JPH09328394A - Production of oxide single crystal - Google Patents

Production of oxide single crystal

Info

Publication number
JPH09328394A
JPH09328394A JP16837196A JP16837196A JPH09328394A JP H09328394 A JPH09328394 A JP H09328394A JP 16837196 A JP16837196 A JP 16837196A JP 16837196 A JP16837196 A JP 16837196A JP H09328394 A JPH09328394 A JP H09328394A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
temperature
crucible
oxide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16837196A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imazawa
克之 今澤
Yoshiyuki Shiono
嘉幸 塩野
Takeshi Kamio
剛 神尾
Kunio Nakazato
邦夫 中里
Yoshinori Kuwabara
由則 桑原
Toshihiko Riyuuou
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP16837196A priority Critical patent/JPH09328394A/en
Publication of JPH09328394A publication Critical patent/JPH09328394A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an oxide single crystal by raising the oxide single crystal by Czochralski method and subsequently cooling the raised single crystal from the raising temperature to room temperature, enabling to prevent the generation of cracks by cooling the single crystal so that a temperature difference between both the upper and lower ends of the single crystal is a specific value or smaller. SOLUTION: This method for producing an oxide crystal comprises setting heat- insulating alumina 5 on a heat-insulating material 4 surrounding a crucible 3, attaching a doughnut-like reflector 6 to the upper surface of the crucible 3 or the heat-insulating alumina 5, attaching a cylindrical afterheater 7 to the upper surface of the reflector 6, heating a raw material in the crucible 3 with a heating coil 8 to produce a molten liquid 9, bringing a seed crystal 11 into contact with the molten liquid 9, raising the oxide single crystal 12 by Czochralski method, cutting off the raised crystal 12 from the molten liquid 9, moving the whole body of the raised crystal 12 to a place above the reflector 6, starting to cool the crystal, and cooling the crystal to room temperature. Thereby, a difference between temperatures at both the upper and lower ends of the raised crystal 12 on the cooling treatment can be reduced to 50 deg.C or lower to produce the good crystal slight in defects.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、チョクラルスキー
法を用いて製造される酸化物単結晶、特には結晶にクラ
ックが生じ易いニオブ酸リチウム、タンタル酸リチウム
単結晶といった弾性表面波素子の基板として有用とされ
る酸化物単結晶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide single crystal produced by using the Czochralski method, and particularly to a substrate for a surface acoustic wave element such as lithium niobate or lithium tantalate single crystal in which a crystal easily cracks. The present invention relates to a method for producing an oxide single crystal that is useful as

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】タンタ
ル酸リチウム、ニオブ酸リチウム等の酸化物単結晶はチ
ョクラルスキー法で製造することが一般的に行われてお
り、これは貴金属ルツボの回りを耐火物で囲み、ルツボ
又は耐火物の上にルツボ上部の温度勾配を適切に保つた
めの熱反射の機能を持たせた貴金属構造物を設置する構
造とすることが一般的に行われている。
2. Description of the Related Art Single crystal oxides of lithium tantalate, lithium niobate, etc. are generally manufactured by the Czochralski method, which is a method for manufacturing a noble metal crucible. It is a common practice to enclose a refractory with a refractory and to install a precious metal structure on the crucible or refractory with a function of heat reflection to keep an appropriate temperature gradient in the upper part of the crucible. .

【0003】ここで、この単結晶を真っ直ぐに長く引き
上げるには、軸方向の温度勾配を大きく取る必要がある
が、ニオブ酸リチウム単結晶やタンタル酸リチウム単結
晶などの酸化物単結晶では大きな温度勾配による熱歪み
に因ってクラックが生じ易いという問題があった。
Here, in order to pull this single crystal straight long, it is necessary to take a large temperature gradient in the axial direction, but a large temperature is required for oxide single crystals such as lithium niobate single crystal and lithium tantalate single crystal. There is a problem that cracks are likely to occur due to thermal strain due to the gradient.

【0004】そのため、本発明者らはルツボ内の保温を
強化し、結晶の内部歪みを緩和してクラックの発生を防
ぎ、歩留まりを向上させる目的で、ルツボ上端に外径が
ルツボ径より大きく、内径が引き上げる結晶よりも大き
いドーナツ板状の貴金属製リフレクターをのせ、更にそ
の上に円筒状の貴金属製アフターヒータを設置した炉内
構造を用いて、ニオブ酸リチウム及びタンタル酸リチウ
ム単結晶の引き上げを行うことを提案した。この貴金属
としては、イリジウム、白金、白金ロジウム等を引き上
げる結晶の融点に応じて選択すればよく、ルツボ径、ル
ツボ高さ、メルト量等を適切に設定し、引き上げ後半で
結晶径が一定となった部分の上端がリフレクターの上部
に出るようにすれば、結晶自体の伝熱を利用してルツボ
内の固液界面付近の熱を結晶のコーン部を通してリフレ
クター上部に放散でき、この結果、適度な温度勾配が維
持されて結晶はネジレることなく長尺化できることがわ
かり、3インチ径で130mmの胴体部を持つ結晶が得
られることを確認した(特開平7−33586号公
報)。
Therefore, for the purpose of strengthening the heat retention in the crucible, relaxing the internal strain of the crystal to prevent the generation of cracks, and improving the yield, the present inventors have an outer diameter larger than the crucible diameter at the upper end of the crucible, A donut plate-shaped precious metal reflector larger than the crystal whose inner diameter is pulled up is placed, and a cylindrical noble metal after-heater is installed on it to pull up lithium niobate and lithium tantalate single crystals. Suggested to do. As this noble metal, iridium, platinum, platinum rhodium, etc. may be selected according to the melting point of the crystal to be pulled, the crucible diameter, the crucible height, the melt amount, etc. are appropriately set, and the crystal diameter becomes constant in the latter half of pulling. If the upper end of the curved part is exposed above the reflector, the heat of the crystal itself can be used to dissipate the heat near the solid-liquid interface in the crucible to the upper part of the reflector through the cone part of the crystal. It was found that the temperature gradient was maintained and the crystal could be lengthened without being twisted, and it was confirmed that a crystal having a body portion with a diameter of 3 inches and a length of 130 mm was obtained (JP-A-7-33586).

