JP4146829B2 - Crystal manufacturing equipment - Google Patents

Crystal manufacturing equipment Download PDF

Info

Publication number
JP4146829B2
JP4146829B2 JP2004334865A JP2004334865A JP4146829B2 JP 4146829 B2 JP4146829 B2 JP 4146829B2 JP 2004334865 A JP2004334865 A JP 2004334865A JP 2004334865 A JP2004334865 A JP 2004334865A JP 4146829 B2 JP4146829 B2 JP 4146829B2
Authority
JP
Japan
Prior art keywords
crystal
crucible
seed crystal
seed
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004334865A
Other languages
Japanese (ja)
Other versions
JP2006143516A (en
Inventor
正弘 笹浦
拡樹 香田
和夫 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004334865A priority Critical patent/JP4146829B2/en
Publication of JP2006143516A publication Critical patent/JP2006143516A/en
Application granted granted Critical
Publication of JP4146829B2 publication Critical patent/JP4146829B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、結晶製造装置に関し、より詳細には、垂直ブリッジマン法、垂直温度勾配凝固法において、結晶から作製されたウエハの中心における結晶品質を向上させるための結晶製造装置に関する。   The present invention relates to a crystal manufacturing apparatus, and more particularly to a crystal manufacturing apparatus for improving the crystal quality at the center of a wafer manufactured from crystals in the vertical Bridgman method and the vertical temperature gradient solidification method.

従来、酸化物結晶材料の作製方法として、成長容器内の融液を種結晶から徐々に固化させる水平ブリッジマン法、成長容器を垂直に設置して温度勾配を与え、 低温度側に移動させて結晶を固化する垂直ブリッジマン法、成長容器を垂直に固定して温度勾配を変化させて結晶を固化する垂直温度勾配凝固法などが知られている(例えば、特許文献1参照)。   Conventionally, the oxide crystal material is produced by a horizontal Bridgman method in which the melt in the growth vessel is gradually solidified from the seed crystal, and the growth vessel is placed vertically to give a temperature gradient and moved to the lower temperature side. A vertical Bridgman method for solidifying crystals and a vertical temperature gradient solidification method for solidifying crystals by changing the temperature gradient by fixing the growth vessel vertically are known (for example, see Patent Document 1).

図1を参照して、従来の垂直ブリッジマン法による結晶材料の作製方法について説明する。るつぼ1内に種子結晶4と原料2を配置する。発熱体6により原料2を加熱溶解させて原料溶液2とする。発熱体6の加熱量を調整して、結晶作製炉内を一定の温度勾配曲線5に保持する。るつぼ1を一定速度で低温度側へ移動させることにより、原料溶液2を冷却すると、結晶の成長温度に達した結晶3は、種子結晶4と同じ結晶方位を有する結晶に成長し、増径部成長過程と定径部成長過程とを経て成長結晶3となる。   With reference to FIG. 1, a method for producing a crystal material by a conventional vertical Bridgman method will be described. A seed crystal 4 and a raw material 2 are placed in a crucible 1. The raw material 2 is heated and dissolved by the heating element 6 to obtain the raw material solution 2. The heating amount of the heating element 6 is adjusted to keep the inside of the crystal production furnace at a constant temperature gradient curve 5. When the raw material solution 2 is cooled by moving the crucible 1 to the low temperature side at a constant speed, the crystal 3 that has reached the crystal growth temperature grows into a crystal having the same crystal orientation as the seed crystal 4, and the enlarged portion The grown crystal 3 is obtained through the growth process and the constant diameter portion growth process.

このとき、成長結晶3は、種子結晶4を核として順次成長するから、種子結晶4の結晶方位を継承し、種子結晶4の結晶方位と同じ結晶方位を有する成長結晶3として成長させることができる。垂直ブリッジマン法では、るつぼ1を一定速度で低温度側へ移動させるが、垂直温度勾配凝固法では、発熱体6を下方から上方に移動させることにより、上述した作製方法と同様に結晶を成長させることができる。   At this time, since the growth crystal 3 grows sequentially with the seed crystal 4 as a nucleus, it can inherit the crystal orientation of the seed crystal 4 and grow as the growth crystal 3 having the same crystal orientation as the crystal orientation of the seed crystal 4. . In the vertical Bridgman method, the crucible 1 is moved to a lower temperature side at a constant speed. In the vertical temperature gradient solidification method, the heating element 6 is moved from the lower side to the upper side to grow a crystal in the same manner as the above-described manufacturing method. Can be made.

例えば、KTaO、K(Ta,Nb)Oなどの結晶を、引き上げ法により成長させる場合、種子結晶に存在する欠陥が成長結晶に伝播し、特に種子結晶から成長方向に添って伝播する欠陥を、防止することが難しいことが知られている。従来の垂直ブリッジマン法や垂直温度勾配凝固法においても、種子結晶4に存在する欠陥が、成長結晶3に伝播することがある。 For example, defects KTaO 3, K (Ta, Nb ) crystals, such as O 3, when grown by pulling method, the defects present in the seed crystal is propagated to the growing crystal, propagates particularly along the seed crystal in the growth direction It is known that it is difficult to prevent. In the conventional vertical Bridgman method and vertical temperature gradient solidification method, defects existing in the seed crystal 4 may propagate to the growth crystal 3.

特開昭59−107996号公報JP 59-107996 A

図1に示したように、従来の方法では、種子結晶4は、るつぼ1の中心軸に一致するように配置されている。このとき種子結晶4に欠陥が存在していたと仮定すると、成長させた結晶には、引き上げ法によって成長させた結晶と同様に、図2に示すように、中心部に欠陥7が存在する。成長させた結晶から切り出されたウエハの欠陥部分に形成された素子または部品は、所望の特性を得ることができず、ウエハ中心部から製造された素子または部品は、不良率が高くなるという問題があった。   As shown in FIG. 1, in the conventional method, the seed crystal 4 is arranged so as to coincide with the central axis of the crucible 1. If it is assumed that there is a defect in the seed crystal 4 at this time, the grown crystal has a defect 7 at the center as shown in FIG. 2, similarly to the crystal grown by the pulling method. The element or part formed in the defective part of the wafer cut out from the grown crystal cannot obtain desired characteristics, and the element or part manufactured from the center of the wafer has a high defect rate. was there.

一方、素子または部品の製造プロセスにおいては、例えば、ウエハ回転を伴うレジスト塗布、成膜など、ウエハ中心付近で均質性が良い傾向にある。すなわち、製造プロセスにおいては、ウエハ中心部ほど良品率が高い。従って、素子または部品の製造プロセスで有利なウエハ中心付近に、結晶成長における欠陥が存在することは、製品の歩留まりの観点から著しく不利な要素であると言える。   On the other hand, in the manufacturing process of an element or a component, for example, there is a tendency that homogeneity is good near the center of the wafer, such as resist coating and film formation with wafer rotation. That is, in the manufacturing process, the non-defective rate is higher at the wafer center. Therefore, it can be said that the presence of defects in crystal growth in the vicinity of the wafer center, which is advantageous in the device or component manufacturing process, is a significant disadvantage from the viewpoint of product yield.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、成長結晶内に発生する欠陥を結晶外周部に限定させて、結晶から作製されたウエハの中心における結晶品質を向上させる結晶製造装置を提供することにある。   The present invention has been made in view of such problems. The object of the present invention is to limit the defects generated in the grown crystal to the outer periphery of the crystal and to improve the crystal quality at the center of the wafer made from the crystal. An object of the present invention is to provide a crystal manufacturing apparatus that improves the above.

本発明は、このような目的を達成するために、請求項1に記載の発明は、炉内に保持されたるつぼ内に種子結晶を配置し、前記るつぼ内に充填された原料溶液を加熱溶解し、前記るつぼの下方より上方に向かって、前記原料溶液を徐冷することにより結晶成長させる結晶製造装置において、前記種子結晶の欠陥が成長する結晶の外周部を伝播するように、前記種子結晶は、前記るつぼの中心軸から離れた位置に配置されていることを特徴とする。 In order to achieve such an object, the invention according to claim 1 is characterized in that seed crystals are arranged in a crucible held in a furnace, and a raw material solution filled in the crucible is heated and dissolved. In the crystal manufacturing apparatus for crystal growth by gradually cooling the raw material solution from the lower side to the upper side of the crucible, the seed crystal is propagated through the outer periphery of the crystal where the seed crystal defect grows. Is arranged at a position away from the central axis of the crucible.

以上説明したように、本発明によれば、種子結晶をるつぼの中心軸から離して配置することにより、成長結晶内に発生する欠陥を結晶外周部に限定することができる。ウエハ外周部に欠陥が集中したウエハを得ることができるので、素子または部品の製造プロセスにおいて、均質性の高いウエハ中心部付近を有効に利用することができる。従って、高歩留まりの素子または部品を製造することが可能となる。   As described above, according to the present invention, by arranging the seed crystal away from the central axis of the crucible, defects generated in the grown crystal can be limited to the outer periphery of the crystal. Since a wafer in which defects are concentrated on the outer peripheral portion of the wafer can be obtained, the vicinity of the central portion of the wafer with high homogeneity can be effectively used in the element or component manufacturing process. Therefore, it becomes possible to manufacture a high-yield element or component.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。溶融した溶液に種子結晶を浸して引き上げながら結晶を育成する、溶液引き上げ(TSSG:Top-Seeded Solution-Growth)法では、成長結晶内の温度分布の軸対称性を保持しなければならない。軸対称が保持されていないと、結晶が一方向に優先的に成長し、結晶内にかかる熱応力が一部に集中するため、クラック等を生ずる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In a top-seeded solution-growing (TSSG) method in which a seed crystal is soaked in a molten solution and grown while being pulled, the axial symmetry of the temperature distribution in the grown crystal must be maintained. If the axial symmetry is not maintained, the crystal grows preferentially in one direction, and the thermal stress applied in the crystal is concentrated on a part of the crystal, resulting in cracks and the like.

一方、垂直ブリッジマン法や垂直温度勾配凝固法による結晶成長方法でも同様に、成長結晶内の温度分布の軸対称性を保持するために、種子結晶4と、るつぼの形、すなわち成長結晶3とを軸対称に保持する。図1に示したように、種子結晶4の上端から結晶が成長し、るつぼ1の形に添った成長結晶3が形成される。このとき、結晶にかかる熱応力の観点から、発熱体6とるつぼ1との軸対称性を保持する必要があるが、種子結晶4は、るつぼ中心にある必然性はない。   On the other hand, in the crystal growth method using the vertical Bridgman method or the vertical temperature gradient solidification method, the seed crystal 4 and the shape of the crucible, that is, the growth crystal 3 are used in order to maintain the axial symmetry of the temperature distribution in the growth crystal. Is kept axisymmetric. As shown in FIG. 1, the crystal grows from the upper end of the seed crystal 4, and a growth crystal 3 conforming to the shape of the crucible 1 is formed. At this time, it is necessary to maintain the axial symmetry with respect to the heating element 6 and the crucible 1 from the viewpoint of thermal stress applied to the crystal, but the seed crystal 4 is not necessarily located at the center of the crucible.

図2に、本発明の一実施形態にかかる垂直ブリッジマン法による結晶製造装置の構成を示す。種子結晶14は、るつぼ11の中心から離れた位置に配置する。成長結晶13は、従来の方法と同様に、種子結晶14を核として順次成長するから、種子結晶14の結晶方位を継承し、種子結晶14の結晶方位と同じ結晶方位を有する成長結晶13を成長させることができる。   FIG. 2 shows a configuration of a crystal manufacturing apparatus using the vertical Bridgman method according to an embodiment of the present invention. The seed crystal 14 is arranged at a position away from the center of the crucible 11. Since the growth crystal 13 grows sequentially with the seed crystal 14 as a nucleus, similarly to the conventional method, the crystal orientation of the seed crystal 14 is inherited, and the growth crystal 13 having the same crystal orientation as the crystal orientation of the seed crystal 14 is grown. Can be made.

種子結晶の役割は、結晶化の結晶構造と結晶方位の決定である。垂直ブリッジマン法や垂直温度勾配凝固法の場合、成長結晶の形状、大きさは、結晶化開始位置に関わらず、るつぼ形状によって決まるから、種子結晶位置のるつぼ形状に対する非対称性は、結晶成長上問題とならない。種子結晶に存在する欠陥の伝播は、種子結晶の位置にかかわらず種子結晶端から成長方向に沿って進むから、成長結晶の欠陥は、図4に示すように、成長結晶外周部に局在する。   The role of the seed crystal is to determine the crystal structure and crystal orientation of crystallization. In the case of the vertical Bridgman method and the vertical temperature gradient solidification method, the shape and size of the growth crystal are determined by the crucible shape regardless of the crystallization start position. It doesn't matter. Since the propagation of defects existing in the seed crystal proceeds from the seed crystal edge along the growth direction regardless of the position of the seed crystal, the defects of the grown crystal are localized in the outer periphery of the grown crystal as shown in FIG. .

この方法によって成長させた結晶から切削、研磨加工して作製したウエハを用いれば、素子または部品の製造プロセスにおいて、均質性の高いウエハ中心部付近を有効に利用することができるので、高歩留まりの素子または部品を製造することができる。なお、るつぼの形状は、図2,4に示したように、円筒形を用いた場合について説明したが、四角柱などの多角柱の形状のるつぼを用いても、同等の効果を得ることができる。   By using a wafer produced by cutting and polishing from a crystal grown by this method, it is possible to effectively use the vicinity of the wafer center with high homogeneity in the element or component manufacturing process. Elements or components can be manufactured. As shown in FIGS. 2 and 4, the shape of the crucible has been described in the case of using a cylindrical shape. However, even if a crucible having a polygonal column shape such as a quadrangular column is used, the same effect can be obtained. it can.

以下に本発明の実施例を具体的に説明する。なお、本実施例は例示であって、本発明の精神を逸脱しない範囲で種々の変更あるいは改良を行いうることは言うまでもない。   Examples of the present invention will be specifically described below. In addition, this Example is an illustration and it cannot be overemphasized that a various change or improvement can be performed in the range which does not deviate from the mind of this invention.

図5に、実施例1にかかる垂直ブリッジマン法による結晶製造装置の構成を示す。KTaxNb1−x(0≦x≦1)結晶材料を作製する場合について説明する。2インチ径るつぼ21の中心軸から20mm離れた位置に、{100}方位のK(Ta,Nb)O種子結晶24を配置する。ただし、K(Ta,Nb)O種子結晶24の組成を、KTax’Nb1−x’としたとき、x′は成長させるKTaNb1−xのxに対して等しいかまたは大きく、溶解温度が等しいかまたは高い組成を選択する。KTaNb1−xの原料は、素原料であるKCOとTaとNbを所望の組成比となるよう秤量し、合計1kgをるつぼ21に充填する。 FIG. 5 shows a configuration of a crystal manufacturing apparatus according to the vertical Bridgman method according to the first embodiment. A case where a KTa x Nb 1-x O 3 (0 ≦ x ≦ 1) crystal material is manufactured will be described. A {100} -oriented K (Ta, Nb) O 3 seed crystal 24 is placed at a position 20 mm away from the central axis of the 2-inch diameter crucible 21. However, when the composition of the K (Ta, Nb) O 3 seed crystal 24 is KTa x ′ Nb 1-x ′ O 3 , x ′ is equal to x of KTa x Nb 1-x O 3 to be grown. Choose a composition that is larger or larger and has an equal or higher melting temperature. As raw materials for KTa x Nb 1-x O 3 , K 2 CO 3 , Ta 2 O 5, and Nb 2 O 5 , which are raw materials, are weighed to achieve a desired composition ratio, and a total of 1 kg is charged in a crucible 21.

K(Ta,Nb)O種子結晶24および原料22が充填されたるつぼ21を発熱体により昇温し、原料22を加熱溶解させてK(Ta,Nb)O原料溶液22とする。次に、発熱体の発熱量を調整して、図5に示した炉内温度分布25を実現する。その後、2インチ径るつぼ21を、2mm/日の速度で下降させる。これによって、K(Ta,Nb)O原料溶液22は、K(Ta,Nb)O種子結晶24を出発点として、温度の低いるつぼ21下部から徐々に結晶化し、K(Ta,Nb)O結晶23が成長する。結晶成長終了後、発熱体の発熱量を調整することにより、室温まで徐冷する。 The crucible 21 filled with the K (Ta, Nb) O 3 seed crystal 24 and the raw material 22 is heated by a heating element, and the raw material 22 is heated and dissolved to obtain a K (Ta, Nb) O 3 raw material solution 22. Next, the heat generation amount of the heating element is adjusted to realize the furnace temperature distribution 25 shown in FIG. Thereafter, the 2-inch diameter crucible 21 is lowered at a speed of 2 mm / day. Thus, the K (Ta, Nb) O 3 raw material solution 22 is gradually crystallized from the lower part of the crucible 21 having a low temperature, starting from the K (Ta, Nb) O 3 seed crystal 24, and K (Ta, Nb) The O 3 crystal 23 grows. After crystal growth is completed, the temperature is gradually cooled to room temperature by adjusting the heating value of the heating element.

作製したK(Ta,Nb)O結晶を取り出したところ、中心部に種子結晶を配置した従来の方法と同様に、結晶表面に四回対称の{100}面ファセット面が表出する。成長結晶の外観には、クラックや異常形状は確認できない。この結晶から成長方向に垂直な面で切り出したウエハのエッチピットを観察すると、欠陥は、ウエハ外周の種子結晶の上方延長上に限定されており、中心部に欠陥の無い高品質結晶を育成することができる。また、種子結晶として、KTaO種子結晶を用いた場合にも、高品質結晶を歩留まりよく得ることができる。 When the produced K (Ta, Nb) O 3 crystal is taken out, a {100} facet plane that is four-fold symmetric appears on the crystal surface in the same manner as in the conventional method in which a seed crystal is arranged at the center. Cracks and abnormal shapes cannot be confirmed on the appearance of the grown crystal. Observing the etch pits of the wafer cut from the crystal in a plane perpendicular to the growth direction, the defect is limited to the upper extension of the seed crystal on the outer periphery of the wafer, and a high-quality crystal having no defect in the center is grown. be able to. Also, when a KTaO 3 seed crystal is used as a seed crystal, a high-quality crystal can be obtained with a high yield.

図6に、実施例2にかかる垂直ブリッジマン法による結晶製造装置の構成を示す。KTaO結晶材料を作製する場合について説明する。3インチ径るつぼ31の中心から30mm離れた位置に、{100}方位のKTaO種子結晶34を配置する。KTaOの原料は、素原料であるKCOとTaとを所望の組成比となるよう秤量し、合計3kgをるつぼ31に充填する。 FIG. 6 shows a configuration of a crystal manufacturing apparatus according to the vertical Bridgman method according to the second embodiment. A case where a KTaO 3 crystal material is manufactured will be described. 3 position away 30mm from the center of inch diameter crucible 31, to place the KTaO 3 seed crystal 34 of the {100} orientation. The raw materials of KTaO 3 are weighed such that the raw materials K 2 CO 3 and Ta 2 O 5 have a desired composition ratio, and a total of 3 kg is filled in the crucible 31.

KTaO種子結晶34および原料32が充填されたるつぼ31を昇温し、原料を加熱溶解させてKTaO原料溶液32とする。次に、発熱体の発熱量を調整して、図6に示した炉内温度分布35を実現する。その後、3インチ径るつぼ31を、2mm/日の速度で下降させる。これによって、KTaO溶液32は、KTaO種子結晶34を出発点として、温度の低いるつぼ31下部から徐々に結晶化し、KTaO結晶33が成長する。結晶成長終了後、発熱体の発熱量を調整することにより、室温まで徐冷する。 The temperature of the crucible 31 filled with the KTaO 3 seed crystal 34 and the raw material 32 is raised, and the raw material is heated and dissolved to obtain a KTaO 3 raw material solution 32. Next, the amount of heat generated by the heating element is adjusted to realize the furnace temperature distribution 35 shown in FIG. Thereafter, the 3-inch diameter crucible 31 is lowered at a speed of 2 mm / day. As a result, the KTaO 3 solution 32 is gradually crystallized from the lower part of the crucible 31 having a low temperature, starting from the KTaO 3 seed crystal 34, and the KTaO 3 crystal 33 grows. After crystal growth is completed, the temperature is gradually cooled to room temperature by adjusting the heating value of the heating element.

作製したKTaO結晶を取り出したところ、中心部に種子結晶を配置した従来の方法と同様に、結晶表面に四回対称の{100}面ファセット面が表出する。成長結晶の外観には、クラックや異常形状は確認できない。この結晶から成長方向に垂直な面で切り出したウエハのエッチピットを観察すると、欠陥は、ウエハ外周の種子結晶の上方延長上に限定されており、中心部に欠陥の無い高品質結晶を育成することができる。また、種子結晶として、KTaO種子結晶を用いた場合にも、高品質結晶を歩留まりよく得ることができる。 When the produced KTaO 3 crystal is taken out, a {100} plane facet plane that is four-fold symmetric appears on the crystal surface as in the conventional method in which the seed crystal is arranged at the center. Cracks and abnormal shapes cannot be confirmed on the appearance of the grown crystal. Observing the etch pits of the wafer cut from the crystal in a plane perpendicular to the growth direction, the defect is limited to the upper extension of the seed crystal on the outer periphery of the wafer, and a high-quality crystal having no defect in the center is grown. be able to. Also, when a KTaO 3 seed crystal is used as a seed crystal, a high-quality crystal can be obtained with a high yield.

図5,6を用いて、本発明を垂直ブリッジマン法に適用した場合についての実施例を示したが、本発明を垂直温度勾配凝固法にも適用することができ、基本的な成長プロセスは同じであり、同等の効果を得ることができる。   5 and 6 show an embodiment in which the present invention is applied to the vertical Bridgman method. However, the present invention can also be applied to the vertical temperature gradient solidification method, and the basic growth process is as follows. The same effects can be obtained.

従来の垂直ブリッジマン法による結晶材料の作製方法について説明するための図である。It is a figure for demonstrating the preparation methods of the crystal material by the conventional perpendicular Bridgman method. 成長させた結晶の中心部に欠陥が存在する様子を示す図である。It is a figure which shows a mode that a defect exists in the center part of the grown crystal. 本発明の一実施形態にかかる垂直ブリッジマン法による結晶製造装置の構成を示す図である。It is a figure which shows the structure of the crystal manufacturing apparatus by the vertical Bridgman method concerning one Embodiment of this invention. 本実施形態の方法により成長させた結晶に欠陥が存在する様子を示す図である。It is a figure which shows a mode that a defect exists in the crystal grown by the method of this embodiment. 実施例1にかかる垂直ブリッジマン法による結晶製造装置の構成を示す図である。1 is a diagram illustrating a configuration of a crystal manufacturing apparatus using a vertical Bridgman method according to Example 1. FIG. 実施例2にかかる垂直ブリッジマン法による結晶製造装置の構成を示す図である。It is a figure which shows the structure of the crystal manufacturing apparatus by the vertical Bridgman method concerning Example 2. FIG.

符号の説明Explanation of symbols

1,11,21,31 るつぼ
2,12,22,32 原料、原料溶液
3,13,23,33 結晶、成長結晶
4,14,24,34 種子結晶
5,15,25,35 炉内温度分布
6 発熱体
7,17 欠陥
1,11,21,31 Crucible 2,12,22,32 Raw material, raw material solution 3,13,23,33 Crystal, grown crystal 4,14,24,34 Seed crystal 5,15,25,35 Temperature distribution in furnace 6 Heating element 7, 17 Defect

Claims (1)

炉内に保持されたるつぼ内に種子結晶を配置し、前記るつぼ内に充填された原料溶液を加熱溶解し、前記るつぼの下方より上方に向かって、前記原料溶液を徐冷することにより結晶成長させる結晶製造装置において、
前記種子結晶の欠陥が成長する結晶の外周部を伝播するように、前記種子結晶は、前記るつぼの中心軸から離れた位置に配置されていることを特徴とする結晶製造装置。
Crystal growth is achieved by placing seed crystals in a crucible held in a furnace, heating and melting the raw material solution filled in the crucible, and gradually cooling the raw material solution upward from below the crucible. In the crystal manufacturing apparatus
The crystal manufacturing apparatus , wherein the seed crystal is arranged at a position distant from a central axis of the crucible so that a defect of the seed crystal propagates in an outer peripheral portion of the growing crystal .
JP2004334865A 2004-11-18 2004-11-18 Crystal manufacturing equipment Expired - Fee Related JP4146829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334865A JP4146829B2 (en) 2004-11-18 2004-11-18 Crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004334865A JP4146829B2 (en) 2004-11-18 2004-11-18 Crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2006143516A JP2006143516A (en) 2006-06-08
JP4146829B2 true JP4146829B2 (en) 2008-09-10

Family

ID=36623634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334865A Expired - Fee Related JP4146829B2 (en) 2004-11-18 2004-11-18 Crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4146829B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7023458B2 (en) * 2017-08-14 2022-02-22 住友金属鉱山株式会社 Single crystal growth method
DE102019208389A1 (en) * 2019-06-07 2020-12-10 Freiberger Compound Materials Gmbh Process for the production of residual stress and dislocation-free AIII-BV substrate wafers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107997A (en) * 1982-12-06 1984-06-22 Natl Inst For Res In Inorg Mater Single crystal growth method of inorganic compound oxide
JPS60118692A (en) * 1983-11-30 1985-06-26 Hitachi Cable Ltd Production of single crystal
JPH0751477B2 (en) * 1986-12-26 1995-06-05 浜松ホトニクス株式会社 Single crystal growth method
JPH01164790A (en) * 1987-12-18 1989-06-28 Hitachi Cable Ltd Production of semiconductor single crystal
JPH0431387A (en) * 1990-05-28 1992-02-03 Kyushu Electron Metal Co Ltd Growth of single crystal
JP3391503B2 (en) * 1993-04-13 2003-03-31 同和鉱業株式会社 Method for manufacturing compound semiconductor single crystal by vertical boat method
JPH07157390A (en) * 1993-12-02 1995-06-20 Fujitsu Ltd Production of single crystal
JPH07277880A (en) * 1994-04-05 1995-10-24 Hitachi Metals Ltd Oxid single crystal and its production
JP2002348195A (en) * 2001-03-19 2002-12-04 Asahi Techno Glass Corp Method of single domain treatment of potassium niobate single crystal

Also Published As

Publication number Publication date
JP2006143516A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP4351249B2 (en) Crystal manufacturing equipment
JP5633732B2 (en) Sapphire single crystal manufacturing method and sapphire single crystal manufacturing apparatus
US7456082B2 (en) Method for producing silicon single crystal and silicon single crystal
JP5434801B2 (en) Method for producing SiC single crystal
JP4810346B2 (en) Method for producing sapphire single crystal
KR100753322B1 (en) Method and apparatus for preparing crystal
EP0992618A1 (en) Method of manufacturing compound semiconductor single crystal
JP2003313089A (en) Method for manufacturing single crystal silicon and single crystal silicon wafer, seed crystal for manufacturing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JP4146829B2 (en) Crystal manufacturing equipment
JP2007099579A (en) Crystal production method and its apparatus
JP2004338979A (en) Method for manufacturing single crystal, and single crystal
JP4144060B2 (en) Method for growing silicon single crystal
JP4899608B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
JP2010248003A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP4571826B2 (en) Single crystal manufacturing method
JP2021031342A (en) Production method of lithium tantalate single crystal
US6428617B1 (en) Method and apparatus for growing a single crystal in various shapes
KR20190075411A (en) Crucible Member Capable of Removing Lineage Defect, Apparatus and Method for Growing Sapphire Single Crystal of High Quality Using the Same
JP4146835B2 (en) Crystal growth method
JP2006248808A (en) Crystal growth apparatus
JP4579122B2 (en) Method for producing oxide single crystal and apparatus for producing the same
JP2008260663A (en) Growing method of oxide single crystal
JP2016132600A (en) Sapphire single crystal manufacturing apparatus and manufacturing method of sapphire single crystal
KR101818250B1 (en) Apparatus of ingot growing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080620

R151 Written notification of patent or utility model registration

Ref document number: 4146829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees