JP2023132266A - Apparatus and method for growing oxide single crystal - Google Patents

Apparatus and method for growing oxide single crystal Download PDF

Info

Publication number
JP2023132266A
JP2023132266A JP2022037490A JP2022037490A JP2023132266A JP 2023132266 A JP2023132266 A JP 2023132266A JP 2022037490 A JP2022037490 A JP 2022037490A JP 2022037490 A JP2022037490 A JP 2022037490A JP 2023132266 A JP2023132266 A JP 2023132266A
Authority
JP
Japan
Prior art keywords
crucible
raw material
oxide
single crystal
cylindrical metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022037490A
Other languages
Japanese (ja)
Inventor
裕二 高塚
Yuji Takatsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2022037490A priority Critical patent/JP2023132266A/en
Publication of JP2023132266A publication Critical patent/JP2023132266A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide an apparatus and method for growing an oxide single crystal, using an oxide crucible formed of the same material as a raw material melt as storing and holding means of the raw material melt.SOLUTION: An apparatus for growing an oxide single crystal includes: an oxide crucible 1 constituted of an oxide crystal material and capable of storing and holding a raw material melt 10; a high frequency induction coil 2 provided around a side wall of the oxide crucible; a cylindrical metal heater 3 built in the oxide crucible, inductively heated by the coil and including an upper end part 3b held by fixing means above the oxide crucible and a lower end part 3a arranged to separate upward from an inner bottom surface 1a of the oxide crucible; and material supply means 51 for supplying a crystal raw material to a ring-shaped gap part 50 sandwiched between the inner wall surface of the oxide crucible and an outer wall surface of the heater. The lower end part 2a of the coil is arranged below from the lower end part 3a of the heater; and an oxide single crystal having the same quality and a long size can be repeatedly and stably grown by suppressing the deformations of the oxide crucible and heater and continuously supplying the crystal raw material.SELECTED DRAWING: Figure 1

Description

本発明は、引き上げ法によりタンタル酸リチウム等の酸化物単結晶を育成する育成装置と育成方法の改良に関する。 The present invention relates to improvements in a growth apparatus and method for growing oxide single crystals such as lithium tantalate by a pulling method.

酸化物単結晶の育成方法として、酸化物単結晶となる原料が充填された坩堝を高温に加熱して原料を熔融し、坩堝内の原料融液面に上方から種結晶を接触させた後、回転させながら上昇させることで種結晶と同一方位の酸化物単結晶を育成する引き上げ法(チョクラルスキー法とも称する)が広く利用されている。 As a method for growing an oxide single crystal, a crucible filled with raw materials to become an oxide single crystal is heated to a high temperature to melt the raw materials, and a seed crystal is brought into contact with the raw material melt surface in the crucible from above. A pulling method (also referred to as the Czochralski method) is widely used in which an oxide single crystal is grown in the same direction as the seed crystal by raising the crystal while rotating it.

引き上げ法による酸化物単結晶の育成装置においては、図11に示すように、坩堝100の側壁周囲に高周波誘導コイル101が配置されており、当該高周波誘導コイル101に高周波電流を流すことによって坩堝100に渦電流が生じ、これにより坩堝100が発熱して原料が熔融する。また、引き上げが進むにつれて酸化物単結晶の上部はシード棒(結晶引き上げ軸)102を伝わって冷却されるが、発熱体が坩堝100のみである場合、育成中における単結晶内の温度分布が大きくなるため、金属製のリング状リフレクタ103が坩堝100の開放端部に配置され、かつ、金属製のアフターヒータ104が坩堝100の上端部に配置されている。尚、図11中、符号105は種結晶、符号106は原料融液、符号107と符号108は断熱材、符号109はCP坩堝(多孔質アルミナ坩堝)、符号110は断熱性坩堝台をそれぞれ示す。 In the apparatus for growing oxide single crystals by the pulling method, as shown in FIG. An eddy current is generated in the crucible 100, which causes the crucible 100 to generate heat and melt the raw material. Additionally, as the pulling progresses, the upper part of the oxide single crystal is cooled down through the seed rod (crystal pulling shaft) 102, but if the only heating element is the crucible 100, the temperature distribution within the single crystal during growth is large. Therefore, a metal ring-shaped reflector 103 is placed at the open end of the crucible 100, and a metal after-heater 104 is placed at the upper end of the crucible 100. In FIG. 11, 105 is a seed crystal, 106 is a raw material melt, 107 and 108 are heat insulating materials, 109 is a CP crucible (porous alumina crucible), and 110 is a heat insulating crucible stand. .

近年、酸化物単結晶、特にタンタル酸リチウムは表面弾性波デバイス材料として市場が拡大しており、生産量の確保のため単結晶の引き上げ長さや径が次第に大きくなっている。この大型化に伴い、結晶育成に使用する坩堝は大型化している。 In recent years, the market for oxide single crystals, especially lithium tantalate, as a material for surface acoustic wave devices has expanded, and the pulled length and diameter of single crystals are gradually increasing to ensure production volume. Along with this increase in size, crucibles used for crystal growth are also becoming larger.

また、坩堝は、高周波電流を流すため導電性であることを要し、更に、結晶原料を熔融するため高温に耐えられる高融点かつ酸化性雰囲気で劣化しない材料を用いる必要があり、結晶育成に使用する坩堝は、イリジウム、白金、ロジウム等の貴金属やその合金で作られることが多い。 In addition, the crucible must be conductive to allow high-frequency current to flow through it, and in order to melt the crystal raw material, it must be made of a material with a high melting point that can withstand high temperatures and that will not deteriorate in an oxidizing atmosphere. The crucible used is often made of noble metals such as iridium, platinum, rhodium, etc., or alloys thereof.

しかし、貴金属坩堝を用いて単結晶の育成を行うと、坩堝が変形するという問題があった。これは、図12(A)に示す円筒形の貴金属坩堝100が原料熔融時に図12(B)に示すように膨張し、冷却すると原料融液106の固化した部分が伸びて図12(C)に示すように変形するためで、貴金属坩堝と酸化物融液の膨張率が異なることに起因する。 However, when a single crystal is grown using a noble metal crucible, there is a problem in that the crucible is deformed. This is because the cylindrical precious metal crucible 100 shown in FIG. 12(A) expands as shown in FIG. 12(B) when the raw material is melted, and when cooled, the solidified portion of the raw material melt 106 expands and becomes the shape shown in FIG. 12(C). This is because the noble metal crucible and the oxide melt have different expansion coefficients.

この貴金属坩堝の変形を防止するには、直胴部の長い結晶を育成して原料融液の固化回数を減らす方法が効果的である。しかし、直胴部の長い結晶を引き上げると、結晶育成に伴って坩堝内の融液面が低下するため原料融液が坩堝の底で固化してしまう問題があり、更に、坩堝が発熱するので坩堝壁からの輻射熱の影響により育成中の結晶に歪み、ねじれ等を生じさせる問題が存在する。 In order to prevent this deformation of the precious metal crucible, it is effective to grow crystals with long straight bodies to reduce the number of solidifications of the raw material melt. However, when a crystal with a long straight body is pulled up, the surface of the melt in the crucible decreases as the crystal grows, causing the problem that the raw material melt solidifies at the bottom of the crucible.Furthermore, the crucible generates heat. There is a problem in that the crystal being grown is distorted, twisted, etc. due to the influence of radiant heat from the crucible wall.

そこで、特許文献1においては、貴金属製の外側坩堝と、該外側坩堝内に配置されかつ底部において融液が連絡するようにした貴金属製の内側坩堝とで二重坩堝を構成し、結晶育成に伴って消費される原料を外側坩堝と内側坩堝との隙間に供給して内側坩堝内における融液面の低下を防止する単結晶の育成方法が提案され、また、特許文献2においては、貴金属製の内側坩堝を貴金属製の外側坩堝内に嵌め込む二重坩堝が提案されている。 Therefore, in Patent Document 1, a double crucible is configured with an outer crucible made of a noble metal and an inner crucible made of a noble metal placed in the outer crucible so that the melt communicates with the bottom, and this is used for crystal growth. A method for growing a single crystal has been proposed in which the raw material consumed by the process is supplied to the gap between an outer crucible and an inner crucible to prevent a drop in the melt surface in the inner crucible. A double crucible has been proposed in which an inner crucible is fitted into an outer crucible made of precious metal.

しかし、外側坩堝の側壁周囲に設けられた高周波誘導コイルによる高周波加熱法を用いて上記二重坩堝を加熱しようとすると、高周波電磁場は貴金属製の外側坩堝で遮断されるため、外側坩堝は加熱されるが内側坩堝は加熱されず、該内側坩堝の融液温度が低くなる問題が存在した。特に、大口径の結晶を育成する場合、外側坩堝における底部中央の発熱が弱いため融液が固化し易く、底部の融液が固化すると融液面変動や温度変化が起こって多結晶化し易くなる問題が存在した。更に、底部において融液が連絡するようにした二重坩堝においては、底部の融液が固化した場合、外側坩堝と内側坩堝との隙間に存在する融液が結晶育成を行う内側坩堝に移動できなくなる問題があった。 However, when attempting to heat the double crucible using a high-frequency heating method using a high-frequency induction coil installed around the side wall of the outer crucible, the outer crucible is heated because the high-frequency electromagnetic field is blocked by the outer crucible made of precious metal. However, there was a problem that the inner crucible was not heated and the temperature of the melt in the inner crucible became low. In particular, when growing large-diameter crystals, the melt tends to solidify because the heat generation at the center of the bottom of the outer crucible is weak, and when the melt at the bottom solidifies, melt surface fluctuations and temperature changes occur, making it easy to form polycrystals. A problem existed. Furthermore, in a double crucible in which the melt is in communication at the bottom, when the melt at the bottom solidifies, the melt existing in the gap between the outer crucible and the inner crucible cannot move to the inner crucible where crystal growth is performed. There was a problem that disappeared.

特開2000-344595号公報Japanese Patent Application Publication No. 2000-344595 特開2002-137985号公報Japanese Patent Application Publication No. 2002-137985

貴金属製の二重坩堝を使用し、高周波加熱法を用いた結晶育成がなされるかぎり、高周波電磁場が外側坩堝により遮断されて内側坩堝が加熱されないため、貴金属製の外側坩堝に代わる新たな外側坩堝を用いた育成装置が必要となる。 As long as crystal growth is performed using a high-frequency heating method using a double crucible made of precious metal, the high-frequency electromagnetic field is blocked by the outer crucible and the inner crucible is not heated, so a new outer crucible can replace the outer crucible made of precious metal. A cultivation device using this is required.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、貴金属製の外側坩堝に代えて原料融液と同材質の酸化物坩堝を用いた酸化物単結晶の育成装置と育成方法を提供することにある。 The present invention was made with attention to these problems, and its object is to produce an oxide single crystal using an oxide crucible made of the same material as the raw material melt instead of an outer crucible made of noble metal. The purpose is to provide a growing device and a growing method.

すなわち、本発明に係る第1の発明は、
引上げ法により酸化物単結晶を育成する装置において、
上記結晶材料で構成されかつ原料融液を貯留保持可能な酸化物坩堝と、
上記酸化物坩堝の側壁周囲に設けられる高周波誘導コイルと、
上記酸化物坩堝内に組み込まれ、上記高周波誘導コイルにより誘導加熱されると共に、酸化物坩堝上方に設けられた固定手段により上端部が保持されかつ下端部が酸化物坩堝の内側底面から上方へ離れて配置される円筒状金属ヒータと、
上記酸化物坩堝の内壁面と上記円筒状金属ヒータの外壁面とに挟まれたリング状隙間部に結晶原料を供給する原料供給手段を備え、
かつ、上記高周波誘導コイルの下端部が上記円筒状金属ヒータの下端部より下側に位置していることを特徴とする。
That is, the first invention according to the present invention is
In an apparatus for growing oxide single crystals by the pulling method,
an oxide crucible made of the crystalline material and capable of storing and holding a raw material melt;
a high frequency induction coil provided around the side wall of the oxide crucible;
It is installed in the oxide crucible and is heated by induction by the high-frequency induction coil, and the upper end is held by a fixing means provided above the oxide crucible, and the lower end is separated upward from the inner bottom surface of the oxide crucible. a cylindrical metal heater arranged in a
a raw material supply means for supplying a crystal raw material to a ring-shaped gap sandwiched between an inner wall surface of the oxide crucible and an outer wall surface of the cylindrical metal heater;
Further, the lower end of the high frequency induction coil is located below the lower end of the cylindrical metal heater.

また、本発明に係る第2の発明は、
第1の発明に記載の酸化物単結晶の育成装置において、
上記円筒状金属ヒータが、上端部が開口し下端部が閉止された円筒形状を有し、かつ、上記リング状隙間部の原料融液を円筒状金属ヒータ内に導入する開口が円筒状金属ヒータ側壁に設けられていることを特徴とし、
第3の発明は、
第1の発明または第2の発明に記載の酸化物単結晶の育成装置において、
上記原料供給手段が、下端部に原料供給口を有する耐熱性保持容器と該保持容器に収容された結晶原料とで構成され、かつ、上記保持容器の原料供給口がリング状隙間部の原料融液面と接するように配置されていることを特徴とし、
第4の発明は、
第1の発明~第3の発明のいずれかに記載の酸化物単結晶の育成装置において、
上記保持容器が、白金、イリジウム、ロジウム、タングステンのいずれか、または、これらの合金で構成されることを特徴とし、
第5の発明は、
第1の発明~第4の発明のいずれかに記載の酸化物単結晶の育成装置において、
上記酸化物単結晶が、ニオブ酸リチウム単結晶、タンタル酸リチウム単結晶、イットリウムアルミニウムガーネット単結晶のいずれかであることを特徴とし、
第6の発明は、
第1の発明~第5の発明のいずれかに記載の酸化物単結晶の育成装置において、
上記円筒状金属ヒータが、白金、イリジウム、ロジウムのいずれか、または、これらの合金で構成されることを特徴とし、
第7の発明は、
第1の発明~第6の発明のいずれかに記載の酸化物単結晶の育成装置において、
上記酸化物坩堝の外側底面を覆うセラミック容器、または、酸化物坩堝の外側底面と側壁周囲を覆うセラミック坩堝を備えることを特徴とする。
Moreover, the second invention according to the present invention is
In the oxide single crystal growth apparatus according to the first invention,
The cylindrical metal heater has a cylindrical shape with an open upper end and a closed lower end, and the opening for introducing the raw material melt into the cylindrical metal heater in the ring-shaped gap is a cylindrical metal heater. It is characterized by being provided on the side wall,
The third invention is
In the oxide single crystal growth apparatus according to the first invention or the second invention,
The raw material supply means is composed of a heat-resistant holding container having a raw material supply port at the lower end and a crystal raw material accommodated in the holding container, and the raw material supply port of the holding container is configured to melt the raw material in a ring-shaped gap. It is characterized by being placed in contact with the liquid surface,
The fourth invention is
In the oxide single crystal growth apparatus according to any one of the first to third inventions,
The holding container is characterized by being composed of platinum, iridium, rhodium, tungsten, or an alloy thereof,
The fifth invention is
In the oxide single crystal growth apparatus according to any one of the first to fourth inventions,
The oxide single crystal is any one of a lithium niobate single crystal, a lithium tantalate single crystal, and a yttrium aluminum garnet single crystal,
The sixth invention is
In the oxide single crystal growth apparatus according to any one of the first to fifth inventions,
The cylindrical metal heater is made of platinum, iridium, rhodium, or an alloy thereof,
The seventh invention is
In the oxide single crystal growth apparatus according to any one of the first to sixth inventions,
It is characterized by comprising a ceramic container that covers the outer bottom surface of the oxide crucible, or a ceramic crucible that covers the outer bottom surface and side walls of the oxide crucible.

次に、本発明に係る第8の発明は、
第1の発明に記載の育成装置を用いて酸化物単結晶を育成する方法において、
円筒状金属ヒータが組み込まれた酸化物坩堝内に結晶原料を投入し、高周波誘導コイルにより円筒状金属ヒータを誘導加熱して円筒状金属ヒータ内の結晶原料および上記リング状隙間部に存在する結晶原料を熔融させると共に、円筒状金属ヒータ内の原料融液面に種結晶を接触し、かつ、リング状隙間部の原料融液を円筒状金属ヒータ内に連続的に補給しながら引き上げ法により長尺の酸化物単結晶を育成することを特徴とするものである。
Next, the eighth invention according to the present invention is
In the method of growing an oxide single crystal using the growth apparatus according to the first invention,
A crystal raw material is put into an oxide crucible in which a cylindrical metal heater is incorporated, and the cylindrical metal heater is heated by induction using a high frequency induction coil to separate the crystal raw material in the cylindrical metal heater and the crystals present in the ring-shaped gap. While the raw material is melted, a seed crystal is brought into contact with the surface of the raw material melt in the cylindrical metal heater, and the raw material melt in the ring-shaped gap is continuously replenished into the cylindrical metal heater, and the material is lengthened by a pulling method. This method is characterized by growing oxide single crystals with a diameter of 100 cm.

本発明に係る酸化物単結晶の育成装置によれば、
二重坩堝の外側坩堝が酸化物坩堝で構成され、かつ、二重坩堝の内側坩堝が円筒状金属ヒータで構成されているため、上記酸化物坩堝(外側坩堝)により高周波電磁場が遮断されないことから、円筒状金属ヒータ(内側坩堝)を高周波加熱法により誘導加熱することが可能となる。
According to the oxide single crystal growth apparatus according to the present invention,
Since the outer crucible of the double crucible is composed of an oxide crucible and the inner crucible of the double crucible is composed of a cylindrical metal heater, the high frequency electromagnetic field is not blocked by the oxide crucible (outer crucible). , it becomes possible to induction-heat the cylindrical metal heater (inner crucible) by high-frequency heating.

また、原料融液の貯留保持手段として原料融液と同材質の酸化物坩堝が適用されるため坩堝の変形を抑制でき、かつ、酸化物単結晶の育成時、円筒状金属ヒータの内側に存在する原料融液と円筒状金属ヒータの外側に存在する原料融液により円筒状金属ヒータが挟まれた状態になるため円筒状金属ヒータの熱変形も抑制できることから、結晶育成を繰り返し行っても坩堝の変形に起因した育成条件の変化を防止することが可能となる。 In addition, since an oxide crucible made of the same material as the raw material melt is used as a means for storing and holding the raw material melt, deformation of the crucible can be suppressed, and when the oxide single crystal is grown, it is present inside the cylindrical metal heater. Since the cylindrical metal heater is sandwiched between the raw material melt existing on the outside of the cylindrical metal heater and the raw material melt existing on the outside of the cylindrical metal heater, thermal deformation of the cylindrical metal heater can also be suppressed. It becomes possible to prevent changes in growth conditions due to deformation of the .

更に、高周波誘導コイルの下端部が円筒状金属ヒータの下端部より下側に位置して円筒状金属ヒータの下端部も誘導加熱されるため、円筒状金属ヒータの外壁面と酸化物坩堝の内壁面とに挟まれたリング状隙間部に存在する原料融液を円筒状金属ヒータ内に補給することが可能となり、かつ、上記リング状隙間部には原料供給手段により結晶原料が継続して供給されるため原料融液の連続補給が可能となる。 Furthermore, since the lower end of the high-frequency induction coil is located below the lower end of the cylindrical metal heater and the lower end of the cylindrical metal heater is also induction heated, the outer wall surface of the cylindrical metal heater and the inside of the oxide crucible are heated. It becomes possible to replenish the raw material melt present in the ring-shaped gap between the wall surface and the cylindrical metal heater, and the crystal raw material is continuously supplied to the ring-shaped gap by the raw material supply means. This makes it possible to continuously replenish raw material melt.

従って、同品質かつ長寸の酸化物単結晶を繰り返し安定して育成できる効果を有する。 Therefore, it has the effect of repeatedly and stably growing oxide single crystals of the same quality and long size.

本発明に係る育成装置の構成説明図。FIG. 1 is an explanatory diagram of the configuration of a growing device according to the present invention. 本発明の変形例に係る育成装置の構成説明図。FIG. 3 is a configuration explanatory diagram of a growing device according to a modification of the present invention. 酸化物坩堝上方に設けられる固定手段の一例を示す説明図。FIG. 3 is an explanatory diagram showing an example of a fixing means provided above the oxide crucible. 第一実施形態に係る育成装置とこの装置を用いた育成方法の説明図。FIG. 1 is an explanatory diagram of a growing device according to a first embodiment and a growing method using this device. 第一実施形態に係る育成装置の製造工程を示す説明図。Explanatory diagram showing the manufacturing process of the growth device according to the first embodiment. 第一実施形態に係る育成装置の製造工程を示す説明図。Explanatory diagram showing the manufacturing process of the growth device according to the first embodiment. 第一実施形態に係る育成装置の製造工程を示す説明図。Explanatory diagram showing the manufacturing process of the growth device according to the first embodiment. 第二実施形態に係る育成装置の説明図。An explanatory diagram of a growing device according to a second embodiment. 第二実施形態に係る育成装置の製造工程を示す説明図。Explanatory diagram showing the manufacturing process of the growth device according to the second embodiment. 第二実施形態に係る育成装置の製造工程を示す説明図。Explanatory diagram showing the manufacturing process of the growth device according to the second embodiment. 原料融液の貯留保持手段として貴金属坩堝を利用する従来の育成装置を用いた育成方法の説明図。FIG. 2 is an explanatory diagram of a growth method using a conventional growth apparatus that uses a noble metal crucible as a storage and holding means for a raw material melt. 図12(A)は貴金属坩堝の断面図、図12(B)は投入された結晶原料の熔融時における貴金属坩堝の断面図、図12(C)は原料融液が固化することで変形した貴金属坩堝の断面図。FIG. 12(A) is a cross-sectional view of the noble metal crucible, FIG. 12(B) is a cross-sectional view of the noble metal crucible when the input crystal raw material is melted, and FIG. 12(C) is the precious metal deformed as the raw material melt solidifies. A cross-sectional view of a crucible.

以下、本発明の実施形態について図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail using the drawings.

1.従来の育成装置と育成方法
(1)従来の育成装置とこの装置を用いた育成方法
従来の育成装置として、上述したように、チャンバ200(図11参照)内に、CP坩堝(多孔質アルミナ坩堝)109と、坩堝100と、断熱性坩堝台110と、リング状リフレクタ103と、アフターヒータ104と、断熱材107、108と、シード棒(結晶引き上げ軸)102と、高周波誘導コイル101を備える装置が知られている。そして、高温の結晶育成に使用される坩堝100としては、タングステンやタンタルのような高融点金属坩堝、白金、ロジウムやイリジウム等の貴金属坩堝、アルミナやマグネシア、カーボンやPBN(Pyrolytic Boron Nitride)のような非金属性坩堝が知られている。
1. Conventional growth device and growth method (1) Conventional growth device and growth method using this device As described above, the conventional growth device includes a CP crucible (porous alumina crucible) in the chamber 200 (see FIG. 11). ) 109, a crucible 100, a heat-insulating crucible stand 110, a ring-shaped reflector 103, an after-heater 104, heat insulators 107 and 108, a seed rod (crystal pulling shaft) 102, and a high-frequency induction coil 101. It has been known. The crucible 100 used for high-temperature crystal growth is a high melting point metal crucible such as tungsten or tantalum, a noble metal crucible such as platinum, rhodium or iridium, or a crucible of alumina, magnesia, carbon or PBN (Pyrolytic Boron Nitride). Non-metallic crucibles are known.

ところで、ニオブ酸リチウム(LiNbO3:以下、LNと略称する)、タンタル酸リチウム(LiTaO3:以下、LTと略称する)、イットリウムアルミニウムガーネット(Y3Al512:以下、YAGと略称する)等の酸化物単結晶を育成する場合、酸素を含んだ育成雰囲気にするため、酸化され易いタングステン、タンタル、カーボンは使用できない。同様に、アルミナ、マグネシアは酸化物融液と反応するため使用することができず、また、PBNは高価でかつ大型坩堝の作成が難しいという問題がある。 By the way, lithium niobate (LiNbO 3 : hereinafter abbreviated as LN), lithium tantalate (LiTaO 3 : hereinafter abbreviated as LT), yttrium aluminum garnet (Y 3 Al 5 O 12 : hereinafter abbreviated as YAG) When growing oxide single crystals such as oxides, the growth atmosphere contains oxygen, so tungsten, tantalum, and carbon, which are easily oxidized, cannot be used. Similarly, alumina and magnesia cannot be used because they react with the oxide melt, and PBN is expensive and difficult to prepare in large crucibles.

このため、酸化物単結晶を育成する場合、酸化されず、割れて原料融液が流出することのない、白金、ロジウム、イリジウム等の貴金属坩堝が使用されている。 For this reason, when growing oxide single crystals, crucibles of noble metals such as platinum, rhodium, and iridium are used, which are not oxidized and do not crack and cause the raw material melt to flow out.

(2)従来の課題
しかし、貴金属坩堝は、図12(A)~(C)に示すように原料熔融時に熱膨張し、原料融液の残渣が固化するときに酸化物と貴金属で熱膨張率が異なるため変形する。この変形に起因して、高周波誘導加熱の場合、発熱状態が変わるため育成条件が変化し、坩堝の変形が進むと単結晶が得られなくなる課題が存在した。
(2) Conventional issues However, as shown in Figures 12 (A) to (C), noble metal crucibles thermally expand when raw materials are melted, and when the residue of the raw material melt solidifies, the thermal expansion coefficient of the oxide and precious metal increases. are deformed because they are different. Due to this deformation, in the case of high-frequency induction heating, the heat generation state changes, so the growth conditions change, and as the crucible deforms, a single crystal cannot be obtained.

更に、貴金属坩堝の上記変形を防止するため、貴金属製の二重坩堝を使用し、高周波加熱法を用いて直胴部の長い結晶を育成しようとすると、高周波電磁場が貴金属製の外側坩堝により遮断されて内側坩堝が加熱されない課題も存在した。 Furthermore, in order to prevent the above-mentioned deformation of the precious metal crucible, when trying to grow a crystal with a long straight body using a high-frequency heating method using a double crucible made of a precious metal, the high-frequency electromagnetic field is blocked by the outer crucible made of a precious metal. There was also the problem that the inner crucible was not heated.

2.本発明の育成装置と育成方法
引き上げ法(チョクラルスキー法)を用いる本発明の育成装置は、大気中または酸素を含んだ不活性ガス雰囲気中で育成されるLN、LT、YAG等の酸化物単結晶の製造に用いる装置である。チョクラルスキー法は、ある結晶方位に従って切り出された種結晶と呼ばれる、通常、棒状に加工された単結晶先端を、同一組成の原料融液に浸潤し、回転させながら徐々に引上げることによって種結晶の方位と同一の単結晶を育成する方法である。
2. Growth apparatus and growth method of the present invention The growth apparatus of the present invention using the pulling method (Czochralski method) is capable of growing oxides such as LN, LT, and YAG in the air or in an inert gas atmosphere containing oxygen. This is a device used to manufacture single crystals. In the Czochralski method, the tip of a single crystal, called a seed crystal, cut out along a certain crystal orientation and usually processed into a rod shape, is soaked in a raw material melt of the same composition and gradually pulled up while rotating. This is a method of growing a single crystal with the same crystal orientation.

本発明者は、従来の課題を解決するため、貴金属製の外側坩堝に代えて原料融液と同材質の酸化物坩堝を用いた酸化物単結晶の育成装置と育成方法を見出した。 In order to solve the conventional problems, the present inventors have discovered an oxide single crystal growth apparatus and method using an oxide crucible made of the same material as the raw material melt instead of the noble metal outer crucible.

すなわち、本発明に係る育成装置は、図1に示すように、
酸化物結晶材料で構成されかつ原料融液10を貯留保持可能な酸化物坩堝(外側坩堝に相当する)1と、
酸化物坩堝1の側壁周囲に設けられる高周波誘導コイル2と、
酸化物坩堝1内に組み込まれ、上記高周波誘導コイル2により誘導加熱されると共に、酸化物坩堝1上方に設けられた固定手段(図示せず)により上端部3bが保持されかつ下端部3aが酸化物坩堝1の内側底面1aから上方へ離れて配置される円筒状金属ヒータ(内側坩堝に相当する)3と、
酸化物坩堝1の内壁面と円筒状金属ヒータ3の外壁面とに挟まれたリング状隙間部50に結晶原料(結晶材料10a)を供給する原料供給手段51を備え、
かつ、高周波誘導コイル2の下端部2aが円筒状金属ヒータ3の下端部3aより下側に位置していることを特徴とするものである。
That is, the growing device according to the present invention, as shown in FIG.
An oxide crucible (corresponding to an outer crucible) 1 made of an oxide crystal material and capable of storing and holding a raw material melt 10;
a high frequency induction coil 2 provided around the side wall of the oxide crucible 1;
It is incorporated into the oxide crucible 1 and is heated by induction by the high-frequency induction coil 2, while the upper end 3b is held by fixing means (not shown) provided above the oxide crucible 1 and the lower end 3a is oxidized. a cylindrical metal heater 3 (corresponding to the inner crucible) arranged upwardly away from the inner bottom surface 1a of the crucible 1;
A raw material supply means 51 is provided for supplying a crystal raw material (crystal material 10a) to a ring-shaped gap 50 sandwiched between the inner wall surface of the oxide crucible 1 and the outer wall surface of the cylindrical metal heater 3,
Further, the lower end 2a of the high frequency induction coil 2 is located below the lower end 3a of the cylindrical metal heater 3.

尚、図1に示す育成装置の原料供給手段51は、下端部に原料供給口51bを有する耐熱性保持容器51aとこの保持容器51a内に収容された結晶原料(結晶材料10a)とで構成されており、保持容器51a内の結晶原料(結晶材料10a)をシリンダー(図示せず)等で押してリング状隙間部50の原料融液10面に落下供給するものである。 The raw material supply means 51 of the growth apparatus shown in FIG. 1 is composed of a heat-resistant holding container 51a having a raw material supply port 51b at the lower end, and a crystal raw material (crystal material 10a) accommodated in this holding container 51a. The crystal raw material (crystal material 10a) in the holding container 51a is pushed by a cylinder (not shown) or the like and is supplied to fall onto the surface of the raw material melt 10 in the ring-shaped gap 50.

次に、本発明の変形例に係る育成装置は、図2に示すように、原料供給手段51の取り付け形態が相違する点を除き図1に示した本発明の育成装置と略同一である。 Next, as shown in FIG. 2, a growth apparatus according to a modified example of the present invention is substantially the same as the growth apparatus of the present invention shown in FIG. 1, except that the attachment form of the raw material supply means 51 is different.

すなわち、変形例に係る育成装置の原料供給手段51は、図2に示すように、下端部に原料供給口51bを有する耐熱性保持容器51aとこの保持容器51a内に収容された結晶原料(結晶材料10a)とで構成され、保持容器51aの原料供給口51bがリング状隙間部50の原料融液10面と接するように配置されて、結晶原料(結晶材料10a)を原料融液10面で融解させながら供給するものである。 That is, as shown in FIG. 2, the raw material supply means 51 of the growth apparatus according to the modification includes a heat-resistant holding container 51a having a raw material supply port 51b at the lower end, and a crystal raw material (crystal) housed in the holding container 51a. The material 10a) is arranged so that the raw material supply port 51b of the holding container 51a is in contact with the raw material melt 10 side of the ring-shaped gap 50, and the crystal raw material (crystal material 10a) is supplied from the raw material melt 10 side. It is supplied while being melted.

そして、原料融液10面に結晶原料(結晶材料10a)を接触させる図2の方式は、図1の結晶原料(結晶材料10a)が原料融液10面に落下供給される方式に較べて原料供給時における衝撃が無いため、原料融液10面が変動することなく同一の温度環境で結晶育成を行える利点を有している。 The method shown in FIG. 2 in which the crystal raw material (crystal material 10a) is brought into contact with the raw material melt 10 surface is more effective than the method shown in FIG. Since there is no impact during supply, there is an advantage that crystal growth can be performed in the same temperature environment without fluctuation of the 10 surfaces of the raw material melt.

尚、結晶原料(結晶材料10a)としては結晶材料粉体、結晶材料粒体あるいは結晶材料塊体が例示される。 Incidentally, the crystal raw material (crystal material 10a) is exemplified by crystal material powder, crystal material grains, or crystal material lumps.

(1)第一実施形態に係る育成装置とこの装置を用いた育成方法
(1-1)第一実施形態に係る育成装置
第一実施形態に係る育成装置は、図4に示すように、底面側が支持台11で固定されかつ上記高周波誘導コイル2を除く本発明に係る育成装置(酸化物坩堝1と円筒状金属ヒータ3を備える)が収容されると共に上方側にシード棒(結晶引き上げ軸)20用の開口12を有する断熱性外筒13と、この断熱性外筒13内の略中央部に付設されかつ円筒状金属ヒータ3の上端部3bを保持するヒータ固定用棒材14(図3の固定手段参照)と、ヒータ固定用棒材14で保持された円筒状金属ヒータ3の上端部3bに載置されたリング状リフレクタ15と、このリング状リフレクタ15上に載置されたアフターヒータ16と、上記ヒータ固定用棒材14と断熱性外筒13とで形成される隙間部に嵌入配置された原料供給手段51と、上記シード棒(結晶引き上げ軸)20の下端側に取り付けられた棒状の種結晶21とで主要部が構成されている。
(1) Growing device according to the first embodiment and growing method using this device (1-1) Growing device according to the first embodiment The growing device according to the first embodiment has a bottom surface as shown in FIG. The side is fixed with a support stand 11, and the growth apparatus according to the present invention (comprising an oxide crucible 1 and a cylindrical metal heater 3) excluding the high-frequency induction coil 2 is accommodated, and a seed rod (crystal pulling shaft) is installed on the upper side. A heat insulating outer cylinder 13 having an opening 12 for a metal heater 20, and a heater fixing rod 14 (FIG. ), a ring-shaped reflector 15 placed on the upper end 3b of the cylindrical metal heater 3 held by the heater fixing bar 14, and an after-heater placed on the ring-shaped reflector 15. 16, a raw material supply means 51 fitted into the gap formed by the heater fixing rod 14 and the heat insulating outer cylinder 13, and a raw material supply means 51 attached to the lower end side of the seed rod (crystal pulling shaft) 20. The main part is constituted by a rod-shaped seed crystal 21.

尚、第一実施形態に係る育成装置において、上記酸化物坩堝1は二重坩堝の外側坩堝に相当し、円筒状金属ヒータ3は二重坩堝の内側坩堝に相当する。また、図4中、符号40は酸化物坩堝1の外側底面1bと側壁周囲を覆うセラミック容器(CP坩堝)を示す。 In the growth apparatus according to the first embodiment, the oxide crucible 1 corresponds to the outer crucible of the double crucible, and the cylindrical metal heater 3 corresponds to the inner crucible of the double crucible. Further, in FIG. 4, reference numeral 40 indicates a ceramic container (CP crucible) that covers the outer bottom surface 1b and side walls of the oxide crucible 1.

(1-2)第一実施形態に係る育成方法
円筒状金属ヒータ3が組み込まれた酸化物坩堝1内に結晶原料を投入し、高周波誘導コイル2により円筒状金属ヒータ3を誘導加熱して円筒状金属ヒータ3内の結晶原料および円筒状金属ヒータ3外壁面と酸化物坩堝1内壁面とに挟まれたリング状隙間部50に存在する結晶原料を熔融させる。
(1-2) Growth method according to the first embodiment A crystal raw material is introduced into an oxide crucible 1 in which a cylindrical metal heater 3 is incorporated, and the cylindrical metal heater 3 is heated by induction using a high frequency induction coil 2 to form a cylindrical material. The crystal raw material in the cylindrical metal heater 3 and the crystal raw material existing in the ring-shaped gap 50 sandwiched between the outer wall surface of the cylindrical metal heater 3 and the inner wall surface of the oxide crucible 1 are melted.

次いで、円筒状金属ヒータ3内の原料融液10面に種結晶21を接触させた後、シード棒(結晶引き上げ軸)20を回転させながら上昇させて酸化物単結晶30を育成する。 Next, after the seed crystal 21 is brought into contact with the surface of the raw material melt 10 in the cylindrical metal heater 3, the oxide single crystal 30 is grown by raising the seed rod (crystal pulling shaft) 20 while rotating.

(1-3)第一実施形態に係る育成方法の効果
第一実施形態に係る育成方法によれば、二重坩堝の外側坩堝が酸化物坩堝1で構成され、かつ、二重坩堝の内側坩堝が円筒状金属ヒータで構成されているため、酸化物坩堝(外側坩堝)1により高周波電磁場が遮断されないことから、円筒状金属ヒータ(内側坩堝)3を高周波加熱法により誘導加熱することが可能となる。
(1-3) Effects of the growth method according to the first embodiment According to the growth method according to the first embodiment, the outer crucible of the double crucible is composed of the oxide crucible 1, and the inner crucible of the double crucible Since it is composed of a cylindrical metal heater, the high frequency electromagnetic field is not blocked by the oxide crucible (outer crucible) 1, so it is possible to induction heat the cylindrical metal heater (inner crucible) 3 by the high frequency heating method. Become.

また、原料融液の貯留保持手段として原料融液と同材質の酸化物坩堝1が適用されるため坩堝の変形を抑制でき、かつ、酸化物単結晶の育成時、円筒状金属ヒータ3の内側に存在する原料融液10と円筒状金属ヒータ3の外側に存在する原料融液10により円筒状金属ヒータ3が挟まれた状態になるため円筒状金属ヒータ3の熱変形も抑制できることから、酸化物単結晶の育成を繰り返し行っても坩堝の変形に起因した育成条件の変化を防止することが可能となる。 In addition, since the oxide crucible 1 made of the same material as the raw material melt is used as a storage and holding means for the raw material melt, deformation of the crucible can be suppressed, and when growing the oxide single crystal, the inside of the cylindrical metal heater 3 Since the cylindrical metal heater 3 is sandwiched between the raw material melt 10 existing on the outside of the cylindrical metal heater 3 and the raw material melt 10 existing on the outside of the cylindrical metal heater 3, thermal deformation of the cylindrical metal heater 3 can also be suppressed. Even if single crystal growth is repeated, it is possible to prevent changes in growth conditions due to deformation of the crucible.

更に、高周波誘導コイル2の下端部2aが円筒状金属ヒータ3の下端部3aより下側に位置していることから円筒状金属ヒータ3の下端部3aも誘導加熱されるため、上記リング状隙間部50に存在する原料融液10を円筒状金属ヒータ(内側坩堝)3内に補給することが可能となり、かつ、上記リング状隙間部50には原料供給手段51により結晶原料が継続して供給されるため原料融液10の連続補給が可能となる。 Furthermore, since the lower end 2a of the high-frequency induction coil 2 is located below the lower end 3a of the cylindrical metal heater 3, the lower end 3a of the cylindrical metal heater 3 is also induction heated, so that the ring-shaped gap is heated. It becomes possible to replenish the raw material melt 10 existing in the section 50 into the cylindrical metal heater (inner crucible) 3, and the crystal raw material is continuously supplied to the ring-shaped gap 50 by the raw material supply means 51. Therefore, continuous replenishment of the raw material melt 10 becomes possible.

このため、第一実施形態に係る育成方法は、同品質でかつ直胴部の長い酸化物単結晶を繰り返し安定して育成できる効果を有する。 Therefore, the growing method according to the first embodiment has the effect of repeatedly and stably growing an oxide single crystal of the same quality and having a long straight body.

(1-4)第一実施形態に係る育成装置の製造法
第一実施形態に係る育成装置は、例えば、以下のようにして製造することができる。
(1-4) Method of manufacturing the growth device according to the first embodiment The growth device according to the first embodiment can be manufactured, for example, as follows.

まず、図5に示すように断熱性外筒13内に組み込まれたセラミック坩堝(CP坩堝)40内に、その上方側空間部41を残して結晶材料10aを投入する。尚、結晶材料10aとしては結晶材料粉あるいは結晶材料塊が例示される。 First, as shown in FIG. 5, a crystal material 10a is put into a ceramic crucible (CP crucible) 40 built into a heat insulating outer cylinder 13, leaving an upper space 41. Incidentally, the crystal material 10a is exemplified by crystal material powder or crystal material lump.

次いで、セラミック坩堝(CP坩堝)40の上方側空間部41に円筒状金属ヒータ3を組み込み、かつ、断熱性外筒13内の略中央部に付設されたヒータ固定用棒材14(図3の固定手段参照)により円筒状金属ヒータ3の上端部3bを固定する。 Next, the cylindrical metal heater 3 is assembled into the upper space 41 of the ceramic crucible (CP crucible) 40, and the heater fixing rod 14 (see FIG. The upper end 3b of the cylindrical metal heater 3 is fixed by means of fixing means (see fixing means).

そして、図6に示すように円筒状金属ヒータ3が組み込まれたセラミック坩堝(CP坩堝)40の上方側空間部41に結晶材料10aを投入し、円筒状金属ヒータ3の内部とセラミック坩堝(CP坩堝)40の上方側空間部41に結晶材料10aを充填する。 Then, as shown in FIG. 6, the crystal material 10a is put into the upper space 41 of the ceramic crucible (CP crucible) 40 in which the cylindrical metal heater 3 is incorporated, and the crystal material 10a is placed inside the cylindrical metal heater 3 and the ceramic crucible (CP The upper space 41 of the crucible 40 is filled with the crystal material 10a.

次いで、図7に示すようにヒータ固定用棒材14で保持された円筒状金属ヒータ3の上端部3bにリング状リフレクタ15を載置し、かつ、リング状リフレクタ15上にアフターヒータ16を載置する。 Next, as shown in FIG. 7, a ring-shaped reflector 15 is placed on the upper end 3b of the cylindrical metal heater 3 held by the heater fixing bar 14, and an after-heater 16 is placed on the ring-shaped reflector 15. place

そして、セラミック坩堝(CP坩堝)40の側壁周囲に設けられた高周波誘導コイル2により円筒状金属ヒータ3を誘導加熱し、円筒状金属ヒータ3内の結晶材料10aおよび円筒状金属ヒータ3側壁近傍と下端部3a近傍の結晶材料10aを熔融させて原料融液10とし、かつ、円筒状金属ヒータ3側壁から離れた部位と下端部3aから離れた部位の結晶材料10a間に原料融液10を流入させて連続した酸化物層1cを形成し、該酸化物層1cを内表面に有しかつ原料融液10を貯留保持可能な酸化物坩堝1を形成した後、図4に示した原料供給手段51を組み込んで第一実施形態に係る育成装置を製造することができる。 Then, the cylindrical metal heater 3 is inductively heated by the high frequency induction coil 2 provided around the side wall of the ceramic crucible (CP crucible) 40, and the crystal material 10a inside the cylindrical metal heater 3 and the vicinity of the side wall of the cylindrical metal heater 3 are heated. The crystal material 10a near the lower end 3a is melted to form a raw material melt 10, and the raw material melt 10 is flowed between a portion of the crystal material 10a located away from the side wall of the cylindrical metal heater 3 and a portion away from the lower end 3a. After forming a continuous oxide layer 1c and forming an oxide crucible 1 having the oxide layer 1c on the inner surface and capable of storing and holding the raw material melt 10, the raw material supply means shown in FIG. 51 can be incorporated to manufacture the growth device according to the first embodiment.

尚、本発明に係る育成装置と本発明の変形例に係る育成装置においては、図1および図2に示すように酸化物坩堝1の外側底面1bを覆うセラミック容器4が使用され、上記セラミック坩堝(CP坩堝)40を用いた製造法により育成装置を製造することができない。このような場合、結晶材料粉あるいは結晶材料塊を用いて図1および図2に示すような酸化物坩堝の形状に加圧成形し、該成形体の底面側に上記セラミック容器4を組み込んだ構造体を上記断熱性外筒13内に収容した後、上記製造法を応用して上記育成装置を製造することは可能である。このとき、加圧成形される坩堝の壁厚を大きく設定しておき、円筒状金属ヒータ3を誘導加熱した際に壁全体が熔融されないようにすることを要する。 In addition, in the growth apparatus according to the present invention and the growth apparatus according to a modification of the present invention, as shown in FIGS. 1 and 2, a ceramic container 4 that covers the outer bottom surface 1b of the oxide crucible 1 is used, and the ceramic crucible (CP crucible) 40 cannot be used to manufacture a growth device. In such a case, a structure in which a crystalline material powder or a crystalline material lump is pressure-molded into the shape of an oxide crucible as shown in FIGS. 1 and 2, and the ceramic container 4 is incorporated on the bottom side of the molded body. After the body is housed in the heat insulating outer cylinder 13, it is possible to manufacture the growth apparatus by applying the manufacturing method described above. At this time, it is necessary to set the wall thickness of the crucible for pressure molding to be large so that the entire wall does not melt when the cylindrical metal heater 3 is heated by induction.

(2)第二実施形態に係る育成装置
第二実施形態に係る育成装置は、図8に示すように、円筒状金属ヒータ3の上端部3bが開口し下端部3aが閉止された円筒形状を有し、かつ、円筒状金属ヒータ3外壁面と酸化物坩堝1内壁面とに挟まれたリング状隙間部50の原料融液10を円筒状金属ヒータ3内に導入する開口3dが円筒状金属ヒータ3側壁に設けられている点を除き第一実施形態に係る育成装置(図4参照)と略同一である。尚、図8において、図4に示したシード棒(結晶引き上げ軸)20と原料供給手段51は図示していない。
(2) Growing device according to second embodiment As shown in FIG. 8, the growing device according to the second embodiment has a cylindrical metal heater 3 having a cylindrical shape in which the upper end 3b is open and the lower end 3a is closed. The opening 3d for introducing the raw material melt 10 into the cylindrical metal heater 3 in the ring-shaped gap 50 sandwiched between the outer wall surface of the cylindrical metal heater 3 and the inner wall surface of the oxide crucible 1 is made of cylindrical metal. This is substantially the same as the growth device according to the first embodiment (see FIG. 4) except that the heater 3 is provided on the side wall. In FIG. 8, the seed rod (crystal pulling shaft) 20 and raw material supply means 51 shown in FIG. 4 are not shown.

下端部3aが閉止された図8の円筒状金属ヒータ3においては、下端部3aも開口した図4の円筒状金属ヒータ3に較べて自立し易いため、育成装置の製造段階において、結晶材料10a上に円筒状金属ヒータ3を載置する(図9参照)作業を簡便化させることができる利点を有する。 The cylindrical metal heater 3 shown in FIG. 8 whose lower end 3a is closed is easier to stand on its own than the cylindrical metal heater 3 shown in FIG. 4 whose lower end 3a is also open. This has the advantage that the work of placing the cylindrical metal heater 3 thereon (see FIG. 9) can be simplified.

(3)酸化物坩堝を構成する結晶材料
上記酸化物層1cを内表面に有しかつ結晶材料で構成される酸化物坩堝1について、坩堝全体が一つの結晶で構成される必要はない。焼結体や多結晶体で坩堝全体が構成されることが好ましいが一部粉末の状態であってもよい。尚、酸化物坩堝の一部が粉末状態である場合、粉末を保持する上述のセラミック容器を設けることが望ましい。尚、酸化物坩堝1の酸化物層1cから離れている結晶材料の未熔融部分は、図11に示した従来の育成装置における断熱材108や断熱性坩堝台110と同様に機能する。
(3) Crystal material constituting the oxide crucible Regarding the oxide crucible 1 having the oxide layer 1c on the inner surface and being made of a crystal material, the entire crucible does not need to be made of one crystal. It is preferable that the entire crucible is composed of a sintered body or a polycrystalline body, but a part of the crucible may be in a powder state. Note that when a part of the oxide crucible is in a powder state, it is desirable to provide the above-mentioned ceramic container for holding the powder. Incidentally, the unmelted portion of the crystal material that is away from the oxide layer 1c of the oxide crucible 1 functions similarly to the heat insulating material 108 and the heat insulating crucible stand 110 in the conventional growth apparatus shown in FIG.

また、酸化物坩堝1の外側底面1bを覆う上記セラミック容器、または、酸化物坩堝1の外側底面1bと側壁周囲を覆うセラミック坩堝を構成する材料としては、アルミナやジルコニア、マグネシア、カルシア等の焼結体耐火物が好ましい。 The ceramic container that covers the outer bottom surface 1b of the oxide crucible 1 or the ceramic crucible that covers the outer bottom surface 1b and side walls of the oxide crucible 1 may be made of sintered materials such as alumina, zirconia, magnesia, and calcia. Solid refractories are preferred.

(4)金属ヒータ
上記金属ヒータの形状は高周波誘導加熱が可能であれば任意であるが、チョクラルスキー法で良質な結晶を育成する場合、原料融液がシード(種結晶)に対し回転対称性を持つことが望ましい。このため、金属ヒータも回転対称の形状を持つことが好ましく円筒状であることを要する。
(4) Metal heater The shape of the metal heater mentioned above can be arbitrary as long as high-frequency induction heating is possible, but when growing high-quality crystals using the Czochralski method, the raw material melt is rotationally symmetrical with respect to the seed (seed crystal). It is desirable to have sex. For this reason, it is preferable that the metal heater also have a rotationally symmetrical shape, and it is required that the metal heater has a cylindrical shape.

また、金属ヒータは、酸素を含む雰囲気で酸化されず、割れない高周波加熱が可能な材料で構成することが好ましく、具体的には、白金、イリジウム、ロジウムの単体またはこれらの合金で構成することが望ましい。 In addition, the metal heater is preferably made of a material that can be subjected to high-frequency heating without being oxidized or cracked in an oxygen-containing atmosphere. Specifically, it is preferably made of platinum, iridium, rhodium alone or an alloy thereof. is desirable.

また、金属ヒータの上端部を固定する固定手段としては、図4に示す断熱性外筒13内の略中央部に付設されたヒータ固定用棒材14(図3の固定手段参照)が例示され、金属ヒータ3の上端部3bを棒材14に通すことで固定され、ヒータ固定用棒材14の本数は2本から6本程度が好ましい。 Further, as a fixing means for fixing the upper end of the metal heater, a heater fixing rod 14 (see fixing means in FIG. 3) attached to the approximate center of the heat insulating outer cylinder 13 shown in FIG. 4 is exemplified. The metal heater 3 is fixed by passing the upper end 3b through a bar 14, and the number of heater fixing bars 14 is preferably about 2 to 6.

また、金属ヒータ上端部に載置されるリング状リフレクタ、および、リング状リフレクタ上に載置されたアフターヒータの材料は、金属ヒータと同様の材料を用いることが好ましい。 Further, it is preferable that the same material as the metal heater be used for the ring-shaped reflector placed on the upper end of the metal heater and the after-heater placed on the ring-shaped reflector.

以下、本発明の実施例について比較例(従来例)を挙げて具体的に説明する。 Hereinafter, examples of the present invention will be specifically explained by citing comparative examples (conventional examples).

[実施例1]
1.実施例1に係る育成装置の製造
図9に示す断熱性外筒13内に組み込んだ内径270mm、内部高さ340mmのセラミック坩堝(CP坩堝)40内に、上方側空間部41を残して、タンタル酸リチウム粉末(結晶材料)10aを投入した。
[Example 1]
1. Manufacturing of the growth device according to Example 1
Lithium tantalate powder (crystalline material) 10a is placed in a ceramic crucible (CP crucible) 40 with an inner diameter of 270 mm and an inner height of 340 mm, which is built into a heat insulating outer cylinder 13 shown in FIG. 9, leaving an upper space 41. I put it in.

次いで、セラミック坩堝(CP坩堝)40の上方側空間部41に、内径170mm、高さ170mm、厚さ2mmで、上端部3bが開口し下端部3aが閉止されたイリジウム製円筒状金属ヒータ3を組み込み、かつ、断熱性外筒13内の略中央部に付設したヒータ固定用棒材14により円筒状金属ヒータ3の上端部3bを固定した。尚、円筒状金属ヒータ3は、その上端部3bから下方100mmの位置に直径20mmの開口3dが設けられ、円筒状金属ヒータ3外壁面と酸化物坩堝1内壁面とに挟まれたリング状隙間部50の原料融液10が円筒状金属ヒータ3内に導入される構造になっている。 Next, in the upper space 41 of the ceramic crucible (CP crucible) 40, an iridium cylindrical metal heater 3 with an inner diameter of 170 mm, a height of 170 mm, and a thickness of 2 mm, the upper end 3b of which is open and the lower end 3a of which is closed, is placed. The upper end 3b of the cylindrical metal heater 3 was fixed by a heater fixing rod 14 that was assembled and attached to the approximate center of the heat insulating outer cylinder 13. The cylindrical metal heater 3 is provided with an opening 3d having a diameter of 20 mm at a position 100 mm below the upper end 3b, and a ring-shaped gap sandwiched between the outer wall surface of the cylindrical metal heater 3 and the inner wall surface of the oxide crucible 1. The structure is such that the raw material melt 10 in the section 50 is introduced into the cylindrical metal heater 3.

そして、図10に示すように円筒状金属ヒータ3が組み込まれたセラミック坩堝(CP坩堝)40の上方側空間部41にタンタル酸リチウム粉末(結晶材料)10aを投入し、円筒状金属ヒータ3の内部とセラミック坩堝(CP坩堝)40の上方側空間部41にタンタル酸リチウム粉末(結晶材料)10aを充填した。 Then, as shown in FIG. 10, lithium tantalate powder (crystalline material) 10a is put into the upper space 41 of a ceramic crucible (CP crucible) 40 in which the cylindrical metal heater 3 is installed. The interior and the upper space 41 of the ceramic crucible (CP crucible) 40 were filled with lithium tantalate powder (crystalline material) 10a.

次いで、図8に示すようにヒータ固定用棒材14で保持された円筒状金属ヒータ3の上端部3bにリング状リフレクタ15を載置し、かつ、リング状リフレクタ15上にアフターヒータ16を載置した。 Next, as shown in FIG. 8, a ring-shaped reflector 15 is placed on the upper end 3b of the cylindrical metal heater 3 held by the heater fixing bar 14, and an after-heater 16 is placed on the ring-shaped reflector 15. I placed it.

そして、セラミック坩堝(CP坩堝)40の側壁周囲に設けられた高周波誘導コイル2により円筒状金属ヒータ3を誘導加熱し、円筒状金属ヒータ3内のタンタル酸リチウム粉末(結晶材料)10aおよび円筒状金属ヒータ3側壁近傍と下端部3a近傍のタンタル酸リチウム粉末(結晶材料)10aを熔融させて原料融液10とし、かつ、円筒状金属ヒータ3側壁から離れた部位と下端部3aから離れた部位のタンタル酸リチウム粉末(結晶材料)10a間に原料融液10を流入させて連続した酸化物層1cを形成し、該酸化物層1cを内表面に有しかつ原料融液10を貯留保持可能な酸化物坩堝1を形成した後、原料供給手段(図2に示すように原料供給口51bを有するイリジウム製保持容器51aとこの保持容器51a内に収容された結晶原料とで構成され、保持容器51aの原料供給口51bが原料融液面と接するように配置)を組み込んで実施例1に係る育成装置を製造した。 Then, the cylindrical metal heater 3 is inductively heated by the high-frequency induction coil 2 provided around the side wall of the ceramic crucible (CP crucible) 40, and the lithium tantalate powder (crystal material) 10a in the cylindrical metal heater 3 and the cylindrical The lithium tantalate powder (crystalline material) 10a near the side wall of the metal heater 3 and the bottom end 3a is melted to form a raw material melt 10, and a part away from the side wall of the cylindrical metal heater 3 and a part away from the bottom end 3a The raw material melt 10 is made to flow between the lithium tantalate powder (crystalline material) 10a to form a continuous oxide layer 1c, which has the oxide layer 1c on the inner surface and is capable of storing and holding the raw material melt 10. After forming the oxide crucible 1, the raw material supply means (as shown in FIG. A growth apparatus according to Example 1 was manufactured by incorporating the raw material supply port 51b of 51a (arranged so that the raw material supply port 51b was in contact with the surface of the raw material melt).

尚、タンタル酸リチウム粉末(結晶材料)10aを熔融させて酸化物層1cを形成する際、上記円筒状金属ヒータ3外側の融液量を増やすため、高周波誘導コイル2の投入パワーを以下の育成時より10%多く設定している。これによりタンタル酸リチウム粉末(結晶材料)10a間に原料融液が流入して連続した酸化物層1cが形成される。 When melting the lithium tantalate powder (crystalline material) 10a to form the oxide layer 1c, in order to increase the amount of melt outside the cylindrical metal heater 3, the input power of the high-frequency induction coil 2 is adjusted as follows. It is set 10% higher than before. As a result, the raw material melt flows between the lithium tantalate powders (crystalline materials) 10a, forming a continuous oxide layer 1c.

2.タンタル酸リチウム単結晶の育成
次いで、上記断熱性外筒13の開口12(図8参照)から、先端に種結晶(図示せず)が取り付けられた図示外のシード棒(結晶引き上げ軸)を下して引き上げ法(チョクラルスキー法)により結晶育成を行い、径4インチで直胴部の長が約200mmのタンタル酸リチウム単結晶を育成することができた。
2. Growth of lithium tantalate single crystal Next, a seed rod (not shown) (crystal pulling shaft) with a seed crystal (not shown) attached to the tip is lowered through the opening 12 (see FIG. 8) of the heat insulating outer cylinder 13. Crystal growth was performed by a pulling method (Czochralski method), and a lithium tantalate single crystal with a diameter of 4 inches and a straight body length of about 200 mm was able to be grown.

次に、上記タンタル酸リチウム単結晶を育成した後、円筒状金属ヒータ3が組み込まれた酸化物坩堝1内にタンタル酸リチウム粉末(結晶原料)を投入し、高周波誘導コイル2により円筒状金属ヒータ3を誘導加熱し、円筒状金属ヒータ3内のタンタル酸リチウム粉末(結晶原料)および円筒状金属ヒータ3の側壁面と酸化物坩堝1の内壁面間に存在するタンタル酸リチウム粉末(結晶原料)を熔融させた。 Next, after growing the lithium tantalate single crystal, lithium tantalate powder (crystal raw material) is put into the oxide crucible 1 in which the cylindrical metal heater 3 is installed, and the cylindrical metal heater is heated by the high frequency induction coil 2. 3 is induction heated, and the lithium tantalate powder (crystal raw material) in the cylindrical metal heater 3 and the lithium tantalate powder (crystal raw material) present between the side wall surface of the cylindrical metal heater 3 and the inner wall surface of the oxide crucible 1 are heated by induction heating. was melted.

次いで、種結晶が取り付けられたシード棒(結晶引き上げ軸)を開口12から下して引き上げ法(チョクラルスキー法)により結晶育成を行い、上記同様、径4インチで直胴部の長が約200mmのタンタル酸リチウム単結晶を育成した。 Next, the seed rod (crystal pulling shaft) with the seed crystal attached is lowered from the opening 12 and crystal growth is performed by the pulling method (Czochralski method), and as above, a seed rod with a diameter of 4 inches and a straight body length of approximately A 200 mm lithium tantalate single crystal was grown.

[比較例(従来例)]
図11に示す従来例の育成装置を用い、かつ、イリジウム製で径170mm、高さ170mmの坩堝100を用いて引き上げ法(チョクラルスキー法)により径4インチのタンタル酸リチウム単結晶を育成した。
[Comparative example (conventional example)]
A lithium tantalate single crystal with a diameter of 4 inches was grown by the pulling method (Czochralski method) using the conventional growth apparatus shown in FIG. 11 and a crucible 100 made of iridium with a diameter of 170 mm and a height of 170 mm. .

しかし、直胴部の長が約180mmになった時点で坩堝100内の融液面が低下してしまい、育成したタンタル酸リチウム単結晶の下端が坩堝100底で固まった結晶部分に接触する底付きが起こって多結晶となってしまった。 However, when the length of the straight body reaches approximately 180 mm, the melt level in the crucible 100 decreases, and the lower end of the grown lithium tantalate single crystal contacts the solidified crystal part at the bottom of the crucible 100. It became polycrystalline due to adhesion.

本発明によれば、同品質でかつ直胴部の長い酸化物単結晶を繰り返し安定して育成できるため、表面弾性波デバイス材料として用いられるタンタル酸リチウム単結晶等酸化物単結晶の育成装置として利用される産業上の利用可能性を有している。 According to the present invention, since it is possible to repeatedly and stably grow oxide single crystals of the same quality and a long body, it can be used as a growth device for oxide single crystals such as lithium tantalate single crystals used as surface acoustic wave device materials. It has industrial applicability.

1 酸化物坩堝
1a 内側底面
1b 外側底面
2 高周波誘導コイル
2a 下端部
3 円筒状金属ヒータ
3a 下端部
3b 上端部
3d 開口
4 セラミック容器
10 原料融液
10a 結晶材料(結晶原料)粉
11 支持台
12 開口
13 断熱性外筒
14 ヒータ固定用棒材
15 リング状リフレクタ
16 アフターヒータ
20 シード棒(結晶引き上げ軸)
21 種結晶
30 酸化物単結晶
40 セラミック坩堝
41 上方側空間部
50 リング状隙間部
51 原料供給手段
51a 耐熱性保持容器
51b 原料供給口
100 坩堝
101 高周波誘導コイル
102 シード棒(結晶引き上げ軸)
103 リング状リフレクタ
104 アフターヒータ
105 種結晶
106 原料融液
107 断熱材
108 断熱材
109 CP坩堝(多孔質アルミナ坩堝)
110 断熱性坩堝台
1 Oxide crucible 1a Inner bottom surface 1b Outer bottom surface 2 High frequency induction coil 2a Lower end 3 Cylindrical metal heater 3a Lower end 3b Upper end 3d Opening 4 Ceramic container 10 Raw material melt 10a Crystal material (crystal raw material) powder 11 Support stand 12 Opening 13 Heat-insulating outer cylinder 14 Heater fixing rod 15 Ring-shaped reflector 16 After-heater 20 Seed rod (crystal pulling shaft)
21 Seed crystal 30 Oxide single crystal 40 Ceramic crucible 41 Upper side space 50 Ring-shaped gap 51 Raw material supply means 51a Heat-resistant holding container 51b Raw material supply port 100 Crucible 101 High frequency induction coil 102 Seed rod (crystal pulling shaft)
103 Ring-shaped reflector 104 After heater 105 Seed crystal 106 Raw material melt 107 Insulating material 108 Insulating material 109 CP crucible (porous alumina crucible)
110 Insulating crucible stand

Claims (8)

引上げ法により酸化物単結晶を育成する装置において、
上記結晶材料で構成されかつ原料融液を貯留保持可能な酸化物坩堝と、
上記酸化物坩堝の側壁周囲に設けられる高周波誘導コイルと、
上記酸化物坩堝内に組み込まれ、上記高周波誘導コイルにより誘導加熱されると共に、酸化物坩堝上方に設けられた固定手段により上端部が保持されかつ下端部が酸化物坩堝の内側底面から上方へ離れて配置される円筒状金属ヒータと、
上記酸化物坩堝の内壁面と上記円筒状金属ヒータの外壁面とに挟まれたリング状隙間部に結晶原料を供給する原料供給手段を備え、
かつ、上記高周波誘導コイルの下端部が上記円筒状金属ヒータの下端部より下側に位置していることを特徴とする酸化物単結晶の育成装置。
In an apparatus for growing oxide single crystals by the pulling method,
an oxide crucible made of the crystalline material and capable of storing and holding a raw material melt;
a high frequency induction coil provided around the side wall of the oxide crucible;
It is installed in the oxide crucible and is heated by induction by the high-frequency induction coil, and the upper end is held by a fixing means provided above the oxide crucible, and the lower end is separated upward from the inner bottom surface of the oxide crucible. a cylindrical metal heater arranged in a
a raw material supply means for supplying a crystal raw material to a ring-shaped gap sandwiched between an inner wall surface of the oxide crucible and an outer wall surface of the cylindrical metal heater;
An apparatus for growing an oxide single crystal, wherein the lower end of the high-frequency induction coil is located below the lower end of the cylindrical metal heater.
上記円筒状金属ヒータが、上端部が開口し下端部が閉止された円筒形状を有し、かつ、上記リング状隙間部の原料融液を円筒状金属ヒータ内に導入する開口が円筒状金属ヒータ側壁に設けられていることを特徴とする請求項1に記載の酸化物単結晶の育成装置。 The cylindrical metal heater has a cylindrical shape with an open upper end and a closed lower end, and the opening for introducing the raw material melt into the cylindrical metal heater in the ring-shaped gap is a cylindrical metal heater. The oxide single crystal growth device according to claim 1, wherein the oxide single crystal growth device is provided on a side wall. 上記原料供給手段が、下端部に原料供給口を有する耐熱性保持容器と該保持容器に収容された結晶原料とで構成され、かつ、上記保持容器の原料供給口がリング状隙間部の原料融液面と接するように配置されていることを特徴とする請求項1または2に記載の酸化物単結晶の育成装置。 The raw material supply means is composed of a heat-resistant holding container having a raw material supply port at the lower end and a crystal raw material accommodated in the holding container, and the raw material supply port of the holding container is configured to melt the raw material in a ring-shaped gap. 3. The oxide single crystal growth apparatus according to claim 1, wherein the oxide single crystal growth apparatus is arranged so as to be in contact with a liquid surface. 上記保持容器が、白金、イリジウム、ロジウム、タングステンのいずれか、または、これらの合金で構成されることを特徴とする請求項1~3のいずれかに記載の酸化物単結晶の育成装置。 4. The oxide single crystal growth apparatus according to claim 1, wherein the holding container is made of platinum, iridium, rhodium, tungsten, or an alloy thereof. 上記酸化物単結晶が、ニオブ酸リチウム単結晶、タンタル酸リチウム単結晶、イットリウムアルミニウムガーネット単結晶のいずれかであることを特徴とする請求項1~4のいずれかに記載の酸化物単結晶の育成装置。 The oxide single crystal according to any one of claims 1 to 4, wherein the oxide single crystal is any one of a lithium niobate single crystal, a lithium tantalate single crystal, and a yttrium aluminum garnet single crystal. Cultivation equipment. 上記円筒状金属ヒータが、白金、イリジウム、ロジウムのいずれか、または、これらの合金で構成されることを特徴とする請求項1~5のいずれかに記載の酸化物単結晶の育成装置。 6. The oxide single crystal growth apparatus according to claim 1, wherein the cylindrical metal heater is made of platinum, iridium, rhodium, or an alloy thereof. 上記酸化物坩堝の外側底面を覆うセラミック容器、または、酸化物坩堝の外側底面と側壁周囲を覆うセラミック坩堝を備えることを特徴とする請求項1~6のいずれかに記載の酸化物単結晶の育成装置。 The oxide single crystal according to claim 1, further comprising a ceramic container that covers the outer bottom surface of the oxide crucible, or a ceramic crucible that covers the outer bottom surface and side walls of the oxide crucible. Cultivation equipment. 請求項1に記載の育成装置を用いて酸化物単結晶を育成する方法において、
円筒状金属ヒータが組み込まれた酸化物坩堝内に結晶原料を投入し、高周波誘導コイルにより円筒状金属ヒータを誘導加熱して円筒状金属ヒータ内の結晶原料および上記リング状隙間部に存在する結晶原料を熔融させると共に、円筒状金属ヒータ内の原料融液面に種結晶を接触し、かつ、リング状隙間部の原料融液を円筒状金属ヒータ内に連続的に補給しながら引き上げ法により長尺の酸化物単結晶を育成することを特徴とする酸化物単結晶の育成方法。
A method for growing an oxide single crystal using the growth apparatus according to claim 1,
A crystal raw material is put into an oxide crucible in which a cylindrical metal heater is incorporated, and the cylindrical metal heater is heated by induction using a high frequency induction coil to separate the crystal raw material in the cylindrical metal heater and the crystals present in the ring-shaped gap. While the raw material is melted, a seed crystal is brought into contact with the surface of the raw material melt in the cylindrical metal heater, and the raw material melt in the ring-shaped gap is continuously replenished into the cylindrical metal heater, and the material is lengthened by a pulling method. A method for growing an oxide single crystal, the method comprising growing a large oxide single crystal.
JP2022037490A 2022-03-10 2022-03-10 Apparatus and method for growing oxide single crystal Pending JP2023132266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022037490A JP2023132266A (en) 2022-03-10 2022-03-10 Apparatus and method for growing oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022037490A JP2023132266A (en) 2022-03-10 2022-03-10 Apparatus and method for growing oxide single crystal

Publications (1)

Publication Number Publication Date
JP2023132266A true JP2023132266A (en) 2023-09-22

Family

ID=88065879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022037490A Pending JP2023132266A (en) 2022-03-10 2022-03-10 Apparatus and method for growing oxide single crystal

Country Status (1)

Country Link
JP (1) JP2023132266A (en)

Similar Documents

Publication Publication Date Title
JP6606638B2 (en) Method and apparatus for growing Fe-Ga based alloy single crystal
JP4872283B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP6302192B2 (en) Single crystal growth apparatus and method
JP2011105575A (en) Single crystal pulling apparatus
US20130263772A1 (en) Method and apparatus for controlling melt temperature in a Czochralski grower
KR100448923B1 (en) Apparatus and method for producing a single crystal
JP5163386B2 (en) Silicon melt forming equipment
JP2019163187A (en) Single crystal growth method of iron gallium alloy
JP7113478B2 (en) Crucible and Single Crystal Growth Apparatus and Growth Method
JP2023132266A (en) Apparatus and method for growing oxide single crystal
JP2019147698A (en) Apparatus and method for growing crystal
JP2013060352A (en) Crucible furnace
JP2018145081A (en) METHOD FOR MANUFACTURING HIGH PERFORMANCE Fe-Ga BASED ALLOY SINGLE CRYSTAL
JP2023132268A (en) Apparatus and method for growing oxide single crystal
JP2023132269A (en) Apparatus and method for growing oxide single crystal
JP2023132267A (en) Apparatus and method for growing oxide single crystal
JP6190070B2 (en) Crystal production method
JP6958854B2 (en) Manufacturing method of magnetostrictive material
JP2023147617A (en) Method and apparatus for growing oxide single crystal
JP2023147618A (en) Method and apparatus for growing oxide single crystal
JP6702249B2 (en) Oxide single crystal manufacturing method and oxide single crystal pulling apparatus
JP3979291B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
JP2017193469A (en) After-heater and sapphire single crystal production apparatus
JP7486743B2 (en) Method for producing FeGa alloy single crystal
JP2019167282A (en) Crystal growth apparatus