JP4276497B2 - Single crystal manufacturing method and apparatus - Google Patents

Single crystal manufacturing method and apparatus Download PDF

Info

Publication number
JP4276497B2
JP4276497B2 JP2003301456A JP2003301456A JP4276497B2 JP 4276497 B2 JP4276497 B2 JP 4276497B2 JP 2003301456 A JP2003301456 A JP 2003301456A JP 2003301456 A JP2003301456 A JP 2003301456A JP 4276497 B2 JP4276497 B2 JP 4276497B2
Authority
JP
Japan
Prior art keywords
single crystal
melt
crystal
heat transfer
radiant heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003301456A
Other languages
Japanese (ja)
Other versions
JP2005067964A (en
Inventor
佐藤  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003301456A priority Critical patent/JP4276497B2/en
Publication of JP2005067964A publication Critical patent/JP2005067964A/en
Application granted granted Critical
Publication of JP4276497B2 publication Critical patent/JP4276497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、たとえば酸化物系などの単結晶の製造方法及び装置に関する。   The present invention relates to a method and an apparatus for producing a single crystal such as an oxide.

現在、様々な酸化物単結晶が、光デバイス、音響デバイスとして工業的に応用されている。これらの酸化物は、主としてチョクラルスキー法(CZ法)と呼ばれる方法で製造されている。CZ法は、融液と、該融液から析出する結晶組成とが、同じ材料、例えばSi、LiNbO、LiTaO等に関して、大型で高品質なバルク単結晶を安価に得る方法であり、工業的に非常に重要な単結晶製造方法である。特に、酸化物単結晶を製造する場合、金属と比較して熱容量が大きく、熱伝導率が小さいという特徴から、製造装置内の結晶育成の雰囲気に比較的大きな温度勾配を取りやすい高周波加熱方式の製造装置を使用する例が多い。 Currently, various oxide single crystals are industrially applied as optical devices and acoustic devices. These oxides are mainly produced by a method called the Czochralski method (CZ method). The CZ method is a method for obtaining a large, high-quality bulk single crystal at a low cost for the same material, for example, Si, LiNbO 3 , LiTaO 3, etc., in which the melt and the crystal composition deposited from the melt are the same. This is a very important single crystal manufacturing method. In particular, when producing oxide single crystals, the high-frequency heating system has a large heat capacity and low thermal conductivity compared to metals, and therefore has a high-frequency heating method that tends to have a relatively large temperature gradient in the crystal growth atmosphere in the production apparatus. There are many examples using manufacturing equipment.

しかしながら、工業的に有用な酸化物単結晶の多くは、異方性が大きく、大きな温度勾配によって生じる熱応力によってクラック等の欠陥が発生しやすいという問題がある。また、その一方で、小さな温度勾配下においては、結晶成長界面で生じる凝固潜熱や融液から伝熱される熱を放散できずに結晶にネジレや曲がりが生じるため、短い単結晶しか得られないという問題もある。   However, many industrially useful oxide single crystals have a large anisotropy and have a problem that defects such as cracks are likely to occur due to thermal stress caused by a large temperature gradient. On the other hand, under a small temperature gradient, the solidification latent heat generated at the crystal growth interface and the heat transferred from the melt cannot be dissipated, and the crystal is twisted or bent, so that only a short single crystal can be obtained. There is also a problem.

そこで、これらの問題を解決するために、酸化物単結晶を製造する各社は、ルツボ周りの構造体の幾何学構造について、製造する単結晶材料独自に試行錯誤を繰り返している。   Therefore, in order to solve these problems, each company that manufactures oxide single crystals repeats trial and error for the structure of the structure around the crucible independently of the single crystal material to be manufactured.

CZ法による長尺な単結晶の製造を困難にする要因は、特にクラックやネジレの発生に大きな影響を与える結晶成長の界面近傍の温度勾配が、単結晶の育成初期と後期とで、すなわち単結晶の製造中に変化してしまう事にある。これは、結晶が育成されるに従って融液表面が低下し、高周波誘導加熱されたルツボ壁の露出部分が増加すると、この露出したルツボ壁がアフターヒータとして作用し、その結果、融液直上の温度勾配を小さくしてしまうためである。つまり、育成初期を適当な温度勾配に保つと、結晶化が進むに従って融液直上の温度勾配が小さくなり、育成後期には結晶化の際の凝固放射熱を充分に放散することができなくなり、結晶のネジレとなって現れる。その一方で、育成後期に結晶にネジレが生じない条件で育成すると、育成初期の温度勾配が大きくなり過ぎ、結晶にクラックが発生する不都合を生じる。   The factor that makes it difficult to produce a long single crystal by the CZ method is that the temperature gradient near the interface of crystal growth, which has a great influence on the occurrence of cracks and twists, is the initial and late stages of single crystal growth. It changes during the production of crystals. This is because the melt surface decreases as the crystal grows, and when the exposed portion of the high-frequency induction heated crucible wall increases, the exposed crucible wall acts as an after heater, and as a result, the temperature just above the melt. This is to reduce the gradient. In other words, if the initial stage of growth is maintained at an appropriate temperature gradient, the temperature gradient immediately above the melt decreases as crystallization progresses, and the solidification radiant heat during crystallization cannot be sufficiently dissipated in the later stage of crystallization. Appears as a twist of crystal. On the other hand, if the crystal is grown at a later stage in which the twist does not occur, the temperature gradient in the initial stage of the growth becomes too large, which causes a disadvantage that the crystal is cracked.

そこで、近年、この問題を解決することを目的として、例えばルツボと高周波コイルの相対位置を結晶製造の進行に応じて変えて製造する方法(特許文献1〜3)、ルツボ内の昇降可能な放射熱反射体を引き上げ長の増加に伴いルツボ上方へ上昇さえて製造する方法(特許文献4)、熱伝導度の大きなシードホルダーを用いて製造する方法(特許文献5)、が提案されている。   Therefore, in recent years, for the purpose of solving this problem, for example, a method of manufacturing by changing the relative position of the crucible and the high frequency coil according to the progress of crystal manufacturing (Patent Documents 1 to 3), radiation that can be raised and lowered in the crucible There have been proposed a method of manufacturing a heat reflector by raising the crucible upward as the pulling length increases (Patent Document 4) and a method of manufacturing using a seed holder having a high thermal conductivity (Patent Document 5).

これらの方法を分類すると、結晶製造の進行に応じて、(1)ルツボの発熱量分布を変える方法(特許文献1〜3)または(2)結晶からの放射熱量を変える方法(特許文献4)と、結晶製造中を通して、(3)結晶からの伝導伝熱量を増加させる方法(特許文献5)とに、大きく分けられる。   When these methods are classified, according to the progress of crystal production, (1) a method of changing the calorific value distribution of the crucible (Patent Documents 1 to 3) or (2) a method of changing the amount of radiant heat from the crystal (Patent Document 4). And (3) a method of increasing the amount of heat transfer from the crystal throughout the production of the crystal (Patent Document 5).

