JP2021031342A - Production method of lithium tantalate single crystal - Google Patents

Production method of lithium tantalate single crystal Download PDF

Info

Publication number
JP2021031342A
JP2021031342A JP2019154586A JP2019154586A JP2021031342A JP 2021031342 A JP2021031342 A JP 2021031342A JP 2019154586 A JP2019154586 A JP 2019154586A JP 2019154586 A JP2019154586 A JP 2019154586A JP 2021031342 A JP2021031342 A JP 2021031342A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
growth
crucible
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019154586A
Other languages
Japanese (ja)
Other versions
JP7271843B2 (en
Inventor
辰宮 一樹
Kazuki Tatsumiya
一樹 辰宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019154586A priority Critical patent/JP7271843B2/en
Publication of JP2021031342A publication Critical patent/JP2021031342A/en
Application granted granted Critical
Publication of JP7271843B2 publication Critical patent/JP7271843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a production method of a lithium tantalate (LT) single crystal capable of growing a LT single crystal of 4 inch φ having generation of a lineage (aggregate of dislocation, small tilt angle grain boundary) suppressed even when a large furnace of 800 mm φ inner diameter for growing a single crystal is used.SOLUTION: The rotating speed of a seed crystal 1 is set 7.5 rpm at the start of crystal growing and 4 rpm or more and 6 rpm or less at the completion of shoulder part growth using a large furnace 10 of 800 mm φ inner diameter for growing a single crystal and a crucible 12 of 170 mm φ inner diameter and 170 mm inner height to grow a LT single crystal of 4 inch φ barrel part diameter by a Czochralski method.SELECTED DRAWING: Figure 1

Description

本発明は、チョクラルスキー(以下、Czと略称する場合がある)法によるタンタル酸リチウム単結晶の製造方法に係り、特に、結晶育成中におけるリネージ(転位の集合体、小傾角粒界)の発生を抑制できるタンタル酸リチウム単結晶の製造方法に関する。 The present invention relates to a method for producing a lithium tantalate single crystal by the Czochralski (hereinafter, may be abbreviated as Cz) method, and in particular, a lineage (aggregate of dislocations, small grain boundaries) during crystal growth. The present invention relates to a method for producing a lithium tantalate single crystal whose generation can be suppressed.

タンタル酸リチウム(以下、LTと略称する場合がある)単結晶は、主にスマートフォンやタブレットといった移動体通信機器に搭載される表面弾性波素子(SAWフィルタ)の材料として用いられている。 Lithium tantalate (hereinafter, sometimes abbreviated as LT) single crystal is mainly used as a material for surface acoustic wave elements (SAW filters) mounted on mobile communication devices such as smartphones and tablets.

LT単結晶は、産業的にはCz法により製造されている。Cz法による結晶育成の流れとしては、高融点のイリジウムルツボを用い、五酸化タンタル(Ta25)粉末と炭酸リチウム(Li2CO3)粉末の混合粉末を反応させてLT粉末とした仮焼粉末を原料とし、該仮焼粉末をルツボ内に充填する。そして、窒素−酸素混合ガス雰囲気とした単結晶育成炉の中で上記仮焼粉末を融解させてLT原料融液とし、種結晶(LT単結晶)をLT原料融液に接触させ、温度勾配のついた雰囲気下で種結晶を回転させながら引上げて肩部とこれに続く直胴部を育成している。 The LT single crystal is industrially produced by the Cz method. As a flow of crystal growth by the Cz method, a high melting point iridium crucible is used, and a mixed powder of tantalum pentoxide (Ta 2 O 5 ) powder and lithium carbonate (Li 2 CO 3 ) powder is reacted to obtain an LT powder. The baked powder is used as a raw material, and the calcined powder is filled in the crucible. Then, the calcined powder is melted in a single crystal growing furnace having a nitrogen-oxygen mixed gas atmosphere to obtain an LT raw material melt, and a seed crystal (LT single crystal) is brought into contact with the LT raw material melt to obtain a temperature gradient. The seed crystal is rotated and pulled up in a tight atmosphere to grow the shoulder and the straight body that follows it.

所望とする結晶径の単結晶を得るため、結晶育成は高い精度で制御されたシステムを使用して行われる。例えば、特許文献1には、引上げる結晶の重量を計測し、その単位時間あたりの変化量から所望とする形状の結晶となるようにルツボの加熱を自動制御しながら結晶育成を行う手法が記載されている。 In order to obtain a single crystal having a desired crystal diameter, crystal growth is carried out using a highly accurate and controlled system. For example, Patent Document 1 describes a method of measuring the weight of a crystal to be pulled up and growing the crystal while automatically controlling the heating of the crucible so that the crystal has a desired shape from the amount of change per unit time. Has been done.

LT単結晶を育成する単結晶育成炉の一例を図1に示す。円筒状の構造を有する単結晶育成炉10の中央部に金属製のルツボ12が配置され、ルツボ12の外周および上方にはLT単結晶を育成するために適切な温度勾配を形成する耐火物14、19が配置されている。LT単結晶の育成後は、単結晶育成炉10内で所定の冷却速度で冷却され、単結晶育成炉10から取り出されて図2に示すようなLT単結晶が得られる。 FIG. 1 shows an example of a single crystal growing furnace for growing an LT single crystal. A metal crucible 12 is arranged in the center of a single crystal growing furnace 10 having a cylindrical structure, and a refractory material 14 that forms an appropriate temperature gradient for growing an LT single crystal on the outer periphery and above the crucible 12. , 19 are arranged. After growing the LT single crystal, it is cooled in the single crystal growing furnace 10 at a predetermined cooling rate, and is taken out from the single crystal growing furnace 10 to obtain an LT single crystal as shown in FIG.

育成されたLT単結晶は無色透明若しくは透明感の高い淡黄色を呈している。育成後、結晶の熱応力による残留歪みを取り除くため、融点に近い均熱下で熱処理を行い、更に単一分極とするためのポーリング処理を行う。ポーリング処理後、結晶の外形を整えるために外周研削されたLT単結晶インゴットは、スライス、ラップ、ポリッシュ工程等の機械加工を経て基板状態に加工され、LT基板となる。 The grown LT single crystal is colorless and transparent or has a highly transparent pale yellow color. After the growth, in order to remove the residual strain due to the thermal stress of the crystal, heat treatment is performed under uniform heat close to the melting point, and further polling treatment is performed to obtain a single polarization. After the polling process, the LT single crystal ingot whose outer circumference is ground to adjust the outer shape of the crystal is processed into a substrate state through machining such as slicing, lapping, and polishing steps to obtain an LT substrate.

上記方法により、内径が170mmφ、内高が170mmのイリジウムルツボを用い、図2に示す直胴部の直径が4インチφ、長さが90mmのLT単結晶を育成して、現在の主流である4インチφLT基板を安定的に生産している。尚、直胴部直径が4インチφのLT単結晶を育成する場合、従来、内径600mmφの単結晶育成炉が用いられている。 By the above method, using an iridium crucible having an inner diameter of 170 mmφ and an inner height of 170 mm, an LT single crystal having a straight body diameter of 4 inches φ and a length of 90 mm shown in FIG. 2 is grown, which is the current mainstream. We are stably producing 4-inch φLT substrates. When growing an LT single crystal having a straight body diameter of 4 inches φ, a single crystal growing furnace having an inner diameter of 600 mmφ has been conventionally used.

近年、LT基板の大型化が進み、6インチφLT基板の需要が増えてきたが、6インチφ基板を得るための大口径化されたLT単結晶を育成するには、イリジウムルツボやワークコイル、耐火物等を合わせて大型化する必要があり、かつ、単結晶育成炉も内径800mmφの大型育成炉が用いられていた。 In recent years, the size of the LT substrate has increased, and the demand for the 6-inch φLT substrate has increased. However, in order to grow a large-diameter LT single crystal for obtaining a 6-inch φ substrate, an iridium crucible or a work coil is used. It was necessary to increase the size of the single crystal growth furnace by adding refractories and the like, and a large growth furnace having an inner diameter of 800 mmφ was used as the single crystal growth furnace.

ところで、4インチφLT基板用のLT単結晶と6インチφLT基板用のLT単結晶を育成するために内径の異なる単結晶育成炉をそれぞれ準備するよりも、6インチφLT基板用のLT単結晶を育成する内径800mmφの大型単結晶育成炉を用いて4インチφLT基板用のLT単結晶を育成できることが生産効率の面から望ましい。 By the way, rather than preparing single crystal growth furnaces having different inner diameters for growing an LT single crystal for a 4-inch φLT substrate and an LT single crystal for a 6-inch φLT substrate, a LT single crystal for a 6-inch φLT substrate is used. From the viewpoint of production efficiency, it is desirable to be able to grow an LT single crystal for a 4-inch φLT substrate using a large single crystal growing furnace having an inner diameter of 800 mmφ.

しかし、内径800mmφの大型単結晶育成炉を用いて4インチφLT基板用のLT単結晶を育成する報告例はほとんどなかった。 However, there have been few reports of growing an LT single crystal for a 4-inch φLT substrate using a large single crystal growing furnace having an inner diameter of 800 mmφ.

そこで、内径800mmφの大型単結晶育成炉を用いて4インチφLT基板用LT単結晶の育成を試みたところ、得られたLT単結晶には、肩部育成終了後、直胴部を育成している途中において多結晶化する現象が見られるようになった。この現象は、結晶育成中の固液界面形状の変化によるものと考えられる。内径800mmφの大型単結晶育成炉を用いて直胴部直径4インチφのLT単結晶を育成した場合、肩部育成終了時点において形成されていると推測される固液界面形状を図3に示す。このときの固液界面形状は、結晶外周部が融液に対し凹形状となり、結晶中央部が融液に対し凸形状となった、所謂、M字形固液界面形状が形成されていると考えられる。そして、融液に対し凹形状が形成された部分にはリネージ(転位の集合体、小傾角粒界)が集中して発生し易く、このような結晶欠陥に起因するクラックを発生させる恐れがある。 Therefore, we tried to grow an LT single crystal for a 4-inch φLT substrate using a large single crystal growth furnace with an inner diameter of 800 mmφ. The phenomenon of polycrystallization has come to be seen in the middle of the process. This phenomenon is considered to be due to a change in the solid-liquid interface shape during crystal growth. Fig. 3 shows the solid-liquid interface shape that is presumed to be formed at the end of shoulder growth when an LT single crystal with a straight body diameter of 4 inches φ is grown using a large single crystal growth furnace with an inner diameter of 800 mmφ. .. It is considered that the solid-liquid interface shape at this time is a so-called M-shaped solid-liquid interface shape in which the outer peripheral portion of the crystal is concave with respect to the melt and the central portion of the crystal is convex with respect to the melt. Be done. Then, lineage (aggregates of dislocations, small tilt angle grain boundaries) is likely to be concentrated on the portion where the concave shape is formed with respect to the melt, and cracks due to such crystal defects may be generated. ..

特開昭58−145692号公報Japanese Unexamined Patent Publication No. 58-145692

本発明はこのような問題点に着目してなされたもので、その課題とするところは、直胴部直径4インチφのLT単結晶を育成するために内径800mmφの大型単結晶育成炉を用いた場合においても、結晶育成条件を調整することによりリネージの発生を抑制できるLT単結晶の製造方法を提供することにある。 The present invention has been made by paying attention to such a problem, and the subject thereof is to use a large single crystal growing furnace having an inner diameter of 800 mmφ in order to grow an LT single crystal having a straight body diameter of 4 inches φ. It is an object of the present invention to provide a method for producing an LT single crystal capable of suppressing the generation of lineage by adjusting the crystal growth conditions even in such a case.

そこで、上記課題を解決するため本発明者が鋭意検討を重ねた結果、融液内部における温度分布を制御し、固液界面形状を変化させることでリネージの発生を抑制したLT単結晶が育成される技術的着想を得るに至り、これを実現する手法として、結晶育成時における種結晶の回転数を従来条件よりも下げることが有効であることを発見した。本発明はこのような技術的着想と発見により完成されたものである。 Therefore, as a result of diligent studies by the present inventor in order to solve the above problems, an LT single crystal in which the generation of lineage is suppressed by controlling the temperature distribution inside the melt and changing the solid-liquid interface shape is grown. As a method to realize this, it was discovered that it is effective to lower the number of rotations of the seed crystal during crystal growth compared to the conventional conditions. The present invention has been completed by such technical ideas and discoveries.

すなわち、本発明に係る第1の発明は、
円筒状の構造を有する単結晶育成炉の内部に配置された金属製ルツボにタンタル酸リチウム原料粉末を充填し、該金属製ルツボを加熱して得られるタンタル酸リチウム原料融液に種結晶を接触させ、該種結晶を回転させながら引上げて肩部とこれに続く直胴部を育成するチョクラルスキー法によるタンタル酸リチウム単結晶の製造方法において、
内径800mmφの大型単結晶育成炉を用い、内径が170mmφで内高が170mmの金属製ルツボを用いると共に、結晶育成開始時における種結晶の回転数を7.5rpm、肩部育成終了時における種結晶の回転数を4rpm以上6rpm以下となるように設定して上記直胴部直径が4インチφのタンタル酸リチウム単結晶を育成することを特徴とするものである。
That is, the first invention according to the present invention is
A metal crucible arranged inside a single crystal growing furnace having a cylindrical structure is filled with a lithium tartrate raw material powder, and the seed crystal is brought into contact with a lithium tantalate raw material melt obtained by heating the metal crucible. In the method for producing a lithium tantalate single crystal by the Czochralski method, the seed crystal is pulled up while rotating to grow a shoulder portion and a straight body portion following the seed crystal.
A large single crystal growth furnace with an inner diameter of 800 mmφ is used, a metal rut with an inner diameter of 170 mmφ and an inner height of 170 mm is used, and the number of rotations of the seed crystal at the start of crystal growth is 7.5 rpm, and the seed crystal at the end of shoulder growth. It is characterized in that the lithium tantalate single crystal having a straight body diameter of 4 inches φ is grown by setting the rotation speed of the above to 4 rpm or more and 6 rpm or less.

また、本発明に係る第2の発明は、
第1の発明に記載のタンタル酸リチウム単結晶の製造方法において、
上記金属製ルツボがイリジウムルツボであることを特徴とし、
第3の発明は、
第1の発明または第2の発明に記載のタンタル酸リチウム単結晶の製造方法において、
上記直胴部の長さが150mm以下であることを特徴とする。
The second invention according to the present invention is
In the method for producing a lithium tantalate single crystal according to the first invention,
The metal crucible is characterized by being an iridium crucible.
The third invention is
In the method for producing a lithium tantalate single crystal according to the first invention or the second invention.
The straight body portion has a length of 150 mm or less.

本発明に係るタンタル酸リチウム単結晶の製造方法によれば、
内径800mmφの大型単結晶育成炉を用い、内径が170mmφで内高が170mmの金属製ルツボを用いると共に、結晶育成開始時における種結晶の回転数を7.5rpm、肩部育成終了時における種結晶の回転数を4rpm以上6rpm以下となるように設定しているため、リネージの発生が抑制された直胴部直径4インチφのタンタル酸リチウム単結晶を育成することが可能となる。
According to the method for producing a lithium tantalate single crystal according to the present invention.
A large single crystal growth furnace with an inner diameter of 800 mmφ is used, a metal rut with an inner diameter of 170 mmφ and an inner height of 170 mm is used, and the number of rotations of the seed crystal at the start of crystal growth is 7.5 rpm, and the seed crystal at the end of shoulder growth. Since the rotation speed of the above is set to be 4 rpm or more and 6 rpm or less, it is possible to grow a lithium tartrate single crystal having a straight body portion diameter of 4 inches φ in which the generation of lineage is suppressed.

LT単結晶を育成する単結晶育成炉の一例を示す構成説明図。The configuration explanatory drawing which shows an example of the single crystal growth furnace which grows an LT single crystal. Cz法で育成されたLT単結晶の肩部と直胴部を模式的に示す説明図。Explanatory drawing which shows typically the shoulder part and the straight body part of the LT single crystal grown by the Cz method. LT単結晶の育成過程におけるM字形固液界面形状(結晶外周部が融液に対し凹形状となり、結晶中央部が融液に対し凸形状となった固液界面形状)を示す説明図で、図3中の符号L1は結晶凸度を表す。An explanatory diagram showing an M-shaped solid-liquid interface shape (a solid-liquid interface shape in which the outer peripheral portion of the crystal is concave with respect to the melt and the central portion of the crystal is convex with respect to the melt) in the process of growing an LT single crystal. Reference numeral L 1 in FIG. 3 represents crystal convexity. LT単結晶の育成過程におけるV字形固液界面形状(結晶中央部のみが融液に対し凸形状となった固液界面形状)を示す説明図で、図4中の符号L2は結晶凸度を表す。In illustration showing the LT single crystal V-shaped solid-liquid interface shape in the process of growing the (solid-liquid interface shape a convex shape only crystal center portion with respect to the melt), sign L 2 in FIG. 4 crystals convexity Represents. 固液界面形状が融液に対し凹形状の場合と凸形状の場合とで、LT単結晶中に導入された転位の伝播がどのように異なるのかを模式的に表した説明図。Explanatory drawing schematically showing how the propagation of dislocations introduced into an LT single crystal differs depending on whether the solid-liquid interface shape is concave or convex with respect to the melt. 種結晶の回転数が大きく、強制対流が強い場合の固液界面形状の一例を模式的に示す説明図。Explanatory drawing schematically showing an example of a solid-liquid interface shape when the number of rotations of a seed crystal is large and forced convection is strong. 種結晶の回転数が小さく、強制対流が弱い場合の固液界面形状の一例を模式的に示す説明図。Explanatory drawing schematically showing an example of a solid-liquid interface shape when the rotation speed of a seed crystal is small and forced convection is weak. 従来条件(種結晶回転数の制御)と本発明に係る結晶育成開始から肩部育成終了までの種結晶回転数の制御を比較したグラフ図。The graph which compared the conventional condition (control of the seed crystal rotation speed) and the control of the seed crystal rotation speed from the start of crystal growth to the end of shoulder growth which concerns on this invention. 従来条件による肩部育成終了時の固液界面形状と本発明に係る肩部育成終了時の固液界面形状を比較したグラフ図。The graph which compared the solid-liquid interface shape at the end of shoulder growth under the conventional conditions, and the solid-liquid interface shape at the end of shoulder growth according to the present invention.

以下、本発明に係る実施形態について図面を用いて詳細に説明する。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.

[単結晶育成炉とLT単結晶育成方法の概要]
はじめに、チョクラルスキー(Cz)法による単結晶育成炉の構成例および単結晶育成方法の概要について説明する。
[Overview of single crystal growth furnace and LT single crystal growth method]
First, a configuration example of a single crystal growth furnace by the Czochralski (Cz) method and an outline of the single crystal growth method will be described.

図1は、高周波誘導加熱式単結晶育成炉10の概略構成を模式的に示した構成説明図である。高周波誘導加熱式単結晶育成の場合は、ワークコイル15によって形成される高周波磁場によりワークコイル15内に設置されている金属製ルツボ12の側壁に渦電流が発生し、その渦電流によってルツボ12自体が発熱体となり、ルツボ12内に充填されている原料の融解や結晶育成に必要な温度環境の形成を行う。 FIG. 1 is a configuration explanatory view schematically showing a schematic configuration of a high-frequency induction heating type single crystal growth furnace 10. In the case of high-frequency induction heating type single crystal growth, an eddy current is generated on the side wall of the metal crucible 12 installed in the work coil 15 by the high-frequency magnetic field formed by the work coil 15, and the eddy current itself causes the crucible 12 itself. Becomes a heating element and forms a temperature environment necessary for melting the raw material filled in the crucible 12 and growing crystals.

図1に示すように、高周波誘導加熱式単結晶育成炉10は、チャンバー11内にルツボ12を配置する。ルツボ12はルツボ台13上に載置される。チャンバー11内には、ルツボ12の外周および上方に耐火材14、19が配置されている。ルツボ12を囲むようにワークコイル15が配置され、ワークコイル15が形成する高周波磁場によってルツボ12壁に渦電流が流れ、ルツボ12自体が発熱体となる。チャンバー11の上部にはシード棒16が回転可能かつ上下方向に移動可能に設けられている。シード棒16下端の先端部には、種結晶1を保持するためのシードホルダ17が取り付けられている。 As shown in FIG. 1, in the high-frequency induction heating type single crystal growth furnace 10, the crucible 12 is arranged in the chamber 11. The crucible 12 is placed on the crucible stand 13. In the chamber 11, refractory materials 14 and 19 are arranged on the outer periphery and above the crucible 12. The work coil 15 is arranged so as to surround the crucible 12, and an eddy current flows through the wall of the crucible 12 due to the high frequency magnetic field formed by the work coil 15, and the crucible 12 itself becomes a heating element. A seed rod 16 is provided above the chamber 11 so as to be rotatable and vertically movable. A seed holder 17 for holding the seed crystal 1 is attached to the tip of the lower end of the seed rod 16.

Cz法では、ルツボ12内の単結晶原料18の融液表面に種結晶1となる単結晶片を接触させ、この種結晶1をシード棒16により回転させながら上方に引上げることで種結晶1と同一方位の円筒状単結晶を育成する。 In the Cz method, a single crystal piece to be the seed crystal 1 is brought into contact with the melt surface of the single crystal raw material 18 in the rutsubo 12, and the seed crystal 1 is pulled upward while being rotated by the seed rod 16 to pull the seed crystal 1 upward. Grow a cylindrical single crystal in the same orientation as.

種結晶1の回転速度や引上速度は、育成する結晶の種類、育成時の温度環境に依存し、これ等の条件に応じて適切に選定する必要がある。また、結晶育成に際しては、成長界面で融液の結晶化によって生じる固化潜熱を、種結晶を通して上方に逃がす必要があるため、成長界面から上方に向かって温度が低下する温度勾配下で行う必要がある。加えて、育成結晶の形状が曲がったり、捩れたりしないようにするため、原料融液内においても、成長界面からルツボ壁に向かって水平方向に、かつ、成長界面からルツボ底部に向かって垂直方向に温度が高くなる温度勾配下で行う必要がある。 The rotation speed and pulling speed of the seed crystal 1 depend on the type of crystal to be grown and the temperature environment at the time of growth, and need to be appropriately selected according to these conditions. In addition, when growing crystals, it is necessary to release the latent heat of solidification generated by the crystallization of the melt at the growth interface upward through the seed crystal, so it is necessary to carry out under a temperature gradient in which the temperature decreases upward from the growth interface. is there. In addition, in order to prevent the shape of the grown crystal from bending or twisting, even in the raw material melt, the horizontal direction from the growth interface toward the rutsubo wall and the vertical direction from the growth interface toward the bottom of the rutsubo. It is necessary to carry out under a temperature gradient where the temperature becomes high.

LT単結晶を育成する場合、LT結晶の融点が1650℃と高温であるため、融点がおよそ2460℃で化学的に安定なイリジウム製のルツボ(イリジウムルツボ)が用いられる。育成雰囲気には酸素が必要であるが、酸素濃度が高いとイリジウムルツボが酸化により損耗する恐れがあるため、酸素を数%含む不活性雰囲気とするのが一般的である。育成時の引上速度は、一般的には数mm/H程度、回転速度は数rpm程度とする。このような条件下で、所望の大きさまで結晶を育成した後、引上速度の変更や融液温度を徐々に高くする等の操作を行うことで、育成結晶を融液から切り離し、その後、単結晶育成炉の出力を所定の速度で低下させることで徐冷し、炉内温度が室温近傍となった後に単結晶育成炉内から結晶を取り出す。 When growing an LT single crystal, since the melting point of the LT crystal is as high as 1650 ° C., an iridium crucible (iridium crucible) having a melting point of about 2460 ° C. and chemically stable is used. Oxygen is required for the growing atmosphere, but if the oxygen concentration is high, the iridium crucible may be worn out due to oxidation, so it is common to create an inert atmosphere containing a few percent of oxygen. The pulling speed at the time of growing is generally about several mm / H, and the rotation speed is about several rpm. Under such conditions, after growing the crystal to the desired size, the grown crystal is separated from the melt by performing operations such as changing the pulling speed and gradually increasing the melt temperature, and then simply. The crystal growth furnace is slowly cooled by reducing the output at a predetermined rate, and the crystals are taken out from the single crystal growth furnace after the temperature inside the furnace is close to room temperature.

[固液界面形状と転位の伝播]
結晶育成においては、融液の固化に際して、固液界面近傍と結晶内部との間の温度差が生じさせる熱歪みにより結晶中に転位が導入され易い。導入された転位は結晶成長が進むにつれて、新たな固液界面に向かって伝播する性質を持っている。そして、伝播する方向は固液界面に対して垂直方向であることが知られている。図5は固液界面形状が融液に対して凹形状の場合と凸形状の場合とで、転位の伝播の様子がどのように異なるのかを示している。固液界面形状が融液に対して凹形状の場合、転位は結晶内部に残留するように伝播することが分かる。一方、固液界面形状が融液に対して凸形状の場合、転位は結晶外周側に向けて伝播するため、結晶成長を進めていくにつれて結晶内部の転位の数を減少させ、高品質な結晶を得ることができる。
[Solid-liquid interface shape and dislocation propagation]
In crystal growth, dislocations are likely to be introduced into the crystal due to thermal strain caused by a temperature difference between the vicinity of the solid-liquid interface and the inside of the crystal when the melt is solidified. The introduced dislocations have the property of propagating toward a new solid-liquid interface as the crystal growth progresses. It is known that the propagation direction is perpendicular to the solid-liquid interface. FIG. 5 shows how the state of dislocation propagation differs depending on whether the solid-liquid interface shape is concave or convex with respect to the melt. It can be seen that when the solid-liquid interface shape is concave with respect to the melt, the dislocations propagate so as to remain inside the crystal. On the other hand, when the solid-liquid interface shape is convex with respect to the melt, the dislocations propagate toward the outer peripheral side of the crystal. Can be obtained.

[内径600mmφの単結晶育成炉を用いて4インチφLT単結晶を育成した場合]
現在の主流である4インチφLT基板用のLT単結晶を育成する場合、上述したように内径が170mmφ、内高が170mmのイリジウムルツボを用い、かつ、内径600mmφの単結晶育成炉が用いられている。
[When growing a 4-inch φLT single crystal using a single crystal growth furnace with an inner diameter of 600 mmφ]
When growing an LT single crystal for a 4-inch φLT substrate, which is the current mainstream, an iridium crucible having an inner diameter of 170 mmφ and an inner height of 170 mm is used as described above, and a single crystal growing furnace having an inner diameter of 600 mmφ is used. There is.

尚、図1に示すワークコイル15の内径は、内径170mmφのイリジウムルツボ12に対し310mmφに設定され、かつ、肩部育成終了時におけるワークコイル15の投入出力は15.9kWに設定されており、得られたLT単結晶には、肩部育成終了後、直胴部を育成している途中において多結晶化する現象は確認されていない。 The inner diameter of the work coil 15 shown in FIG. 1 is set to 310 mmφ with respect to the iridium crucible 12 having an inner diameter of 170 mmφ, and the input output of the work coil 15 at the end of shoulder growth is set to 15.9 kW. It has not been confirmed that the obtained LT single crystal is polycrystallized during the growth of the straight body after the shoulder growth is completed.

[内径800mmφの大型単結晶育成炉を用いて4インチφLT単結晶を育成した場合]
内径が170mmφ、内高が170mmのイリジウムルツボを用い、かつ、内径800mmφの大型単結晶育成炉を用いて4インチφLT基板用のLT単結晶を育成する場合、内径600mmφの単結晶育成炉を用いる場合に較べてチャンバー11内の隙間空間が大きくなるため、肩部育成終了時におけるワークコイル15の投入出力を20.2kWに増大させる必要があり、得られたLT単結晶には、肩部育成終了後、直胴部を育成している途中において多結晶化する上述の現象が確認されている。この現象は、肩部育成終了時点における固液界面形状が、図3の「M字形固液界面形状」になったためと考えられる。
[When growing a 4-inch φLT single crystal using a large single crystal growth furnace with an inner diameter of 800 mmφ]
When using an iridium rut with an inner diameter of 170 mmφ and an inner height of 170 mm and growing an LT single crystal for a 4-inch φLT substrate using a large single crystal growth furnace with an inner diameter of 800 mmφ, a single crystal growth furnace with an inner diameter of 600 mmφ is used. Since the gap space in the chamber 11 is larger than in the case, it is necessary to increase the input output of the work coil 15 to 20.2 kW at the end of shoulder growth, and the obtained LT single crystal has shoulder growth. After the completion, the above-mentioned phenomenon of polycrystallization has been confirmed during the growth of the straight body. It is considered that this phenomenon is because the solid-liquid interface shape at the end of shoulder growth has changed to the “M-shaped solid-liquid interface shape” shown in FIG.

尚、ワークコイル15の内径は、内径600mmφの単結晶育成炉を用いる場合と同様、内径170mmφのイリジウムルツボ12に対し310mmφに設定されている。 The inner diameter of the work coil 15 is set to 310 mmφ with respect to the iridium crucible 12 having an inner diameter of 170 mmφ, as in the case of using a single crystal growing furnace having an inner diameter of 600 mmφ.

[結晶育成時の結晶回転数の調整]
そこで、固液界面形状と転位の伝播方向の関係性から、本発明者は、結晶育成中の固液界面形状が「M字形固液界面形状」から凸形状となるような結晶育成条件の検討を重ね、結晶育成時の結晶回転数を従来条件より低回転数とすることで課題を解決している。
[Adjustment of crystal rotation speed during crystal growth]
Therefore, from the relationship between the solid-liquid interface shape and the propagation direction of dislocations, the present inventor examined the crystal growth conditions so that the solid-liquid interface shape during crystal growth changes from the "M-shaped solid-liquid interface shape" to a convex shape. The problem is solved by setting the crystal rotation speed during crystal growth to a lower rotation speed than the conventional conditions.

Cz法による結晶育成の原料融液内には、大きく分けて2種類の対流が発生している。一つは、融液内の温度差に起因する「自然対流」である。「自然対流」は、ルツボ底外周部からルツボ壁に沿って上昇し、融液表面に到達した後に融液表面中心部に向かって流れ、中心部でルツボ底に向かって沈み込む。もう一つは、育成中の結晶回転(種結晶の回転)に起因し、融液に対し相対的に回転する固液界面がこれに触れる融液に与える遠心力によって生じる「強制対流」である。「強制対流」は、ルツボ底中心部から育成中の結晶の固液界面に向かって流れ、固液界面から坩堝外周部に向かう流れである。つまり、「強制対流」は、「自然対流」とは逆方向の流れである。そのため、「自然対流」と「強制対流」の強弱は固液界面近傍の全体としての融液対流に強く影響を与える。 Two types of convection are roughly divided in the raw material melt for crystal growth by the Cz method. One is "natural convection" due to the temperature difference in the melt. "Natural convection" rises from the outer periphery of the bottom of the crucible along the wall of the crucible, reaches the surface of the melt, flows toward the center of the surface of the melt, and sinks toward the bottom of the crucible at the center. The other is "forced convection" caused by the rotation of the crystal during growth (rotation of the seed crystal), which is caused by the centrifugal force applied to the melt in contact with the solid-liquid interface that rotates relative to the melt. .. "Forced convection" is a flow that flows from the center of the bottom of the crucible toward the solid-liquid interface of the crystal being grown, and from the solid-liquid interface toward the outer periphery of the crucible. That is, "forced convection" is a flow in the opposite direction to "natural convection". Therefore, the strength of "natural convection" and "forced convection" strongly affects the melt convection as a whole near the solid-liquid interface.

図6および図7は、それぞれ結晶育成中における結晶の回転数が大きい場合と小さい場合とで固液界面の凸形状がどのように変化するかを示す。結晶の回転数が大きい場合には「強制対流」も強く、ルツボ底中心部から固液界面に向かって流れる融液が固液界面近傍の温度分布をフラットな状態へ変化させ、固液界面は平坦な形状となる。場合によっては融液に対して凹形状(図3に示す「M字形固液界面形状」参照)となることもある。逆に結晶の回転数が小さい場合には「強制対流」も弱まり、ルツボ外周部から中心部に向かい、ルツボ底に向かって沈み込む「自然対流」が優勢となるため、固液界面近傍は「自然対流」に沿った温度分布となり、固液界面は融液に対して凸形状(図4に示す「V字形固液界面形状」参照)を形成し易くなる。 6 and 7 show how the convex shape of the solid-liquid interface changes depending on whether the number of rotations of the crystal is high or low during crystal growth, respectively. When the number of rotations of the crystal is high, "forced convection" is also strong, and the melt flowing from the center of the crucible bottom toward the solid-liquid interface changes the temperature distribution near the solid-liquid interface to a flat state, and the solid-liquid interface becomes flat. It has a flat shape. In some cases, the melt may have a concave shape (see "M-shaped solid-liquid interface shape" shown in FIG. 3). On the contrary, when the number of rotations of the crystal is small, the "forced convection" also weakens, and the "natural convection" that sinks from the outer periphery of the crucible toward the center and toward the bottom of the crucible becomes predominant. The temperature distribution is along the "natural convection", and the solid-liquid interface easily forms a convex shape (see "V-shaped solid-liquid interface shape" shown in FIG. 4) with respect to the melt.

一例として、内径800mmφの大型単結晶育成炉、および、内径が170mmφで内高が170mmのルツボを用いた4インチφLT単結晶の育成において、結晶の回転数を低速条件とした場合の結晶育成例を示す。図8には、従来条件と本発明に係る低速条件での結晶育成開始から肩部育成終了までの結晶回転数の制御における比較を示す。低速条件では、結晶育成開始時の結晶回転数を7.5rpm、肩部育成終了時の結晶回転数を4rpm以上6rpm以下とすることで、結晶凸度の改善が確認される。但し、肩部育成終了時の結晶回転数が4rpm未満である場合、結晶成長の非対称性が見られるようになり、いびつな形状の結晶が得られる恐れがある。他方、結晶回転数が6rpmを超える場合、所望の結晶凸度が得られないため結晶性の改善が図れない。図9に、従来条件と低速条件で肩部育成終了までの結晶育成を行った場合の結晶凸部における形状データの比較を示す。従来条件における結晶凸度L(図3参照)は10mm程度であるが、低速条件とすることで結晶凸度L(図4参照)は15mm程度まで伸長しており、本発明の効果が現れていることを確認することができた。 As an example, in the growth of a large single crystal growth furnace having an inner diameter of 800 mmφ and a 4-inch φLT single crystal using a crucible having an inner diameter of 170 mmφ and an inner height of 170 mm, a crystal growth example when the crystal rotation speed is set to a low speed condition. Is shown. FIG. 8 shows a comparison in controlling the crystal rotation speed from the start of crystal growth to the end of shoulder growth under the conventional conditions and the low-speed conditions according to the present invention. Under low-speed conditions, improvement in crystal convexity is confirmed by setting the crystal rotation speed at the start of crystal growth to 7.5 rpm and the crystal rotation speed at the end of shoulder growth to 4 rpm or more and 6 rpm or less. However, if the crystal rotation speed at the end of shoulder growth is less than 4 rpm, asymmetry of crystal growth will be observed, and a crystal having a distorted shape may be obtained. On the other hand, when the crystal rotation speed exceeds 6 rpm, the desired crystal convexity cannot be obtained, so that the crystallinity cannot be improved. FIG. 9 shows a comparison of shape data in the crystal convex portion when the crystal growth is performed until the shoulder growth is completed under the conventional condition and the low speed condition. The crystal convexity L 1 (see FIG. 3) under the conventional conditions is about 10 mm, but the crystal convexity L 2 (see FIG. 4) is extended to about 15 mm under the low speed condition, and the effect of the present invention is effective. I was able to confirm that it was appearing.

以下、本発明の実施例について比較例も挙げて具体的に説明する。 Hereinafter, examples of the present invention will be specifically described with reference to comparative examples.

[実施例1]
内径が170mmφで内高が170mmのイリジウムルツボに、予め混合、仮焼したLT原料粉末20.6kgを充填し、イリジウムルツボの周囲を耐火物で覆った上で、内径800mmφの高周波誘導加熱式大型単結晶育成炉を用いてルツボを加熱することで原料粉末を加熱溶融し、LT原料融液を得た。
[Example 1]
An iridium crucible with an inner diameter of 170 mmφ and an inner height of 170 mm is filled with 20.6 kg of pre-mixed and calcined LT raw material powder, and the circumference of the iridium crucible is covered with a refractory material. The raw material powder was heated and melted by heating the crucible using a single crystal growing furnace to obtain an LT raw material melt.

尚、結晶育成開始時における原料融液の高さは上記ルツボ内高の93%に相当する158mmに設定され、結晶育成開始時における結晶(種結晶)の回転数を7.5rpm、肩部育成終了時における結晶(種結晶)の回転数を4.0rpmとした。 The height of the raw material melt at the start of crystal growth is set to 158 mm, which corresponds to 93% of the height inside the rutsubo, the rotation speed of the crystal (seed crystal) at the start of crystal growth is 7.5 rpm, and shoulder growth is performed. The rotation speed of the crystal (seed crystal) at the end was set to 4.0 rpm.

そして、上記条件で結晶育成を11回行い、直胴部の直径が4インチφ、直胴部の長さが150mmのLT単結晶を10本得ることができた。 Then, crystal growth was carried out 11 times under the above conditions, and 10 LT single crystals having a straight body portion having a diameter of 4 inches φ and a straight body portion having a length of 150 mm could be obtained.

また、ワークコイルの内径は、内径170mmφの上記イリジウムルツボに対し310mmφに設定され、肩部育成終了時におけるワークコイルの投入出力は20.2kWに設定されている。 The inner diameter of the work coil is set to 310 mmφ with respect to the iridium crucible having an inner diameter of 170 mmφ, and the input output of the work coil at the end of shoulder growth is set to 20.2 kW.

[実施例2]
結晶育成開始時における結晶(種結晶)の回転数を7.5rpm、肩部育成終了時における結晶(種結晶)の回転数を6.0rpmとしたこと以外は、実施例1と同様の条件で結晶育成を行った。
[Example 2]
Under the same conditions as in Example 1 except that the rotation speed of the crystal (seed crystal) at the start of crystal growth was 7.5 rpm and the rotation speed of the crystal (seed crystal) at the end of shoulder growth was 6.0 rpm. Crystal growth was performed.

上記条件で結晶育成を10回行い、直胴部の直径が4インチφ、直胴部の長さが150mmのLT単結晶を10本得ることができた。 Crystal growth was carried out 10 times under the above conditions, and 10 LT single crystals having a straight body portion having a diameter of 4 inches φ and a straight body portion having a length of 150 mm could be obtained.

[比較例1]
結晶育成開始時における結晶(種結晶)の回転数を15.0rpm、肩部育成終了時における結晶(種結晶)の回転数を8.5rpmとしたこと以外は、実施例1と同様の条件で結晶育成を行った。
[Comparative Example 1]
Under the same conditions as in Example 1 except that the rotation speed of the crystal (seed crystal) at the start of crystal growth was 15.0 rpm and the rotation speed of the crystal (seed crystal) at the end of shoulder growth was 8.5 rpm. Crystal growth was performed.

上記条件で結晶育成を19回行ったところ、直胴部の直径が4インチφ、直胴部の長さが120mmのLT単結晶を6本得ることができたが、残り13本は多結晶であった。 When crystal growth was carried out 19 times under the above conditions, 6 LT single crystals having a straight body diameter of 4 inches φ and a straight body length of 120 mm could be obtained, but the remaining 13 crystals were polycrystals. Met.

[比較例2]
結晶育成開始時における結晶(種結晶)の回転数を15.0rpm、肩部育成終了時における結晶(種結晶)の回転数を4.0rpmとしたこと以外は、実施例1と同様の条件で結晶育成を行った。
[Comparative Example 2]
Under the same conditions as in Example 1 except that the rotation speed of the crystal (seed crystal) at the start of crystal growth was 15.0 rpm and the rotation speed of the crystal (seed crystal) at the end of shoulder growth was 4.0 rpm. Crystal growth was performed.

上記条件で結晶育成を5回行ったところ、全て多結晶が得られた。 When crystal growth was carried out 5 times under the above conditions, all polycrystals were obtained.

本発明方法によれば、内径800mmφの大型単結晶育成炉を用いた場合でもリネージの発生が抑制された直胴部直径4インチφのタンタル酸リチウム単結晶を育成できるため、SAWデバイス用の圧電基板に適用される産業上の利用可能性を有している。 According to the method of the present invention, even when a large single crystal growing furnace having an inner diameter of 800 mmφ is used, it is possible to grow a lithium tantalate single crystal having a straight body diameter of 4 inches φ in which generation of lineage is suppressed. Has industrial applicability applied to substrates.

1 種結晶
10 単結晶育成炉
11 チャンバー
12 ルツボ
13 ルツボ台
14、19 耐火物
15 ワークコイル
16 シード棒
17 シードホルダ
18 単結晶原料
1 Seed crystal 10 Single crystal growth furnace 11 Chamber 12 Crucible 13 Crucible stand 14, 19 Refractory 15 Work coil 16 Seed rod 17 Seed holder 18 Single crystal raw material

Claims (3)

円筒状の構造を有する単結晶育成炉の内部に配置された金属製ルツボにタンタル酸リチウム原料粉末を充填し、該金属製ルツボを加熱して得られるタンタル酸リチウム原料融液に種結晶を接触させ、該種結晶を回転させながら引上げて肩部とこれに続く直胴部を育成するチョクラルスキー法によるタンタル酸リチウム単結晶の製造方法において、
内径800mmφの大型単結晶育成炉を用い、内径が170mmφで内高が170mmの金属製ルツボを用いると共に、結晶育成開始時における種結晶の回転数を7.5rpm、肩部育成終了時における種結晶の回転数を4rpm以上6rpm以下となるように設定して上記直胴部直径が4インチφのタンタル酸リチウム単結晶を育成することを特徴とするタンタル酸リチウム単結晶の製造方法。
A metal crucible arranged inside a single crystal growing furnace having a cylindrical structure is filled with a lithium tartrate raw material powder, and the seed crystal is brought into contact with a lithium tantalate raw material melt obtained by heating the metal crucible. In the method for producing a lithium tantalate single crystal by the Czochralski method, the seed crystal is pulled up while rotating to grow a shoulder portion and a straight body portion following the seed crystal.
A large single crystal growth furnace with an inner diameter of 800 mmφ is used, a metal rut with an inner diameter of 170 mmφ and an inner height of 170 mm is used, and the number of rotations of the seed crystal at the start of crystal growth is 7.5 rpm, and the seed crystal at the end of shoulder growth. A method for producing a lithium tantalate single crystal, which comprises growing a lithium tantalate single crystal having a straight body diameter of 4 inches φ by setting the number of rotations of the above to 4 rpm or more and 6 rpm or less.
上記金属製ルツボがイリジウムルツボであることを特徴とする請求項1に記載のタンタル酸リチウム単結晶の製造方法。 The method for producing a lithium tantalate single crystal according to claim 1, wherein the metal crucible is an iridium crucible. 上記直胴部の長さが150mm以下であることを特徴とする請求項1または2に記載のタンタル酸リチウム単結晶の製造方法。
The method for producing a lithium tantalate single crystal according to claim 1 or 2, wherein the length of the straight body portion is 150 mm or less.
JP2019154586A 2019-08-27 2019-08-27 Method for producing lithium tantalate single crystal Active JP7271843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019154586A JP7271843B2 (en) 2019-08-27 2019-08-27 Method for producing lithium tantalate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019154586A JP7271843B2 (en) 2019-08-27 2019-08-27 Method for producing lithium tantalate single crystal

Publications (2)

Publication Number Publication Date
JP2021031342A true JP2021031342A (en) 2021-03-01
JP7271843B2 JP7271843B2 (en) 2023-05-12

Family

ID=74675313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019154586A Active JP7271843B2 (en) 2019-08-27 2019-08-27 Method for producing lithium tantalate single crystal

Country Status (1)

Country Link
JP (1) JP7271843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116905087A (en) * 2023-09-13 2023-10-20 天通控股股份有限公司 Growth method of lithium tantalate crystal

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025195A (en) * 1996-07-04 1998-01-27 Toshiba Corp Production of oxide single crystal
JP2000344595A (en) * 1999-03-26 2000-12-12 Natl Inst For Res In Inorg Mater Method and apparatus for producing oxide single crystal
JP2010024071A (en) * 2008-07-16 2010-02-04 Fukuda Crystal Laboratory Piezoelectric single crystal and method for manufacturing the same
JP2017186188A (en) * 2016-04-04 2017-10-12 住友金属鉱山株式会社 Production method and apparatus of single crystal
JP2018002507A (en) * 2016-06-29 2018-01-11 住友金属鉱山株式会社 Method for growing oxide single crystal
JP2018118885A (en) * 2017-01-26 2018-08-02 住友金属鉱山株式会社 Single crystal pulling apparatus
JP2019052066A (en) * 2017-09-15 2019-04-04 住友金属鉱山株式会社 Raising method of oxide single crystal
JP2019094251A (en) * 2017-11-28 2019-06-20 住友金属鉱山株式会社 Method for manufacturing single crystal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025195A (en) * 1996-07-04 1998-01-27 Toshiba Corp Production of oxide single crystal
JP2000344595A (en) * 1999-03-26 2000-12-12 Natl Inst For Res In Inorg Mater Method and apparatus for producing oxide single crystal
JP2010024071A (en) * 2008-07-16 2010-02-04 Fukuda Crystal Laboratory Piezoelectric single crystal and method for manufacturing the same
JP2017186188A (en) * 2016-04-04 2017-10-12 住友金属鉱山株式会社 Production method and apparatus of single crystal
JP2018002507A (en) * 2016-06-29 2018-01-11 住友金属鉱山株式会社 Method for growing oxide single crystal
JP2018118885A (en) * 2017-01-26 2018-08-02 住友金属鉱山株式会社 Single crystal pulling apparatus
JP2019052066A (en) * 2017-09-15 2019-04-04 住友金属鉱山株式会社 Raising method of oxide single crystal
JP2019094251A (en) * 2017-11-28 2019-06-20 住友金属鉱山株式会社 Method for manufacturing single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116905087A (en) * 2023-09-13 2023-10-20 天通控股股份有限公司 Growth method of lithium tantalate crystal
CN116905087B (en) * 2023-09-13 2023-11-28 天通控股股份有限公司 Growth method of lithium tantalate crystal

Also Published As

Publication number Publication date
JP7271843B2 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
JP5831436B2 (en) Method for producing silicon single crystal
JP4810346B2 (en) Method for producing sapphire single crystal
JP2007223830A (en) Method of growing oxide single crystal
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JP6451700B2 (en) Oxide single crystal growth method
JP4193610B2 (en) Single crystal manufacturing method
JP2018150198A (en) LARGE-DIAMETER ScAlMgO4 SINGLE CRYSTAL, AND GROWTH METHOD AND GROWTH UNIT THEREFOR
JP7271843B2 (en) Method for producing lithium tantalate single crystal
JP7271842B2 (en) Method for producing lithium tantalate single crystal
JP2013001581A (en) Method for growing lithium tantalate single crystal
JP7310339B2 (en) Method for growing lithium niobate single crystal
JP6593157B2 (en) Method for growing lithium tantalate single crystals
JP7078933B2 (en) Seed crystal for growing single crystal of iron gallium alloy
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
JP6439733B2 (en) Nonmagnetic garnet single crystal growth method
JP2018002568A (en) Raising method of lithium tantalate single crystal
JP4735594B2 (en) Oxide single crystal growth method
JP7275674B2 (en) Method for growing lithium niobate single crystal
JP2016056055A (en) METHOD FOR GROWING CaMgZr SUBSTITUTION TYPE GADOLINIUM GALLIUM GARNET (SGGG) SINGLE CRYSTAL
JP4702266B2 (en) Single crystal pulling method
JP4146829B2 (en) Crystal manufacturing equipment
JP2017149613A (en) METHOD FOR GROWING CaMgZr SUBSTITUTION TYPE GADOLINIUM GALLIUM GARNET (SGGG) SINGLE CRYSTAL
JP2007210865A (en) Silicon single crystal pulling device
JP2006248808A (en) Crystal growth apparatus
JP6520642B2 (en) Method of growing lithium tantalate single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R150 Certificate of patent or registration of utility model

Ref document number: 7271843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150