JPS6389488A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPS6389488A
JPS6389488A JP23211386A JP23211386A JPS6389488A JP S6389488 A JPS6389488 A JP S6389488A JP 23211386 A JP23211386 A JP 23211386A JP 23211386 A JP23211386 A JP 23211386A JP S6389488 A JPS6389488 A JP S6389488A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
heat
raw material
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23211386A
Other languages
Japanese (ja)
Inventor
Jisaburo Ushizawa
牛沢 次三郎
Hirobumi Takemura
博文 竹村
Sadao Matsumura
禎夫 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23211386A priority Critical patent/JPS6389488A/en
Publication of JPS6389488A publication Critical patent/JPS6389488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce the title single crystal in optimum thermal environment by shielding the heat radiation from the wall of a melting crucible to the single crystal at the time of producing a single crystal by a rotary pulling up method. CONSTITUTION:A heat shielding body 11, an annular body having an inverted L-shaped cross section extending toward the center, is provided at the slightly upper part of the inner wall surface of an alumina crucible 3, and the lower end is hung down between the inner wall of a Pt-Rh crucible 1a and a single crystal 6. The heat shielding body 11 consists of a ceramic heat-resistant material or a noble metal such as Pt-Rh. Such a furnace is used, and a seed crystal 8 is brought into contact with the surface of a raw material melt 5 in the crucible 1a and then pulled up while being rotated to produce a single crystal 7. Consequently, since the heat radiated from the side wall of the crucible 1a is shielded by the heat shielding body 11, the temp. gradient at the upper part of the melt 5 is not excessively eased even when a large-bore crucible is used, the heat insulating effect can be changed by changing the material and shape of the heat shielding body 11, and the temp. gradient can be optionally set in accordance with the kind of the single crystal.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、回転引上げ法による単結晶の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for producing a single crystal by a rotational pulling method.

(従来の技術) LiTaO3やLi2B4O7等の単結晶は、室温にお
いて圧電性を有すること、零温度係数を有すること、結
合係数に2が約1.0%と大きい方位を有すること等か
らSAWデバイス基板として広く用いられている。
(Prior art) Single crystals such as LiTaO3 and Li2B4O7 are suitable for SAW device substrates because they have piezoelectricity at room temperature, have a zero temperature coefficient, and have a large orientation with a coupling coefficient of 2, about 1.0%. It is widely used as

従来このようなLiTaO3やL i 2 B 407
等の単結晶の製造方法として、溶融るつぼ内の溶融した
原材料の融液面に引上げようとする種子結晶を接触させ
、この種子結晶を回転させながら引上げて単結晶を製造
する単結晶の製造方法が採用されている。
Conventionally, such LiTaO3 and Li 2 B 407
A method for producing a single crystal, such as a method for producing a single crystal, in which a seed crystal to be pulled up is brought into contact with the melt surface of a molten raw material in a melting crucible, and the seed crystal is pulled up while rotating to produce a single crystal. has been adopted.

このような従来の単結晶の製造方法について第2図を参
照にして説明する。
Such a conventional method for manufacturing a single crystal will be explained with reference to FIG.

原料を収容する溶融るつぼとなる白金るつぼ1はその周
囲をバブルアルミナ2、アルミするつぼ3等により覆わ
れており、アルミするつぼ3外周に周設された高周波ワ
ークコイル4により白金るつぼ1内に収容された単結晶
の原料例えばLi2B4O7単結晶を製造するのであれ
ば、Li2B4O7の粉末または1.Li2CO3とB
2O5の混合物を誘導加熱して原料融液5を作る。
The platinum crucible 1, which serves as a melting crucible for storing raw materials, is surrounded by a bubble alumina 2, an aluminum crucible 3, etc., and a high frequency work coil 4 installed around the outer periphery of the aluminum crucible 3 is used to melt the inside of the platinum crucible 1. For example, if a Li2B4O7 single crystal is to be produced, the contained raw material for the single crystal is Li2B4O7 powder or 1. Li2CO3 and B
A raw material melt 5 is prepared by induction heating a mixture of 2O5.

単結晶6の製造は、原料融液5の温度制御をしながら白
金るつぼ1の中心軸に設けられたシードホルダ7下端に
取付られな種子結晶8を原料融液5面に接触させた後、
これを回転させながら引上げることにより行なう。
The single crystal 6 is produced by bringing the seed crystal 8 attached to the lower end of the seed holder 7 provided on the central axis of the platinum crucible 1 into contact with the surface of the raw material melt 5 while controlling the temperature of the raw material melt 5.
This is done by pulling up while rotating.

このような単結晶の製造方法では、高温の原料融液5か
ら白金るつぼ1上方の低温側へと引上げられた単結晶6
は次第に冷却されて熱歪を生じ、これが原因となってク
ラックを発生する恐れがあるため、白金るつぼ1の上部
にアフターヒータ9やアルミナ保温筒10等を設置して
温度勾配をゆるやかにして、熱歪によるクラックの発生
を防止している。
In such a single crystal manufacturing method, a single crystal 6 is pulled from a high temperature raw material melt 5 to a low temperature side above the platinum crucible 1.
is gradually cooled and causes thermal distortion, which may cause cracks. Therefore, an after-heater 9, an alumina heat-insulating tube 10, etc. are installed on the top of the platinum crucible 1 to make the temperature gradient gentle. Prevents cracks from occurring due to thermal distortion.

ところが温度勾配がゆるくなり過ぎると単結晶6が曲っ
なり、多結晶が発生しやすくなるという別の問題が発生
する場合があり、また最適な温度勾配は製造する単結晶
6の種類により異なるため、白金るつぼ1、アフターヒ
ータ9及び高周波ワークコイル4との相対位置や形状あ
るいは耐火物による保温状態を変化させて製造する単結
晶の種類に適した温度雰囲気にする工夫がなされている
However, if the temperature gradient becomes too gentle, another problem may occur in which the single crystal 6 becomes bent and polycrystals are more likely to form.Also, the optimal temperature gradient varies depending on the type of single crystal 6 to be manufactured. Efforts have been made to create a temperature atmosphere suitable for the type of single crystal to be produced by changing the relative position and shape of the platinum crucible 1, after-heater 9, and high-frequency work coil 4, or by changing the heat retention state by the refractory.

(発明が解決しようとする問題点) しかしながら上述したような従来の単結晶の製造方法で
は、 (イ)溶融るつぼを大口径化した場合、溶融るつぼ上部
及び原料融液からの熱放散が増大して、原料融液面上の
温度勾配がゆるくなり過ぎてしまい、アフターし一部の
ない状態よりもさらにきつい温度勾配を必要とするよう
な単結晶の製造には適さず、また大口径化により中間的
な温度勾配を容易に実現することが難しくなる。
(Problems to be Solved by the Invention) However, in the conventional single crystal manufacturing method as described above, (a) When the diameter of the melting crucible is increased, heat dissipation from the upper part of the melting crucible and the raw material melt increases. As a result, the temperature gradient on the surface of the raw material melt becomes too gentle, making it unsuitable for producing single crystals that require a steeper temperature gradient than in the state where there is no part of the material. It becomes difficult to easily achieve intermediate temperature gradients.

(ロ)単結晶及び単結晶を用いたデバイスの生産性を高
めるため引上げ単結晶の大口径化をした場合に、大口径
化により溶融るつぼも大型化し融点に近い高温で大重量
の原料融液を収容しなければならず、原fI融液の凝固
・融解を繰返すことによる溶融るつぼの負荷が増大する
。従って溶融るつぼの変形が大きくなり、溶融るつぼ内
の原料融液の温度分布状態が悪化し歩留り低下を招くば
かりか溶融るつぼの寿命を縮めて単結晶の製造コストを
高くすることになる。またるつぼの変形はるつぼに周設
された耐火物にクラック等の破損を発生させる原因とな
る。
(b) When the diameter of the pulled single crystal is increased to increase the productivity of single crystals and devices using single crystals, the melting crucible becomes larger due to the larger diameter, and a large weight of raw material melt is produced at a high temperature close to the melting point. must be accommodated, and the load on the melting crucible increases due to repeated solidification and melting of the original fI melt. Therefore, the deformation of the melting crucible becomes large, and the temperature distribution of the raw material melt in the melting crucible worsens, which not only causes a decrease in yield, but also shortens the life of the melting crucible and increases the cost of producing single crystals. Further, deformation of the crucible causes damage such as cracks to the refractory surrounding the crucible.

(ハ)原料融液を全て引上げたい場合や密度の小さい粉
末原料をチャージする場合には、融液面位の低い状態か
ら単結晶を引上げることになるため原料融液面上のるつ
ぼ壁からの熱放散が大きくなり温度勾配がゆるくなり過
ぎて単結晶の引上げが困難になる。
(c) If you want to pull up all the raw material melt or charge a powdered raw material with a low density, you will have to pull the single crystal from a low melt surface level, so from the crucible wall above the raw material melt surface. The heat dissipation becomes large and the temperature gradient becomes too gentle, making it difficult to pull the single crystal.

(ニ)アルミナセメントを用いてアルミナ管製のシード
ホルダと種子結晶を接合する場合にその接合部が高温に
なり過ぎると種子結晶とアルミナが反応して劣化し種子
結晶が落下する。
(d) When alumina cement is used to join an alumina tube seed holder and a seed crystal, if the joint becomes too hot, the seed crystal and alumina react and deteriorate, causing the seed crystal to fall.

等の問題があり、上記問題点で(イ)、(ハ)、(ニ)
は溶融るつぼ大口径化によりるつぼ壁及び原料融液面か
らの熱放散が増大することが原因でさらに原料融液面低
下が温度勾配のゆるすぎを助長するためであり、問題点
(ロ)は溶融るつぼ大容量化による重量と熱膨張の増加
が原因で、いずれの問題も溶融るつぼ内の温度設定の自
由度が少ないことに起因していた。
There are problems such as (a), (c), and (d) in the above problems.
Problem (b) is due to the increase in heat dissipation from the crucible wall and raw material melt surface due to the larger diameter of the melting crucible, and the lowering of the raw material melt surface further promotes a too gentle temperature gradient. Both problems were caused by a lack of freedom in setting the temperature inside the melting crucible due to increased weight and thermal expansion due to the increased capacity of the melting crucible.

本発明は上述した問題点を解決するもので、主に溶融る
つぼ璧から単結晶への輻射熱の一部を遮熱することで最
適な熱環境下で単結晶を製造できる単結晶の製造方法を
提供することを目的とする。
The present invention solves the above-mentioned problems, and provides a method for manufacturing single crystals that can manufacture single crystals in an optimal thermal environment by mainly shielding a part of the radiant heat from the melting crucible wall to the single crystal. The purpose is to provide.

[発明の構成コ (問題点を解決するための手段) 本発明の単結晶の製造方法は、溶融るつぼ内の原料融液
表面に種子結晶を接触させ、この種子結晶を回転させな
がら引上げて単結晶を製造する単結晶の製造方法におい
て、上記単結晶の製造を、るつぼ壁から単結晶への熱輻
射の少なくとも一部を遮熱しながら行なうことを特徴と
する。
[Configuration of the Invention (Means for Solving Problems)] The method for producing a single crystal of the present invention involves bringing a seed crystal into contact with the surface of the raw material melt in a melting crucible, and pulling up the seed crystal while rotating to produce a single crystal. A single crystal manufacturing method for manufacturing a crystal is characterized in that the manufacturing of the single crystal is performed while at least part of thermal radiation from the crucible wall to the single crystal is shielded.

(作 用) 引上げ単結晶への熱輻射の一部を遮熱することで溶融る
つぼ内の熱環境を自由に設定することができる。
(Function) The thermal environment inside the melting crucible can be freely set by blocking part of the thermal radiation to the pulled single crystal.

(実施例) 以下本発明方法の一実施例について図を参照しながら説
明する。なお第2図と同一部分には同一符号を付して重
複する部分の説明を省略する。
(Example) An example of the method of the present invention will be described below with reference to the drawings. Note that the same parts as in FIG. 2 are given the same reference numerals, and the explanation of the overlapping parts will be omitted.

実施例1 第1図は本発明方法に使用する単結晶の製造炉を示す概
略断面図で、アルミするつぼ3内壁面のやや上方部には
中心方向へ向って伸びる断面が逆り字状の環状体である
遮熱体11がその下端部をP t−Rhるつぼ1a内壁
と単結晶6rif1に垂下するように設けられている。
Embodiment 1 Figure 1 is a schematic cross-sectional view showing a single crystal production furnace used in the method of the present invention, in which a slightly upper part of the inner wall surface of an aluminum crucible 3 has an inverted cross section extending toward the center. A heat shield 11, which is an annular body, is provided so that its lower end is suspended from the inner wall of the Pt-Rh crucible 1a and the single crystal 6rif1.

この遮熱体11はセラミック耐熱材や貴金属例えばP 
t−Rh等からなりでいる。
This heat shield 11 is made of a ceramic heat-resistant material or a noble metal such as P.
It consists of t-Rh etc.

このような炉では遮熱体11が白金るつぼ側壁からの熱
を断熱するため、大口径るつぼを用いた場合でも原料融
液5上部の温度勾配がゆるくなり過ぎることを防止でき
る。また遮熱体11の材質や形状例えば厚さ等を変えれ
ば断熱効果も変化し温度勾配を単結晶の種類に応じて任
意に設定することができる。従ってチャージした原料を
全量を引上げるために原料融液5面位をたとえば172
程度に即ちチャージ量をPt−Rhるつぼ1aの容積の
約半分に下げた状態からでも温度勾配を適切な状態に保
持することができる。
In such a furnace, the heat shield 11 insulates heat from the side wall of the platinum crucible, so even when a large-diameter crucible is used, it is possible to prevent the temperature gradient above the raw material melt 5 from becoming too gradual. Further, by changing the material, shape, thickness, etc. of the heat shield 11, the heat insulating effect changes, and the temperature gradient can be arbitrarily set depending on the type of single crystal. Therefore, in order to pull up the entire amount of charged raw material, about 5 sides of the raw material melt are
The temperature gradient can be maintained at an appropriate level even when the charge amount is reduced to approximately half the volume of the Pt-Rh crucible 1a.

上述炉を用いて実際にL i T a O3単結晶を製
造した。製造に際しP t−Rhるつぼ1aへの原料の
チャージ量は約172とし全量の引上げを行なった。ま
た遮熱体11の部材にはP t−Rhを使用した。
A Li Ta O3 single crystal was actually produced using the above-mentioned furnace. During production, the amount of raw material charged to the Pt-Rh crucible 1a was set at about 172, and the entire amount was withdrawn. Moreover, Pt-Rh was used as the member of the heat shield 11.

原料のチャージ量を従来の172にして原料融液5面位
を低くしても遮熱体11を用いることによりP t−R
hるつぼ1a壁からの熱が遮断されるため温度勾配がゆ
るくなり過ぎることはない。またPt−Rh材を用いて
いるためアルミナ材よりは断熱効果は小さく、高周波で
加熱されるため温度勾配はややゆるくなるが遮熱体11
の径がpt−Rhるつぼ1aの径よりも小さく、しかも
pt−Rhるつぼ1aの内側にあるため、Pt−Rhる
つぼ1a内壁からの輻射熱がシールドされて発熱が少な
くなり適切な温度勾配が得られている。
Even if the charge amount of the raw material is reduced to 172 compared to the conventional one and the raw material melt is lowered by about 5 sides, Pt-R can be maintained by using the heat shield 11.
Since the heat from the wall of the crucible 1a is blocked, the temperature gradient does not become too gentle. In addition, since Pt-Rh material is used, the insulation effect is smaller than that of alumina material, and the temperature gradient is slightly gentler because it is heated with high frequency, but the heat shield 11
Since the diameter of the Pt-Rh crucible 1a is smaller than the diameter of the Pt-Rh crucible 1a, and it is located inside the PT-Rh crucible 1a, the radiant heat from the inner wall of the Pt-Rh crucible 1a is shielded, resulting in less heat generation and an appropriate temperature gradient. ing.

このように単結晶への輻射熱を遮熱しながら引上げ作業
を行なう単結晶の製造方法を用いれば、少ない原料チャ
ージ量でも適切な温度勾配にすることが可能で、チャー
ジした原料の全量を引上げることができしかも種子結晶
8とシードホルダ7との接合部が熱で浸蝕されることが
なかった。また全量引上げができたことによりP t−
Rhるつぼ1aの変形はほとんどなくなり、るつぼの寿
命が大幅に延び従来の3倍以上の使用回数でも充分使用
できる状態にあった。従ってるつぼ周囲の耐火物の寿命
も著しく延命し、また温度条件が安定したことや不純物
濃度の高いるつぼ残留原料がなくなり単結晶の製造歩留
りが約20%向上した。
By using this method of manufacturing single crystals, in which pulling is performed while shielding the radiant heat to the single crystal, it is possible to create an appropriate temperature gradient even with a small amount of charged raw material, and it is possible to pull up the entire amount of charged raw materials. In addition, the joint between the seed crystal 8 and the seed holder 7 was not corroded by heat. In addition, by being able to raise the total amount, P t-
The deformation of the Rh crucible 1a was almost eliminated, the life of the crucible was significantly extended, and the crucible was in a state where it could be used more than three times as many times as before. Therefore, the life of the refractory around the crucible was significantly extended, and the temperature conditions were stabilized, and there was no residual raw material in the crucible with high impurity concentration, and the production yield of single crystals was improved by about 20%.

実施例2 実施例1で使用した炉において遮熱体11の部材をアル
ミナ材として実際にLi2B+07単結晶の製造を行な
った。遮熱体11として断熱効果の高いアルミナを用い
ることで原料融液5面上の温度勾配を急勾配とすること
ができる。Li2B 40 yは融点が917°Cと低
いことや熱伝導性が悪いこともありLiTaO3に比べ
て熱放散しに<<Li2B、07よりも温度勾配をきつ
くする必要があると思われる。
Example 2 In the furnace used in Example 1, a Li2B+07 single crystal was actually produced using alumina material as the member of the heat shield 11. By using alumina, which has a high heat insulating effect, as the heat shield 11, the temperature gradient on the surface of the raw material melt 5 can be made steep. Since Li2B 40 y has a low melting point of 917° C. and poor thermal conductivity, it seems necessary to make the temperature gradient steeper than <<Li2B,07 in order to dissipate heat compared to LiTaO3.

このようにして製造されたL i 2 B 407単結
晶は直径2インチ、長さ50nlの単結晶で再現性が非
常に良くしかも全量引上げが可能であった。
The L i 2 B 407 single crystal produced in this manner had a diameter of 2 inches and a length of 50 nl, had very good reproducibility, and could be pulled in its entirety.

実施例3 実施例1の遮熱体11の部材を透明石英ガラス材として
実際にLi2 B407単結晶の製造を行なった。
Example 3 A Li2 B407 single crystal was actually produced using a transparent quartz glass material as the member of the heat shield 11 of Example 1.

透明石英ガラス材を使用しているため遮熱体11に引上
げ単結晶観察用の覗き穴を設ける必要がなくなり均熱性
が向上し、アルミナ材より輻射熱の透過性に優れている
なめ温度勾配がゆるやかであった。またアルミナ材に比
べ表面がクリーンであるため不純物の汚染が非常に少な
かった。全体的にアルミナ部材を用いた場合よりもクラ
ックの発生が少なくしかも多結晶化が減少した0本例に
おけるLi2B*Oy単結晶の歩留りは約80%であっ
た。なお、遮熱板の部材としては上述実施例に用いたも
のに限定されず、例えばPt、Ir、Si3N4、Zr
O2、MgO等、必要とする熱環境に適したものを選別
すればよい。
Since a transparent quartz glass material is used, there is no need to provide a peephole in the heat shield 11 for observation of single crystals, improving heat uniformity, and has better radiant heat transmission than alumina material.The temperature gradient is gentler. Met. In addition, since the surface was cleaner than that of alumina material, there was very little contamination from impurities. Overall, the yield of Li2B*Oy single crystals in this example was about 80%, with fewer cracks and less polycrystallization than when an alumina member was used. Note that the members of the heat shield plate are not limited to those used in the above-mentioned embodiments, and may include, for example, Pt, Ir, Si3N4, Zr.
What is necessary is to select one suitable for the required thermal environment, such as O2 or MgO.

[発明の効果] 以上説明したように本発明の単結晶の製造方法によれば
、単結晶への熱輻射の少なくとも一部を遮熱することで
単結晶の種類に応じて最適な熱環境をつくりだすことが
できるという効果がある。
[Effects of the Invention] As explained above, according to the method for manufacturing a single crystal of the present invention, an optimal thermal environment can be created depending on the type of single crystal by blocking at least a part of the thermal radiation to the single crystal. The effect is that it can be created.

この効果により従来製造が困難であった単結晶が容易に
製造でき、しかも溶融るつぼの変形を防ぐために原料の
チャージ量を減らしてもチャージした原料の全量を引上
げることが容易になり、さらには高価な溶融るつぼの変
形が減少してるつぼの寿命を大幅に延命させることがで
きる。また溶融るつぼの変形が減少すれば引上げ炉の熱
条件も安定し単結晶M造時の歩留り向上につながる。
This effect makes it easy to produce single crystals, which were difficult to produce in the past, and even if the amount of charged raw materials is reduced to prevent the melting crucible from deforming, it is easy to pull up the entire amount of charged raw materials. Deformation of the expensive melting crucible is reduced, and the life of the crucible can be greatly extended. Furthermore, if the deformation of the melting crucible is reduced, the thermal conditions of the pulling furnace will be stabilized, leading to an improvement in the yield during the production of single crystal M.

ところで上述実施例では本発明方法を高周波加熱炉に適
用したが、本発明方法はこれに限定されるものではなく
抵抗炉に適用しても同様の効果が確認できた。
By the way, in the above-mentioned examples, the method of the present invention was applied to a high frequency heating furnace, but the method of the present invention is not limited to this, and similar effects were confirmed when applied to a resistance furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図本発明方法を適用した一実施例の炉の構造を示す
断面図、第2図は従来の炉の構造を示す断面図である。 1・・・・・・・・・白金るつぼ 1a・・・・・・Pt−Rhるつぼ 2・・・・・・・・・バブルアルミナ 3・・・・・・・・・アルミするつぼ 5・・・・・・・・・原料融液 6・・・・・・・・・引上げ単結晶 8・・・・・・・・・種子結晶 9・・・・・・・・・遮熱体 出願人      株式会社 東芝 代理人 弁理士  須 山 佐 − 第1図
FIG. 1 is a sectional view showing the structure of a furnace according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the structure of a conventional furnace. 1...Platinum crucible 1a...Pt-Rh crucible 2...Bubble alumina 3...Aluminum crucible 5. ...... Raw material melt 6 ...... Pulled single crystal 8 ...... Seed crystal 9 ... Heat shield application Person Toshiba Corporation Patent Attorney Sasa Suyama - Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)溶融るつぼ内の原料融液表面に種子結晶を接触さ
せ、この種子結晶を回転させながら引上げて単結晶を製
造する単結晶の製造方法において、前記単結晶の製造を
、前記るつぼ壁から単結晶への熱輻射の少なくとも一部
を遮熱しながら行なうことを特徴とする単結晶の製造方
法。
(1) In a method for producing a single crystal in which a seed crystal is brought into contact with the surface of a raw material melt in a melting crucible and a single crystal is produced by pulling up the seed crystal while rotating, the production of the single crystal is carried out from the wall of the crucible. A method for manufacturing a single crystal, characterized in that at least part of the heat radiation to the single crystal is shielded.
(2)遮熱は、単結晶と溶融るつぼ内壁面間に配置され
た円筒状の遮熱体によって行なわれることを特徴とする
特許請求の範囲第1項記載の単結晶の製造方法。
(2) The method for producing a single crystal according to claim 1, wherein the heat shielding is performed by a cylindrical heat shield placed between the single crystal and the inner wall surface of the melting crucible.
(3)遮熱体は、複数分割されていることを特徴とする
特許請求の範囲第2項記載の単結晶の製造方法。
(3) The method for producing a single crystal according to claim 2, wherein the heat shield is divided into a plurality of parts.
(4)遮蔽体は、Pt、Pt−Rh、Ir、SiO_2
、Si_3N_4、Al_2O_3、ZrO_2、Mg
Oより選ばれた少なくとも1つを主体とする材料よりな
ることを特徴とする特許請求の範囲第2項記載の単結晶
の製造方法。
(4) Shielding material is Pt, Pt-Rh, Ir, SiO_2
, Si_3N_4, Al_2O_3, ZrO_2, Mg
3. The method for producing a single crystal according to claim 2, wherein the single crystal is made of a material mainly consisting of at least one selected from O.
(5)原料融液表面よりも上部の温度が単結晶引上げに
適する温度となるように、単結晶引上げ中に遮熱体の位
置を変えながら行なうことを特徴とする特許請求の範囲
第1項記載の単結晶の製造方法。
(5) Claim 1, characterized in that the pulling of the single crystal is carried out while changing the position of the heat shield so that the temperature above the surface of the raw material melt becomes a temperature suitable for pulling the single crystal. Method for manufacturing the single crystal described.
JP23211386A 1986-09-30 1986-09-30 Production of single crystal Pending JPS6389488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23211386A JPS6389488A (en) 1986-09-30 1986-09-30 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23211386A JPS6389488A (en) 1986-09-30 1986-09-30 Production of single crystal

Publications (1)

Publication Number Publication Date
JPS6389488A true JPS6389488A (en) 1988-04-20

Family

ID=16934209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23211386A Pending JPS6389488A (en) 1986-09-30 1986-09-30 Production of single crystal

Country Status (1)

Country Link
JP (1) JPS6389488A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143704A (en) * 1989-10-26 1992-09-01 Nkk Corporation Apparatus for manufacturing silicon single crystals
EP2559501A1 (en) * 2011-08-18 2013-02-20 Amleto Pavone Shield for protecting a measurement sensor
CN104197711A (en) * 2014-09-19 2014-12-10 重庆科技学院 Rotating half occluded thermal shock sintering resistance furnace
CN104729293A (en) * 2015-03-20 2015-06-24 重庆科技学院 Flowing atmosphere hot/cold impact sintering resistance furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740119A (en) * 1980-07-18 1982-03-05 Skf Kugellagerfabriken Gmbh Thin bearing bush made by pressdrawing
JPS6153187A (en) * 1984-08-24 1986-03-17 Sony Corp Device for growing single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740119A (en) * 1980-07-18 1982-03-05 Skf Kugellagerfabriken Gmbh Thin bearing bush made by pressdrawing
JPS6153187A (en) * 1984-08-24 1986-03-17 Sony Corp Device for growing single crystal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143704A (en) * 1989-10-26 1992-09-01 Nkk Corporation Apparatus for manufacturing silicon single crystals
EP2559501A1 (en) * 2011-08-18 2013-02-20 Amleto Pavone Shield for protecting a measurement sensor
CN104197711A (en) * 2014-09-19 2014-12-10 重庆科技学院 Rotating half occluded thermal shock sintering resistance furnace
CN104197711B (en) * 2014-09-19 2015-12-23 重庆科技学院 One is rotary partly blocks thermal shock sintering resistance furnace
CN104729293A (en) * 2015-03-20 2015-06-24 重庆科技学院 Flowing atmosphere hot/cold impact sintering resistance furnace
CN104729293B (en) * 2015-03-20 2017-03-01 重庆科技学院 A kind of flowing atmosphere thermal shock sintering resistance furnace

Similar Documents

Publication Publication Date Title
JPS6153187A (en) Device for growing single crystal
JPS6389488A (en) Production of single crystal
JP3121192B2 (en) Method for producing oxide single crystal
JPS61247683A (en) Pulling device for single crystal sapphire
JPS63222091A (en) Crucible for pulling up silicon single crystal
JP2957857B2 (en) Method for producing oxide single crystal
JP2868204B2 (en) Equipment for producing lithium tetraborate single crystal
JP2878794B2 (en) Single crystal pulling device
JPH0364478B2 (en)
JP2705832B2 (en) Single crystal pulling device
JP7308715B2 (en) Single crystal growth device
JPH06135800A (en) Production of single crystal
JP2000247780A (en) Single crystal puller
JPH11189487A (en) Production apparatus for oxide single crystal
JPH05208891A (en) Single crystal growing apparatus
JP2713986B2 (en) Oxide single crystal manufacturing equipment
JP4276497B2 (en) Single crystal manufacturing method and apparatus
JPS58181792A (en) Apparatus for pulling up single crystal silicon
JP4224019B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH03193694A (en) Crystal growing device
JP2665778B2 (en) Semiconductor single crystal pulling equipment
JP2000247782A (en) Method and apparatus for producing single crystal
JP2023132269A (en) Apparatus and method for growing oxide single crystal
JPH05339094A (en) Apparatus for producing oxide single crystal
JPS6149279B2 (en)