しかしながら、結晶に赤外・可視光の吸収がある場合、成長した結晶自体の長尺化による放射熱の吸収量の増加が著しく、上記(1)〜(3)の方法では十分に長尺化を行えない場合があった。
特公昭58−25078号公報 特公昭61−05440号公報 特公昭61−26519号公報 特開平08−175896号公報 特開平11−278984号公報
However, when the crystal has absorption of infrared and visible light, the amount of radiant heat absorbed is significantly increased by lengthening the grown crystal itself, and the above methods (1) to (3) are sufficiently long. There was a case that could not be performed.
Japanese Patent Publication No.58-25078 Japanese Examined Patent Publication No. 61-05440 Japanese Patent Publication No.61-26519 Japanese Patent Laid-Open No. 08-175896 JP 11-278984 A

本発明の目的は、結晶に赤外・可視光の吸収がある場合であっても、長尺化が可能で高品質な単結晶を製造することができる単結晶の製造方法及び装置を提供することである。   An object of the present invention is to provide a single crystal manufacturing method and apparatus capable of manufacturing a high-quality single crystal that can be lengthened even when the crystal has absorption of infrared and visible light. That is.

本発明者は、前記(1)〜(3)の発明において考慮していない、ルツボから直接発せられる、結晶に対する放射熱移動について着目し、特定の構造体を装置内の所定位置に設けることで、育成初期を適当な温度勾配に保つように条件設定した場合であっても、結晶育成中、特に育成後期での融液直上の温度勾配の緩化を抑制することができることを見出し、本発明を完成させた。   The present inventor pays attention to the radiant heat transfer to the crystal directly emitted from the crucible, which is not considered in the inventions of (1) to (3), and by providing a specific structure at a predetermined position in the apparatus. Further, even when the conditions are set so that the initial stage of growth is maintained at an appropriate temperature gradient, it has been found that relaxation of the temperature gradient immediately above the melt can be suppressed during crystal growth, particularly in the later stage of growth. Was completed.

製造方法
すなわち、本発明の第1の観点によれば、
ルツボ内の融液に種結晶を接触させて引き上げ、該種結晶の下端に単結晶を成長させる単結晶を製造する方法であって、
前記ルツボの内壁と前記種結晶の下端に成長する単結晶との間で、かつルツボ内の融液に接触しない位置に、放射熱の移動を抑制する構造体(放射熱移動抑制構造体)が設けられた装置を用いて、前記単結晶を製造することを特徴とする単結晶の製造方法が提供される。
According to the manufacturing method, ie the first aspect of the present invention,
A method for producing a single crystal in which a seed crystal is brought into contact with a melt in a crucible and pulled up, and a single crystal is grown on the lower end of the seed crystal,
A structure (radiant heat transfer suppressing structure) that suppresses the movement of radiant heat between the inner wall of the crucible and the single crystal that grows at the lower end of the seed crystal and does not contact the melt in the crucible. There is provided a method for producing a single crystal, characterized in that the single crystal is produced using an apparatus provided.

第1の観点では、装置内での放射熱移動抑制構造体の配置は、特に限定されず、単結晶の成長に伴って移動自在に設けてあってもよいし、あるいは装置内に固定して設けてあってもよい。融液直上の温度勾配を大きくする観点からは、単結晶の成長に伴って移動自在に設けてあることが好ましい。   In the first aspect, the arrangement of the radiant heat transfer suppressing structure in the apparatus is not particularly limited, and may be provided so as to be movable as the single crystal grows, or may be fixed in the apparatus. It may be provided. From the viewpoint of increasing the temperature gradient immediately above the melt, it is preferable that the temperature gradient is provided as the crystal grows.

すなわち、第2の観点によれば、
ルツボ内の融液に種結晶を接触させて引き上げ、該種結晶の下端に単結晶を成長させる単結晶を製造する方法であって、
前記ルツボの内壁と前記種結晶の下端に成長する単結晶との間で、かつルツボ内の融液に接触しない位置に、放射熱移動抑制構造体が移動自在に設けられた装置を用い、前記種結晶の下端に付着する単結晶の成長に連動させて前記放射熱移動抑制構造体を動かしながら、前記単結晶を製造することを特徴とする単結晶の製造方法が提供される。
That is, according to the second aspect,
A method for producing a single crystal in which a seed crystal is brought into contact with a melt in a crucible and pulled up, and a single crystal is grown on the lower end of the seed crystal,
Using an apparatus in which a radiant heat transfer suppression structure is provided movably between the inner wall of the crucible and the single crystal grown on the lower end of the seed crystal and at a position not in contact with the melt in the crucible, There is provided a method for producing a single crystal, wherein the single crystal is produced while moving the radiant heat transfer suppressing structure in conjunction with the growth of the single crystal attached to the lower end of the seed crystal.

第2の観点では、放射熱移動抑制構造体の動かし方は、特に限定されず、融液液面との距離を一定に保持するように動かしても良いし、あるいは前記距離を一定に保持しないようにして動かしてもよい。結晶のネジレやクラック等の欠陥に最も影響を与えるのは、結晶成長界面である。この結晶成長界面は、原料としての融液を結晶育成中に連続して供給しない限り、結晶化した質量分だけ低下する。この低下分に対して何らの手当をしないと、放射熱移動抑制構造体を設けた場合に得られる効果(融液直上の温度勾配を大きくすること)を十分に享受し得ないこともある。そこで本発明では、放射熱移動抑制構造体を、育成中の融液液面の低下に合わせ、該融液液面との距離を一定に保持するように動かすことが好ましい。   In the second aspect, the method of moving the radiant heat transfer suppressing structure is not particularly limited, and may be moved so as to keep the distance from the melt liquid surface constant, or the distance may not be kept constant. You may move it like this. It is the crystal growth interface that has the greatest influence on defects such as crystal twist and cracks. This crystal growth interface is lowered by the amount of crystallized unless the melt as a raw material is continuously supplied during crystal growth. If no allowance is provided for this reduced amount, the effect (increasing the temperature gradient immediately above the melt) obtained when the radiant heat transfer suppressing structure is provided may not be fully enjoyed. Therefore, in the present invention, it is preferable to move the radiant heat transfer suppressing structure so that the distance from the melt surface is kept constant in accordance with the decrease in the melt surface during growth.

すなわち、第3の観点によれば、
ルツボ内の融液に種結晶を接触させて引き上げ、該種結晶の下端に単結晶を成長させる単結晶を製造する方法であって、
前記ルツボの内壁と前記種結晶の下端に成長する単結晶との間で、かつルツボ内の融液に接触しない位置に、放射熱移動抑制構造体が移動自在に設けられた装置を用い、前記種結晶の下端に付着する単結晶の成長に連動させて前記放射熱移動抑制構造体を融液液面との距離を一定に保持するように動かしながら、前記単結晶を製造することを特徴とする単結晶の製造方法が提供される。
That is, according to the third aspect,
A method for producing a single crystal in which a seed crystal is brought into contact with a melt in a crucible and pulled up, and a single crystal is grown on the lower end of the seed crystal,
Using an apparatus in which a radiant heat transfer suppression structure is provided movably between the inner wall of the crucible and the single crystal grown on the lower end of the seed crystal and at a position not in contact with the melt in the crucible, The single crystal is manufactured while moving the radiant heat transfer suppressing structure so as to maintain a constant distance from the melt surface in conjunction with the growth of the single crystal attached to the lower end of the seed crystal. A method for producing a single crystal is provided.

