source for making crystalline materials by directional solidification
JP6990383B2 (en) High-performance Fe-Ga-based alloy single crystal manufacturing method
JP2019147698A (en) Apparatus and method for growing crystal
JP6401051B2 (en) Method for producing polycrystalline silicon ingot
JP2013001581A (en) Method for growing lithium tantalate single crystal
JP6190070B2 (en) Crystal production method
JP6834493B2 (en) Oxide single crystal growing device and growing method
JP5425858B2 (en) Single crystal silicon ingot growth device with reusable silicon melting double crucible
WO2012046674A1 (en) Silicon ingot manufacturing vessel
JPWO2013161999A1 (en) Holder, crystal growth method and crystal growth apparatus
JP6593157B2 (en) Method for growing lithium tantalate single crystals
JP6702249B2 (en) Oxide single crystal manufacturing method and oxide single crystal pulling apparatus
JP7106978B2 (en) CRYSTAL GROWING APPARATUS AND SINGLE CRYSTAL MANUFACTURING METHOD
JP2019043788A (en) Method and apparatus for growing single crystal
JP2019026492A (en) Deformation prevention body and single crystal growth apparatus
JP4168790B2 (en) Single crystal manufacturing method, single crystal manufacturing apparatus, and langasite single crystal
JP5949601B2 (en) Multi-layered heat reflector and oxide single crystal growth apparatus using the same
KR20190075411A (en) Crucible Member Capable of Removing Lineage Defect, Apparatus and Method for Growing Sapphire Single Crystal of High Quality Using the Same
JP2017178741A (en) Mold for manufacturing silicon ingot
JP6174471B2 (en) Crystal production method
JP2018203563A (en) Production method of magnetostrictive material
JP7318884B2 (en) Single crystal growth method for iron-gallium alloy

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R150 Certificate of patent or registration of utility model

Ref document number: 6724614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150