【0005】しかしながら、上記方法等を採用してタン
タル酸リチウム、ニオブ酸リチウムの単結晶引き上げを
行った後、室温まで冷却を行う場合に、特に3インチ以
上の大口径で、かつ70mm以上の長尺な単結晶では冷
却中にクラックが比較的多く発生するという問題が生
じ、このためこの点の解決が望まれた。
However, when a single crystal of lithium tantalate or lithium niobate is pulled by the above method or the like and then cooled to room temperature, it has a large diameter of 3 inches or more and a length of 70 mm or more. A problem with a long single crystal is that there are relatively many cracks during cooling, and therefore a solution to this problem has been desired.

【0006】本発明は上記問題を解決するためになされ
たもので、大口径、長尺単結晶の場合でも冷却中におけ
るクラックの発生が少なく、歩留まりの良い酸化物単結
晶の製造方法を提供することを目的とする。
The present invention has been made to solve the above problems, and provides a method for producing an oxide single crystal having a large yield and a good yield with few cracks during cooling even in the case of a large diameter and long single crystal. The purpose is to

【0007】[0007]

【課題を解決するための手段及び発明の実施の形態】本
発明者らは、上記目的を達成するべく、特にチョクラル
スキー法によりニオブ酸リチウムやタンタル酸リチウム
単結晶などのクラックを生じ易い酸化物単結晶、とりわ
け3インチ以上の大口径でかつ70mm以上の長尺の良
質な単結晶を得る方法について種々検討した結果、融液
からチョクラルスキー法にて酸化物単結晶を育成した後
に、該結晶を育成温度から室温まで冷却する際の該結晶
の上下方向での温度差を少なくすること、具体的には該
結晶の上下端部の温度差が50℃以下となるようにして
冷却することにより、放冷中でのクラックの発生も少な
く、歩留まり良く高品質な酸化物単結晶が得られること
を知見した。
Means for Solving the Problems and Modes for Carrying Out the Invention In order to achieve the above-mentioned object, the present inventors have made an oxidation particularly prone to cracks such as lithium niobate or lithium tantalate single crystal by the Czochralski method. As a result of various studies on a method for obtaining a high-quality single crystal having a large diameter of 3 inches or more and a length of 70 mm or more, after growing an oxide single crystal from the melt by the Czochralski method, To reduce the temperature difference in the vertical direction of the crystal when the crystal is cooled from the growth temperature to room temperature, specifically, to cool the crystal so that the temperature difference between the upper and lower ends of the crystal is 50 ° C. or less. As a result, it was found that cracks are less likely to occur during cooling and a high quality oxide single crystal can be obtained with good yield.

【0008】すなわち、チョクラルスキー法によりニオ
ブ酸リチウム、タンタル酸リチウム等の酸化物単結晶を
得る場合における炉内構造を貴金属ルツボの上端にドー
ナツ板状のリフレクターを設置し、その上に円筒状のア
フターヒータを設置したものとすると、長尺でネジレの
少ない良質な結晶を得ることができる。しかし、この方
法は単結晶を育成した後、これを冷却する場合、リフレ
クターの設置に伴う結晶上下部での温度差に基づく熱歪
みによるクラックが比較的多く生じるが、結晶育成後に
育成された結晶を結晶上下部での温度差が小さくなるよ
うに位置させ、ここで降温・放冷させることで結晶内に
生じる熱歪みを小さくすることができ、3インチ以上の
大口径の結晶に対しても結晶の長尺化の実現と共にクラ
ックなどの欠陥のない良質な結晶を高歩留まりで得るこ
とができることを見出し、本発明を完成するに至ったも
のである。
That is, in the case of obtaining an oxide single crystal of lithium niobate, lithium tantalate, or the like by the Czochralski method, a donut plate-shaped reflector is installed on the upper end of a precious metal crucible, and a cylindrical shape is formed on the reflector. If the after-heater is installed, it is possible to obtain a long crystal of good quality with little twist. However, in this method, after growing a single crystal, when it is cooled, cracks due to thermal strain due to the temperature difference between the upper and lower parts of the crystal accompanying the installation of the reflector occur relatively often, but the crystal grown after the crystal growth Is located so that the temperature difference between the upper and lower parts of the crystal is small, and the temperature is lowered and allowed to cool down to reduce the thermal strain generated in the crystal, and even for crystals with a large diameter of 3 inches or more. The present inventors have completed the present invention by finding that it is possible to obtain a good quality crystal free from defects such as cracks with a high yield, as well as realizing a longer crystal.

【0009】従って、本発明は、(1)ルツボ内の融液
に種子結晶を接触させて酸化物単結晶をチョクラルスキ
ー法によって育成した後、該結晶の育成温度から室温ま
で冷却するに際し、該結晶の上下端部における温度差が
50℃以下となるように冷却することを特徴とする酸化
物単結晶の製造方法、(2)ルツボ内の融液に種子結晶
を接触させて酸化物単結晶をチョクラルスキー法によっ
て育成した後、該結晶の育成温度から室温まで冷却する
に際し、該結晶をその上下端部における温度差が50℃
以下となる位置まで移動させた後、冷却を行うことを特
徴とする酸化物単結晶の製造方法、(3)ルツボ内の融
液に種子結晶を接触させて酸化物単結晶をチョクラルス
キー法によって育成するに当り、融液が収容される貴金
属ルツボの上端にドーナツ板状のリフレクターを設置し
た結晶育成用の炉内構造を用いて酸化物単結晶を育成し
た後、該結晶の育成温度から室温まで冷却するに際し、
該結晶を上方に移動して該結晶の全体をリフレクターの
上方に位置させた後、冷却を行うことを特徴とする酸化
物単結晶の製造方法、及び(4)酸化物単結晶がニオブ
酸リチウム又はタンタル酸リチウム単結晶である上記
(1),(2)又は(3)記載の製造方法を提供する。
Therefore, according to the present invention, (1) when a seed crystal is brought into contact with the melt in the crucible to grow an oxide single crystal by the Czochralski method, and then cooled from the growth temperature of the crystal to room temperature, A method for producing an oxide single crystal, which comprises cooling the crystal so that the temperature difference between the upper and lower ends of the crystal is 50 ° C. or less, (2) contacting a seed crystal with a melt in a crucible to form the oxide single crystal. After the crystal is grown by the Czochralski method, when the crystal is cooled from the growth temperature to room temperature, the temperature difference between the upper and lower ends of the crystal is 50 ° C.
A method for producing an oxide single crystal, which comprises cooling to a position as described below, and (3) bringing the seed crystal into contact with the melt in the crucible to make the oxide single crystal a Czochralski method. Upon growing the oxide single crystal by using the furnace internal structure for crystal growth in which a donut plate-shaped reflector is installed at the upper end of the precious metal crucible in which the melt is stored, from the growth temperature of the crystal When cooling to room temperature,
A method for producing an oxide single crystal, wherein the crystal is moved upward to position the entire crystal above the reflector, and then cooled, and (4) the oxide single crystal is lithium niobate. Alternatively, there is provided the production method according to the above (1), (2) or (3), which is a lithium tantalate single crystal.

【0010】以下、本発明につき更に詳しく説明する。
本発明の酸化物単結晶は、特にはクラックが生じ易いニ
オブ酸リチウム単結晶やタンタル酸リチウム単結晶の製
造に有効に用いられるが、これらの酸化物単結晶を育成
するに際しては、ルツボ内の融液に種子結晶を接触させ
て引き上げ、育成を行うチョクラルスキー法の常法が採
用し得る。
Hereinafter, the present invention will be described in more detail.
The oxide single crystal of the present invention is particularly effectively used in the production of lithium niobate single crystal and lithium tantalate single crystal, which are likely to cause cracks. A usual method of the Czochralski method, in which seed crystals are brought into contact with the melt and pulled up to grow, can be adopted.

【0011】この場合、酸化物単結晶の製造装置として
は、図1に示すような装置が好適に用いられる。すなわ
ち、図1はこの酸化物単結晶製造装置の縦断面図を示し
たものであるが、これはセラミックス製ルツボ台1の底
部に設置されているアルミナ台2の上に設置されたルツ
ボ3を囲む断熱材4の上に、耐火性アルミナ5を設置
し、ルツボ3又は耐火性アルミナ5の上にドーナツ板状
のリフレクター6を取り付けると共に、このリフレクタ
ー6の上方に円筒状のアフターヒータ7を取り付けたも
のであり、これは加熱コイル8でルツボ3を誘導加熱し
て原料を融解してこれを融液9とし、これに種子回転軸
10に取り付けた種子結晶11を浸漬し、これを引き上
げて単結晶12を育成し、所定の結晶重量を得た後に融
液9から切り離すものである。
In this case, the apparatus shown in FIG. 1 is preferably used as the apparatus for producing the oxide single crystal. That is, FIG. 1 shows a vertical cross-sectional view of this oxide single crystal production apparatus. It shows a crucible 3 installed on an alumina base 2 installed on the bottom of a ceramic crucible base 1. A refractory alumina 5 is installed on the surrounding heat insulating material 4, a donut plate-shaped reflector 6 is mounted on the crucible 3 or the refractory alumina 5, and a cylindrical after-heater 7 is mounted above the reflector 6. This is an induction heating of the crucible 3 with a heating coil 8 to melt the raw material to form a melt 9 into which a seed crystal 11 attached to a seed rotating shaft 10 is dipped and pulled up. The single crystal 12 is grown, and after obtaining a predetermined crystal weight, it is separated from the melt 9.

【0012】本発明においては、このように酸化物単結
晶を育成した後に、該結晶をその育成温度から室温まで
冷却するに際し、降温・放冷時に結晶内部に生じる歪み
を緩和して結晶のクラックの発生を防止し、歩留まりを
向上させる目的のために、結晶を育成温度から室温まで
冷却する際の該結晶の上下端部の温度差を50℃以下、
好ましくは25℃以下とするように冷却するものであ
る。
In the present invention, after the oxide single crystal is grown as described above, when the crystal is cooled from the growth temperature to room temperature, the strain generated inside the crystal during temperature lowering / cooling is relaxed, and the crack of the crystal cracks. For the purpose of preventing the occurrence of the above and improving the yield, the temperature difference between the upper and lower ends of the crystal when the crystal is cooled from the growth temperature to room temperature is 50 ° C. or less,
It is preferably cooled to 25 ° C. or less.