融液液面との間で保持する距離は、好ましくは2〜8mm、より好ましくは3〜7mm、さらに好ましくは4〜6mmである。この程度の距離を保持しつつ放射熱移動抑制構造体を動かすことにより、効果的に、融液直上の温度勾配を大きくすることができる。   The distance held between the melt and the liquid surface is preferably 2 to 8 mm, more preferably 3 to 7 mm, and still more preferably 4 to 6 mm. By moving the radiant heat transfer suppressing structure while maintaining such a distance, the temperature gradient immediately above the melt can be effectively increased.

上述した本発明方法は、例えば以下に示す装置によって実現することができる。   The method of the present invention described above can be realized by, for example, the following apparatus.

製造装置
本発明によれば、
ルツボ内の融液に種結晶を接触させて引き上げ、該種結晶の下端に単結晶を成長させる単結晶を製造する装置であって、
前記種結晶を引き上げる第1移動軸と、
前記ルツボの内壁と前記種結晶の下端に成長する単結晶との間で、かつルツボ内の融液に接触しない位置に設けられた放射熱移動抑制構造体と、
該放射熱移動抑制構造体を前記種結晶の下端に付着する単結晶の成長に連動させて動かす第2移動軸とを、有する単結晶の製造装置が提供される。
Manufacturing apparatus According to the present invention,
An apparatus for producing a single crystal in which a seed crystal is brought into contact with the melt in the crucible and pulled up, and a single crystal is grown on the lower end of the seed crystal,
A first movement axis for pulling up the seed crystal;
Radiation heat transfer suppression structure provided between the inner wall of the crucible and the single crystal growing on the lower end of the seed crystal, and at a position not in contact with the melt in the crucible,
There is provided a single crystal manufacturing apparatus having a second movement axis that moves the radiant heat transfer suppressing structure in conjunction with the growth of the single crystal attached to the lower end of the seed crystal.

共通事項
好ましくは、放射熱移動抑制構造体が、白金族金属単体またはその合金で構成されている。
Common Items Preferably, the radiant heat transfer suppressing structure is made of a platinum group metal alone or an alloy thereof.

好ましくは、高周波誘導加熱により加熱された融液を用いる。   Preferably, a melt heated by high frequency induction heating is used.

好ましくは、前記融液及び単結晶が、酸化物である。すなわち本発明は、酸化物系単結晶の製造に、特に適している。   Preferably, the melt and the single crystal are oxides. That is, the present invention is particularly suitable for the production of oxide single crystals.

本発明によれば、結晶育成中の融液直上の温度勾配の緩化を抑制しうるため、結晶に赤外・可視光の吸収がある場合であっても、長尺化が可能で高品質な単結晶を製造することができる。   According to the present invention, since it is possible to suppress the relaxation of the temperature gradient immediately above the melt during crystal growth, even if the crystal has absorption of infrared and visible light, it can be made long and has high quality. Single crystal can be produced.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

ここにおいて、図1は本発明の一実施形態に係る単結晶の製造装置を示す概略断面図、図2は図1のII−II線に沿った断面図、図3、図4(A)、図4(B)、図5及び図6は本実施形態で用いる放射熱移動抑制構造体の一態様を示す斜視図、図7は本実施形態で用いる放射熱移動抑制構造体が温度勾配にどのような影響を与えているのかを示すグラフ、である。   Here, FIG. 1 is a schematic cross-sectional view showing an apparatus for producing a single crystal according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, FIG. 3, FIG. 4B, FIG. 5 and FIG. 6 are perspective views showing one aspect of the radiant heat transfer suppressing structure used in the present embodiment. FIG. 7 shows which radiant heat transfer suppressing structure used in the present embodiment has a temperature gradient. It is a graph which shows whether it has such an influence.

本実施形態では、まず、本発明に係る単結晶の製造方法を実現可能な装置の構成を説明した後、この装置を用いて単結晶を製造する方法を説明する。   In the present embodiment, first, the configuration of an apparatus capable of realizing the method for manufacturing a single crystal according to the present invention will be described, and then a method for manufacturing a single crystal using this apparatus will be described.

単結晶の製造装置
図1に示すように、本実施形態に係る単結晶の製造装置2は、ルツボ4を有する。ルツボ4は、断熱材6の略中心部分に形成された凹部62に配置してある。断熱材6には、ルツボ4を被覆するように円筒状の第1耐火物構造体8が被せてある。断熱材6および第1耐火物構造体8には、円筒状の第2耐火物構造体(ハウジング)10が被せてある。
Single Crystal Manufacturing Apparatus As shown in FIG. 1, a single crystal manufacturing apparatus 2 according to this embodiment includes a crucible 4. The crucible 4 is arranged in a recess 62 formed in a substantially central portion of the heat insulating material 6. The heat insulating material 6 is covered with a cylindrical first refractory structure 8 so as to cover the crucible 4. The heat insulating material 6 and the first refractory structure 8 are covered with a cylindrical second refractory structure (housing) 10.

第1耐火物構造体8および第2耐火物構造体10の頂部壁略中心位置には、それぞれ開口部82,102が形成してある。開口部82,102には、所定の回転数で回転させながら上方(ルツボ4から離れる方向)に所定速度で移動自在な第1移動軸12が挿入してある。第1移動軸12の下端には、種結晶122が取り付けてある。第1移動軸12の上端には、動力源(図示省略)が連結される。   Openings 82 and 102 are formed at substantially the center positions of the top walls of the first refractory structure 8 and the second refractory structure 10, respectively. Inserted into the openings 82 and 102 is a first moving shaft 12 that is movable at a predetermined speed upward (in a direction away from the crucible 4) while rotating at a predetermined rotation speed. A seed crystal 122 is attached to the lower end of the first moving shaft 12. A power source (not shown) is connected to the upper end of the first moving shaft 12.

第1耐火物構造体8および第2耐火物構造体10の頂部壁中心から所定距離離れた位置には、それぞれ開口部84,104が形成してある。開口部84,104には、本実施形態では下方(ルツボ4へ向かう方向)に所定速度で移動自在な第2移動軸13が挿入してある。第2移動軸13の下端には、放射熱遮蔽構造体132が取り付けてある。第2移動軸13の上端には、前記第1移動軸12の上端に連結される動力源(図示省略)とは別の動力源(図示省略)が連結される。   Openings 84 and 104 are formed at positions separated from the center of the top wall of the first refractory structure 8 and the second refractory structure 10 by a predetermined distance, respectively. In the present embodiment, the second moving shaft 13 that is movable downward (in the direction toward the crucible 4) at a predetermined speed is inserted into the openings 84 and 104. A radiant heat shielding structure 132 is attached to the lower end of the second moving shaft 13. A power source (not shown) different from the power source (not shown) connected to the upper end of the first moving shaft 12 is connected to the upper end of the second moving shaft 13.

図1及び図2に示すように、放射熱遮蔽構造体132は、ルツボ4の内壁と種結晶122の下端に成長する単結晶124との間で、かつルツボ4内の融液42に接触しない位置に設けられている。
As shown in FIGS. 1 and 2, the radiant heat shield structure 132, between the single crystal 124 is grown on the inner wall and the lower end of the seed crystal 122 of the crucible 4, and contact with the melt 42 in the crucible 4 It is provided in a position that does not.

放射熱遮蔽構造体132を、前記所定位置に設けることにより得られる効果を説明する。まず、温度がそれぞれT、Tである、お互いが平行な無限平面AとBの間の単位面積当たりの放射伝熱量qは、面A、Bともに黒体とした場合、q=σ(T −T )…式(1)で求められる。式(1)中のσは、ステファン・ボルツマン定数である。 The effect obtained by providing the radiant heat shielding structure 132 at the predetermined position will be described. First, the radiant heat transfer amount q per unit area between the infinite planes A and B whose temperatures are T 1 and T 2 , respectively, is given by q = σ ( T 1 4 −T 2 4 )... In the formula (1), σ is a Stefan-Boltzmann constant.

更に、この平面AとBの無限平面の間に、厚さが無限小で放射率がεの無限平板CをA、Bの無限平板に平行に挿入した場合を考える。   Further, consider a case where an infinite flat plate C having an infinitesimal thickness and an emissivity of ε is inserted between the infinite flat planes A and B in parallel with the infinite flat plates A and B.

無限平板Cの厚みは無限小なので、無限平面Cの両面の表面温度ともにTとみなせる。ここで無限平板AとCの間の単位面積当たりの放射伝熱量qは、q=εσ(T −T )…式(2)となる。 Since the thickness of the infinite flat plate C is infinitely small, both surface temperatures of the infinite plane C can be regarded as T 3 . Here, the amount of radiant heat transfer q 1 per unit area between the infinite flat plates A and C is q 1 = εσ (T 1 4 −T 3 4 ) Equation (2).

同様に無限平板BとCの間の単位面積当たりの放射伝熱量qは、q=εσ(T −T )…式(3)となる。 Similarly, the amount of radiant heat transfer q 2 per unit area between the infinite flat plates B and C is q 2 = εσ (T 3 4 −T 2 4 ) (3).

無限平面Cの挿入による無限平面AとBの間の単位面積当たりの放射伝熱量q’は、q’=q=q…式(4)を満足する。q=qから、εσ(T −T )=εσ(T −T )…式(5)が得られる。 The amount of radiant heat transfer q ′ per unit area between the infinite planes A and B due to the insertion of the infinite plane C satisfies q ′ = q 1 = q 2 Equation (4). from q 1 = q 2, εσ ( T 1 4 -T 3 4) = εσ (T 3 4 -T 2 4) ... (5) is obtained.

この式(5)の両辺にεσ(T −T )を加える事で、εσ(T −T )=2εσ(T −T )…式(6)となる。 The expression Ipushironshiguma both sides of (5) (T 3 4 -T 2 4) By adding, εσ (T 1 4 -T 2 4) = 2εσ (T 3 4 -T 2 4) ... Equation (6) Become.

この式(6)と、式(1)、(3)及び(4)とから、無限平板Cの挿入前後の伝熱量関係式である、q’=εq/2…式(7)が得られる。   From this equation (6) and equations (1), (3), and (4), q ′ = εq / 2 (7) is obtained, which is a heat transfer amount relational expression before and after the infinite flat plate C is inserted. .

この式(7)から分かるように、平板を挿入することにより放射伝熱量がqからεq/2に減じ、挿入した平板Cの放射率εが小さい程、断熱効果は高くなる。   As can be seen from this equation (7), the amount of radiant heat transfer is reduced from q to εq / 2 by inserting a flat plate, and the smaller the emissivity ε of the inserted flat plate C, the higher the heat insulation effect.

従って、放射熱移動抑制構造体132は、その厚みが薄く(たとえば0.1〜2mm程度)、その熱伝導率が大きくても断熱効果は得られ、式(7)に示されるように、その放射率が小さい程、効果的であることが分かる。   Therefore, the radiant heat transfer suppressing structure 132 is thin (for example, about 0.1 to 2 mm), and even if its thermal conductivity is large, a heat insulating effect can be obtained. As shown in the equation (7), It can be seen that the smaller the emissivity, the more effective.

放射熱移動抑制構造体132は、単結晶成長時の雰囲気と温度に対して安定である必要がある。このため、構造体132は、例えば白金若しくはIr、Rh等の白金族単体、またはそれらの合金等で構成されていることが好ましい。白金は高温における放射率が0.2以下と小さく、酸化物等の結晶成長雰囲気及び温度に対して安定である。   The radiant heat transfer suppressing structure 132 needs to be stable with respect to the atmosphere and temperature during single crystal growth. For this reason, it is preferable that the structure 132 is comprised, for example by platinum group single-piece | units, such as platinum or Ir, Rh, or those alloys. Platinum has a low emissivity of 0.2 or less at high temperatures, and is stable with respect to the crystal growth atmosphere and temperature of oxides and the like.

構造体132は、上述したように厚みが薄くても効果がある。このため、構造体132の形状としては、たとえば図3に示す円筒状や、図4(A)〜(B)に示す円錐台状などが挙げられる。また、構造体132は、ルツボ4により遮蔽されてこの構造体132自体が導体であった場合にも、高周波磁場による誘導加熱はごく小さくなるが、図5のようにスリット132aを設けて誘導加熱を完全に抑制しても良い。すなわちスリット132aにより、構造体132の周方向に流れる電流を抑制できる。更に、構造体132に隠される部分と隠されない部分の放射伝熱量の不連続を抑制するために、構造体132の端部に、図6に示すような斜めスリット132bが設けてあってもよい。   As described above, the structure 132 is effective even if it is thin. For this reason, examples of the shape of the structure 132 include a cylindrical shape shown in FIG. 3 and a truncated cone shape shown in FIGS. In addition, even when the structure 132 is shielded by the crucible 4 and the structure 132 itself is a conductor, induction heating by the high frequency magnetic field is very small, but a slit 132a is provided as shown in FIG. May be completely suppressed. That is, the current flowing in the circumferential direction of the structure body 132 can be suppressed by the slit 132a. Furthermore, in order to suppress discontinuity in the amount of radiant heat transfer between the portion hidden by the structure 132 and the portion not hidden, an oblique slit 132b as shown in FIG. 6 may be provided at the end of the structure 132. .

構造体132の厚みは、通常0.1〜5mm、好ましくは0.5〜2mm程度である。   The thickness of the structure 132 is usually about 0.1 to 5 mm, preferably about 0.5 to 2 mm.

構造体132が、イ)たとえば図3、図5及び図6に示すようなリングである場合にはその内径が、ロ)たとえば図4(A)及び図4(B)に示すような円錐台状である場合にはその小さい方の内径が、目的とする単結晶の直胴部の外径の1.2〜1.5倍程度であることが好ましい。   If the structure 132 is a) a ring as shown in FIGS. 3, 5 and 6, for example, its inner diameter is b) a truncated cone as shown in FIGS. 4A and 4B, for example. In the case of the shape, the smaller inner diameter is preferably about 1.2 to 1.5 times the outer diameter of the intended straight body of the single crystal.

構造体132の内径と、目的とする単結晶の直胴部の外径との差が小さすぎると、得られる単結晶にクラックが発生するなどの不都合を生じることがある。   If the difference between the inner diameter of the structure 132 and the outer diameter of the straight body portion of the target single crystal is too small, there may be inconveniences such as cracks occurring in the obtained single crystal.

第2耐火物構造体10の外周には、本実施形態では高周波発振器としての高周波誘導コイル14が巻かれており、このコイル14に高周波電流を流すことで前記ルツボ4が誘導加熱され、その結果、前記ルツボ4中の融液42は所定温度に維持される。   In the present embodiment, a high-frequency induction coil 14 as a high-frequency oscillator is wound around the outer periphery of the second refractory structure 10, and the crucible 4 is induction-heated by passing a high-frequency current through the coil 14, and as a result, The melt 42 in the crucible 4 is maintained at a predetermined temperature.

単結晶の製造方法
次に、上述した単結晶の製造装置2を用いて、単結晶を製造する方法を説明する。本実施形態では、組成式CaNb1.7 Ga3.3 12を持つ酸化物系単結晶を製造する場合を例示して説明する。
Method for producing a single crystal Next, using the production apparatus 2 of the single crystal mentioned above, a method of manufacturing a single crystal. In this embodiment, a case where an oxide single crystal having the composition formula Ca 3 Nb 1.7 Ga 3.3 O 12 is manufactured will be described as an example.

まず、たとえば組成式CaNb1.7 Ga3.3 12を構成する元素の酸化物または炭酸塩(たとえば、CaCO、Nb、Gaなど)を、粉末状で所定の原子比になるように混合し、円柱状に圧縮成形した後、大気中、1000〜1400℃で焼結して焼結体を得る。 First, for example, an oxide or carbonate of an element constituting the composition formula Ca 3 Nb 1.7 Ga 3.3 O 12 (for example, CaCO 3 , Nb 2 O 5 , Ga 2 O 3, etc.) is predetermined in a powder form. After being mixed so as to have an atomic ratio of and compressed into a cylindrical shape, the sintered body is obtained by sintering at 1000 to 1400 ° C. in the atmosphere.

次いで、得られた焼結体を、気密性の保たれた上記製造装置2のルツボ4内に収容した後、少量の酸素を含む窒素雰囲気下で、前記焼結体を融解させて融液42とする。   Next, after the obtained sintered body is accommodated in the crucible 4 of the manufacturing apparatus 2 that is kept airtight, the sintered body is melted in a nitrogen atmosphere containing a small amount of oxygen to obtain a melt 42. And

次いで、第2移動軸13を下方に移動させることにより、その下端に取り付けられた放射熱移動抑制構造体132を、ルツボ4の内壁と種結晶122の下端に成長する単結晶124との間で、かつルツボ4内の融液42に接触しない位置に配置させる。具体的には、放射熱移動抑制構造体132を、前記位置であって、かつルツボ4中の融液42の液面との距離が好ましくは2〜8mm程度となるように配置させる。
Then, by moving the second moving shaft 13 downward, while the radiant heat transfer suppressing structure 132 attached to its lower end, a single crystal 124 is grown on the inner wall and the lower end of the seed crystal 122 of the crucible 4 And at a position that does not contact the melt 42 in the crucible 4. Specifically, the radiant heat transfer restraining structure 132 is arranged at the above position so that the distance from the liquid surface of the melt 42 in the crucible 4 is preferably about 2 to 8 mm.

次いで、第1移動軸12を下方に移動させることにより、その下端に取り付けられた種結晶122をルツボ4中の融液42に接触させる。   Next, by moving the first moving shaft 12 downward, the seed crystal 122 attached to the lower end thereof is brought into contact with the melt 42 in the crucible 4.

さらにこの点を図7を参照して説明する。図7のデータは、直径100mmのルツボ4を用いている。構造体132を設けなかった例図7中の鎖線では、高さ10mmで直径80mmのリング状図3参照)の放射熱移動抑制構造体132を設けた例図7中の実線)と比較して、融液42の直上から+5mm〜+15mmの位置で、ルツボ4の内壁からルツボ4の中心部分に向かう放射熱移動を抑制できておらず、結果的に融液42の直上の温度勾配が小さくなっている。
Further, this point will be described with reference to FIG. The data shown in FIG. 7 uses a crucible 4 having a diameter of 100 mm. Example in which structure 132 is not provided The chain line in FIG. 7 is compared with the example in FIG. 7 in which a radiant heat transfer suppressing structure 132 having a height of 10 mm and a diameter of 80 mm (see FIG. 3) is provided. , at the position of + 5 mm to + 15 mm from right above the melt 42, not possible to suppress the radiant heat transfer towards the inner wall or et central portion of the crucible 4 of the crucible 4, a temperature gradient immediately above the result in melt 42 It is getting smaller.

これに対し、前記構造体132を、その下端が融液42の直上から+5mmの位置にくるように固定して設けた場合、構造体132を設けなかった場合と比較して、ルツボ4の内壁からルツボ4の中心部分に向かう放射熱移動を抑制できており、結果として、融液42の直上の温度勾配が大きくなっている。
On the other hand, when the structure 132 is provided so that the lower end thereof is positioned at +5 mm from directly above the melt 42, the inside of the crucible 4 is compared with the case where the structure 132 is not provided. and it can suppress the radiant heat transfer towards the central portion of the wall or al crucible 4, as a result, the temperature gradient immediately above the melt 42 is increased.

次いで、第1移動軸12を回転させながら上方に引き上げることにより、種結晶122の下端に付着してくる融液42を凝固させつつ結晶成長させ、単結晶124を育成する。単結晶124の成長条件としては、特に限定されないが、結晶回転数が、通常1〜100rpm、好ましくは5〜50rpm、種結晶122の引き上げ速度が、通常0.1〜10mm/hr、好ましくは0.5〜5mm/hrである。   Next, by pulling upward while rotating the first moving shaft 12, the melt 42 adhering to the lower end of the seed crystal 122 is crystallized while solidifying to grow a single crystal 124. The growth conditions of the single crystal 124 are not particularly limited, but the crystal rotation speed is usually 1 to 100 rpm, preferably 5 to 50 rpm, and the pulling speed of the seed crystal 122 is usually 0.1 to 10 mm / hr, preferably 0. 5 to 5 mm / hr.

本実施形態では、種結晶122の下端に付着する単結晶124の成長に連動させて、第2移動軸13を動かす。その結果、放射熱移動抑制構造体132が単結晶124の成長に伴って動かされる。   In the present embodiment, the second moving shaft 13 is moved in conjunction with the growth of the single crystal 124 attached to the lower end of the seed crystal 122. As a result, the radiant heat transfer suppressing structure 132 is moved as the single crystal 124 grows.

本実施形態では、放射熱移動抑制構造体132は、固液界面(融液42の液面)に対して有効に作用する位置に、結晶成長中に保持される。そのための方策の一つとして、好ましくは、融液42の低下速度に合わせ、融液表面から常に同じ位置を保持する動作プロファイルが考えられる。すなわち、本実施形態では、放射熱移動抑制構造体132を、育成中の融液42の液面の低下に合わせ、該融液42の液面との距離を一定に保持するように動かすことが好ましい。   In the present embodiment, the radiant heat transfer suppressing structure 132 is held during crystal growth at a position that effectively acts on the solid-liquid interface (the liquid level of the melt 42). As one of the measures for that purpose, preferably, an operation profile that always keeps the same position from the melt surface in accordance with the lowering speed of the melt 42 can be considered. That is, in this embodiment, the radiant heat transfer suppressing structure 132 can be moved so as to keep the distance from the liquid surface of the melt 42 constant according to the decrease in the liquid surface of the melt 42 being grown. preferable.

ここで融液42の低下速度をvとすると、育成される単結晶124の重量をWとして、dW/dt=ρ・π・R・v…式(8)となる。なお、式(8)中、ρは融液42の密度、Rはルツボ4の内半径である。ここで用いるWとしては、ロードセル等の重量センサで実測した重量を用いる事が考えられるが、重量の測定誤差等で生じる構造体132の速度の変動をさける場合、例えばv=v・ρ・r/(ρ・R−ρ・r)…式(9)で計算される速度を用いる事が出来る。なお、式(9)中、ρは単結晶124の密度、rは単結晶124の半径、vは引き上げ速度(第1移動軸12の移動速度)である。 Here, when the rate of decrease of the melt 42 is v l , the weight of the single crystal 124 to be grown is W c , and dW c / dt = ρ m · π · R 2 · v l (8) In the formula (8), the [rho m the density of the melt 42, R is an inner radius of the crucible 4. As W c used here, it is conceivable to use a weight actually measured by a weight sensor such as a load cell. However, in order to avoid fluctuations in the speed of the structure 132 caused by a weight measurement error or the like, for example, v l = v p · ρ c · r 2 / (ρ m · R 2 −ρ c · r 2 )... The speed calculated by the equation (9) can be used. In equation (9), ρ c is the density of the single crystal 124, r is the radius of the single crystal 124, and v p is the pulling speed (the moving speed of the first moving shaft 12).

また、育成される単結晶124の形状をrとrの半径を持つ円錐台とした場合、v=v・ρ・(r +r・r+r )/{3・ρ・R−ρ・(r +r・r+r )}…式(10)で表される。 Further, when the shape of the grown single crystal 124 is a truncated cone having radii r 1 and r 2 , v l = v p · ρ c · (r 1 2 + r 1 · r 2 + r 2 2 ) / { 3 · ρ m · R 2 −ρ c · (r 1 2 + r 1 · r 2 + r 2 2 )}...

この2式の何れかを用いる事により、あらかじめプログラムされた結晶形状に合わせて放射熱移動抑制構造体132を動かす事が出来る。   By using either of these two formulas, the radiant heat transfer suppressing structure 132 can be moved in accordance with a pre-programmed crystal shape.

第2移動軸13の移動速度は、たとえば0.1〜6mm/hr、好ましくは0.2〜3mm/hr程度である。   The moving speed of the second moving shaft 13 is, for example, about 0.1 to 6 mm / hr, preferably about 0.2 to 3 mm / hr.

このようにして製造される単結晶124は、クラックやネジレが生じておらず、長尺かつ高品質である。単結晶124は、たとえばビスコス置換希土類鉄ガーネット用の基板材料に用いて好適である。   The single crystal 124 manufactured in this way is long and high quality without cracks or twists. The single crystal 124 is suitable for use as a substrate material for Viscos substituted rare earth iron garnet, for example.

本実施形態では、特定の製造装置2を用い、放射熱移動抑制構造体132を単結晶124の成長に連動させて移動させる。このため、結晶育成中の融液42の直上の温度勾配の緩化を抑制することができる。その結果、得られる単結晶124に赤外・可視光の吸収がある場合でも、クラックやネジレがなく、長尺化が可能で高品質な単結晶124が製造される。   In the present embodiment, the specific manufacturing apparatus 2 is used to move the radiant heat transfer suppressing structure 132 in conjunction with the growth of the single crystal 124. For this reason, relaxation of the temperature gradient immediately above the melt 42 during crystal growth can be suppressed. As a result, even when the obtained single crystal 124 absorbs infrared and visible light, there is no crack or twist, and a high-quality single crystal 124 that can be elongated is manufactured.

以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々なる態様で実施し得ることは勿論である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, Of course, in the range which does not deviate from the summary of this invention, it can implement in various aspects. .

次に、本発明の実施の形態をより具体化した実施例を挙げ、本発明をさらに詳細に説明する。但し、本発明は、これらの実施例のみに限定されるものではない。   Next, the present invention will be described in more detail with reference to examples that further embody the embodiment of the present invention. However, the present invention is not limited to these examples.

実施例1
本実施例では、図1に示す単結晶の製造装置2を用いた。高周波発振器として周波数70kHzのものを用いた。ルツボ4としては、直径100mm、高さ100mmおよび厚さ2.5mmのIr製ルツボを用いた。ルツボ4中には、CaNb1.7 Ga3.3 12反応粉を約2200g挿入した。
Example 1
In this example, the single crystal manufacturing apparatus 2 shown in FIG. 1 was used. A high frequency oscillator having a frequency of 70 kHz was used. As the crucible 4, an Ir crucible having a diameter of 100 mm, a height of 100 mm, and a thickness of 2.5 mm was used. About 2200 g of Ca 3 Nb 1.7 Ga 3.3 O 12 reaction powder was inserted into the crucible 4.

また、放射熱移動抑制構造体132として、図3に示すような、高さ20mm、肉厚1mm、直径80mm、Ir製の円筒形状のリングを用いた。このリングを、図示省略してある動力源に接続される第2移動軸13により固定した。   Further, as the radiant heat transfer suppressing structure 132, a cylindrical ring made of Ir as shown in FIG. 3 having a height of 20 mm, a thickness of 1 mm, a diameter of 80 mm was used. This ring was fixed by a second moving shaft 13 connected to a power source (not shown).

そして、第2移動軸13を下方に移動させることにより、その下端に取り付けられた放射熱移動抑制構造体132を、ルツボ4の内壁と種結晶122の下端に成長する単結晶124との間で、かつルツボ4内の融液42に接触しない位置であって、さらにルツボ4中の融液42の液面との距離が5mmとなるように配置させた。
Then, by moving the second moving shaft 13 downward, while the radiant heat transfer suppressing structure 132 attached to its lower end, a single crystal 124 is grown on the inner wall and the lower end of the seed crystal 122 of the crucible 4 And it is the position which is not in contact with the melt 42 in the crucible 4 and is further arranged so that the distance from the liquid surface of the melt 42 in the crucible 4 is 5 mm.

以上の構成の装置2を用い、Nに1vol%のOを混入した雰囲気で、[111]方位のCaNb1.7 Ga3.3 12単結晶で構成される種結晶122を、ルツボ4内の融液42に接触させ、0.5mm/hrの速度で引き上げて結晶の育成を行った。結晶の育成とともに、融液42の液面は低下するので、この結晶の育成に連動させて、放射熱移動抑制構造体132を、融液42の液面から+5mmの距離を保つ速度で、下方に向けて動かした。 Using the apparatus 2 configured as described above, a seed crystal 122 composed of a [111] -oriented Ca 3 Nb 1.7 Ga 3.3 O 12 single crystal in an atmosphere in which 1 vol% O 2 is mixed in N 2 The crystal was grown by bringing it into contact with the melt 42 in the crucible 4 and pulling it up at a speed of 0.5 mm / hr. As the crystal grows, the liquid level of the melt 42 decreases, and in conjunction with this crystal growth, the radiant heat transfer suppressing structure 132 is moved downward at a speed that maintains a distance of +5 mm from the liquid level of the melt 42. Moved towards.

その結果、直径56mmφ、直胴部の長さ100mmの透明で、クラックフリーなCaNb1.7 Ga3.3 12単結晶が得られた。 As a result, a transparent and crack-free Ca 3 Nb 1.7 Ga 3.3 O 12 single crystal having a diameter of 56 mmφ and a length of the straight body portion of 100 mm was obtained.

結晶の一部を粉砕して粉末X線回折による相同定を行った結果、回折ピークは全てガーネット構造を有する相として指数付けでき、その他の異相ピークは全く認められず単一相であることが確認できた。結晶の表面状態は、荒れ、異物質の付着等は認められず、滑らかで光沢が認められる。結晶内に、気泡、割れ(クラック)、ネジレ及びインクルージョンなどの巨視的な欠陥は認められず、偏光顕微鏡によるオルソスコープ像から均一な単結晶になっていることが確認できた。   As a result of pulverizing a part of the crystal and performing phase identification by powder X-ray diffraction, all the diffraction peaks can be indexed as phases having a garnet structure, and other heterogeneous peaks are not recognized at all and are single phase. It could be confirmed. The surface state of the crystal is smooth and glossy, and no adhesion of foreign substances is observed. Macroscopic defects such as bubbles, cracks, torsion, and inclusions were not observed in the crystal, and it was confirmed that the crystal was a uniform single crystal from an orthoscopic image obtained by a polarizing microscope.

本実施例で得られた単結晶は、水晶とほぼ同程度の硬度であり、室温付近で化学的、物理的に安定である。また、水晶等で用いられる通常の加工条件で、クラック発生等の問題もなく、結晶切断及び研磨ができ、結晶の取り扱いが容易であることが確認できた。   The single crystal obtained in this example has almost the same hardness as quartz and is chemically and physically stable near room temperature. In addition, it was confirmed that the crystal can be cut and polished under the usual processing conditions used for quartz and the like, without problems such as cracks, and the crystal is easy to handle.

比較例1
放射熱移動抑制構造体132を用いなかった以外は、実施例1と同様の条件で単結晶育成を行った。その結果、直胴長55mmから結晶のネジレが始まり、直胴部の長い結晶が得られなかった。これにより、実施例1の優位性が確認できた。
Comparative Example 1
Single crystal growth was performed under the same conditions as in Example 1 except that the radiant heat transfer suppressing structure 132 was not used. As a result, twisting of the crystal started from a straight cylinder length of 55 mm, and a crystal having a long straight cylinder part was not obtained. Thereby, the superiority of Example 1 was confirmed.

なお、上記実施例1とともに比較例1においても、結晶のネジレ開始の有無は、結晶の外形を写真などの手段で撮影し、結晶直径の2%以上の外向が認められた場合をネジレあり、と判断することにより行った。   In addition, in Comparative Example 1 together with Example 1 above, the presence or absence of the start of twisting of the crystal is twisted when the outer shape of the crystal is photographed by means of a photograph or the like and an outward direction of 2% or more of the crystal diameter is recognized, It was done by judging.

図1は本発明の一実施形態に係る単結晶の製造装置を示す概略断面図、FIG. 1 is a schematic sectional view showing an apparatus for producing a single crystal according to an embodiment of the present invention, 図2は図1のII−II線に沿った断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 図3は本実施形態で用いる放射熱移動抑制構造体の一態様を示す斜視図である。FIG. 3 is a perspective view showing one aspect of the radiant heat transfer suppressing structure used in the present embodiment. 図4(A)及び図4(B)は本実施形態で用いる放射熱移動抑制構造体の一態様を示す斜視図である。FIG. 4A and FIG. 4B are perspective views showing one aspect of the radiant heat transfer suppressing structure used in this embodiment. 図5は本実施形態で用いる放射熱移動抑制構造体の一態様を示す斜視図である。FIG. 5 is a perspective view showing one aspect of the radiant heat transfer suppressing structure used in the present embodiment. 図6は本実施形態で用いる放射熱移動抑制構造体の一態様を示す斜視図である。FIG. 6 is a perspective view showing an aspect of the radiant heat transfer suppressing structure used in the present embodiment. 図7は本実施形態で用いる放射熱移動抑制構造体が温度勾配にどのような影響を与えているのかを示すグラフである。FIG. 7 is a graph showing how the radiant heat transfer suppressing structure used in this embodiment affects the temperature gradient.

符号の説明Explanation of symbols

2… 単結晶の製造装置
4… ルツボ
42… 融液
6… 断熱材
62… 凹部
8… 第1耐火物構造体
82,84… 開口部
10… 第2耐火物構造体
102,104… 開口部
12… 第1移動軸
122… 種結晶
124… 単結晶
13… 第2移動軸
132… 放射熱移動抑制構造体
132a… スリット
132b… 斜めスリット
14… 高周波誘導コイル
2 ... Single crystal manufacturing apparatus 4 ... Crucible 42 ... Melt 6 ... Heat insulating material 62 ... Recess 8 ... First refractory structure 82, 84 ... Opening 10 ... Second refractory structure 102, 104 ... Opening 12 ... 1st moving shaft 122 ... Seed crystal 124 ... Single crystal 13 ... 2nd moving shaft 132 ... Radiation heat transfer suppressing structure 132a ... Slit 132b ... Diagonal slit 14 ... High frequency induction coil

Claims (8)

ルツボ内の融液に種結晶を接触させて引き上げ、該種結晶の下端に単結晶を成長させる単結晶を製造する方法であって、
前記ルツボの内壁と前記種結晶の下端に成長する単結晶との間で、かつルツボ内の融液に接触しない位置に、放射熱の移動を抑制する放射熱移動抑制構造体が、移動自在に設けられた装置を用い、前記種結晶の下端に付着する単結晶の成長に連動させて前記放射熱移動抑制構造体を動かしながら、融液直上の前記単結晶の温度勾配を、前記放射熱移動抑制構造体がない場合と比較して大きくするように、前記単結晶を製造することを特徴とする単結晶の製造方法。
A method for producing a single crystal in which a seed crystal is brought into contact with a melt in a crucible and pulled up, and a single crystal is grown on the lower end of the seed crystal,
Between the growing single crystal at the lower end of the seed crystal and the inner wall of the crucible, and a position not in contact with the melt in the crucible, suppress radiant heat transfer suppressing structure movement release Inetsu is movable The temperature gradient of the single crystal immediately above the melt is moved while the radiant heat transfer suppressing structure is moved in conjunction with the growth of the single crystal adhering to the lower end of the seed crystal. A method for producing a single crystal , comprising producing the single crystal so as to be larger than a case where there is no movement suppressing structure .
前記放射熱移動抑制構造体を融液液面との距離を一定に保持するように動かしながら、前記単結晶を製造することを特徴とする請求項1に記載の単結晶の製造方法。   2. The method for producing a single crystal according to claim 1, wherein the single crystal is produced while moving the radiant heat transfer suppressing structure so as to maintain a constant distance from the melt surface. 3. 融液液面との間で保持する距離が、2〜8mmである請求項2に記載の単結晶の製造方法。   The method for producing a single crystal according to claim 2, wherein the distance to be held between the melt and the liquid surface is 2 to 8 mm. 前記放射熱の移動を抑制する構造体が、白金族金属単体またはその合金で構成されている、請求項1〜3の何れかに記載の単結晶の製造方法。   The manufacturing method of the single crystal in any one of Claims 1-3 with which the structure which suppresses the movement of the said radiant heat is comprised with the platinum group metal single-piece | unit or its alloy. 高周波誘導加熱により加熱された融液を用いる、請求項1〜4の何れかに記載の単結晶の製造方法。   The manufacturing method of the single crystal in any one of Claims 1-4 using the melt heated by the high frequency induction heating. 前記融液及び単結晶が、酸化物である、請求項1〜5の何れかに記載の単結晶の製造方法。   The method for producing a single crystal according to claim 1, wherein the melt and the single crystal are oxides. 前記放射熱移動抑制構造体の高さが、10〜20mmである請求項1〜6の何れかに記載の単結晶の製造方法。   The method for producing a single crystal according to claim 1, wherein the radiant heat transfer suppressing structure has a height of 10 to 20 mm. ルツボ内の融液に種結晶を接触させて引き上げ、該種結晶の下端に単結晶を成長させる単結晶を製造する装置であって、
前記種結晶を引き上げる第1移動軸と、
前記ルツボの内壁と前記種結晶の下端に成長する単結晶との間で、かつルツボ内の融液に接触しない位置に設けられた放射熱移動抑制構造体と、
該放射熱移動抑制構造体を前記種結晶の下端に付着する単結晶の成長に連動させて動かす第2移動軸とを、有し、
前記放射熱移動抑制構造体は、融液直上の前記単結晶の温度勾配を、前記放射熱移動抑制構造体がない場合と比較して大きくするように設けられている単結晶の製造装置。
An apparatus for producing a single crystal in which a seed crystal is brought into contact with the melt in the crucible and pulled up, and a single crystal is grown on the lower end of the seed crystal,
A first movement axis for pulling up the seed crystal;
A radiation heat transfer suppressing structure which kicked set in, and a position not in contact with the melt in the crucible between the growing single crystal at the lower end of the seed crystal and the inner wall of the crucible,
And a second moving axis to move to the radiant heat transfer suppressing structure in conjunction with the growth of the single crystal to be attached to the lower end of the seed crystal, possess,
The radiant heat transfer suppressing structure is a single crystal manufacturing apparatus provided to increase the temperature gradient of the single crystal directly above the melt as compared to the case where the radiant heat transfer suppressing structure is not provided .
JP2003301456A 2003-08-26 2003-08-26 Single crystal manufacturing method and apparatus Expired - Fee Related JP4276497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301456A JP4276497B2 (en) 2003-08-26 2003-08-26 Single crystal manufacturing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301456A JP4276497B2 (en) 2003-08-26 2003-08-26 Single crystal manufacturing method and apparatus

Publications (2)

Publication Number Publication Date
JP2005067964A JP2005067964A (en) 2005-03-17
JP4276497B2 true JP4276497B2 (en) 2009-06-10

Family

ID=34406078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301456A Expired - Fee Related JP4276497B2 (en) 2003-08-26 2003-08-26 Single crystal manufacturing method and apparatus

Country Status (1)

Country Link
JP (1) JP4276497B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016059788A1 (en) * 2014-10-17 2017-06-29 新日鐵住金株式会社 SiC single crystal manufacturing method and SiC single crystal manufacturing apparatus

Also Published As

Publication number Publication date
JP2005067964A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP5601273B2 (en) Method for producing oxide single crystal
WO2011062092A1 (en) Single crystal pulling apparatus
WO2014034424A1 (en) Method for producing sic single crystal
JP5341415B2 (en) Piezoelectric single crystal and manufacturing method thereof
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JP2016064958A (en) Manufacturing method of sic single crystal
JP4276497B2 (en) Single crystal manufacturing method and apparatus
JP6354615B2 (en) Method for producing SiC single crystal
JP4622329B2 (en) Rare earth silicate single crystal and method for producing rare earth silicate single crystal
JPH09328394A (en) Production of oxide single crystal
JP7310339B2 (en) Method for growing lithium niobate single crystal
JPWO2018062224A1 (en) Method of manufacturing SiC single crystal and SiC seed crystal
JP7271843B2 (en) Method for producing lithium tantalate single crystal
JPS63222091A (en) Crucible for pulling up silicon single crystal
JP6439733B2 (en) Nonmagnetic garnet single crystal growth method
JP2957857B2 (en) Method for producing oxide single crystal
JP6500807B2 (en) Growth method of CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP2004238239A (en) Method for manufacturing single crystal
JP5454625B2 (en) Silicon single crystal wafer obtained from ingot pulled by silicon single crystal pulling method
JP2005089223A (en) Single crystal and its manufacturing method
JP5056603B2 (en) Silicon single crystal pulling method and silicon single crystal wafer obtained from ingot pulled by the method
JP2018203563A (en) Production method of magnetostrictive material
JPS6389488A (en) Production of single crystal
JP6992488B2 (en) Crucible for growing single crystals
JP2016056055A (en) METHOD FOR GROWING CaMgZr SUBSTITUTION TYPE GADOLINIUM GALLIUM GARNET (SGGG) SINGLE CRYSTAL

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees