JPH09208380A - Production of oxide single crystal - Google Patents

Production of oxide single crystal

Info

Publication number
JPH09208380A
JPH09208380A JP4070296A JP4070296A JPH09208380A JP H09208380 A JPH09208380 A JP H09208380A JP 4070296 A JP4070296 A JP 4070296A JP 4070296 A JP4070296 A JP 4070296A JP H09208380 A JPH09208380 A JP H09208380A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
width
growing
oxide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4070296A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imazawa
克之 今澤
Yoshinori Kuwabara
由則 桑原
Toshihiko Riyuuou
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP4070296A priority Critical patent/JPH09208380A/en
Publication of JPH09208380A publication Critical patent/JPH09208380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an oxide single crystal capable of readily forming a crack by a thermal strain in good productivity and yield by growing specified growing edges under specific conditions when growing the shoulder part of the oxide single crystal from a melt by a pulling up method. SOLUTION: The shoulder part of a oxide single crystal is grown so that the dispersion in width of growing edges may be the maximum one of the growing edges of <4 times based on the minimum one thereof formed in the (012) face group at the time of forming the shoulder part of the single crystal when producing the single crystal of lithium niobate or lithium tantalate. For example, a doughnut platy reflector 6 made of iridium is arranged in a crucible 3 made of iridium and a cylindrical after-heater 7 made of iridium is further arranged on the reflector 6. Raw materials are placed in the crucible 3 so that the composition ratio may be Li/Ta=0.943 (molar ratio), melted, then pulled up so that the dispersion in width of growing edges may be the maximum width of growing edges of <4 times based on the minimum one thereof formed in the (012) face group by using a Czochralski method (CZ method). Thereby, the lithium tantalate having 20 deg. angle θ of a conical portion of the shoulder part is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、チョクラルスキー
法を用いる酸化物単結晶の製造方法に関するものであっ
て、特に表面弾性波素子に使用されるタンタル酸リチウ
ム単結晶、ニオブ酸リチウム単結晶の製造方法に関する
ものである。
TECHNICAL FIELD The present invention relates to a method for producing an oxide single crystal using the Czochralski method, and particularly to a lithium tantalate single crystal and a lithium niobate single crystal used in a surface acoustic wave device. The present invention relates to a manufacturing method of.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】タンタ
ル酸リチウム、ニオブ酸リチウムといわれる酸化物単結
晶はチョクラルスキー法で製造することが一般的に行わ
れており、これは貴金属ルツボの回りを耐火物で囲み、
原料を加熱・溶融した後に、種子結晶を融液につけ、種
子結晶を回転させながら引上げすることで行われる。
2. Description of the Related Art Lithium tantalate and lithium niobate oxide single crystals are generally manufactured by the Czochralski method, which is a method for manufacturing a noble metal crucible. Surrounded by refractories,
After heating and melting the raw material, the seed crystal is immersed in the melt, and the seed crystal is pulled while rotating.

【0003】この場合、図1に示すように結晶Aの肩部
の形状は円錐状となり、この円錐部Bの角度θは45°
位が最も歪みが少なくかつ転移等の欠陥も少ない高品質
結晶ができるとされていることから、過去においては通
常θは30〜60°の範囲で作られていた。
In this case, as shown in FIG. 1, the shape of the shoulder of the crystal A is a cone, and the angle θ of the cone B is 45 °.
Since it is said that a high-quality crystal with the least distortion and few defects such as dislocations can be formed, in the past, θ was usually made in the range of 30 to 60 °.

【0004】また、結晶製造での生産性を上げる目的
で、特許第1406486号(特公昭60−23560
号公報)で開示されているように、結晶肩部の円錐部の
角度θを30°以下にして、円錐部が少なくなるような
場合においてもクラックが発生しないようにするため
に、成長稜の幅が結晶径の10〜30%になるように単
結晶を成長させる方法が開示されている。
Further, in order to improve the productivity in crystal production, Japanese Patent No. 1406486 (Japanese Patent Publication No. 60-23560).
In order to prevent cracks from occurring even when the conical portion is reduced in number, the angle θ of the conical portion of the crystal shoulder should be 30 ° or less. A method of growing a single crystal so that the width is 10 to 30% of the crystal diameter is disclosed.

【0005】しかし、成長稜が結晶径の10〜30%と
なるような特許第1406486号の方法では、ルツボ
内の融液温度が低すぎるため、温度勾配が小さくなり、
引上げ結晶の長尺化ができない。このため、結晶製造で
の生産性が悪いという欠点がある。
However, in the method of Japanese Patent No. 1406486 in which the growth edge is 10 to 30% of the crystal diameter, the temperature of the melt in the crucible is too low, resulting in a small temperature gradient.
The pulled crystal cannot be made longer. For this reason, there is a drawback that productivity in crystal production is poor.

【0006】本発明は上記した酸化物単結晶育成中にお
ける課題の解決方法を提供するものであり、特には、タ
ンタル酸リチウム単結晶、ニオブ酸リチウム単結晶とい
った結晶成長中の熱歪みによりクラックが生じ易い結晶
を生産性よく、歩留まりよく製造するための酸化物単結
晶の製造方法を提供することを目的とする。
The present invention provides a method for solving the above-mentioned problems during growth of an oxide single crystal, and in particular, cracks due to thermal strain during crystal growth of a lithium tantalate single crystal or a lithium niobate single crystal. An object of the present invention is to provide a method for producing an oxide single crystal for producing easily produced crystals with high productivity and high yield.

【0007】[0007]

【課題を解決するための手段及び発明の実施の形態】本
発明者らは、この肩部形成中の成長稜の形状とクラック
の発生率について様々な検討を重ね、成長稜の幅と結晶
欠陥との関係を明らかにすることで、長尺化が可能な温
度勾配が大きい状態において生産性と歩留まりの両方が
よい酸化物単結晶の製造方法に到達した。
Means for Solving the Problems and Embodiments of the Invention The inventors of the present invention have made various studies on the shape of the growth ridge and the incidence of cracks during the formation of the shoulder, and have investigated the width of the growth ridge and the crystal defect. By clarifying the relationship with the above, a method for producing an oxide single crystal having both good productivity and yield in a state where a temperature gradient capable of lengthening is large has been reached.

【0008】即ち、本発明者らは、引上げ法により酸化
物単結晶、特にはニオブ酸リチウム単結晶、タンタル酸
リチウム単結晶を製造する場合、これら酸化物単結晶の
肩部を形成する時に、成長稜の幅のばらつきが、(01
2)面群に形成される成長稜の最小幅に対して最大幅が
4倍未満になるように成長すれば良いことを見い出し、
本発明を完成した。なお、本発明における成長稜の幅と
は結晶成長方向に対し垂直方向の長さであり、太さとも
いう。
That is, when the present inventors manufacture oxide single crystals, particularly lithium niobate single crystals and lithium tantalate single crystals by the pulling method, when forming shoulders of these oxide single crystals, The variation in the width of the growth edge is (01
2) It was found that the growth should be performed so that the maximum width is less than 4 times the minimum width of the growth edge formed in the surface group,
The present invention has been completed. The width of the growth edge in the present invention is the length in the direction perpendicular to the crystal growth direction and is also called the thickness.

【0009】更に詳述すると、結晶成長は、ある過冷却
度を融液に与えるとほぼ同じ速度で進行する。このため
ネック部終了後に加熱部の出力を融液が過冷却状態にな
るようなある値まで下げると、ルツボ周囲の熱容量の大
きさに依存する時間が経過した後に、結晶径が一定の速
度で広がり始める。融液の径方向の温度勾配は融液中心
からルツボ方向に単調に増加しており、結晶径が増加す
るに従い、この温度勾配による径方向の温度上昇を打ち
消すように一定の速度で加熱部の出力を下げる。結晶径
の広がりを一定にするには、結晶成長部の過冷却度が一
定になるように制御する必要がある。
More specifically, crystal growth proceeds at about the same rate when a certain degree of supercooling is applied to the melt. For this reason, when the output of the heating unit is reduced to a certain value such that the melt is in a supercooled state after the end of the neck portion, the crystal diameter is maintained at a constant rate after a lapse of time depending on the heat capacity around the crucible. Begins to spread. The temperature gradient in the radial direction of the melt monotonically increases in the crucible direction from the center of the melt. Reduce the output. In order to make the spread of the crystal diameter constant, it is necessary to control the degree of supercooling of the crystal growth portion to be constant.

【0010】しかし、結晶成長中の融液温度を直接測定
するのは困難であり、過冷却度が大きく変化すると結晶
径の広がりが不均一になり、熱歪みが結晶中に残留し、
結晶にクラックが生じ易くなる。
However, it is difficult to directly measure the melt temperature during crystal growth, and if the supercooling degree changes greatly, the spread of the crystal diameter becomes non-uniform, and thermal strain remains in the crystal.
The crystals are likely to crack.

【0011】本発明は、この問題の解決方法を与えるも
のである。つまり、融液が過冷却状態では、結晶の特異
な面がファセットとして特徴的な方向に現れる。ニオブ
酸リチウム単結晶、タンタル酸リチウム単結晶等では、
その面内において、結晶成長速度が最も早く、面の法線
方向では最も遅い(012)及びその等価面が晶出す
る。この成長稜等のファセット面は、過冷却の度合いに
応じて変化するため、肩部成長中の過冷却度のバロメー
ターとなる。そのため、成長稜の幅のばらつきが一定の
範囲内になるように出力を制御すればよい。
The present invention provides a solution to this problem. That is, in the supercooled state of the melt, a peculiar surface of the crystal appears as a facet in a characteristic direction. With lithium niobate single crystal, lithium tantalate single crystal, etc.,
Within that plane, the crystal growth rate is the fastest, the slowest in the normal direction of the plane (012), and its equivalent plane is crystallized. Since the facet surface such as the growth edge changes depending on the degree of supercooling, it serves as a barometer of the degree of supercooling during shoulder growth. Therefore, the output may be controlled so that the variation in the width of the growth edge is within a certain range.

【0012】一方、特許第1406486号に開示され
ているような成長稜幅の場合、ルツボ内の融液温度が低
すぎるため、引上げ軸方向の温度勾配が小さくなり、引
上げ結晶の長尺化ができない。そこで、引き上げた結晶
の引上長を長くするために温度勾配を大きくした場合、
成長稜幅は結晶径の10%以下になる。
On the other hand, in the case of the growth edge width as disclosed in Japanese Patent No. 1406486, since the melt temperature in the crucible is too low, the temperature gradient in the pulling axis direction becomes small and the pulling crystal becomes long. Can not. Therefore, when increasing the temperature gradient to increase the pulling length of the pulled crystal,
The growth edge width is 10% or less of the crystal diameter.

【0013】このように温度勾配が大きいために成長稜
幅が結晶径に対して10%以下となった場合においても
結晶成長中に残留歪みを与えないようにするには、この
成長稜のばらつきを、成長稜の最小幅に対して最大幅が
4倍未満にすることが重要であることを知見したもので
ある。
In order to prevent residual strain from being applied during crystal growth even when the growth edge width is 10% or less of the crystal diameter due to such a large temperature gradient, this growth edge variation It was found that it is important to make the maximum width less than 4 times the minimum width of the growth edge.

【0014】従って、本発明は、引上げ法によって溶融
液から酸化物単結晶の肩部を成長させるに際し、(01
2)面群に形成される成長稜の幅のばらつきが成長稜の
最小幅に対して最大幅が4倍未満になるように成長させ
ることを特徴とする酸化物単結晶の製造方法を提供す
る。
Therefore, in the present invention, when the shoulder portion of the oxide single crystal is grown from the melt by the pulling method, (01
2) To provide a method for producing an oxide single crystal, which is characterized in that the growth is formed so that the variation in the width of the growth ridge formed in the surface group is less than 4 times the maximum width of the minimum width of the growth ridge. .

【0015】本発明の酸化物単結晶の製造方法は、この
ようにチョクラルスキー法により酸化物単結晶を引上
げ、育成するものであり、特にタンタル酸リチウム単結
晶、ニオブ酸リチウム単結晶の製造に好適に採用される
ものであるが、本発明においては、これら酸化物単結晶
の肩部を形成する際に、肩部に晶出する(012)面群
に形成される成長稜の幅のばらつきを成長稜の最小幅に
対して最大幅が4倍未満、好ましくは1.5倍以下にな
るように出力制御するもので、これにより加熱部の出力
変動を抑制することができ、結晶のクラック発生を抑制
することが可能となる。
The method for producing an oxide single crystal of the present invention is to pull up and grow an oxide single crystal by the Czochralski method as described above, and particularly, to produce a lithium tantalate single crystal and a lithium niobate single crystal. In the present invention, when forming the shoulder portion of these oxide single crystals, the width of the growth edge formed in the (012) plane group crystallized in the shoulder portion The output is controlled so that the maximum width is less than 4 times, preferably 1.5 times or less with respect to the minimum width of the growth ridge, whereby the output fluctuation of the heating portion can be suppressed, and It becomes possible to suppress the occurrence of cracks.

【0016】このように、本発明の肩部形成過程では、
成長稜の幅のばらつきを抑えるように出力制御を行い、
できるだけ均一な幅の成長稜を形成すればよい。また、
均一な幅の成長稜を形成するということは、結晶成長部
の過冷却度が一定になるということであり、結果とし
て、加熱部の出力変動が抑えられることにより、肩部形
成時における段差、及び熱歪みによるクラックが防止で
きるものである。
As described above, in the shoulder forming process of the present invention,
Output control is performed to suppress the variation in the width of the growth edge,
It is only necessary to form a growth edge having a width as uniform as possible. Also,
Forming a growth edge with a uniform width means that the degree of supercooling of the crystal growth portion becomes constant, and as a result, the output fluctuation of the heating portion is suppressed, so that the step difference during shoulder formation, Also, cracks due to thermal strain can be prevented.

【0017】また、上記成長稜の最小幅は適宜選定され
るが、本発明の方法は、特に結晶の引上長を長くするた
め融液の温度勾配を大きくし、(012)面群に形成さ
れる成長陵の最小幅を結晶径の10%以下とするような
場合に好適に採用される。
The minimum width of the growth edge is appropriately selected, but in the method of the present invention, the temperature gradient of the melt is increased in order to increase the pulling length of the crystal, and the (012) plane group is formed. It is preferably used when the minimum width of the growth layer is 10% or less of the crystal diameter.

【0018】本発明において、酸化物単結晶を得るため
の原料、上記した以外の引上げ条件、装置などは公知の
方法、装置を使用して行うことができる。
In the present invention, the raw material for obtaining the oxide single crystal, the pulling conditions other than those mentioned above, the apparatus and the like can be carried out by using known methods and apparatuses.

【0019】[0019]

【発明の効果】本発明によれば、前記したように融液に
種子結晶を接触させ、酸化物単結晶をチョクラルスキー
法において製造する際に、肩部に形成される(012)
面群に形成される成長稜の幅を最小幅に対して最大幅を
4倍未満になるように出力制御したことにより、結晶欠
陥の少ない単結晶を歩留まりよく得ることができる。
According to the present invention, as described above, when a seed crystal is brought into contact with the melt to form an oxide single crystal by the Czochralski method, it is formed on the shoulder (012).
By controlling the output so that the width of the growth edge formed in the surface group is less than 4 times the maximum width with respect to the minimum width, a single crystal with few crystal defects can be obtained with a high yield.

【0020】[0020]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be described below in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

【0021】〔実施例,比較例〕図2に示す装置を用い
てタンタル酸リチウム単結晶の引上げを行った。ここ
で、図2において、1は耐火性ルツボ台、2はアルミナ
台、3はルツボ、4は断熱材、5は断熱材4の上端部に
配設されたアルミナ製のリフレクター支持体、6はリフ
レクター、7はアフターヒーター、8は加熱コイル、9
は融液、10はシードホルダー、11は種子結晶、12
は育成結晶、13は蓋体を示す。
[Examples and Comparative Examples] A lithium tantalate single crystal was pulled up using the apparatus shown in FIG. Here, in FIG. 2, 1 is a refractory crucible stand, 2 is an alumina stand, 3 is a crucible, 4 is a heat insulating material, 5 is an alumina reflector support disposed on the upper end of the heat insulating material 4, and 6 is Reflector, 7 after-heater, 8 heating coil, 9
Is a melt, 10 is a seed holder, 11 is a seed crystal, 12
Indicates a grown crystal, and 13 indicates a lid.

【0022】直径150mm、高さ150mmのイリジ
ウム製ルツボに外径160mm、内径105mmのドー
ナツ板状のイリジウム製リフレクターを配置し、更にこ
の上に直径150mm、高さ180mmの円筒状のイリ
ジウム製アフターヒーターを配置した。
A iridium crucible having a diameter of 150 mm and a height of 150 mm is provided with a donut plate-shaped reflector having an outer diameter of 160 mm and an inner diameter of 105 mm, and a cylindrical after-heater made of iridium having a diameter of 150 mm and a height of 180 mm. Was placed.

【0023】このルツボ内に組成比がLi/Ta=0.
943(モル比)となるよう調合した原料10000g
を入れ、融解後、チョクラルスキー法で、(012)面
群に形成される成長稜の最小幅に対して最大幅が4倍未
満になるようにして、直径80mmの重さ6500gの
タンタル酸リチウム単結晶の引上げを行った。この場
合、肩部の円錐部の角度θは20°であった。
In this crucible, the composition ratio is Li / Ta = 0.
10000g of raw material prepared to be 943 (molar ratio)
After melting, the maximum width is less than 4 times the minimum width of the growth ridge formed in the (012) plane group by the Czochralski method, and tantalic acid having a diameter of 80 mm and a weight of 6500 g. The lithium single crystal was pulled up. In this case, the angle θ of the conical portion of the shoulder was 20 °.

【0024】比較のため、成長稜の最小幅に対して最大
値が4倍以上になるようにした以外は上記と同様にして
タンタル酸リチウム単結晶の引上げを行った。
For comparison, the lithium tantalate single crystal was pulled up in the same manner as above except that the maximum value was set to 4 times or more the minimum width of the growth edge.

【0025】得られた単結晶のクラックの発生について
評価した結果を表1に示す。
Table 1 shows the results of evaluation of the occurrence of cracks in the obtained single crystal.

【0026】[0026]

【表1】 [Table 1]

【0027】以上のように、(012)面群に形成され
る成長稜の最小幅に対して最大幅が4倍未満の場合、ク
ラックが発生しない結果となったが、成長稜の最小幅に
対して最大幅が4倍以上の場合、すべてクラックが発生
するという結果となった。
As described above, when the maximum width was less than 4 times the minimum width of the growth ridge formed on the (012) plane group, no crack was generated. On the other hand, when the maximum width was 4 times or more, the result was that all cracks occurred.

【0028】なお、ニオブ酸リチウム単結晶の引上げを
行った場合も同様の結果であった。
The same results were obtained when the lithium niobate single crystal was pulled up.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸化物単結晶の引上げ状態を示す概略断面図で
ある。
FIG. 1 is a schematic cross-sectional view showing a pulled state of an oxide single crystal.

【図2】本発明の実施に用いる単結晶引上げ装置の概略
断面図である。
FIG. 2 is a schematic sectional view of a single crystal pulling apparatus used for carrying out the present invention.

【符号の説明】[Explanation of symbols]

A 結晶 B 円錐部 1 ルツボ台 2 アルミナ台 3 ルツボ 4 断熱材 5 支持体 6 リフレクター 7 アフターヒーター 8 加熱用コイル 9 融液 10 シードホルダー 11 種子結晶 12 育成結晶 13 蓋体 A crystal B conical section 1 crucible table 2 alumina table 3 crucible 4 heat insulating material 5 support 6 reflector 7 after-heater 8 heating coil 9 melt 10 seed holder 11 seed crystal 12 growing crystal 13 lid

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 引上げ法によって溶融液から酸化物単結
晶の肩部を成長させるに際し、(012)面群に形成さ
れる成長稜の幅のばらつきが成長稜の最小幅に対して最
大幅が4倍未満になるように成長させることを特徴とす
る酸化物単結晶の製造方法。
1. When growing a shoulder portion of an oxide single crystal from a melt by a pulling method, the variation in the width of the growth edge formed in the (012) plane group is greater than the minimum width of the growth edge. A method for producing an oxide single crystal, which comprises growing the oxide single crystal to be less than 4 times.
【請求項2】 酸化物単結晶がタンタル酸リチウム又は
ニオブ酸リチウムである請求項1記載の方法。
2. The method according to claim 1, wherein the oxide single crystal is lithium tantalate or lithium niobate.
JP4070296A 1996-02-02 1996-02-02 Production of oxide single crystal Pending JPH09208380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4070296A JPH09208380A (en) 1996-02-02 1996-02-02 Production of oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4070296A JPH09208380A (en) 1996-02-02 1996-02-02 Production of oxide single crystal

Publications (1)

Publication Number Publication Date
JPH09208380A true JPH09208380A (en) 1997-08-12

Family

ID=12587914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4070296A Pending JPH09208380A (en) 1996-02-02 1996-02-02 Production of oxide single crystal

Country Status (1)

Country Link
JP (1) JPH09208380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10025870A1 (en) * 2000-05-25 2001-12-06 Wacker Siltronic Halbleitermat Single crystal rod and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10025870A1 (en) * 2000-05-25 2001-12-06 Wacker Siltronic Halbleitermat Single crystal rod and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH092891A (en) Production of silicon single crystal having uniform crystal defect and apparatus therefor
JPH02180789A (en) Production of si single crystal
JPH09328394A (en) Production of oxide single crystal
US6153009A (en) Method for producing a silicon single crystal and the silicon single crystal produced thereby
US10066313B2 (en) Method of producing single crystal
JPH09208380A (en) Production of oxide single crystal
JPH07187880A (en) Production of oxide single crystal
JPH04104988A (en) Growth of single crystal
JP7310339B2 (en) Method for growing lithium niobate single crystal
JP2021031342A (en) Production method of lithium tantalate single crystal
JPH07300388A (en) Production of silicon single crystal
JPH09286695A (en) Production of oxide single crystal
JPS61266395A (en) Preparation of single crystal of oxide piezoelectric body
JP3255753B2 (en) Method of growing rutile rod-shaped single crystal
JPH03242399A (en) Method for rotating and pulling up lithium tetraborate single crystal
JP2008260663A (en) Growing method of oxide single crystal
JPS60195098A (en) Production of lithium niobate single crystal
JPH10338593A (en) Noble metal crucible for signal crystal growth by pulling up method
JP2686662B2 (en) Oxide single crystal manufacturing equipment
JPH10182287A (en) Production of silicon single crystal and quartz crucible therefor
JPS5926996A (en) Preparation of single crystal
JPH09241092A (en) Production of oxide single crystal
JPH09328400A (en) Production of lithium tantalate single crystal
JPS6126519B2 (en)
JP2651788B2 (en) Method for producing lithium tetraborate single crystal