JP4872283B2 - Single crystal manufacturing apparatus and manufacturing method - Google Patents

Single crystal manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
JP4872283B2
JP4872283B2 JP2005263402A JP2005263402A JP4872283B2 JP 4872283 B2 JP4872283 B2 JP 4872283B2 JP 2005263402 A JP2005263402 A JP 2005263402A JP 2005263402 A JP2005263402 A JP 2005263402A JP 4872283 B2 JP4872283 B2 JP 4872283B2
Authority
JP
Japan
Prior art keywords
single crystal
raw material
crucible
material powder
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005263402A
Other languages
Japanese (ja)
Other versions
JP2007076928A (en
Inventor
浩介 星河
敏弘 山西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005263402A priority Critical patent/JP4872283B2/en
Publication of JP2007076928A publication Critical patent/JP2007076928A/en
Application granted granted Critical
Publication of JP4872283B2 publication Critical patent/JP4872283B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、単結晶製造用の坩堝に関し、特に炭化珪素単結晶の製造に好適に利用できるものである。   The present invention relates to a crucible for producing a single crystal, and can be suitably used particularly for producing a silicon carbide single crystal.

従来から、炭化珪素単結晶を成長させる方法として、昇華法が広く用いられている。昇華法は改良レーリー法とも呼ばれる。黒鉛製坩堝内に配置した黒鉛台座に炭化珪素単結晶で構成される種結晶基板および原料粉末を配置し、黒鉛製坩堝を加熱することで原料粉末から昇華ガスが発生し、原料粉末と単結晶基板との間で、昇華ガスの濃度差が生じるため、昇華ガスが単結晶基板まで拡散し、単結晶基板近傍での過飽和が駆動力となり単結晶成長が進行する。炭化珪素を原料とした場合に発生する昇華ガスの組成は、Si、SiC2、Si2C、Si2、Si3等であり、特にSi、SiC2、Si2Cは平衡分圧が大きく重要と考えられている。   Conventionally, a sublimation method has been widely used as a method for growing a silicon carbide single crystal. The sublimation method is also called the modified Rayleigh method. A seed crystal substrate composed of a silicon carbide single crystal and a raw material powder are placed on a graphite pedestal placed in a graphite crucible, and sublimation gas is generated from the raw material powder by heating the graphite crucible, and the raw material powder and the single crystal Since the concentration difference of the sublimation gas occurs between the substrate and the sublimation gas, the sublimation gas diffuses to the single crystal substrate, and the supersaturation in the vicinity of the single crystal substrate serves as a driving force to progress the single crystal growth. The composition of the sublimation gas generated when silicon carbide is used as a raw material is Si, SiC2, Si2C, Si2, Si3, etc. In particular, Si, SiC2, and Si2C are considered to have important equilibrium partial pressures.

一般的な昇華法炭化珪素単結晶成長方法を、図8を用いて詳細に説明する。黒鉛製坩堝1は、坩堝下部材1a、坩堝中部材1bおよび坩堝上部材1cで構成され、坩堝下部材1aに原料粉末2を収納し、坩堝上部材1cの種結晶取り付け部1dに炭化珪素単結晶で構成される種結晶3を取り付ける。黒鉛製坩堝1、原料粉末2および種結晶3に囲まれて形成される単結晶成長空間4において、単結晶成長が進行する。   A general sublimation silicon carbide single crystal growth method will be described in detail with reference to FIG. The graphite crucible 1 is composed of a crucible lower member 1a, a crucible middle member 1b, and a crucible upper member 1c. A seed crystal 3 composed of crystals is attached. Single crystal growth proceeds in a single crystal growth space 4 formed by being surrounded by graphite crucible 1, raw material powder 2 and seed crystal 3.

黒鉛製部材1の材料として、高融点物質や、高融点物質コーティング黒鉛など、黒鉛以外の物質が部分的に用いられる場合もあるが、通常はほとんどの部材が黒鉛で構成されるため、ここでは黒鉛製坩堝1と呼ぶこととする。なお、坩堝設計は自由度があるので、坩堝部材数が図8のように3ではない場合もあるが、機能面から、原料粉末を配置する坩堝下部材、単結晶成長空間を形成する坩堝中部材、種結晶を固定する坩堝上部材と、前記と同様の分類をすることが可能である。原料粉末2としては、炭化珪素粉末を用いるのが一般的であるが、目的に応じて、炭化珪素にシリコン、カーボン、あるいはドーパントを加えてもよい。   As a material of the graphite member 1, a substance other than graphite, such as a high melting point substance or a high melting point substance coated graphite, may be partially used. However, since most members are usually made of graphite, This is called a graphite crucible 1. In addition, since there is a degree of freedom in crucible design, the number of crucible members may not be three as shown in FIG. 8, but from the functional aspect, the crucible lower member in which the raw material powder is arranged, and the crucible in which the single crystal growth space is formed The crucible upper member for fixing the member and the seed crystal can be classified as described above. As raw material powder 2, silicon carbide powder is generally used, but silicon, carbon, or a dopant may be added to silicon carbide depending on the purpose.

坩堝1の周囲を取り囲むように、断熱材5を配置し、高周波ワークコイル6に例えば20kHzの高周波電流を数百A流すことで、黒鉛製坩堝1を2000℃以上に誘導加熱する。黒鉛製坩堝1の設計、断熱材5の設計、高周波ワークコイル6との位置関係等により、温度分布を制御することができ、坩堝下部材1aを2200〜2500℃に、坩堝上部材1cを坩堝下部材1aより50〜200℃低い温度に加熱する。このような温度分布により、原料粉末2から種結晶3へ昇華ガスが安定的に輸送され、安定な成長が行われる。温度計測は非接触温度計により行う。   The heat insulating material 5 is arranged so as to surround the periphery of the crucible 1, and a high frequency current of 20 kHz, for example, is passed through the high frequency work coil 6 by several hundred A, whereby the graphite crucible 1 is induction heated to 2000 ° C. or higher. The temperature distribution can be controlled by the design of the graphite crucible 1, the design of the heat insulating material 5, the positional relationship with the high frequency work coil 6, the crucible lower member 1 a at 2200 to 2500 ° C., and the crucible upper member 1 c at the crucible. Heat to a temperature 50 to 200 ° C. lower than the lower member 1a. With such a temperature distribution, the sublimation gas is stably transported from the raw material powder 2 to the seed crystal 3, and stable growth is performed. The temperature is measured with a non-contact thermometer.

単結晶成長後の模式図を図9に示すが、単結晶を成長する際には、種結晶3上に成長した成長単結晶3aと、坩堝内壁に付着した炭化珪素多結晶7が接触しないように成長する(以下、単結晶分離成長と呼ぶ。)ことが重要であり、坩堝設計や条件を変えて単結晶分離成長を行い、高品質な炭化珪素を製造することが従来から知られている(例えば、特許文献1、特許文献2参照)。   FIG. 9 shows a schematic diagram after the single crystal growth. When the single crystal is grown, the grown single crystal 3a grown on the seed crystal 3 and the silicon carbide polycrystal 7 attached to the inner wall of the crucible do not come into contact with each other. (Hereinafter referred to as single crystal separation growth) is important, and it has been conventionally known to produce high quality silicon carbide by performing single crystal separation growth under different crucible designs and conditions. (For example, refer to Patent Document 1 and Patent Document 2).

なお、単結晶分離成長でない場合の模式図を図10に示す。種結晶3上に成長した成長単結晶3aと、坩堝内壁に付着した炭化珪素多結晶7が接触すると、成長単結晶3a中に応力が加わり転位やクラックが生じる、あるいは炭化珪素多結晶7中の結晶欠陥が成長単結晶3a中に伝播しやすくなるため、高品質の炭化珪素を製造することが困難になる。   FIG. 10 shows a schematic diagram in the case where the single crystal separation growth is not performed. When the grown single crystal 3a grown on the seed crystal 3 comes into contact with the silicon carbide polycrystal 7 attached to the inner wall of the crucible, stress is applied to the grown single crystal 3a to cause dislocations and cracks, or in the silicon carbide polycrystal 7 Since crystal defects easily propagate into the grown single crystal 3a, it becomes difficult to produce high-quality silicon carbide.

しかしながら、以上に示した昇華法による炭化珪素単結晶成長では、結晶の成長速度が遅いという課題がある。結晶の成長速度は主に成長温度、成長圧力、坩堝設計により決定されるが、成長温度および成長圧力は、結晶多形を維持するための最適条件が存在し、この最適条件を外れると異種結晶多形の混入により結晶品質が低下しやすくなる。そのため、成長温度および成長圧力は、目的の結晶多形に応じて、ほぼ決められた条件にする必要があり、坩堝設計は、単結晶分離成長の観点からの制約条件があるので、自由な設計を行うことが難しい。   However, the silicon carbide single crystal growth by the sublimation method described above has a problem that the crystal growth rate is slow. The growth rate of the crystal is mainly determined by the growth temperature, growth pressure, and crucible design, but there are optimum conditions for maintaining the crystal polymorphism in the growth temperature and growth pressure. Crystal quality is liable to deteriorate due to the inclusion of polymorphs. For this reason, the growth temperature and pressure need to be almost determined according to the desired crystal polymorphism, and the crucible design has constraints from the standpoint of single crystal separation growth. Difficult to do.

したがって、従来の技術では、炭化珪素単結晶の成長速度を向上させることは困難であった。特に単結晶口径が大きくなるほど、成長速度は遅くなるため、この結晶成長の速度向上は重要な課題である。さらに、原料粉末2の温度が不均一であるため、原料の消耗の仕方が不均一であり、発生する昇華ガスも不均一となるという課題も生じている。   Therefore, it has been difficult to improve the growth rate of the silicon carbide single crystal with the conventional technique. In particular, the larger the single crystal diameter is, the slower the growth rate becomes. Therefore, the improvement of the crystal growth rate is an important issue. Further, since the temperature of the raw material powder 2 is non-uniform, there is a problem that the method of consumption of the raw material is non-uniform and the generated sublimation gas is non-uniform.

これらの課題に対して、図11に示すように、黒鉛製坩堝に概ね軸対称の熱伝導体を設置することで、黒鉛坩堝内の中心部の温度を高めて、原料消耗を均一化し、使用効率を改善させる技術が記載されている(例えば、特許文献3参照。)。
また、黒鉛坩堝中に、上部が細く、下部が太い中空状伝熱体を設置することにより、黒鉛坩堝内の温度を均一化し、原料消耗の変化を抑え長時間成長させた場合でも昇華ガスの均一性を確保して、原料の使用効率を向上する技術が記載されている(例えば、特許文献4参照。)。
特開平01―108200号公報 特開平05―319998号公報 特開平5―58774号公報 特開2001―72491号公報
To solve these problems, as shown in FIG. 11, by installing a substantially axisymmetric heat conductor in the graphite crucible, the temperature of the central portion in the graphite crucible is increased, and the material consumption is made uniform and used. A technique for improving the efficiency is described (for example, see Patent Document 3).
In addition, by installing a hollow heat transfer body with a thin upper part and a thick lower part in the graphite crucible, the temperature inside the graphite crucible is made uniform, and even when the material is grown for a long time while suppressing changes in raw material consumption, A technique for ensuring uniformity and improving the use efficiency of raw materials is described (for example, see Patent Document 4).
Japanese Unexamined Patent Publication No. 01-108200 Japanese Patent Laid-Open No. 05-319998 JP-A-5-58774 Japanese Patent Laid-Open No. 2001-72491

しかしながら、従来の構成では、原料消耗の不均一と成長速度の課題を、同時に改善することが困難である。例えば、特許文献3に記載の技術では、結晶の成長速度を向上させることはできない。また、特許文献4に記載の技術では、伝熱体の内部が中空であるため原料粉末充填量が大きく減少するため、成長速度が低下しやすい。さらに、単結晶大型化・長尺化への対応が難しく、一般の量産装置には適さない。   However, with the conventional configuration, it is difficult to improve the problem of non-uniform raw material consumption and the growth rate at the same time. For example, the technique described in Patent Document 3 cannot improve the crystal growth rate. Further, in the technique described in Patent Document 4, since the inside of the heat transfer body is hollow, the raw material powder filling amount is greatly reduced, so that the growth rate is likely to be lowered. Furthermore, it is difficult to respond to the increase in size and length of single crystals, and it is not suitable for general mass production equipment.

本発明は、前記従来の課題を解決するもので、成長速度向上と原料消耗の均一化を同時に満たすものであり、高品質単結晶を効率良く製造出来る単結晶製造装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and satisfies the growth rate improvement and uniform material consumption at the same time, and aims to provide a single crystal manufacturing apparatus capable of efficiently manufacturing a high-quality single crystal. To do.

前記従来の課題を解決するために、本発明の単結晶の製造装置は、黒鉛製坩堝と、前記黒鉛製坩堝の内部に固定された種結晶と、前記黒鉛製坩堝内に配置された原料粉末と、前記黒鉛製坩堝および前記原料粉末を加熱するための高周波ワークコイルを備えた単結晶製造装置において、その外径が前記坩堝内径の2/15から2/3の範囲にある円柱形状の熱伝導部材を前記黒鉛製坩堝の内壁に接しないように前記原料粉末が配置された前記黒鉛製坩堝の中心に配置することを特徴とする。 In order to solve the above-described conventional problems, the single crystal production apparatus of the present invention includes a graphite crucible, a seed crystal fixed inside the graphite crucible, and a raw material powder disposed in the graphite crucible. And a single crystal manufacturing apparatus provided with a high frequency work coil for heating the graphite crucible and the raw material powder , a cylindrical heat having an outer diameter in the range of 2/15 to 2/3 of the crucible inner diameter. The conductive member is arranged at the center of the graphite crucible where the raw material powder is arranged so as not to contact the inner wall of the graphite crucible .

本発明の単結晶製造装置によれば、成長速度向上と、原料消耗の均一化を同時に達成し、高品質単結晶を効率良く製造することができる。 According to the single crystal manufacturing apparatus of the present invention, it is possible to simultaneously improve the growth rate and make the material consumption uniform, and to manufacture a high quality single crystal efficiently.

以下に、本発明の単結晶製造装置の実施の形態を図面とともに詳細に説明する。 Embodiments of a single crystal production apparatus of the present invention will be described below in detail with reference to the drawings.

図1は、本発明の第1の実施例における単結晶製造装置の模式図を示す。図1において、黒鉛製坩堝1は、坩堝上部材1c、坩堝中部材1b、坩堝下部材1aで構成され、高さ150mm、外径60mmである。種結晶取り付け部1dの径は10mm、坩堝下部材1aの内径は30mm、原料粉末2の高さ方向は76mm、種結晶3の径はおよそ10mmである。高周波ワークコイル6の鉛直方向位置は、その中心が黒鉛製坩堝1の中心からプラスマイナス20mmの範囲で調整し、坩堝中部材1bと坩堝下部材1aに大きなジュール熱を発生させる。熱伝導体10の径は6mm、高さ50mmであり、材質は黒鉛とした。黒鉛以外にも、タンタル等の高融点金属、高融点炭化物等の高融点材料でも良いが、コスト面から黒鉛を選定した。   FIG. 1 shows a schematic diagram of a single crystal manufacturing apparatus in a first embodiment of the present invention. In FIG. 1, a graphite crucible 1 includes a crucible upper member 1c, a crucible middle member 1b, and a crucible lower member 1a, and has a height of 150 mm and an outer diameter of 60 mm. The diameter of the seed crystal attachment portion 1d is 10 mm, the inner diameter of the crucible lower member 1a is 30 mm, the height direction of the raw material powder 2 is 76 mm, and the diameter of the seed crystal 3 is approximately 10 mm. The vertical position of the high-frequency work coil 6 is adjusted so that the center thereof is within a range of plus or minus 20 mm from the center of the graphite crucible 1, and large Joule heat is generated in the crucible middle member 1b and the crucible lower member 1a. The diameter of the heat conductor 10 was 6 mm, the height was 50 mm, and the material was graphite. In addition to graphite, a refractory metal such as tantalum or a refractory material such as refractory carbide may be used, but graphite is selected from the viewpoint of cost.

熱伝導体10を原料粉末2中に、所望の位置に精度良く設置する方法を説明する。まず図2(a)のように坩堝下部材1aに、第一の原料粉末2aを所定量だけ、ここでは26.3g投入すると高さ方向に21mm充填された。次に図3に示す熱伝導体配置治具11を準備するが、ここで熱伝導体配置治具11は、円板に円筒を組み合わせたようなおおよそ回転軸対称で、円板の一部を切り取った形状であり、円筒部をガイド部11a、円板の一部を切り取った領域を原料粉末投入部11bと呼ぶこととする。ガイド部11aの内径は6.1mmとした。図2(b)のように、坩堝下部材1aに熱伝導体配置治具11を配置し、ガイド部11aを通して熱伝導体10を第一の原料粉末2aの上部に配置することで、熱伝導体10を坩堝下部材1aの軸中心に正確に配置することができる。   A method for accurately placing the heat conductor 10 in the raw material powder 2 at a desired position will be described. First, as shown in FIG. 2 (a), when a predetermined amount of the first raw material powder 2a, 26.3g in this case, was charged into the crucible lower member 1a, the crucible lower member 1a was filled with 21 mm in the height direction. Next, a heat conductor placement jig 11 shown in FIG. 3 is prepared. Here, the heat conductor placement jig 11 is approximately rotationally symmetric, such as a combination of a disk and a cylinder. The cylindrical part is referred to as a guide part 11a, and an area where a part of a disk is cut out is referred to as a raw material powder input part 11b. The inner diameter of the guide portion 11a was 6.1 mm. As shown in FIG. 2B, the heat conductor placement jig 11 is placed on the crucible lower member 1a, and the heat conductor 10 is placed on the upper part of the first raw material powder 2a through the guide portion 11a. The body 10 can be accurately arranged at the axial center of the crucible lower member 1a.

次に図2(c)のように熱伝導体配置治具11の原料粉末投入部11bから第二の原料粉末2bを60g投入した。ここで、熱伝導体配置治具11を中心軸に対して複数回、回転して原料粉末を投入すれば、原料粉末の偏りを抑えて均一に充填することができる。次に図2(d)のように熱伝導体配置治具11を坩堝下部材1aから取り外し、第三の原料粉末2cを所定量投入し、第二の原料粉末2bと第三の原料粉末2cの重量合計を66.3gとすることで、第一、第二、および第三の原料粉末を合わせた高さが76mmになるように充填できた。このように、熱伝導体配置治具11を用いることで、熱伝導体10を坩堝下部材1aの中心軸に、正確に配置することができる。   Next, as shown in FIG. 2C, 60 g of the second raw material powder 2 b was charged from the raw material powder charging portion 11 b of the heat conductor arranging jig 11. Here, if the raw material powder is charged by rotating the heat conductor placement jig 11 a plurality of times with respect to the central axis, the raw material powder can be uniformly filled while suppressing the bias of the raw material powder. Next, as shown in FIG. 2 (d), the heat conductor placement jig 11 is removed from the crucible lower member 1a, a predetermined amount of the third raw material powder 2c is charged, the second raw material powder 2b and the third raw material powder 2c. By making the total weight of 66.3 g, the total height of the first, second, and third raw material powders could be filled to 76 mm. Thus, by using the heat conductor placement jig 11, the heat conductor 10 can be accurately placed on the central axis of the crucible lower member 1a.

熱伝導体配置治具11はガイド部11aと原料粉末投入部11bを有していれば、図3に示すもの以外でも良い。例えば図4に示すものでも精度よく配置することが可能である。   The heat conductor placement jig 11 may be other than the one shown in FIG. 3 as long as it has the guide portion 11a and the raw material powder input portion 11b. For example, even the one shown in FIG. 4 can be arranged with high accuracy.

以上のように熱伝導体10を配置したのち、坩堝中部材1b、坩堝上部材1c等を取り付け、断熱材5の内部に配置し、反応管内に配置した。反応管内を3.0×10-4Paに減圧後、黒鉛製坩堝1を1200℃以上に加熱し、アルゴンガスを8.0×10Paまで充填し、黒鉛製坩堝1を加熱し、黒鉛坩堝の下部温度が2300℃となるよう電流制御した。その後、アルゴン雰囲気圧を2.7×10Paに減圧し、炭化珪素単結晶の成長を行った。結晶成長時間は12時間とした。 After arranging the heat conductor 10 as described above, the crucible middle member 1b, the crucible upper member 1c, and the like were attached, arranged inside the heat insulating material 5, and arranged in the reaction tube. After reducing the pressure in the reaction tube to 3.0 × 10 −4 Pa, the graphite crucible 1 is heated to 1200 ° C. or higher, and argon gas is charged to 8.0 × 10 4 Pa, the graphite crucible 1 is heated, The current was controlled so that the lower temperature of the crucible was 2300 ° C. Thereafter, the argon atmosphere pressure was reduced to 2.7 × 10 3 Pa to grow a silicon carbide single crystal. The crystal growth time was 12 hours.

(比較例1)
比較のため、図8に示すように熱伝導体を配置せずに結晶の成長を行った。黒鉛坩堝1の寸法、高周波コイルの位置、成長温度、成長圧力、成長時間等の他の条件は実施例1と同じである。鉛直方向の結晶成長量を成長時間で除して成長速度を導出した。
(Comparative Example 1)
For comparison, crystals were grown without arranging a heat conductor as shown in FIG. Other conditions such as the dimensions of the graphite crucible 1, the position of the high frequency coil, the growth temperature, the growth pressure, and the growth time are the same as those in the first embodiment. The growth rate was derived by dividing the amount of vertical crystal growth by the growth time.

実施例1と比較例1を比べると、実施例1の成長速度304μm/hに対し、比較例1では195μm/hであり、実施例1の結晶成長は約56%早く成長する。これは、熱伝導体を原料粉末中に配置することにより、原料粉末の温度が上昇し、原料使用効率が向上したためと考えられる。   Comparing Example 1 and Comparative Example 1, the growth rate of 304 μm / h in Example 1 is 195 μm / h in Comparative Example 1, and the crystal growth in Example 1 grows about 56% faster. This is presumably because the temperature of the raw material powder was increased and the use efficiency of the raw material was improved by arranging the heat conductor in the raw material powder.

また、本実験で用いた熱伝導体(黒鉛)の室温における熱伝導度は70W/m・K程度、炭化珪素多結晶の熱伝導度は0.1W/m・K程度であり、ともに同様の温度依存を示すため、2300℃付近の高温における熱伝導度は2桁以上黒鉛が大きい。このため原料粉末2の温度は従来よりも均一となり、原料消耗や昇華ガス発生も均一になると考えられる。その結果、単結晶成長条件がより安定し、また、局所的に炭化した原料粉末からの煤状物質の飛来が低減するため、単結晶品質が向上する。   The thermal conductivity of the thermal conductor (graphite) used in this experiment is about 70 W / m · K, and the thermal conductivity of polycrystalline silicon carbide is about 0.1 W / m · K. In order to show temperature dependence, the thermal conductivity at a high temperature around 2300 ° C. is larger by two digits or more. For this reason, it is considered that the temperature of the raw material powder 2 becomes more uniform than before, and the consumption of the raw material and generation of sublimation gas become uniform. As a result, the single crystal growth conditions are more stable, and the flying of the soot-like substance from the locally carbonized raw material powder is reduced, so that the single crystal quality is improved.

このように、本発明により、成長速度向上と、原料消耗の均一化を同時に達成し、高品質単結晶を効率良く製造することが可能となる。   As described above, according to the present invention, it is possible to simultaneously improve the growth rate and make the material consumption uniform, and to produce a high-quality single crystal efficiently.

実施例2として、図5に示すように熱伝導体10の上端が単結晶成長空間4に露出する配置とした。熱伝導体10を所定の位置に配置するため、前述の熱伝導体配置治具11を用いて同様の方法で配置した。黒鉛坩堝1や熱伝導体10の寸法、成長温度、成長圧力、成長時間等の他の成長条件は、実施例1と同様である。   As Example 2, as shown in FIG. 5, the upper end of the heat conductor 10 was arranged to be exposed in the single crystal growth space 4. In order to arrange the heat conductor 10 at a predetermined position, the heat conductor 10 was arranged in the same manner using the above-described heat conductor arranging jig 11. Other growth conditions such as the dimensions, growth temperature, growth pressure, and growth time of the graphite crucible 1 and the heat conductor 10 are the same as those in the first embodiment.

実施例2での結晶成長速度は290μm/hであり、従来技術である比較例1に比べると成長速度は49%向上した。また、熱伝導体配置により原料消耗が従来よりも均一となり、発生する昇華ガスも均一になると考えられる。このように、本実施の形態でも、本発明は有効である。そのため、熱伝導体10の表面は、実施例1に示すように、全て原料粉末に接することが望ましいが、実施例2のように熱伝導体10の上端が成長空間に露出しても効果が得られる。   The crystal growth rate in Example 2 was 290 μm / h, and the growth rate was improved by 49% compared with Comparative Example 1 which is a conventional technique. Further, it is considered that the consumption of the raw material becomes more uniform than in the past due to the arrangement of the heat conductor, and the generated sublimation gas is also uniform. Thus, the present invention is also effective in this embodiment. Therefore, it is desirable that the surface of the heat conductor 10 is in contact with the raw material powder as shown in Example 1, but it is effective even if the upper end of the heat conductor 10 is exposed to the growth space as in Example 2. can get.

前述の黒鉛製坩堝に対し、図6に示すように、外径20mm、内径16mm、高さ70mmのリング状熱伝導体12を配置した。黒鉛坩堝1の寸法、成長温度、成長圧力、成長時間等の他の成長条件は実施例1と同じである。   As shown in FIG. 6, a ring-shaped heat conductor 12 having an outer diameter of 20 mm, an inner diameter of 16 mm, and a height of 70 mm was disposed in the graphite crucible described above. Other growth conditions such as dimensions, growth temperature, growth pressure, and growth time of the graphite crucible 1 are the same as those in the first embodiment.

実施例3での結晶成長速度は238μm/hであり、従来技術である比較例1に比べると結晶成長速度は22%向上した。また、熱伝導体配置により原料消耗が従来よりも均一となり、発生する昇華ガスも均一になると考えられる。このように、リング状熱伝導体でも、本発明は有効である。   The crystal growth rate in Example 3 was 238 μm / h, and the crystal growth rate was improved by 22% compared with Comparative Example 1 which is a conventional technique. Further, it is considered that the consumption of the raw material becomes more uniform than in the past due to the arrangement of the heat conductor, and the generated sublimation gas is also uniform. Thus, the present invention is effective even with a ring-shaped heat conductor.

(比較例2)
図11に示すように、熱伝導体10の下端が坩堝下部1aに接する配置となるよう、黒鉛坩堝を加工し、原料粉末を高さ76mmとなるよう充填した。その後、実施例1と同様の成長を行った。成長温度、成長圧力、成長時間等の他の成長条件は実施例1と同じである。
(Comparative Example 2)
As shown in FIG. 11, the graphite crucible was processed so that the lower end of the heat conductor 10 was in contact with the crucible lower portion 1a, and the raw material powder was filled to a height of 76 mm. Thereafter, the same growth as in Example 1 was performed. Other growth conditions such as growth temperature, growth pressure, and growth time are the same as those in the first embodiment.

比較例2での結晶成長速度は214μm/hであり、比較例1に比べ9%の向上であり、大きな効果は得られなかった。したがって、熱伝導体を坩堝底部に接して配置した従来技術の場合、原料消耗の均一化は達成できるが、成長速度向上の効果は限定的であると考えられる。これは、比較例2では熱伝導体10と坩堝下部1aの間で熱移動が容易であるため、原料粉末上部から原料粉末下部へ熱が逃げ、原料粉末の温度が上昇しにくいことが考えられる。なお、高周波コイルの変更等により原料粉末上部より原料粉末下部のほうが高温となる温度分布に変更した場合には、この従来技術でも大きな成長速度向上が得られる可能性があるが、このとき坩堝内壁に付着した炭化珪素多結晶7が成長単結晶3aに付着しやすくなり、結晶欠陥が増大しやすくなるという課題がある。   The crystal growth rate in Comparative Example 2 was 214 μm / h, an improvement of 9% compared to Comparative Example 1, and a great effect was not obtained. Therefore, in the case of the prior art in which the heat conductor is disposed in contact with the bottom of the crucible, uniform consumption of the raw material can be achieved, but the effect of improving the growth rate is considered to be limited. This is because heat transfer from the upper part of the raw material powder to the lower part of the raw material powder is difficult because the heat transfer between the thermal conductor 10 and the crucible lower part 1a is easy in Comparative Example 2, and the temperature of the raw material powder is unlikely to rise. . If the temperature distribution is changed so that the temperature of the lower part of the raw material powder is higher than that of the upper part of the raw material powder by changing the high-frequency coil, etc., there is a possibility that a large increase in the growth rate can be obtained with this conventional technique. There is a problem that the silicon carbide polycrystal 7 adhering to the silicon oxide tends to adhere to the grown single crystal 3a, and the crystal defects easily increase.

実施例1から3に説明した通り、熱伝導体の形状は、円柱形状であることが望ましいが、円筒形状でも良い。また、概ね軸対称であれば、他の形状でも効果が得られると考えられる。また、複数の熱伝導体を組み合わせて使用しても良く、例えば、図7のように棒状熱伝導体10とリング状熱伝導体12を組み合わせて使用しても良い。熱伝導体の外径は、小さすぎると十分な効果が得られないため4mm以上がのぞましく、大きすぎると原料粉末から生じる昇華ガス輸送の障害となる可能性があるため20mm以下がのぞましい。   As described in Examples 1 to 3, the shape of the heat conductor is preferably a columnar shape, but may be a cylindrical shape. In addition, if it is generally axially symmetric, the effect can be obtained with other shapes. Further, a plurality of heat conductors may be used in combination, for example, a rod-like heat conductor 10 and a ring-like heat conductor 12 may be used in combination as shown in FIG. If the outer diameter of the heat conductor is too small, a sufficient effect cannot be obtained, so 4 mm or more is preferable, and if it is too large, it may be an obstacle to transport of sublimation gas generated from the raw material powder, so 20 mm or less is preferable. .

本発明にかかる炭化珪素単結晶の製造方法は、成長速度向上と、原料消耗の均一化を同時に達成し、高品質単結晶を効率良く製造することができ、特に高品質な炭化珪素単結晶基板を効率よく製造する方法として有用である。   The method for producing a silicon carbide single crystal according to the present invention can simultaneously improve the growth rate and make the material consumption uniform, and can efficiently produce a high-quality single crystal, and particularly a high-quality silicon carbide single-crystal substrate. It is useful as a method for efficiently producing.

本発明にかかる炭化珪素単結晶の製造方法は、昇華法により製造する他の材料素材にも適用できる。   The method for producing a silicon carbide single crystal according to the present invention can also be applied to other material materials produced by a sublimation method.

本発明の実施例1における炭化珪素単結晶製造装置を示す模式図The schematic diagram which shows the silicon carbide single crystal manufacturing apparatus in Example 1 of this invention 本発明の実施例1における熱伝導体の配置方法を示す模式図The schematic diagram which shows the arrangement | positioning method of the heat conductor in Example 1 of this invention. 本発明の実施例1における熱伝導体配置治具の模式図The schematic diagram of the heat conductor arrangement | positioning jig | tool in Example 1 of this invention. 熱伝導体配置治具の他の形態を示す模式図Schematic diagram showing another form of heat conductor placement jig 本発明の実施例2における炭化珪素単結晶製造装置の模式図Schematic diagram of a silicon carbide single crystal manufacturing apparatus in Example 2 of the present invention 本発明の実施例3における炭化珪素単結晶成長装置の模式図Schematic diagram of a silicon carbide single crystal growth apparatus in Example 3 of the present invention 本発明の他の実施の形態を示す模式図Schematic diagram showing another embodiment of the present invention 従来の炭化珪素単結晶製造装置を示す模式図Schematic diagram showing a conventional silicon carbide single crystal manufacturing device 成長後の炭化珪素単結晶製造装置を示す模式図Schematic diagram showing the silicon carbide single crystal manufacturing equipment after growth 単結晶分離成長でない炭化珪素単結晶製造装置を示す模式図Schematic diagram showing a silicon carbide single crystal manufacturing device that is not single crystal separate growth 従来の炭化珪素単結晶成長装置を示す模式図Schematic diagram showing a conventional silicon carbide single crystal growth apparatus

符号の説明Explanation of symbols

1 黒鉛製坩堝
1a 坩堝下部材
1b 坩堝中部材
1c 坩堝上部材
1d 種結晶取付部
1e ガスガイド部
2 原料粉末
2a 第一の原料粉末
2b 第二の原料粉末
2c 第三の原料粉末
3 種結晶
3a 成長単結晶
4 単結晶成長空間
5 断熱材
6 高周波ワークコイル
7 炭化珪素多結晶
10 熱伝導体
11 熱伝導体配置治具
11a ガイド部
11b 原料粉末投入部
12 リング状熱伝導体
1 graphite crucible 1a crucible lower member 1b crucible middle member 1c crucible upper member 1d seed crystal mounting portion 1e gas guide portion 2 raw material powder 2a first raw material powder 2b second raw material powder 2c third raw material powder 3 seed crystal 3a Growth single crystal 4 Single crystal growth space 5 Heat insulating material 6 High frequency work coil 7 Silicon carbide polycrystal 10 Thermal conductor 11 Thermal conductor placement jig 11a Guide portion 11b Raw material powder input portion 12 Ring-shaped thermal conductor

Claims (3)

黒鉛製坩堝と、
前記黒鉛製坩堝の内部に固定された種結晶と、
前記黒鉛製坩堝内に配置された原料粉末と、
前記黒鉛製坩堝および前記原料粉末を加熱するための高周波ワークコイルを備えた単結晶製造装置において、
その外径が前記坩堝内径の2/15から2/3の範囲にある円柱形状の熱伝導部材を前記黒鉛製坩堝の内壁に接しないように前記原料粉末が配置された前記黒鉛製坩堝の中心に配置することを特徴とする単結晶製造装置。
A graphite crucible;
A seed crystal fixed inside the graphite crucible;
Raw material powder disposed in the graphite crucible,
In the single crystal manufacturing apparatus provided with a high frequency work coil for heating the graphite crucible and the raw material powder,
The center of the graphite crucible in which the raw material powder is arranged so that a cylindrical heat conducting member whose outer diameter is in the range of 2/15 to 2/3 of the crucible inner diameter does not contact the inner wall of the graphite crucible An apparatus for producing a single crystal, wherein
前記熱伝導部材は、前記単結晶の成長温度よりも高い融点をもつ金属または金属炭化物であることを特徴とする請求項1に記載の単結晶製造装置。 The single crystal manufacturing apparatus according to claim 1, wherein the heat conducting member is a metal or a metal carbide having a melting point higher than a growth temperature of the single crystal. 前記熱伝導部材は、黒鉛であることを特徴とする請求項1に記載の単結晶製造装置。 The single crystal manufacturing apparatus according to claim 1, wherein the heat conducting member is graphite.
JP2005263402A 2005-09-12 2005-09-12 Single crystal manufacturing apparatus and manufacturing method Expired - Fee Related JP4872283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263402A JP4872283B2 (en) 2005-09-12 2005-09-12 Single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263402A JP4872283B2 (en) 2005-09-12 2005-09-12 Single crystal manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2007076928A JP2007076928A (en) 2007-03-29
JP4872283B2 true JP4872283B2 (en) 2012-02-08

Family

ID=37937599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263402A Expired - Fee Related JP4872283B2 (en) 2005-09-12 2005-09-12 Single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP4872283B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486190B2 (en) 2006-01-20 2014-05-07 エイエムジー・アイデアルキャスト・ソーラー・コーポレーション Single crystal molded silicon for photoelectric conversion and method and apparatus for manufacturing single crystal molded silicon body
US20100203350A1 (en) 2007-07-20 2010-08-12 Bp Corporation Noth America Inc. Methods and Apparatuses for Manufacturing Cast Silicon from Seed Crystals
US8591649B2 (en) 2007-07-25 2013-11-26 Advanced Metallurgical Group Idealcast Solar Corp. Methods for manufacturing geometric multi-crystalline cast materials
WO2009015167A1 (en) 2007-07-25 2009-01-29 Bp Corporation North America Inc. Methods for manufacturing monocrystalline or near-monocrystalline cast materials
JP4831128B2 (en) * 2008-05-26 2011-12-07 パナソニック株式会社 Crystal growth crucible
KR101181217B1 (en) * 2009-06-29 2012-09-07 에스케이씨 주식회사 Growing apparatus for single crystal
JP2012116709A (en) * 2010-12-01 2012-06-21 Fujikura Ltd Apparatus and method for manufacturing single crystal
CN102534805B (en) 2010-12-14 2014-08-06 北京天科合达蓝光半导体有限公司 Silicon carbide crystal annealing process
JP6925208B2 (en) * 2017-09-08 2021-08-25 昭和電工株式会社 Method for producing silicon carbide single crystal
EP3666933A4 (en) * 2018-10-16 2020-12-30 SICC Co., Ltd Large-size high-purity silicon carbide single crystal, substrate, preparation method therefor and preparation device thereof
JP7242978B2 (en) 2018-11-26 2023-03-22 株式会社レゾナック Manufacturing method of SiC single crystal ingot
JP7358944B2 (en) * 2019-11-27 2023-10-12 株式会社レゾナック Heat transfer member for SiC single crystal growth, crucible for SiC single crystal growth, method for manufacturing SiC single crystal
JP7351219B2 (en) * 2019-12-26 2023-09-27 株式会社レゾナック Single crystal manufacturing equipment
CN114645318A (en) * 2022-03-16 2022-06-21 齐鲁工业大学 Crucible device for improving material transmission efficiency and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558774A (en) * 1991-09-03 1993-03-09 Sanyo Electric Co Ltd Vessel for silicone carbide single crystal growing device
JP4048606B2 (en) * 1998-06-25 2008-02-20 株式会社デンソー Single crystal manufacturing method
JP4503736B2 (en) * 1999-08-31 2010-07-14 独立行政法人産業技術総合研究所 Method and apparatus for producing single crystal

Also Published As

Publication number Publication date
JP2007076928A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4872283B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP6606638B2 (en) Method and apparatus for growing Fe-Ga based alloy single crystal
JP6111873B2 (en) Method for producing silicon carbide single crystal ingot
JP6302192B2 (en) Single crystal growth apparatus and method
WO2011062092A1 (en) Single crystal pulling apparatus
JP6338439B2 (en) Method for producing silicon carbide single crystal ingot
KR101574749B1 (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
US7067007B2 (en) Process and device for growing single crystals
JPWO2014013698A1 (en) SiC single crystal manufacturing apparatus and SiC single crystal manufacturing method
JP2937108B2 (en) Single crystal pulling method and single crystal pulling apparatus
JP6910168B2 (en) Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Manufacturing Method
JP2008266090A (en) Silicon crystal material and method for manufacturing fz (floating-zone) silicon single crystal using the material
JP6998460B2 (en) Manufacturing equipment and method for manufacturing tubular single crystals
JP6223290B2 (en) Single crystal manufacturing equipment
JP2022159501A (en) Polycrystalline silicon bar, polycrystalline silicon rod and production method of the same
US8691013B2 (en) Feed tool for shielding a portion of a crystal puller
JP4184622B2 (en) Method for producing silicon carbide single crystal ingot
CN113512758A (en) Silicon carbide ingot, method of manufacturing the same, and system for manufacturing silicon carbide ingot
WO2014103539A1 (en) Method for producing sic single crystal
JP2002012500A (en) Method of and device for producing silicon carbide single crystal, and silicon carbide single crystal
JP7275674B2 (en) Method for growing lithium niobate single crystal
JPH11274537A (en) Manufacture of polycrystalline silicon of large grain size
JP2016185884A (en) Method of manufacturing crystal
JP2016088812A (en) Method and apparatus for manufacturing silicon carbide single crystal ingot
JP3700397B2 (en) Method for producing compound semiconductor crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees