JP2023132269A - Apparatus and method for growing oxide single crystal - Google Patents
Apparatus and method for growing oxide single crystal Download PDFInfo
- Publication number
- JP2023132269A JP2023132269A JP2022037493A JP2022037493A JP2023132269A JP 2023132269 A JP2023132269 A JP 2023132269A JP 2022037493 A JP2022037493 A JP 2022037493A JP 2022037493 A JP2022037493 A JP 2022037493A JP 2023132269 A JP2023132269 A JP 2023132269A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- oxide
- single crystal
- cylindrical metal
- metal heater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 133
- 238000000034 method Methods 0.000 title claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 82
- 239000002184 metal Substances 0.000 claims abstract description 82
- 239000002994 raw material Substances 0.000 claims abstract description 57
- 230000006698 induction Effects 0.000 claims abstract description 38
- 239000000919 ceramic Substances 0.000 claims description 22
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 claims description 21
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- 239000002178 crystalline material Substances 0.000 claims description 10
- 229910052741 iridium Inorganic materials 0.000 claims description 8
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 239000010948 rhodium Substances 0.000 claims description 6
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 claims description 3
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 3
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 30
- 230000000694 effects Effects 0.000 abstract description 5
- 230000002265 prevention Effects 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 16
- 239000013256 coordination polymer Substances 0.000 description 14
- 229910000510 noble metal Inorganic materials 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- -1 etc. Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明は、引き上げ法によりタンタル酸リチウム等の酸化物単結晶を育成する育成装置と育成方法の改良に関する。 The present invention relates to improvements in a growth apparatus and method for growing oxide single crystals such as lithium tantalate by a pulling method.
酸化物単結晶の育成方法として、酸化物単結晶となる原料が充填された坩堝を高温に加熱して原料を熔融し、坩堝内の原料融液面に上方から種結晶を接触させた後、回転させながら上昇させることで種結晶と同一方位の酸化物単結晶を育成する引き上げ法(チョクラルスキー法とも称する)が広く利用されている。 As a method for growing an oxide single crystal, a crucible filled with raw materials to become an oxide single crystal is heated to a high temperature to melt the raw materials, and a seed crystal is brought into contact with the raw material melt surface in the crucible from above. A pulling method (also referred to as the Czochralski method) is widely used in which an oxide single crystal is grown in the same direction as the seed crystal by raising the crystal while rotating it.
引き上げ法による酸化物単結晶の育成装置においては、図7に示すように、坩堝100の側壁周囲に高周波誘導コイル101が配置されており、当該高周波誘導コイル101に高周波電流を流すことによって坩堝100に渦電流が生じ、これにより坩堝100が発熱して原料が熔融する。また、引き上げが進むにつれて酸化物単結晶の上部はシード棒(結晶引き上げ軸)102を伝わって冷却されるが、発熱体が坩堝100のみである場合、育成中における単結晶内の温度分布が大きくなるため、金属製のリング状リフレクタ103が坩堝100の開放端部に配置され、かつ、金属製のアフターヒータ104が坩堝100の上端部に配置されている。尚、図7中、符号105は種結晶、符号106は原料融液、符号107と符号108は断熱材、符号109はCP坩堝(多孔質アルミナ坩堝)、符号110は断熱性坩堝台をそれぞれ示す。
In the apparatus for growing an oxide single crystal using the pulling method, as shown in FIG. An eddy current is generated in the
ところで、近年、酸化物単結晶、特にタンタル酸リチウムは表面弾性波デバイス材料として市場が拡大しており、生産量の確保のため単結晶の引き上げ長さや径が次第に大きくなっている。この大型化に伴い、結晶育成に使用する坩堝は大型化している。 Incidentally, in recent years, the market for oxide single crystals, particularly lithium tantalate, as a surface acoustic wave device material has been expanding, and the pulled length and diameter of single crystals are gradually increasing in order to secure production volume. Along with this increase in size, crucibles used for crystal growth are also becoming larger.
また、坩堝は、高周波電流を流すため導電性であることを要し、更に、結晶原料を熔融するため高温に耐えられる高融点かつ酸化性雰囲気で劣化しない材料を用いる必要があり、結晶育成に使用する坩堝は、イリジウム、白金、ロジウム等の貴金属やその合金で作られることが多い。 In addition, the crucible must be conductive to allow high-frequency current to flow through it, and in order to melt the crystal raw material, it must be made of a material with a high melting point that can withstand high temperatures and that will not deteriorate in an oxidizing atmosphere. The crucible used is often made of noble metals such as iridium, platinum, rhodium, etc., or alloys thereof.
しかし、貴金属坩堝を用いて単結晶の育成を行うと、坩堝が変形するという問題があった。これは、図8(A)に示す円筒形の貴金属坩堝100が原料熔融時に図8(B)に示すように膨張し、冷却すると原料融液106の固化した部分が伸びて図8(C)に示すように変形するためで、貴金属坩堝と酸化物融液の膨張率が異なることに起因する。
However, when a single crystal is grown using a noble metal crucible, there is a problem in that the crucible is deformed. This is because the cylindrical
そこで、特許文献1においては、坩堝と同材質の貴金属にジルコニウム酸化物等が添加された材料から成る強化貴金属板を坩堝本体の外周部に密着させて補強した貴金属坩堝が提案され、特許文献2においては、坩堝周囲をアルミナ等の円筒成形断熱材で覆い、坩堝の変形を抑制した育成装置が提案されている。更に、特許文献3においては、坩堝側壁部の外周面にリング状フレームを嵌め込んで変形を防止した単結晶育成用坩堝が提案され、特許文献4においては、坩堝底面側の板厚を側面方向の板厚よりも薄くすることで底面側に変形を逃がす構造にしたイリジウム坩堝が提案されている。
Therefore, in
しかし、特許文献1~4で提案された何れの対策を講じても坩堝の変形を防止することが難しく、特に、大型酸化物単結晶の育成では坩堝の変形量が大きくなるため、より効果的な対策が求められていた。
However, even if any of the measures proposed in
原料融液の貯留保持手段として貴金属坩堝を利用するかぎり変形は抑えられないため、貴金属坩堝に代わる原料融液の貯留保持手段が必要となる。 As long as the noble metal crucible is used as a storage and holding means for the raw material melt, deformation cannot be suppressed, so a means for storing and holding the raw material melt in place of the noble metal crucible is required.
本発明はこのような問題点に着目してなされたもので、その課題とするところは、貴金属坩堝に代わる原料融液の貯留保持手段として原料融液と同材質の酸化物坩堝を用いた酸化物単結晶の育成装置と育成方法を提供することにある。 The present invention has been made in view of these problems, and its object is to develop an oxidation method using an oxide crucible made of the same material as the raw material melt as a storage and holding means for the raw material melt in place of a precious metal crucible. An object of the present invention is to provide a growing device and method for growing single crystals.
すなわち、本発明に係る第1の発明は、
引上げ法により酸化物単結晶を育成する装置において、
上記結晶材料で構成されかつ原料融液を貯留保持可能な酸化物坩堝と、
上記酸化物坩堝の側壁周囲に設けられる高周波誘導コイルと、
上記酸化物坩堝内に組み込まれ、上端部が開口し下端部が閉止された円筒形状を有し、かつ、酸化物坩堝上方に設けられた固定手段により上記上端部が固定されかつ下端部が酸化物坩堝の内側底面から上方へ離れて配置されると共に、上記高周波誘導コイルにより誘導加熱される円筒状金属ヒータを備え、
かつ、上記高周波誘導コイルの下端部が上記円筒状金属ヒータの下端部より下側に位置していることを特徴とする。
That is, the first invention according to the present invention is
In an apparatus for growing oxide single crystals by the pulling method,
an oxide crucible made of the crystalline material and capable of storing and holding a raw material melt;
a high frequency induction coil provided around the side wall of the oxide crucible;
It is built into the oxide crucible and has a cylindrical shape with an open upper end and a closed lower end, and the upper end is fixed by a fixing means provided above the oxide crucible and the lower end is oxidized. a cylindrical metal heater arranged upwardly away from the inner bottom surface of the crucible and heated by induction by the high-frequency induction coil;
Further, the lower end of the high frequency induction coil is located below the lower end of the cylindrical metal heater.
また、本発明に係る第2の発明は、
第1の発明に記載の酸化物単結晶の育成装置において、
上記酸化物単結晶が、ニオブ酸リチウム単結晶、タンタル酸リチウム単結晶、イットリウムアルミニウムガーネット単結晶のいずれかであることを特徴とし、
第3の発明は、
第1の発明または第2の発明に記載の酸化物単結晶の育成装置において、
上記円筒状金属ヒータが、白金、イリジウム、ロジウムのいずれか、または、これらの合金で構成されることを特徴とし、
第4の発明は、
第1の発明~第3の発明のいずれかに記載の酸化物単結晶の育成装置において、
上記酸化物坩堝の外側底面を覆うセラミック容器、または、酸化物坩堝の外側底面と側壁周囲を覆うセラミック坩堝を備えることを特徴とする。
Moreover, the second invention according to the present invention is
In the oxide single crystal growth apparatus according to the first invention,
The oxide single crystal is any one of a lithium niobate single crystal, a lithium tantalate single crystal, and a yttrium aluminum garnet single crystal,
The third invention is
In the oxide single crystal growth apparatus according to the first invention or the second invention,
The cylindrical metal heater is made of platinum, iridium, rhodium, or an alloy thereof,
The fourth invention is
In the oxide single crystal growth apparatus according to any one of the first to third inventions,
It is characterized by comprising a ceramic container that covers the outer bottom surface of the oxide crucible, or a ceramic crucible that covers the outer bottom surface and side walls of the oxide crucible.