【0013】このような50℃以下の温度差を確保する
方法としては、かかる温度差が達成される限り特に制限
されないが、育成された結晶をルツボより上方に移動す
るなどして、上記結晶の上下端部の温度差が50℃以
下、好ましくは25℃以下となる位置まで移動する方法
が採用でき、このように上記温度差が50℃以下となる
位置まで移動させた後に冷却することが好適である。
The method for ensuring such a temperature difference of 50 ° C. or less is not particularly limited as long as such a temperature difference is achieved, but the grown crystal is moved above the crucible to obtain the above-mentioned temperature difference. A method of moving to a position where the temperature difference between the upper and lower ends is 50 ° C. or less, preferably 25 ° C. or less, can be adopted, and it is preferable to cool after moving to a position where the temperature difference is 50 ° C. or less. Is.

【0014】この場合、図1に示すような結晶育成用の
炉内構造として、貴金属ルツボの上端にドーナツ板状の
リフレクターを設置した装置を用いて単結晶を育成した
ときは、該結晶を上方に移動して該結晶全体がリフレク
ター上方に位置した状態で冷却を行う、具体的には、育
成結晶12を融液9から切り離し、更にリフレクター6
の上方まで移動した後に、加熱コイル8に加える電力を
徐々に低下させ、出力をゼロとなるまで降温した後、結
晶の温度が室温程度に下がるまで放冷することで結晶を
育成する方法が採用し得る。
In this case, when a single crystal is grown using an apparatus having a donut plate-shaped reflector on the upper end of a noble metal crucible as an in-furnace structure for growing a crystal as shown in FIG. And cooling is performed in a state where the entire crystal is positioned above the reflector. Specifically, the grown crystal 12 is separated from the melt 9, and the reflector 6 is further separated.
After that, the electric power applied to the heating coil 8 is gradually reduced, the output is lowered to zero, and then the crystal is allowed to cool until the temperature of the crystal falls to about room temperature. You can

【0015】ここで、従来技術に基づき、結晶のテイル
部下端が切り離し位置である融液の上方10〜40mm
にあるようにして冷却を行うと、融液が固化するときに
発生する凝固熱により結晶テイル部は加熱され、また結
晶長が70mmを超える長尺結晶では結晶の上端がリフ
レクター付近に位置したり、時にはリフレクターの位置
より高くなることにより、結晶の上端部は冷やされ易く
なり、この結果、結晶の上下方向で温度差が生じ、この
温度差により結晶に大きな応力がかかる。
Here, based on the conventional technique, 10 to 40 mm above the melt where the lower end of the tail portion of the crystal is the cut-off position.
When the cooling is performed as described in (1), the crystal tail portion is heated by the solidification heat generated when the melt solidifies, and in the case of a long crystal having a crystal length of more than 70 mm, the upper end of the crystal is located near the reflector. However, sometimes the height of the crystal becomes higher than the position of the reflector, so that the upper end of the crystal is easily cooled, and as a result, a temperature difference occurs in the vertical direction of the crystal, and this temperature difference causes a large stress on the crystal.

【0016】ところで、ニオブ酸リチウムやタンタル酸
リチウム単結晶といったクラックが生じ易い酸化物単結
晶は小傾角境界という欠陥を生じ易く、程度の差はある
にしても、この欠陥は育成結晶中に含まれており、この
欠陥を含んだ結晶に上記した温度差に基づく大きな応力
が加わると、結晶上部では圧縮方向の応力、結晶下部で
は引っ張り方向の応力が働き、この結果、結晶下部で小
傾角境界の方向に微小なクラックが入る。このクラック
は応力の大きさが比較的小さな時は結晶下部のみのクラ
ックとなるが、応力が大きいと結晶全体にクラックが生
じると考えられる。
By the way, oxide single crystals, such as lithium niobate and lithium tantalate single crystals, which are prone to cracks, are liable to cause a defect of a small tilt angle boundary. When a large stress due to the above-mentioned temperature difference is applied to a crystal containing this defect, a stress in the compressive direction acts on the upper part of the crystal and a stress in the tensile direction on the lower part of the crystal. A minute crack enters in the direction of. When the magnitude of stress is relatively small, this crack is a crack only in the lower part of the crystal, but when the stress is large, it is considered that the crack occurs in the entire crystal.

【0017】これに対し、結晶育成時の条件を最適化す
ることに加えて、上記のように、結晶を育成温度から室
温まで冷却する際の該結晶の温度差を50℃以下、好ま
しくは25℃以下とし、または結晶を育成温度から室温
まで冷却する際に、該結晶の温度差が50℃以下、好ま
しくは25℃以下となる位置まで該結晶を移動させた後
に冷却し、特に、図1に示したように、結晶育成用の炉
内構造を貴金属ルツボの上端にドーナツ板状のリフレク
ターを設置して結晶を育成した後に、結晶を育成温度か
ら室温まで冷却する際に、結晶を上方に移動して該結晶
の全体をリフレクター上方に位置させることにより、ニ
オブ酸リチウム単結晶やタンタル酸リチウム単結晶を歩
留まり良く製造できるものである。
On the other hand, in addition to optimizing the conditions for growing the crystal, the temperature difference of the crystal when it is cooled from the growth temperature to room temperature is 50 ° C. or less, preferably 25, as described above. 1 ° C or lower, or when the crystal is cooled from the growth temperature to room temperature, the crystal is moved to a position where the temperature difference of the crystal is 50 ° C or lower, preferably 25 ° C or lower, and then cooled. As shown in Fig. 5, the in-furnace structure for growing crystals is placed on the upper end of the precious metal crucible after the donut plate-shaped reflector is grown to grow the crystals, and when the crystals are cooled from the growth temperature to room temperature, the crystals are moved upward. By moving and positioning the entire crystal above the reflector, a lithium niobate single crystal or a lithium tantalate single crystal can be produced with a high yield.

【0018】本発明によれば、3インチ以上の大口径、
70mm以上の長尺のニオブ酸リチウム、タンタル酸リ
チウム等の酸化物単結晶をクラックの発生を可及的に少
なくして歩留まり良く得ることができる。また、ニオブ
酸リチウムやタンタル酸リチウム単結晶の育成は140
0℃以上の温度で行われ、結晶育成後、加熱コイルに加
える電力を徐々に低下させることで降温がなされるが、
冷却時に育成後の結晶上下端部の温度差を50℃以下、
特に25℃以下とすれば、この降温速度を800℃/h
r以上としても高歩留まりで結晶が製造でき、また、降
温後の放冷時間も4時間以下と比較的短時間とすること
ができるという有利性に加えて、この場合には結晶を降
温・放冷するときに発生する熱歪みが小さくなるので、
内部歪みが極めて小さく、脈理などの結晶内屈折率不均
一部分や欠陥のない、特に光学用途に適した良質の結晶
を容易に得ることができるという有利性が与えられる。
According to the present invention, a large diameter of 3 inches or more,
A long oxide single crystal having a length of 70 mm or more, such as lithium niobate or lithium tantalate, can be obtained with a good yield while minimizing the occurrence of cracks. In addition, the growth of lithium niobate or lithium tantalate single crystal is 140
It is carried out at a temperature of 0 ° C. or higher, and after crystal growth, the electric power applied to the heating coil is gradually reduced to lower the temperature.
The temperature difference between the upper and lower ends of the crystal after growth during cooling is 50 ° C. or less,
In particular, if the temperature is set to 25 ° C or lower, this temperature decreasing rate is
In addition to the advantage that the crystal can be produced with a high yield even if it is r or more, and the cooling time after cooling is relatively short, that is, 4 hours or less, in this case, the crystal is cooled and released. Since the thermal strain generated when cooling is small,
The advantage is that it is possible to easily obtain a high-quality crystal that has extremely small internal strain and does not have a non-uniform refractive index portion in the crystal such as striae and defects, and is particularly suitable for optical applications.

【0019】[0019]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be described below in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

【0020】〔実施例1〕図1に示す装置を用い、直径
150mmφ、高さ150mmのイリジウム製ルツボに
外径155mmφ、内径120mmφ、厚さ2mmのド
ーナツ板状のイリジウム製リフレクターを配置し、更に
この上に直径150mmφ、高さ200mmの円筒状の
イリジウム製アフターヒータを配置した。
Example 1 Using the apparatus shown in FIG. 1, an iridium crucible having a diameter of 150 mmφ and a height of 150 mm was provided with a donut plate-shaped reflector having an outer diameter of 155 mmφ, an inner diameter of 120 mmφ and a thickness of 2 mm. A cylindrical after-heater made of iridium having a diameter of 150 mmφ and a height of 200 mm was arranged on this.

【0021】このルツボ内に10kgの原料融液をチャ
ージし、溶融後、結晶を引き上げる前に熱電対を用いて
軸方向の温度勾配を測定したところ、図2に示す結果が
得られた。なお、図2において、高さの原点は融液面位
置であり、またRはリフレクターの配置位置を示す。
When 10 kg of the raw material melt was charged in the crucible, the temperature gradient in the axial direction was measured using a thermocouple after melting and before pulling the crystal, the results shown in FIG. 2 were obtained. In FIG. 2, the origin of height is the melt surface position, and R is the position of the reflector.

【0022】次に、チョクラルスキー法でX軸方位で3
インチ径の長さ70mmのタンタル酸リチウム単結晶を
1本引き上げ、そのテイル部をリフレクター上方20m
mの位置に移動した後、12時間かけて降温し(降温速
度は平均140℃/hr)、降温終了後から8時間後に
結晶を取り出したところ、結晶後半部に局所的なクラッ
クは認められなかった。同じ方法で19本の単結晶を引
き上げたところ、1本は冷却中にクラックの発生で割れ
てしまったが、18本は欠陥の少ない良質な結晶であ
り、この歩留まりは95%という高いものであった。
Next, the Czochralski method is used to set the X-axis direction to 3
A single lithium tantalate single crystal with an inch diameter of 70 mm is pulled up, and its tail is 20 m above the reflector.
After moving to the position of m, the temperature was lowered over 12 hours (the temperature lowering rate was 140 ° C./hr on average), and the crystal was taken out 8 hours after the end of the temperature reduction, no local crack was observed in the latter half of the crystal. It was When 19 single crystals were pulled up by the same method, one cracked due to the occurrence of cracks during cooling, but 18 were good quality crystals with few defects, and this yield was as high as 95%. there were.

【0023】〔実施例2〕実施例1で用いたのと同じ炉
内構造で、チョクラルスキー法によりX軸方位で3イン
チ径の長さ70mmのタンタル酸リチウム単結晶を1本
引き上げ、実施例1と同様にそのテイル部をリフレクタ
ー上方20mmの位置に移動した後、2時間かけて降温
し(降温速度は平均800℃/hr)、降温終了後から
4時間後に結晶を取り出したところ、結晶後半部に局所
的なクラックは認められなかった。同じ方法で19本の
単結晶を引き上げたところ、2本は冷却中にクラックの
発生で割れてしまったが、17本は欠陥の少ない良質な
結晶であり、この歩留まりは90%という高いものであ
った。
[Embodiment 2] With the same reactor internal structure as that used in Embodiment 1, one Lithium tantalate single crystal having a diameter of 3 inches in the X-axis direction and a length of 70 mm is pulled by the Czochralski method. After moving the tail part to a position 20 mm above the reflector in the same manner as in Example 1, the temperature was decreased over 2 hours (the temperature decrease rate was 800 ° C./hr on average), and the crystals were taken out 4 hours after the completion of the temperature reduction. No local crack was observed in the latter half. When 19 single crystals were pulled up by the same method, 2 cracked due to the occurrence of cracks during cooling, but 17 were good quality crystals with few defects, and this yield was as high as 90%. there were.

【0024】〔実施例3〕実施例1で用いたのと同じ炉
内構造で、チョクラルスキー法により36°回転Y軸方
位で3インチ径の長さ140mmのタンタル酸リチウム
単結晶を1本引き上げ、そのテイル部をリフレクター上
方20mmの位置に移動した後、2時間かけて降温し
(降温速度は平均800℃/hr)、降温終了後から4
時間後に結晶を取り出したところ、結晶後半部に局所的
なクラックは認められなかった。同じ方法で9本の単結
晶を引き上げたところ、1本は冷却中にクラックの発生
で割れてしまったが、8本は欠陥の少ない良質な結晶で
あり、この歩留まりは90%という高いものであった。
[Embodiment 3] With the same furnace structure as that used in Embodiment 1, one lithium tantalate single crystal having a length of 3 mm and a diameter of 3 inches in a Y-axis direction of 36 ° is produced by the Czochralski method. After pulling up and moving the tail part to a position 20 mm above the reflector, the temperature was lowered over 2 hours (the temperature lowering rate was 800 ° C./hr on average), and after the temperature was lowered, 4
When the crystal was taken out after a lapse of time, no local crack was observed in the latter half of the crystal. When 9 single crystals were pulled by the same method, one cracked due to the occurrence of cracks during cooling, but 8 were good quality crystals with few defects, and this yield was as high as 90%. there were.

【0025】〔実施例4〕実施例1で用いたのと同じ炉
内構造で、チョクラルスキー法により127.8°回転
Y軸方位で3インチ径の長さ140mmのニオブ酸リチ
ウム単結晶を1本引き上げ、そのテイル部をリフレクタ
ー上方20mmの位置に移動した後、1.5時間かけて
降温し(降温速度は平均800℃/hr)、降温終了後
から4時間後に結晶を取り出したところ、結晶後半部に
局所的なクラックは認められなかった。同じ方法で9本
の単結晶を引き上げたところ、1本は冷却中にクラック
の発生で割れてしまったが、8本は欠陥の少ない良質な
結晶であり、この歩留まりは90%という高いものであ
った。
Example 4 A lithium niobate single crystal having a length of 140 mm and a diameter of 3 inches in the Y-axis direction of 127.8 ° was produced by the Czochralski method with the same furnace structure as that used in Example 1. After pulling up one and moving the tail part to a position 20 mm above the reflector, the temperature was lowered over 1.5 hours (the temperature reduction rate was 800 ° C./hr on average), and the crystals were taken out 4 hours after the end of the temperature reduction, No local crack was observed in the latter half of the crystal. When 9 single crystals were pulled by the same method, one cracked due to the occurrence of cracks during cooling, but 8 were good quality crystals with few defects, and this yield was as high as 90%. there were.

【0026】〔比較例1〕実施例1で用いたのと同じ炉
内構造で、チョクラルスキー法によりX軸方位で3イン
チ径の長さ70mmのタンタル酸リチウム単結晶を1本
引き上げ、結晶育成後融液から切り離し、その後そのテ
イル部を融液から30mm上方に移動した後、12時間
かけて降温し(降温速度は平均140℃/hr)、降温
終了後から8時間後に結晶を取り出したところ、結晶後
半部に局所的なクラックは認められなかった。同じ方法
で19本の単結晶を引き上げたところ、9本は冷却中に
クラックの発生で割れてしまったが、10本は欠陥の少
ない良質な結晶であり、この歩留まりは55%というも
のであった。
[Comparative Example 1] With the same furnace structure as that used in Example 1, one 70% lithium tantalate single crystal having a diameter of 3 inches in the X-axis direction was pulled by the Czochralski method to form a crystal. After the growth, the tail was separated from the melt, the tail part was moved 30 mm above the melt, and the temperature was lowered over 12 hours (the temperature reduction rate was 140 ° C./hr on average), and the crystals were taken out 8 hours after the completion of the temperature reduction. However, no local crack was observed in the latter half of the crystal. When 19 single crystals were pulled by the same method, 9 cracked due to the occurrence of cracks during cooling, but 10 were good quality crystals with few defects, and the yield was 55%. It was

【0027】〔実施例5〕直径180mmφ、高さ18
0mmのイリジウム製ルツボに外径185mmφ、内径
130mmφ、厚さ2mmのドーナツ板状のイリジウム
製リフレクターを配置し、更にこの上に直径180mm
φ、高さ200mmの円筒状のイリジウム製アフターヒ
ータを配置した。
[Embodiment 5] Diameter 180 mmφ, height 18
A donut plate-shaped reflector made of iridium having an outer diameter of 185 mmφ, an inner diameter of 130 mmφ, and a thickness of 2 mm is placed in a 0 mm iridium crucible, and a diameter of 180 mm is further placed on the reflector.
A cylindrical iridium after-heater having a φ and a height of 200 mm was arranged.

【0028】このルツボ内に15kgの原料融液をチャ
ージし、溶融後、結晶を引き上げる前に熱電対を用いて
軸方向の温度勾配を測定したところ、図3に示す結果が
得られた(図3において、高さの原点は融液面から10
mm上方の位置であり、Rはリフレクターの配置位置を
示す)。その後、チョクラルスキー法でX軸方位で4イ
ンチ径の長さ150mmのタンタル酸リチウム単結晶を
1本引き上げ、そのテイル部をリフレクター上方20m
mの位置に移動した後、12時間かけて降温し(降温速
度は平均140℃/hr)、降温終了後から8時間後に
結晶を取り出したところ、結晶後半部に局所的なクラッ
クは認められなかった。同じ方法で9本の単結晶を引き
上げたところ、1本は冷却中にクラックの発生で割れて
しまったが、8本は欠陥の少ない良質な結晶であり、こ
の歩留まりは90%という高いものであった。
When 15 kg of the raw material melt was charged in the crucible and the temperature gradient in the axial direction was measured using a thermocouple after melting and before pulling the crystal, the results shown in FIG. 3 were obtained (FIG. 3). In 3, the origin of height is 10 from the melt surface.
mm is the position above, and R indicates the arrangement position of the reflector). After that, a Czochralski method was used to pull up one 150 mm long lithium tantalate single crystal having a diameter of 4 inches in the X-axis direction, and the tail portion thereof was 20 m above the reflector.
After moving to the position of m, the temperature was lowered over 12 hours (the temperature lowering rate was 140 ° C./hr on average), and the crystal was taken out 8 hours after the end of the temperature reduction, no local crack was observed in the latter half of the crystal. It was When 9 single crystals were pulled by the same method, one cracked due to the occurrence of cracks during cooling, but 8 were good quality crystals with few defects, and this yield was as high as 90%. there were.

【0029】[0029]

【発明の効果】本発明の製造方法によれば、クラックの
発生がなく、欠陥の少ない良質な酸化物単結晶をネジレ
もなく、大口径でかつ長尺なものとして歩留まり良く得
ることができる。
According to the manufacturing method of the present invention, it is possible to obtain a high-quality oxide single crystal having no cracks, few defects, no twist, a large diameter and a long length and a high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に用いる酸化物単結晶製造装置の
一例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of an oxide single crystal production apparatus used for carrying out the present invention.

【図2】実施例1〜3、比較例1で用いた装置の温度分
布を示すグラフである。
FIG. 2 is a graph showing temperature distributions of devices used in Examples 1 to 3 and Comparative Example 1.

【図3】実施例4で用いた装置の温度分布を示すグラフ
である。
FIG. 3 is a graph showing the temperature distribution of the device used in Example 4.

【符号の説明】[Explanation of symbols]

1 耐火性ルツボ台 2 アルミナ台 3 ルツボ 4 断熱材 5 耐火性アルミナ 6 リフレクター 7 アフターヒータ 8 加熱コイル 9 融液 10 種子回転軸 11 種子結晶 12 育成結晶 1 Refractory Crucible Table 2 Alumina Table 3 Crucible 4 Heat Insulation Material 5 Refractory Alumina 6 Reflector 7 After-heater 8 Heating Coil 9 Melt 10 Seed Rotation Axis 11 Seed Crystal 12 Growth Crystal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中里 邦夫 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 (72)発明者 桑原 由則 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 (72)発明者 流王 俊彦 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kunio Nakazato Kunio Nakazato 2-13-1, Isobe, Annaka City, Gunma Prefecture Shin-Etsu Kagaku Kogyo Co., Ltd., Institute for Precision Materials (72) Inventor Yoshinori Kuwahara Annaka City, Gunma Prefecture 2-13-1 Isobe Shinetsu Kagaku Kogyo Co., Ltd. Precision Materials Research Laboratory (72) Inventor Toshihiko Nagao 2-13-1 Isobe, Naka, Gunma Prefecture Shin-Etsu Kagaku Kogyo Co. Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ルツボ内の融液に種子結晶を接触させて
酸化物単結晶をチョクラルスキー法によって育成した
後、該結晶の育成温度から室温まで冷却するに際し、該
結晶の上下端部における温度差が50℃以下となるよう
に冷却することを特徴とする酸化物単結晶の製造方法。
1. A seed crystal is brought into contact with the melt in a crucible to grow an oxide single crystal by the Czochralski method, and when the crystal is cooled from the growth temperature to room temperature, the upper and lower ends of the crystal are A method for producing an oxide single crystal, which comprises cooling so that the temperature difference is 50 ° C. or less.
【請求項2】 ルツボ内の融液に種子結晶を接触させて
酸化物単結晶をチョクラルスキー法によって育成した
後、該結晶の育成温度から室温まで冷却するに際し、該
結晶をその上下端部における温度差が50℃以下となる
位置まで移動させた後、冷却を行うことを特徴とする酸
化物単結晶の製造方法。
2. A seed crystal is brought into contact with the melt in the crucible to grow an oxide single crystal by the Czochralski method, and when the crystal is cooled from the growth temperature to room temperature, the crystal is grown at its upper and lower end portions. The method for producing an oxide single crystal is characterized in that cooling is carried out after the temperature difference is moved to a position where the temperature difference is 50 ° C or less.
【請求項3】 ルツボ内の融液に種子結晶を接触させて
酸化物単結晶をチョクラルスキー法によって育成するに
当り、融液が収容される貴金属ルツボの上端にドーナツ
板状のリフレクターを設置した結晶育成用の炉内構造を
用いて酸化物単結晶を育成した後、該結晶の育成温度か
ら室温まで冷却するに際し、該結晶を上方に移動して該
結晶の全体をリフレクターの上方に位置させた後、冷却
を行うことを特徴とする酸化物単結晶の製造方法。
3. When a seed crystal is brought into contact with the melt in the crucible to grow an oxide single crystal by the Czochralski method, a donut plate-shaped reflector is installed at the upper end of the precious metal crucible containing the melt. After growing an oxide single crystal by using the in-furnace structure for crystal growth described above, when cooling from the growth temperature of the crystal to room temperature, the crystal is moved upward and the entire crystal is positioned above the reflector. A method for producing an oxide single crystal, which comprises cooling after the heating.
【請求項4】 酸化物単結晶がニオブ酸リチウム又はタ
ンタル酸リチウム単結晶である請求項1,2又は3記載
の製造方法。
4. The method according to claim 1, wherein the oxide single crystal is lithium niobate or lithium tantalate single crystal.
JP16837196A 1996-06-07 1996-06-07 Production of oxide single crystal Pending JPH09328394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16837196A JPH09328394A (en) 1996-06-07 1996-06-07 Production of oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16837196A JPH09328394A (en) 1996-06-07 1996-06-07 Production of oxide single crystal

Publications (1)

Publication Number Publication Date
JPH09328394A true JPH09328394A (en) 1997-12-22

Family

ID=15866861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16837196A Pending JPH09328394A (en) 1996-06-07 1996-06-07 Production of oxide single crystal

Country Status (1)

Country Link
JP (1) JPH09328394A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758255A (en) * 2012-08-02 2012-10-31 元亮科技有限公司 Method for growing large-size high-temperature oxide crystal through for top-seeded temperature gradient technique
JP2012250874A (en) * 2011-06-02 2012-12-20 Shin-Etsu Chemical Co Ltd Iridium crucible, and method for producing lithium tantalate single crystal using the same
CN102965731A (en) * 2012-11-16 2013-03-13 福建福晶科技股份有限公司 Method for solving annealing cracking of potassium niobate crystal
JP2013184835A (en) * 2012-03-06 2013-09-19 Shin-Etsu Chemical Co Ltd Lithium tantalate single crystal wafer, and crucible used for producing the same
JP2016204172A (en) * 2015-04-16 2016-12-08 住友金属鉱山株式会社 Cooling method and production method of single crystal, and single crystal growth apparatus
JP2017081779A (en) * 2015-10-28 2017-05-18 住友金属鉱山株式会社 Method of raising lithium tantalate single crystal
JP2017114725A (en) * 2015-12-24 2017-06-29 住友金属鉱山株式会社 Method for raising lithium tantalate single crystal
JP2018193277A (en) * 2017-05-18 2018-12-06 住友金属鉱山株式会社 Crystal growth apparatus
JP2020147459A (en) * 2019-03-12 2020-09-17 住友金属鉱山株式会社 Method for growing lithium niobate single crystal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012250874A (en) * 2011-06-02 2012-12-20 Shin-Etsu Chemical Co Ltd Iridium crucible, and method for producing lithium tantalate single crystal using the same
JP2013184835A (en) * 2012-03-06 2013-09-19 Shin-Etsu Chemical Co Ltd Lithium tantalate single crystal wafer, and crucible used for producing the same
CN102758255A (en) * 2012-08-02 2012-10-31 元亮科技有限公司 Method for growing large-size high-temperature oxide crystal through for top-seeded temperature gradient technique
CN102758255B (en) * 2012-08-02 2015-05-27 元亮科技有限公司 Method for growing large-size high-temperature oxide crystal through for top-seeded temperature gradient technique
CN102965731A (en) * 2012-11-16 2013-03-13 福建福晶科技股份有限公司 Method for solving annealing cracking of potassium niobate crystal
JP2016204172A (en) * 2015-04-16 2016-12-08 住友金属鉱山株式会社 Cooling method and production method of single crystal, and single crystal growth apparatus
JP2017081779A (en) * 2015-10-28 2017-05-18 住友金属鉱山株式会社 Method of raising lithium tantalate single crystal
JP2017114725A (en) * 2015-12-24 2017-06-29 住友金属鉱山株式会社 Method for raising lithium tantalate single crystal
JP2018193277A (en) * 2017-05-18 2018-12-06 住友金属鉱山株式会社 Crystal growth apparatus
JP2020147459A (en) * 2019-03-12 2020-09-17 住友金属鉱山株式会社 Method for growing lithium niobate single crystal

Similar Documents

Publication Publication Date Title
US5849080A (en) Apparatus for producing polycrystalline semiconductors
CN101445954A (en) Method for controlling temperature gradient and thermal history of a crystal-melt interface in growth process of czochralski silicon monocrystal
JPH09328394A (en) Production of oxide single crystal
JP3121192B2 (en) Method for producing oxide single crystal
JP2019147698A (en) Apparatus and method for growing crystal
JPS61247683A (en) Pulling device for single crystal sapphire
JPH08175896A (en) Method and device for producing single crystal
CN109913939A (en) Heat shield assembly, crystal pulling furnace system and its working method
JP7310339B2 (en) Method for growing lithium niobate single crystal
JP2018111633A (en) Apparatus and method for growing oxide single crystal
JP2957857B2 (en) Method for producing oxide single crystal
JP2868204B2 (en) Equipment for producing lithium tetraborate single crystal
JP6593157B2 (en) Method for growing lithium tantalate single crystals
JPS6389488A (en) Production of single crystal
JP4148060B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JP3079991B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP2018177542A (en) Production method of oxide single crystal, and oxide single crystal pulling-up device
JP7275674B2 (en) Method for growing lithium niobate single crystal
JPH11189487A (en) Production apparatus for oxide single crystal
JP7106978B2 (en) CRYSTAL GROWING APPARATUS AND SINGLE CRYSTAL MANUFACTURING METHOD
JPH09286695A (en) Production of oxide single crystal
JP2004217504A (en) Graphite heater, apparatus and method for producing single crystal
JP4276497B2 (en) Single crystal manufacturing method and apparatus
JPH0397690A (en) Producing device for oxide single crystal
JPH09208380A (en) Production of oxide single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050608