次に、本発明に係る第5の発明は、
第1の発明に記載の育成装置を用いて酸化物単結晶を育成する方法において、
円筒状金属ヒータが組み込まれた酸化物坩堝内に結晶原料を投入し、かつ、高周波誘導コイルにより円筒状金属ヒータを誘導加熱して円筒状金属ヒータの内側に存在する結晶原料と円筒状金属ヒータの外側に存在する結晶原料を熔融させると共に、円筒状金属ヒータ内の原料融液面に種結晶を接触させて引き上げ法により酸化物単結晶を育成することを特徴とするものである。
Next, the fifth invention according to the present invention is:
In the method of growing an oxide single crystal using the growth apparatus according to the first invention,
A crystal raw material is put into an oxide crucible with a built-in cylindrical metal heater, and the cylindrical metal heater is heated by induction using a high-frequency induction coil to separate the crystal raw material existing inside the cylindrical metal heater and the cylindrical metal heater. This method is characterized by melting the crystal raw material existing outside the cylindrical metal heater, and growing an oxide single crystal by a pulling method by bringing a seed crystal into contact with the surface of the raw material melt inside a cylindrical metal heater.
本発明に係る酸化物単結晶の育成装置によれば、
原料融液の貯留保持手段として原料融液と同材質の酸化物坩堝が適用されるため坩堝の変形を抑制することができ、かつ、高周波誘導コイルの下端部が円筒状金属ヒータの下端部より下側に位置していることから円筒状金属ヒータの下端部も誘導加熱され、これにより酸化物単結晶の育成時、円筒状金属ヒータの内側に存在する原料融液と円筒状金属ヒータの外側に存在する原料融液により円筒状金属ヒータが挟まれた状態になるため円筒状金属ヒータの熱変形も抑制することができる。
According to the oxide single crystal growth apparatus according to the present invention,
Since an oxide crucible made of the same material as the raw material melt is used as a storage and holding means for the raw material melt, deformation of the crucible can be suppressed, and the lower end of the high frequency induction coil is closer to the lower end of the cylindrical metal heater. Since it is located on the lower side, the lower end of the cylindrical metal heater is also heated by induction, so that during the growth of the oxide single crystal, the raw material melt existing inside the cylindrical metal heater and the outside of the cylindrical metal heater are heated. Since the cylindrical metal heater is sandwiched between the raw material melts present in the cylindrical metal heater, thermal deformation of the cylindrical metal heater can also be suppressed.
従って、結晶育成を繰り返し行っても育成条件の変化を防止することが可能になるため、同品質の酸化物単結晶を繰り返し安定して育成することができる効果を有する。 Therefore, even if crystal growth is repeated, it is possible to prevent changes in the growth conditions, which has the effect of repeatedly and stably growing oxide single crystals of the same quality.
以下、本発明の実施形態について図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail using the drawings.
1.従来の育成装置と育成方法
(1)従来の育成装置とこの装置を用いた育成方法
従来の育成装置として、上述したように、チャンバ200(図7参照)内に、CP坩堝(多孔質アルミナ坩堝)109と、坩堝100と、断熱性坩堝台110と、リング状リフレクタ103と、アフターヒータ104と、断熱材107、108と、シード棒(結晶引き上げ軸)102と、高周波誘導コイル101を備える装置が知られている。そして、高温の結晶育成に使用される坩堝100としては、タングステンやタンタルのような高融点金属坩堝、白金、ロジウムやイリジウム等の貴金属坩堝、アルミナやマグネシア、カーボンやPBN(Pyrolytic Boron Nitride)のような非金属性坩堝が知られている。
1. Conventional growth device and growth method (1) Conventional growth device and growth method using this device As described above, the conventional growth device includes a CP crucible (porous alumina crucible) in the chamber 200 (see FIG. 7). ) 109, a
ところで、ニオブ酸リチウム(LiNbO3:以下、LNと略称する)、タンタル酸リチウム(LiTaO3:以下、LTと略称する)、イットリウムアルミニウムガーネット(Y3Al5O12:以下、YAGと略称する)等の酸化物単結晶を育成する場合、酸素を含んだ育成雰囲気にするため、酸化され易いタングステン、タンタル、カーボンは使用できない。同様に、アルミナ、マグネシアは酸化物融液と反応するため使用することができず、また、PBNは高価でかつ大型坩堝の作成が難しいという問題がある。 By the way, lithium niobate (LiNbO 3 : hereinafter abbreviated as LN), lithium tantalate (LiTaO 3 : hereinafter abbreviated as LT), yttrium aluminum garnet (Y 3 Al 5 O 12 : hereinafter abbreviated as YAG) When growing oxide single crystals such as oxides, the growth atmosphere contains oxygen, so tungsten, tantalum, and carbon, which are easily oxidized, cannot be used. Similarly, alumina and magnesia cannot be used because they react with the oxide melt, and PBN is expensive and difficult to prepare in large crucibles.
このため、酸化物単結晶を育成する場合、酸化されず、割れて原料融液が流出することのない、白金、ロジウム、イリジウム等の貴金属坩堝が使用されている。 For this reason, when growing oxide single crystals, crucibles of noble metals such as platinum, rhodium, and iridium are used, which are not oxidized and do not crack and cause the raw material melt to flow out.
(2)従来の課題
しかし、貴金属坩堝は、図8(A)~(C)に示すように原料熔融時に熱膨張し、原料融液の残渣が固化するときに酸化物と貴金属で熱膨張率が異なるため変形する。この変形に起因して、高周波誘導加熱の場合、発熱状態が変わるため育成条件が変化し、坩堝の変形が進むと単結晶が得られなくなる課題が存在した。
(2) Conventional issues However, as shown in Figures 8 (A) to (C), noble metal crucibles thermally expand when raw materials are melted, and when the residue of the raw material melt solidifies, the thermal expansion coefficient of the oxide and precious metal increases. are deformed because they are different. Due to this deformation, in the case of high-frequency induction heating, the heat generation state changes, so the growth conditions change, and as the crucible deforms, a single crystal cannot be obtained.
2.本発明の育成装置と育成方法
引き上げ法(チョクラルスキー法)を用いる本発明の育成装置は、大気中または酸素を含んだ不活性ガス雰囲気中で育成されるLN、LT、YAG等の酸化物単結晶の製造に用いる装置である。チョクラルスキー法は、ある結晶方位に従って切り出された種結晶と呼ばれる、通常、棒状に加工された単結晶先端を、同一組成の原料融液に浸潤し、回転させながら徐々に引上げることによって種結晶の方位と同一の単結晶を育成する方法である。
2. Growth apparatus and growth method of the present invention The growth apparatus of the present invention using the pulling method (Czochralski method) is capable of growing oxides such as LN, LT, and YAG in the air or in an inert gas atmosphere containing oxygen. This is a device used to manufacture single crystals. In the Czochralski method, the tip of a single crystal, called a seed crystal, cut out along a certain crystal orientation and usually processed into a rod shape, is soaked in a raw material melt of the same composition and gradually pulled up while rotating. This is a method of growing a single crystal with the same crystal orientation.
本発明者は、従来の課題を解決するため、変形する貴金属坩堝に代わる原料融液の貯留保持手段として、原料融液と同材質の酸化物坩堝を用いた酸化物単結晶の育成装置と育成方法を見出した。 In order to solve the conventional problems, the present inventor developed an oxide single crystal growth device and a growth device using an oxide crucible made of the same material as the raw material melt as a storage and holding means for the raw material melt in place of the deformable noble metal crucible. I found a way.
すなわち、本発明に係る育成装置は、図1に示すように、
酸化物結晶材料で構成されかつ原料融液10を貯留保持可能な酸化物坩堝1と、
酸化物坩堝1の側壁周囲に設けられる高周波誘導コイル2と、
酸化物坩堝1内に組み込まれ、上端部3bが開口し下端部3aが閉止された円筒形状を有し、かつ、酸化物坩堝1上方に設けられた固定手段(図示せず)により上端部3bが固定されかつ下端部3aが酸化物坩堝1の内側底面1aから上方へ離れて配置されると共に、上記高周波誘導コイル2により誘導加熱される円筒状金属ヒータ3を備え、かつ、
高周波誘導コイル2の下端部2aが円筒状金属ヒータ3の下端部3aより下側に位置していることを特徴とするものである。
That is, the growing device according to the present invention, as shown in FIG.
An
a high
It is built into the
The
(1)第一実施形態に係る育成装置とこの装置を用いた育成方法
(1-1)第一実施形態に係る育成装置
第一実施形態に係る育成装置は、図3に示すように、底面側が支持台11で固定されかつ上記高周波誘導コイル2を除く本発明に係る育成装置(酸化物坩堝1と円筒状金属ヒータ3を備える)が収容されると共に上方側にシード棒(結晶引き上げ軸)20用の開口12を有する断熱性外筒13と、この断熱性外筒13内の略中央部に付設されかつ円筒状金属ヒータ3の上端部3bを保持するヒータ固定用棒材14(図2の固定手段参照)と、ヒータ固定用棒材14で保持された円筒状金属ヒータ3の上端部3bに載置されたリング状リフレクタ15と、このリング状リフレクタ15上に載置されたアフターヒータ16と、上記シード棒(結晶引き上げ軸)20の下端側に取り付けられた棒状の種結晶21とで主要部が構成されている。尚、図3中、符号4は酸化物坩堝1の外側底面1bを覆うセラミック容器を示す。
(1) Growing device according to the first embodiment and growing method using this device (1-1) Growing device according to the first embodiment The growing device according to the first embodiment has a bottom surface as shown in FIG. The side is fixed with a
(1-2)第一実施形態に係る育成方法
円筒状金属ヒータ3が組み込まれた酸化物坩堝1内に結晶原料を投入し、かつ、高周波誘導コイル2により円筒状金属ヒータ3を誘導加熱して円筒状金属ヒータ3の内側に存在する結晶原料と円筒状金属ヒータ3の外側に存在する結晶原料を熔融させる。
(1-2) Growth method according to the first embodiment A crystal raw material is introduced into an
次いで、円筒状金属ヒータ3内の原料融液10面に種結晶21を接触させた後、シード棒(結晶引き上げ軸)20を回転させながら上昇させて酸化物単結晶30を育成する。
Next, after bringing the
(1-3)第一実施形態に係る育成方法の効果
第一実施形態に係る育成方法によれば、原料融液の貯留保持手段として原料融液と同材質の酸化物坩堝1が適用されるため坩堝の変形を抑制することができ、かつ、高周波誘導コイル2の下端部2aが円筒状金属ヒータ3の下端部3aより下側に位置していることから円筒状金属ヒータ3の下端部3aも誘導加熱され、これにより酸化物単結晶の育成時、円筒状金属ヒータ3の内側に存在する原料融液10と円筒状金属ヒータ3の外側に存在する原料融液10により円筒状金属ヒータ3が挟まれた状態になるため円筒状金属ヒータ3の熱変形も抑制することができる。
(1-3) Effects of the growth method according to the first embodiment According to the growth method according to the first embodiment, the
従って、結晶育成を繰り返し行っても育成条件の変化を防止することが可能になるため、同品質の酸化物単結晶を繰り返し安定して育成することができる効果を有している。 Therefore, even if crystal growth is repeated, it is possible to prevent changes in the growth conditions, which has the effect of repeatedly and stably growing oxide single crystals of the same quality.
(2)第二実施形態に係る育成装置とこの育成装置の製造法
(2-1)第二実施形態に係る育成装置
第二実施形態に係る育成装置は、図6に示すように、底面側が支持台11で固定されかつ高周波誘導コイル2を除く本発明に係る育成装置(酸化物坩堝1と円筒状金属ヒータ3を備える)が収容されると共に上方側に図示外のシード棒(結晶引き上げ軸)用の開口12を有する断熱性外筒13と、この断熱性外筒13内の略中央部に付設されかつ円筒状金属ヒータ3の上端部3bを保持するヒータ固定用棒材14と、ヒータ固定用棒材14で保持された円筒状金属ヒータ3の上端部3bに載置されたリング状リフレクタ15と、このリング状リフレクタ15上に載置されたアフターヒータ16と、図示外の上記シード棒(結晶引き上げ軸)の下端側に取り付けられた棒状の種結晶(図示せず)とで主要部が構成されている。尚、図6中、符号40は酸化物坩堝1の外側底面1bと側壁周囲を覆うセラミック容器(CP坩堝)を示す。
(2) Growing device according to second embodiment and manufacturing method of this growing device (2-1) Growing device according to second embodiment As shown in FIG. 6, the growing device according to the second embodiment has a bottom side. The growth apparatus (comprising an
そして、この育成装置を用いて第一実施形態に係る育成方法と同様に酸化物単結晶を育成することができ、かつ、第一実施形態に係る育成方法と同様に同品質の酸化物単結晶を繰り返し安定して育成できる効果を有する。 Using this growth apparatus, an oxide single crystal can be grown in the same manner as in the growth method according to the first embodiment, and the oxide single crystal has the same quality as in the growth method in the first embodiment. It has the effect of being able to grow repeatedly and stably.
(2-2)第二実施形態に係る育成装置の製造法
第二実施形態に係る育成装置は、例えば、以下のようにして製造することができる。
(2-2) Method of manufacturing the growth device according to the second embodiment The growth device according to the second embodiment can be manufactured, for example, as follows.
まず、図4に示すように断熱性外筒13内に組み込まれたセラミック坩堝(CP坩堝)40内に、その上方側空間部41を残して結晶材料10aを投入する。尚、結晶材料10aとしては結晶材料粉あるいは結晶材料塊が例示される。
First, as shown in FIG. 4, a
次いで、セラミック坩堝(CP坩堝)40の上方側空間部41に上端部3bが開口し下端部3aが閉止された円筒状金属ヒータ3を組み込み、かつ、断熱性外筒13内の略中央部に付設されたヒータ固定用棒材14(図2の固定手段参照)により円筒状金属ヒータ3の上端部3bを固定する。
Next, a
そして、図5に示すように円筒状金属ヒータ3が組み込まれたセラミック坩堝(CP坩堝)40の上方側空間部41に結晶材料10aを投入し、円筒状金属ヒータ3の内部とセラミック坩堝(CP坩堝)40の上方側空間部41に結晶材料10aを充填する。
Then, as shown in FIG. 5, the
次いで、図6に示すようにヒータ固定用棒材14で保持された円筒状金属ヒータ3の上端部3bにリング状リフレクタ15を載置し、かつ、リング状リフレクタ15上にアフターヒータ16を載置する。
Next, as shown in FIG. 6, a ring-shaped
そして、セラミック坩堝(CP坩堝)40の側壁周囲に設けられた高周波誘導コイル2により円筒状金属ヒータ3を誘導加熱し、円筒状金属ヒータ3内の結晶材料10aおよび円筒状金属ヒータ3側壁近傍と下端部3a近傍の結晶材料10aを熔融させて原料融液10とし、かつ、円筒状金属ヒータ3側壁から離れた部位と下端部3aから離れた部位の結晶材料10a間に原料融液10を流入させて連続した酸化物層1cを形成し、該酸化物層1cを内表面に有しかつ原料融液10を貯留保持可能な酸化物坩堝1を形成して第二実施形態に係る育成装置を製造することができる。
Then, the
尚、第一実施形態に係る育成装置においては、図3に示すように酸化物坩堝1の外側底面1bを覆うセラミック容器4が使用され、上記セラミック坩堝(CP坩堝)40を用いた製造法により育成装置を製造することができない。このような場合、結晶材料粉あるいは結晶材料塊を用いて図3に示すような酸化物坩堝の形状に加圧成形し、該成形体の底面側に上記セラミック容器4を組み込んだ構造体を上記断熱性外筒13内に収容した後、上記製造法を応用して第一実施形態に係る育成装置を製造することは可能である。このとき、加圧成形される坩堝の壁厚を大きく設定しておき、円筒状金属ヒータ3を誘導加熱した際に壁全体が熔融されないようにすることを要する。
In addition, in the growth apparatus according to the first embodiment, as shown in FIG. 3, a
(3)酸化物坩堝を構成する結晶材料
上記酸化物層1cを内表面に有しかつ結晶材料で構成される酸化物坩堝1について、坩堝全体が一つの結晶で構成される必要はない。焼結体や多結晶体で坩堝全体が構成されることが好ましいが一部粉末の状態であってもよい。尚、酸化物坩堝の一部が粉末状態である場合、粉末を保持する上述のセラミック容器を設けることが望ましい。尚、酸化物坩堝1の酸化物層1cから離れている結晶材料の未熔融部分は、図7に示した従来の育成装置における断熱材108や断熱性坩堝台110と同様に機能する。
(3) Crystal material constituting the oxide crucible Regarding the
また、酸化物坩堝1の外側底面1bを覆う上記セラミック容器、または、酸化物坩堝1の外側底面1bと側壁周囲を覆うセラミック坩堝を構成する材料としては、アルミナやジルコニア、マグネシア、カルシア等の焼結体耐火物が好ましい。
The ceramic container that covers the outer
(4)金属ヒータ
上端部が開口し下端部が閉止された金属ヒータの形状は高周波誘導加熱が可能であれば任意であるが、チョクラルスキー法で良質な結晶を育成する場合、原料融液がシード(種結晶)に対し回転対称性を持つことが望ましい。このため、金属ヒータも回転対称の形状を持つことが好ましく円筒状であることを要する。
(4) Metal heater The shape of the metal heater, which has an open upper end and a closed lower end, can be any shape as long as high-frequency induction heating is possible, but when growing high-quality crystals using the Czochralski method, It is desirable that the crystal have rotational symmetry with respect to the seed (seed crystal). For this reason, it is preferable that the metal heater also have a rotationally symmetrical shape, and it is required that the metal heater has a cylindrical shape.
また、金属ヒータは、酸素を含む雰囲気で酸化されず、割れない高周波加熱が可能な材料で構成することが好ましく、具体的には、白金、イリジウム、ロジウムの単体またはこれらの合金で構成することが望ましい。 In addition, the metal heater is preferably made of a material that can be subjected to high-frequency heating without being oxidized or cracked in an oxygen-containing atmosphere. Specifically, it is preferably made of platinum, iridium, rhodium alone or an alloy thereof. is desirable.
また、金属ヒータの上端部を固定する固定手段としては、図3に示す断熱性外筒13内の略中央部に付設されたヒータ固定用棒材14(図2の固定手段参照)が例示され、金属ヒータの上端部を棒材14に通すことで固定され、ヒータ固定用棒材14の本数は2本から6本程度が好ましい。
Further, as a fixing means for fixing the upper end of the metal heater, a heater fixing rod 14 (see fixing means in FIG. 2) attached to the approximate center of the heat insulating
また、金属ヒータ上端部に載置されるリング状リフレクタ、および、リング状リフレクタ上に載置されたアフターヒータの材料は、金属ヒータと同様の材料を用いることが好ましい。 Further, it is preferable that the same material as the metal heater be used for the ring-shaped reflector placed on the upper end of the metal heater and the after-heater placed on the ring-shaped reflector.
以下、本発明の実施例について比較例(従来例)を挙げて具体的に説明する。 Hereinafter, examples of the present invention will be specifically explained by citing comparative examples (conventional examples).
[実施例1]
1.実施例1に係る育成装置の製造
図4に示す断熱性外筒13内に組み込んだ内径270mm、内部高さ340mmのセラミック坩堝(CP坩堝)40内に、上方側空間部41を残して、タンタル酸リチウム粉末(結晶材料)10aを投入した。
[Example 1]
1. Manufacturing of the growth device according to Example 1
Lithium tantalate powder (crystalline material) 10a is placed in a ceramic crucible (CP crucible) 40 with an inner diameter of 270 mm and an inner height of 340 mm, which is incorporated into a heat insulating
次いで、セラミック坩堝(CP坩堝)40の上方側空間部41に、上端部3bが開口し下端部3aが閉止された内径170mm、高さ170mm、厚さ2mmのイリジウム製円筒状金属ヒータ3を組み込み、かつ、断熱性外筒13内の略中央部に付設したヒータ固定用棒材14により円筒状金属ヒータ3の上端部3bを固定した。
Next, in the
そして、図5に示すように円筒状金属ヒータ3が組み込まれたセラミック坩堝(CP坩堝)40の上方側空間部41にタンタル酸リチウム粉末(結晶材料)10aを投入し、円筒状金属ヒータ3の内部とセラミック坩堝(CP坩堝)40の上方側空間部41にタンタル酸リチウム粉末(結晶材料)10aを充填した。
As shown in FIG. The interior and the
次いで、図6に示すようにヒータ固定用棒材14で保持された円筒状金属ヒータ3の上端部3bにリング状リフレクタ15を載置し、かつ、リング状リフレクタ15上にアフターヒータ16を載置した。
Next, as shown in FIG. 6, a ring-shaped
そして、セラミック坩堝(CP坩堝)40の側壁周囲に設けられた高周波誘導コイル2により円筒状金属ヒータ3を誘導加熱し、円筒状金属ヒータ3内のタンタル酸リチウム粉末(結晶材料)10aおよび円筒状金属ヒータ3側壁近傍と下端部3a近傍のタンタル酸リチウム粉末(結晶材料)10aを熔融させて原料融液10とし、かつ、円筒状金属ヒータ3側壁から離れた部位と下端部3aから離れた部位のタンタル酸リチウム粉末(結晶材料)10a間に原料融液10を流入させて連続した酸化物層1cを形成し、該酸化物層1cを内表面に有しかつ原料融液10を貯留保持可能な酸化物坩堝1を形成して実施例1に係る育成装置を製造した。
Then, the
尚、タンタル酸リチウム粉末(結晶材料)10aを熔融させて酸化物層1cを形成する際、上記円筒状金属ヒータ3外側の融液量を増やすため、高周波誘導コイル2の投入パワーを以下の育成時より10%多く設定している。これによりタンタル酸リチウム粉末(結晶材料)10a間に原料融液が流入して連続した酸化物層1cが形成される。
When melting the lithium tantalate powder (crystalline material) 10a to form the
2.タンタル酸リチウム単結晶の育成
(1)次いで、上記断熱性外筒13の開口12(図6参照)から、先端に種結晶(図示せず)が取り付けられた図示外のシード棒(結晶引き上げ軸)を下して引き上げ法(チョクラルスキー法)により結晶育成を行い、径4インチで直胴長が約50mmのタンタル酸リチウム単結晶を育成することができた。
2. Growth of lithium tantalate single crystal (1) Next, a seed rod (not shown) with a seed crystal (not shown) attached to the tip (crystal pulling shaft ), and crystal growth was performed by the pulling method (Czochralski method), and a lithium tantalate single crystal with a diameter of 4 inches and a straight body length of about 50 mm could be grown.
(2)上記タンタル酸リチウム単結晶を育成した後、円筒状金属ヒータ3が組み込まれた酸化物坩堝1内にタンタル酸リチウム粉末(結晶原料)を投入し、かつ、高周波誘導コイル2により円筒状金属ヒータ3を誘導加熱して円筒状金属ヒータ3の内側に存在するタンタル酸リチウム粉末(結晶原料)と円筒状金属ヒータ3の外側に存在するタンタル酸リチウム粉末(結晶原料)を熔融させた。
(2) After growing the lithium tantalate single crystal, lithium tantalate powder (crystal raw material) is put into the
次いで、種結晶が取り付けられたシード棒(結晶引き上げ軸)を開口12から下して引き上げ法(チョクラルスキー法)により結晶育成を行い、上記同様、径4インチで直胴長が約50mmのタンタル酸リチウム単結晶を育成した。
Next, the seed rod (crystal pulling shaft) with the seed crystal attached was lowered from the
そして、同様の結晶育成を20回繰り返したところ、18回において同品質かつ径4インチで直胴長が約50mmのタンタル酸リチウム単結晶を育成することができた。 When the same crystal growth was repeated 20 times, it was possible to grow a lithium tantalate single crystal of the same quality, 4 inches in diameter, and about 50 mm in straight body length in 18 times.
[比較例(従来例)]
図7に示す従来例の育成装置を用い、かつ、イリジウム製で径170mm、高さ170mmの坩堝100を用いて引き上げ法(チョクラルスキー法)により径4インチで直胴長が約50mmのタンタル酸リチウム単結晶を育成した。
[Comparative example (conventional example)]
Tantalum with a diameter of 4 inches and a straight body length of about 50 mm is produced by the pulling method (Czochralski method) using the conventional growth apparatus shown in FIG. A lithium oxide single crystal was grown.
そして、実施例1と同様、結晶育成を20回繰り返したところ、同品質のタンタル酸リチウム単結晶が得られた回数は11回であり、13回以降は単結晶が得らなかった。 Then, as in Example 1, when crystal growth was repeated 20 times, a lithium tantalate single crystal of the same quality was obtained 11 times, and no single crystal was obtained after the 13th time.
13回目以降、上記坩堝100が大きく変形したためであった。
This was because the
本発明によれば、同品質の酸化物単結晶を繰り返し安定して育成できるため、表面弾性波デバイス材料として用いられるタンタル酸リチウム単結晶等酸化物単結晶の育成装置として利用される産業上の利用可能性を有している。 According to the present invention, oxide single crystals of the same quality can be repeatedly and stably grown. It has availability.
1 酸化物坩堝
1a 内側底面
1b 外側底面
2 高周波誘導コイル
2a 下端部
3 円筒状金属ヒータ
3a 下端部
3b 上端部
4 セラミック容器
10 原料融液
10a 結晶材料粉
11 支持台
12 開口
13 断熱性外筒
14 ヒータ固定用棒材
15 リング状リフレクタ
16 アフターヒータ
20 シード棒(結晶引き上げ軸)
21 種結晶
30 酸化物単結晶
40 セラミック坩堝
41 上方側空間部
100 坩堝
101 高周波誘導コイル
102 シード棒(結晶引き上げ軸)
103 リング状リフレクタ
104 アフターヒータ
105 種結晶
106 原料融液
107 断熱材
108 断熱材
109 CP坩堝(多孔質アルミナ坩堝)
110 断熱性坩堝台
1
21
103 Ring-shaped
110 Insulating crucible stand
Claims (5)
上記結晶材料で構成されかつ原料融液を貯留保持可能な酸化物坩堝と、
上記酸化物坩堝の側壁周囲に設けられる高周波誘導コイルと、
上記酸化物坩堝内に組み込まれ、上端部が開口し下端部が閉止された円筒形状を有し、かつ、酸化物坩堝上方に設けられた固定手段により上記上端部が固定されかつ下端部が酸化物坩堝の内側底面から上方へ離れて配置されると共に、上記高周波誘導コイルにより誘導加熱される円筒状金属ヒータを備え、
かつ、上記高周波誘導コイルの下端部が上記円筒状金属ヒータの下端部より下側に位置していることを特徴とする酸化物単結晶の育成装置。 In an apparatus for growing oxide single crystals by the pulling method,
an oxide crucible made of the crystalline material and capable of storing and holding a raw material melt;
a high frequency induction coil provided around the side wall of the oxide crucible;
It is built into the oxide crucible and has a cylindrical shape with an open upper end and a closed lower end, and the upper end is fixed by a fixing means provided above the oxide crucible and the lower end is oxidized. a cylindrical metal heater arranged upwardly away from the inner bottom surface of the crucible and heated by induction by the high-frequency induction coil;
An apparatus for growing an oxide single crystal, wherein the lower end of the high-frequency induction coil is located below the lower end of the cylindrical metal heater.
円筒状金属ヒータが組み込まれた酸化物坩堝内に結晶原料を投入し、かつ、高周波誘導コイルにより円筒状金属ヒータを誘導加熱して円筒状金属ヒータの内側に存在する結晶原料と円筒状金属ヒータの外側に存在する結晶原料を熔融させると共に、円筒状金属ヒータ内の原料融液面に種結晶を接触させて引き上げ法により酸化物単結晶を育成することを特徴とする酸化物単結晶の育成方法。 A method for growing an oxide single crystal using the growth apparatus according to claim 1,
A crystal raw material is put into an oxide crucible with a built-in cylindrical metal heater, and the cylindrical metal heater is heated by induction using a high-frequency induction coil to separate the crystal raw material existing inside the cylindrical metal heater and the cylindrical metal heater. Growth of an oxide single crystal characterized by melting the crystal raw material existing outside the cylindrical metal heater and growing the oxide single crystal by a pulling method by bringing a seed crystal into contact with the surface of the raw material melt inside a cylindrical metal heater. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022037493A JP2023132269A (en) | 2022-03-10 | 2022-03-10 | Apparatus and method for growing oxide single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022037493A JP2023132269A (en) | 2022-03-10 | 2022-03-10 | Apparatus and method for growing oxide single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023132269A true JP2023132269A (en) | 2023-09-22 |
Family
ID=88065882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022037493A Pending JP2023132269A (en) | 2022-03-10 | 2022-03-10 | Apparatus and method for growing oxide single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023132269A (en) |
-
2022
- 2022-03-10 JP JP2022037493A patent/JP2023132269A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6606638B2 (en) | Method and apparatus for growing Fe-Ga based alloy single crystal | |
JP6302192B2 (en) | Single crystal growth apparatus and method | |
WO2011062092A1 (en) | Single crystal pulling apparatus | |
CN108531990A (en) | Single-crystal manufacturing apparatus | |
KR100448923B1 (en) | Apparatus and method for producing a single crystal | |
JP2019147698A (en) | Apparatus and method for growing crystal | |
KR101842487B1 (en) | Glowing equipment and methods for lithium tantalate single crystal by crucible structure | |
JP2013060352A (en) | Crucible furnace | |
JP2023132269A (en) | Apparatus and method for growing oxide single crystal | |
CN107858753A (en) | The manufacture device of lithium tantalate and the manufacture method of lithium tantalate | |
JP2023132268A (en) | Apparatus and method for growing oxide single crystal | |
JP2023132267A (en) | Apparatus and method for growing oxide single crystal | |
JP2023132266A (en) | Apparatus and method for growing oxide single crystal | |
JP5359845B2 (en) | Single crystal growth equipment | |
JP2023147617A (en) | Method and apparatus for growing oxide single crystal | |
JP2023147618A (en) | Method and apparatus for growing oxide single crystal | |
JP2019167282A (en) | Crystal growth apparatus | |
JP6992488B2 (en) | Crucible for growing single crystals | |
JP2018203563A (en) | Production method of magnetostrictive material | |
JPH11189487A (en) | Production apparatus for oxide single crystal | |
JP2017193469A (en) | After-heater and sapphire single crystal production apparatus | |
JP7106978B2 (en) | CRYSTAL GROWING APPARATUS AND SINGLE CRYSTAL MANUFACTURING METHOD | |
JP7023458B2 (en) | Single crystal growth method | |
JP2000247782A (en) | Method and apparatus for producing single crystal | |
JP3832527B2 (en) | Single crystal manufacturing method |