JP4503736B2 - Method and apparatus for producing single crystal - Google Patents

Method and apparatus for producing single crystal Download PDF

Info

Publication number
JP4503736B2
JP4503736B2 JP24434899A JP24434899A JP4503736B2 JP 4503736 B2 JP4503736 B2 JP 4503736B2 JP 24434899 A JP24434899 A JP 24434899A JP 24434899 A JP24434899 A JP 24434899A JP 4503736 B2 JP4503736 B2 JP 4503736B2
Authority
JP
Japan
Prior art keywords
crystal
crucible
raw material
heat transfer
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24434899A
Other languages
Japanese (ja)
Other versions
JP2001072491A (en
Inventor
和雄 荒井
伸一 西澤
直樹 小柳
泰男 木藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Denso Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Showa Denko KK
Denso Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Denso Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Showa Denko KK
Priority to JP24434899A priority Critical patent/JP4503736B2/en
Publication of JP2001072491A publication Critical patent/JP2001072491A/en
Application granted granted Critical
Publication of JP4503736B2 publication Critical patent/JP4503736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えばSiC単結晶などを昇華法により結晶成長させる方法及びそのための装置に関する。特に、炭化けい素(SiC)、セレン化亜鉛(ZnSe)、窒化ガリウム(GaN)、窒化アルミニウム(AlN)などのワイドバンドギャップ系の半導体のためのマイクロパイプが少なく、結晶口径の大きい拡大率を有する高品質単結晶を長時間連続成長させる製造方法およびそのための装置に関する。
【0002】
【従来の技術】
SiCなどの半導体群は、一般的に熱的、化学的に非常に安定であり、かつエネルギーバンドギャップが広い特徴を持つ材料であり、高温下でも使用可能な耐環境素子材料、耐放射線素子材料、電力制御用パワー素子材料、短波長発光素子材料等に利用できる。
例えば、SiC単結晶を製造する方法として、通常、SiC粉を原料とした高温を要する昇華法が用いられている(特表平3−501118)。昇華法は、SiC原料粉末とSiC単結晶である種結晶基板を対向させて黒鉛製ルツボ内に配置し、不活性ガス雰囲気中で1800〜2400℃に加熱する。加熱によりSiC原料粉末が分解、昇華することにより発生した昇華化学種(ガス)は成長温度域に保持された種結晶基板表面に到達し、単結晶としてエピタキシャルに成長する。
【0003】
単結晶の製造方法においては、SiCを充填したルツボ内を減圧し(例えば10Torr)、装置全体を室温から成長温度(例えば2200℃)に昇温する。昇温にともない原料から発生する結晶成長に寄与するSi、Si2 C、SiC2 、SiCなどの昇華ガスの他に、原材料などに含まれる不純物(例えばFe、Tiなど)の微小粒子、あるいはその他高品質の結晶の成長を妨げる妨害微小粒子(例えば、ルツボ壁から発生する炭素の粒子など)がルツボ内に浮遊し、それらが成長する結晶に付着し、成長する結晶の品質の劣化、例えばマイクロパイプ(空洞欠陥)、結晶転位などの発生の原因となっていると推定される。
また、ルツボ内に収容した原料のSiCは、ルツボ壁側から加熱されるためルツボ壁側が温度が高くルツボ中心が温度が低くなってしまう。このため、ルツボ壁側の近くでは収容されている原料からはより多くのSi、Si2 C、SiC2 、SiCなどの昇華ガスが発生し、その結果この部分の原料組成としては炭素濃度が高くなり、最後には炭素の塊となる。
【0004】
そのためにルツボ内の原料の組成分布は、壁に近い部分は炭素が多く、ルツボの中心部はSiCが多いという不均一な成分分布を有した表面が形成されるため、それらの面から発生する昇華ガスの成分は位置的に組成的に異なる様になる。これは長時間結晶成長を続けるとその反応時間とともに炭素濃度の分布が変化するために昇華ガス成分の濃度割合が変化することを意味する。この結果、昇華ガスの均一性を制御するのが難しくなり、安定して高品質結晶を得ることが困難になる。
半導体素子原料とする単結晶において、マイクロパイプ(空洞欠陥)は、数10[個/cm2 ]以下であるのが実用上好ましいと考えられているが、従来の単結晶の製造方法ではその条件を満たすことが困難である。
【0005】
この改善を図るため、ルツボ中心部の原料の加熱を改良して昇華させる手段として、ルツボの中央部に対称な熱伝導体を設置することにより中心部の温度を高めて原料の昇華の均一性を改善させるSiC単結晶成長装置用容器が開示されている(特開平5−58774号公報)。
しかしこの方法では所定の温度にするために大きな電力を必要とし効率が悪くなることが推定される。また、ルツボの壁側だけでなく中心部のグラファイトの周辺にも昇華開始後すぐに炭素濃度の高い部分が出来て不均一な表面状態は解消されない。それが妨害微小粒子の発生原因となり成長した結晶にカーボンインクルージョンが発生しやすい。また熱伝導体(黒鉛など)が高温にさらされ、表面が劣化してくるため熱伝導体自身からも妨害粒子が放出される。
【0006】
これらの単結晶の高品質化を図るため、現在はルツボ、原料など、結晶成長に供する原料、装置部材の高純度化を図ることで不純物の発生を抑えているが、コストが高いものになっている。また結晶成長に伴い成長した結晶表面が原料に近づくことによる反応状況の変化(温度変化、ガス状態の変化)、原料の純度低下(経時的に原料内に炭素濃度が高くなる)にともなうガス状況の変化を経験則から考慮して結晶成長の運転条件の制御を行っているが十分で最適な制御できず良質な結晶が得られていない。
【0007】
【発明が解決しようとする課題】
本発明は、ルツボ内の温度の均一化、ルツボ内の原料濃度の変化を抑え長時間連続成長させた場合でも昇華ガスの均一性が確保でき、成長した単結晶がマイクロパイプが少なく、結晶口径の大きい拡大率を有する高品質単結晶を長時間連続成長させる製造方法およびそのための装置の開発を目的とする。
【0008】
【課題を解決するための手段】
本発明は、
[1]昇華法による結晶成長方法において、ルツボ中に上部が細く、下部が太い中空状伝熱体を設置し、ルツボと中空状伝熱体の間に原料を充填して、結晶成長を行うことにより、原料表面の温度分布をより均一とし、原料からの不純物・付着妨害物粒子の付着が少ない高品質の結晶を得ることを特徴とする単結晶の製造方法、
[2] 上記中空状伝熱体の上部開口部の径(円形でないときはその外接円の径)を種結晶の径の0.2〜5倍の大きさとすることを特徴とする結晶口径拡大率の大きい上記[1]に記載の単結晶の製造方法、
【0009】
[3] 単結晶が、ワイドバンドギャップ半導体用結晶である上記[1]または[2]に記載の単結晶の製造方法、
[4] 炭化けい素の昇華法による結晶成長方法において、ルツボ中に上部が細く、下部が太い中空状伝熱体を設け、ルツボと中空状伝熱体の間に原料炭化けい素を充填し、希ガス雰囲気あるいは窒素ガス雰囲気またはそれらの混合雰囲気中で1800〜2400℃に加熱することを特徴とする空洞状欠陥の少ない炭化けい素単結晶の製造方法、
を開発することにより上記の課題を解決した。
【0010】
【発明の実施の形態】
本発明の方法によると、ルツボ内の加熱した原料の内部の深さ方向の等温面を昇華面(原料表面)とをより近くすることが出来る。
本発明において、ワイドバンドギャップ半導体としては、光学結晶、高周波素子用結晶及び電力素子用結晶であり、例えば炭化けい素(SiC)、セレン化亜鉛(ZnSe)、窒化ガリウム(GaN)、窒化アルミニウム(AlN)など昇華法で作られる結晶を意味する。
【0011】
以下代表としてSiC単結晶の製造を取り上げ説明するが、本発明はこれに限られることなく半導体単結晶の製造法に適用できるものである。
本発明者らは、SiCなどの各種半導体用結晶の成長の研究において、種結晶基板の結晶成長の測定のため、ルツボの底部及びルツボ中央に設置した熱伝導体の中央を貫通して中空とした装置を作成し、温度分布の測定をしていたところ、意外にも生成するSiC結晶はマイクロパイプが少なく、結晶口径の大きい拡大率を有する高品質の単結晶を長時間連続して成長させることができることに気がついた。そして、この原因が熱伝導体が中空状であれば効果があり、特にルツボ(底部に穴は不要)中に上部が細く、下部が太い中空状伝熱体を設置することによりその効果が大きいことがわかった。
このメカニズムは不明であるが、得られた現象から判断して次ぎのような原理によるものと推察している。
【0012】
中空状伝熱体は高周波加熱により側面が発熱するルツボ本体より黒鉛を通して熱伝導により加熱されるが、黒鉛は原料に比して熱伝導性が高いため高温になり、黒鉛ルツボ底から熱伝導で中空状伝熱体は加熱されるが、伝熱体が上部が下部に比して細い中空状の形状であることにより、発熱体である黒鉛ルツボ底からの輻射効果も伝熱体の上部で効率よく受け取ることができ、設置した中空状伝熱体全体が効率良く加熱できる。また中空状伝熱体にしたため伝熱体として同一の質量を用いた中実伝熱体を用いたときより原料層に接する表面積を大きくでき、より大量の熱量を原料層に供給することができる。これによりに、効率良く中心側から原料を加熱することができ、また伝熱表面積が広いので中実円筒の伝熱体より確実に温度制御できるため、原料内部の等温線を昇華面(原料表面)と平行に近くまで容易に温度制御ができるものと推定する。
【0013】
その結果、ルツボからは全体的により均一に昇華ガスを発生させることができ、また長時間の結晶成長反応においても原料SiC層の炭素濃度の不均一な偏りの発生を抑えることができる。原料層から発生したSi、Si2 C、SiC2 、SiCなどの昇華ガスは拡散により種結晶基板表面に到達し、単結晶としてエピタキシャルに成長するが、昇華ガスが均一であるために得られる結晶形は従来法によるものより平坦な形状を有しており(従来の方法では結晶面が球状に近くなり、その周辺部の結晶性は悪いが、平坦化することにより周辺部まで結晶性が向上する。)、またその運転条件の制御が容易になり安定した品質の単結晶を得ることができる。
【0014】
一方、原料に近接する気相の温度分布も、原料表面温度に従うため、ルツボ全体の温度がより均一になり、その結果昇華する原料表面上では等温面を横切るような均一な上昇気流が発生し、ルツボ中心部(中空状伝熱体の中空部上部)では温度が低いため逆に下降気流が発生していると考えられる。このような状況ではルツボの外周部の等温面を横切るような上昇気流によって物質の輸送力が働くため、原料から放出される固体不純物、付着妨害粒子は昇華表面の上部の結晶周囲の蓋に向かい、蓋部に到達した固体不純物、付着妨害粒子は低温に制御された蓋の周縁部に固定され、結晶成長表面にまで到達することは少なくなると推定される。
昇華ガスの輸送には拡散効果が働くため、原材料などに含まれる固体不純物(例えばFe、Tiなど)の微小粒子、あるいはその他高品質結晶の成長を妨げる妨害微小粒子(例えば、ルツボ壁から発生する炭素の粒子など)がルツボ内に飛散してそれらが成長する結晶に付着することを抑えることが出来る。
【0015】
さらに加熱した原料の内部の深さ方向の等温面を昇華面(原料表面)と平行近くにして均一に昇華ガスを発生させることにより、結果として原料層中の炭素濃度の不均一な偏りの発生を抑えて妨害微小粒子となりうる炭素の塊の発生を抑えることができる。特に伝熱体が中空体であり、種結晶の下部に発塵源がないことも作用しているためと推定している。
以上から、成長する結晶の品質の劣化、例えばマイクロパイプ、結晶転位などの発生を減少させて長時間製造して高品質の単結晶を得ることができたものと推定している。
【0016】
本発明をより具体的に説明するために実施の形態の一例を説明する。
本発明において用いられるSiC原料を収容し加熱するルツボおよびルツボ蓋は、炭素材、通常黒鉛が好適に使用されるが、炭素材であれば結晶質から非晶質のものまであらゆるものが利用できる。またルツボ蓋の種結晶基板を保持する部材及び周辺部材には炭素材であれば結晶質から非晶質のものまであらゆるものが利用できる。保持するには、SiC種結晶を保持部材に張り付けたり機械的に結合する方法がある。
ルツボ内には中空状伝熱体を設置し、その周囲にSiC原料粉を収容する。中空状伝熱体の下部水平断面形状は熱的対称性、結晶系形状の点から円又は正多角形であるのが好ましい。中空状伝熱体の厚さは特に制限はないが、熱伝導性、材料強度の点から0.5mm〜10mm、より好ましくは1mm〜3mmであるのが望ましい。中空状伝熱体の材質は炭素材、通常黒鉛が好適に使用されるが、炭素材であれば結晶質から非晶質のものまであらゆるものが利用できる。中空状伝熱体の上部の断面形状の外接円の直径は種結晶の大きさの点から、種結晶の直径と中空状伝熱体の上部中空部の断面形状の外接円の直径の比が0.2〜5、装置の効率から好ましくは0.5〜2の関係であるのが望ましい。
【0017】
ルツボの内部の断面の内径と中空状伝熱体の上部の断面形状の外接円の直径は、収容する原材料の量と所定の温度設定及び制御が可能であれば特に制限はされない。中空状伝熱体の高さはSiC原料表面と種結晶の距離を最適な結晶成長条件に合わせれば良い。ルツボ内断面形状の重心と中空状伝熱体上部断面形状の重心と中空状伝熱体下部断面形状の重心との位置の関係は対称性の点から出来るだけ同一であるのが好ましい。中空状伝熱体の固定方法は、熱的に結合が適切で、強度的に適切な方法でであれば、機械的なはめ込み、あるいは接着剤(フェノール樹脂またはこれに炭素粉などを混合したものが使用される。)による貼り付け等が可能である。
【0018】
たとえば図1のように、内径50mm、深さ95mmの黒鉛製ルツボ1の底部に高さ77mm、上部内径14.2mm、下部内径30mmの裁頭円錐形(円錐形の頭部を水平にカットした形状)の中空状伝熱体2をルツボの底部の中心位置に機械的なはめ込みの方法で固定設置し、ルツボと中空状伝熱体の間に原料のSiC粉3を70mmの高さまで充填する。
この黒鉛ルツボを断熱材4で包み、加熱炉5(高周波加熱炉を例示した。)内の反応管6内にセットする。反応管6はヘリウム、アルゴンなどの希ガスあるいは窒素等の不活性ガスが導入できるようにし、また反応管内の圧力も制御できるようにする。
本発明において用いられる種結晶基板7は、成長させたい結晶と同じ結晶構造のものを用いる。成長結晶面は、どのような面方位でも利用できる。例えば、C軸垂直面({0001}面)、C軸平行面({1−100}面)、オフ角度を導入した面などを用いることができる。種結晶基板7の表面を研磨して、平坦化して用いれば、成長単結晶の品質を向上できるので望ましい。
【0019】
種結晶基板7はルツボ蓋8に取り付けるが、ルツボ内壁の側面から離れたの中央部に設置することが好ましい。昇華ガスを再結晶させるために、種結晶基板7の温度を周辺部と比較し相対的に低くするために、種結晶基板は局部的な低温な部位に設置することが必要である。
加熱方法は、高周波加熱、抵抗加熱など一般の方法を用いることができる。高周波加熱方法ではコイルをルツボ1の上下に分割して設置すれば、ルツボ1の上下の温度分布をより適切に制御できる。種結晶基板7の表面の温度は、たとえば1500〜2500℃の範囲が適し、温度制御の容易性から好ましくは1700〜2300℃、さらに好ましくは1900〜2300℃が望ましい。
種結晶基板温度が1500℃より低いか、または2500℃より高いと析出結晶は多型結晶の混入が起こりやすい。成長中に種結晶基板7を回転させれば、温度、ガス組成などが均質化し、所望していない結晶の成長の抑制の効果も得られる。
【0020】
種結晶基板7は、SiC原料粉3と接触しない。また、単結晶の成長するに従い、種結晶基板7とSiC原料粉3の距離を一定に保つために種結晶基板7又はSiC原料面を調整移動すれば、温度などの成長条件が安定し、均質な単結晶が成長できる。原料のSiC粉は、あらかじめ酸などで洗浄し、不純物をできるだけ除去したものを用いることが望ましい。
内部に設置した中空状伝熱体を、断面形状が正多角形の一例として、高さ77mm、上部内径14.2mm、下部内径14.2mmの六角錘としてその他を図2と同様にして、結晶成長を実施したところ円錐状の中空状伝熱体を設置した場合と同様な効果が得られた。
【0021】
図3には中空状伝熱体の断面が曲線なる場合の図を示した。この場合もルツボ内温度分布などは同様の効果が得られ、さらに中空状伝熱体断面が直線の場合に比べ原料粉体が多く充填できるためより長時間の結晶成長が実施できた。
図4のような断面形状においても図2と同様な効果が得られている。
以上のように、本発明による時は理由は明らかにできなかったが、原料と成長する単結晶が共存する黒鉛ルツボの中で昇華法による結晶成長を行っても、成長中の単結晶に原料からの不純物・付着妨害粒子などが種結晶面までほとんど到達せず、結晶成長に寄与する昇華ガスのみが結晶面に到達し、高品質結晶を製造できることがわかった。
【0022】
また、原料表面中の温度分布が均一になり、昇華ガスが原料表面から長時間均一に供給され結晶成長温度が原料の純度が時間的劣化に影響されず、一定、均一温度で長時間結晶成長が出来ることから、結晶形状(結晶の成長面の形状)が平坦化され歪みの少ない結晶を得ることができ、更に従来にない長時間安定な高品質結晶を製造することが出来る。
本発明方法及びそのための装置は、中空状伝熱体の中空のところから種結晶上の結晶成長をモニターできる特徴があり、SiC単結晶の製造方法及び装置に限らず、他の半導体原料単結晶の昇華結晶成長による結晶製造方法に応用することができる。
【0023】
【実施例】
(実施例1)
本発明による結晶成長装置の一例である図1に示す装置を用いて実施した。結晶成長は、SiC原料を収納し加熱する部分として黒鉛ルツボを用いている。黒鉛から作成されたルツボ蓋の下面の中央部に、アチソン法で作製された6H−SiC単結晶を種結晶基板(6H−SiC単結晶(Si)面、10mm径、厚さ0.5mm)として貼り付け保持した。
黒鉛製の内径50mm、深さ95mmのルツボに、高さ77mm、上部内径14.2mm、下部内径30mmの中空状伝熱体を設置し、その周囲に原料として、SiC粉(昭和電工製#240)を高さ70mmになるまで収容した。この黒鉛ルツボを断熱材で包み、高周波加熱炉内の反応管内にセットした。
【0024】
ガス排出口9より排気し反応管内を5×10-5torrに減圧後、不活性ガス導入口10よりアルゴンガスを常圧まで充填した後、再度ガス排出口より排気し5×10-5torrまで減圧し、反応管内の空気を追い出した。そして不活性ガス導入口よりアルゴンガスを再度700Torrまで充填し、黒鉛ルツボを2300℃に昇温する。その後ガス排出口より排気し、アルゴン雰囲気圧を10torrに減圧した状態で、SiC単結晶の成長を行った。結晶成長時間は8時間とした。温度設定は黒鉛ルツボの外壁側の温度を放射温度計を用いて測定しながら制御した。
成長した単結晶の長さ方向の成長厚みは3mm、成長した結果の直径は16mmであった。得られた単結晶のラマン分光測定によるピーク位置、X線回折のピークパターンより、単結晶は6H−SiCであり、他の多型の混入の全くない単結晶であることを確認した。
この結晶をSIMSを用いた成分分析した、結果Feのピークが従来例に比較して小さくなっていた。この結晶を結晶成長方向に切断し、研磨を行い顕微鏡観察したところマイクロパイプと呼ばれる空洞状欠陥は15[個/cm2 ]であった。また結晶の口径の拡大率も16/10=1.6倍であった。
また、窒素を同一時間間隔で導入し結晶内に印をつけたところ、結晶速度が一定であることが判明した。
【0025】
(比較例)
ルツボ内に中空状伝熱体を設置しない従来の状態のルツボを使用した以外は実施例1と同様に結晶成長させた。
成長した結晶の長さ方向の成長厚みは4mm、成長した結果の直径12mmであった。ラマン分光測定によるピーク位置、X線回折のピークパターンより6H−SiCであり、他の多型の混入の全くない単結晶であることを確認した。
この結晶を実施例と同様に成分分析した結果、Feのピークが実施例に比較して大きくなっていた。この結晶を結晶成長方向に切断し研磨を行い顕微鏡観察したところマイクロパイプと呼ばれる空洞状欠陥は数1000[個/cm2 ]であった。また、結晶の口径の拡大率は12/10=1.2倍であった。
また窒素を同一時間間隔で導入し結晶内に印をつけたところ、成長初期で結晶の成長速度が遅く、終わりに近づくに従い成長速度が大きくなる(結晶の均一性が失われる)ことが確認された。
【0026】
【発明の効果】
本発明により、原料と成長する結晶が共存する中空状伝熱体を備えた黒鉛ルツボの中で昇華法による結晶成長を行う時は、原料からの不純物・付着妨害粒子が成長により得られる単結晶に直接到達せず、結晶成長に寄与する昇華ガスのみが結晶に到達するため、歪みが少なく結晶形状の平坦な高品質結晶を作製することが可能となった。また、このルツボを使用することにより原料表面の温度分布が均一になり、昇華ガスが原料表面から長時間均一に供給され、原料純度の温度依存性が小さくなり、結晶成長温度が原料の時間劣化に影響されず、一定、均一温度で長時間結晶成長が出来ることから、従来にない長時間安定な、空洞状欠陥の極めて小さい高品質結晶成長が可能となった。
【図面の簡単な説明】
【図1】本発明の単結晶の製造装置のフローチャート。
【図2】本発明の装置に使用するルツボの一断面図。
【図3】本発明の装置に使用するルツボの他の断面図。
【図4】本発明の装置に使用するルツボのそれ以外の断面図。
【符号の説明】
1 ルツボ
2 中空状伝熱体
3 SiC粉
4 断熱材
5 高周波加熱炉
6 反応管
7 種結晶基板
8 ルツボ蓋
9 ガス排出口
10 ガス導入口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for crystal growth of, for example, a SiC single crystal by a sublimation method and an apparatus therefor. In particular, there are few micropipes for wide-bandgap semiconductors such as silicon carbide (SiC), zinc selenide (ZnSe), gallium nitride (GaN), and aluminum nitride (AlN), and a large crystal diameter enlargement ratio. The present invention relates to a production method for continuously growing a high-quality single crystal having a long time and an apparatus therefor.
[0002]
[Prior art]
Semiconductors such as SiC are materials that are generally very thermally and chemically stable and have a wide energy band gap, and can be used even at high temperatures. It can be used for power control power element materials, short wavelength light emitting element materials, and the like.
For example, as a method for producing a SiC single crystal, a sublimation method requiring a high temperature using SiC powder as a raw material is generally used (Japanese Patent Publication No. 3-501118). In the sublimation method, a SiC raw material powder and a seed crystal substrate which is a SiC single crystal are placed facing each other in a graphite crucible and heated to 1800 to 2400 ° C. in an inert gas atmosphere. The sublimation chemical species (gas) generated when the SiC raw material powder is decomposed and sublimated by heating reaches the surface of the seed crystal substrate held in the growth temperature range, and grows epitaxially as a single crystal.
[0003]
In the method for producing a single crystal, the inside of the crucible filled with SiC is depressurized (for example, 10 Torr), and the entire apparatus is heated from room temperature to a growth temperature (for example, 2200 ° C.). In addition to sublimation gases such as Si, Si 2 C, SiC 2 , and SiC that contribute to crystal growth generated from raw materials as the temperature rises, fine particles of impurities (eg, Fe, Ti, etc.) contained in raw materials, etc. Interfering microparticles that hinder the growth of high-quality crystals (for example, carbon particles generated from the crucible wall) float in the crucible, adhere to the crystal on which they grow, and degrade the quality of the growing crystal, for example micro It is estimated that this is the cause of the occurrence of pipes (cavity defects), crystal dislocations, and the like.
Moreover, since the raw material SiC accommodated in the crucible is heated from the crucible wall side, the temperature is high on the crucible wall side and the temperature is low at the crucible center. For this reason, more sublimation gases such as Si, Si 2 C, SiC 2 , and SiC are generated from the contained raw material near the crucible wall side. As a result, the carbon concentration is high as the raw material composition of this part. Finally, it becomes a lump of carbon.
[0004]
Therefore, the composition distribution of the raw material in the crucible is generated from these surfaces because a surface with a non-uniform component distribution is formed in which the portion near the wall is rich in carbon and the central portion of the crucible is rich in SiC. The components of the sublimation gas differ in composition in terms of position. This means that when the crystal growth is continued for a long time, the concentration ratio of the sublimation gas component changes because the carbon concentration distribution changes with the reaction time. As a result, it becomes difficult to control the uniformity of the sublimation gas, and it becomes difficult to stably obtain high-quality crystals.
In a single crystal used as a semiconductor element raw material, it is considered practically preferable that the number of micropipes (cavity defects) is not more than several tens [pieces / cm 2 ]. It is difficult to satisfy.
[0005]
In order to improve this, as a means of sublimation by improving the heating of the raw material in the center of the crucible, a uniform heat conductor is installed in the central part of the crucible to raise the temperature of the central part and make the sublimation uniformity of the raw material A SiC single crystal growth apparatus container that improves the above is disclosed (Japanese Patent Laid-Open No. 5-58774).
However, in this method, it is estimated that a large amount of electric power is required to obtain a predetermined temperature, resulting in poor efficiency. Further, not only the wall side of the crucible but also the periphery of the graphite in the center portion has a high carbon concentration immediately after the start of sublimation, and the uneven surface state cannot be resolved. This causes generation of disturbing fine particles, and carbon inclusion is likely to occur in the grown crystal. Further, since the heat conductor (such as graphite) is exposed to a high temperature and the surface deteriorates, disturbing particles are also emitted from the heat conductor itself.
[0006]
In order to improve the quality of these single crystals, the generation of impurities is currently suppressed by increasing the purity of raw materials and equipment used for crystal growth, such as crucibles and raw materials, but the cost is high. ing. In addition, the gas situation accompanying the change in the reaction situation (temperature change, change in gas state) due to the crystal surface growing with crystal growth approaching the raw material, and the lowering of the purity of the raw material (the carbon concentration in the raw material increases with time) The operating conditions for crystal growth are controlled by taking into account the change in empirical rules, but sufficient and optimal control cannot be achieved, and high-quality crystals are not obtained.
[0007]
[Problems to be solved by the invention]
The present invention makes it possible to ensure uniform temperature in the crucible, uniform sublimation gas even when continuously growing for a long time while suppressing the change in the raw material concentration in the crucible, the grown single crystal has few micropipes, crystal diameter An object of the present invention is to develop a manufacturing method and an apparatus therefor for continuously growing a high-quality single crystal having a large expansion ratio for a long time.
[0008]
[Means for Solving the Problems]
The present invention
[1] In the crystal growth method by the sublimation method, a hollow heat transfer body having a thin upper part and a thick lower part is installed in the crucible, and a raw material is filled between the crucible and the hollow heat transfer body to perform crystal growth. A method for producing a single crystal, characterized in that the temperature distribution on the surface of the raw material is made more uniform, and high quality crystals are obtained with less adhesion of impurities and adhesion obstruction particles from the raw material,
[2] Enlarging crystal diameter, characterized in that the diameter of the upper opening of the hollow heat transfer body (the diameter of the circumscribed circle if not circular) is 0.2 to 5 times the diameter of the seed crystal The method for producing a single crystal according to the above [1] having a high rate,
[0009]
[3] The method for producing a single crystal according to the above [1] or [2], wherein the single crystal is a crystal for a wide band gap semiconductor,
[4] In the crystal growth method using silicon carbide sublimation, a hollow heat transfer body with a thin upper part and a thick lower part is provided in the crucible, and raw material silicon carbide is filled between the crucible and the hollow heat transfer body. , A method for producing a silicon carbide single crystal with few cavity defects, characterized by heating to 1800 to 2400 ° C. in a rare gas atmosphere or a nitrogen gas atmosphere or a mixed atmosphere thereof,
By solving this problem, the above problems were solved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
According to the method of the present invention, the isothermal surface in the depth direction inside the heated raw material in the crucible can be brought closer to the sublimation surface (raw material surface).
In the present invention, the wide band gap semiconductor includes optical crystals, crystals for high frequency devices, and crystals for power devices. For example, silicon carbide (SiC), zinc selenide (ZnSe), gallium nitride (GaN), aluminum nitride ( AlN) means a crystal made by a sublimation method.
[0011]
Hereinafter, the production of a SiC single crystal will be described as a representative, but the present invention is not limited to this and can be applied to a method for producing a semiconductor single crystal.
In the study of the growth of various semiconductor crystals such as SiC, the present inventors have measured the crystal growth of the seed crystal substrate by hollowing through the bottom of the crucible and the center of the heat conductor installed at the center of the crucible. When the temperature distribution was measured, the SiC crystal that was generated unexpectedly has few micropipes, and a high-quality single crystal with a large crystal diameter and a large expansion rate is continuously grown for a long time. I realized I could do it. If the heat conductor is hollow, the cause is effective. In particular, the effect is great by installing a hollow heat transfer body with a thin upper part and a thick lower part in a crucible (no hole is required at the bottom). I understood it.
Although this mechanism is unknown, it is presumed to be based on the following principle based on the obtained phenomenon.
[0012]
The hollow heat transfer body is heated by heat conduction through the graphite from the crucible body whose side surface generates heat by high-frequency heating, but the graphite heats up due to its higher thermal conductivity than the raw material, and heat conduction from the bottom of the graphite crucible. Although the hollow heat transfer body is heated, since the heat transfer body has a hollow shape whose upper part is thinner than the lower part, the radiation effect from the bottom of the graphite crucible, which is a heating element, is also improved at the upper part of the heat transfer body. It can be received efficiently, and the entire installed hollow heat transfer body can be heated efficiently. In addition, since a hollow heat transfer body is used, the surface area in contact with the raw material layer can be increased more than when a solid heat transfer body using the same mass is used as the heat transfer body, and a larger amount of heat can be supplied to the raw material layer. . As a result, the raw material can be efficiently heated from the center side, and since the heat transfer surface area is large, the temperature can be controlled more reliably than a solid cylindrical heat transfer body. It is estimated that the temperature can be easily controlled to near parallel.
[0013]
As a result, the sublimation gas can be generated more uniformly from the crucible as a whole, and the occurrence of uneven bias in the carbon concentration of the raw material SiC layer can be suppressed even in a long-time crystal growth reaction. A sublimation gas such as Si, Si 2 C, SiC 2 , or SiC generated from the raw material layer reaches the seed crystal substrate surface by diffusion and grows epitaxially as a single crystal, but the crystal obtained because the sublimation gas is uniform The shape is flatter than that of the conventional method (the conventional method makes the crystal plane almost spherical and the crystallinity of the periphery is poor, but the crystallinity improves to the periphery by flattening. In addition, the operation conditions can be easily controlled, and a single crystal having a stable quality can be obtained.
[0014]
On the other hand, since the temperature distribution of the gas phase close to the raw material also follows the raw material surface temperature, the temperature of the entire crucible becomes more uniform, and as a result, a uniform ascending airflow across the isothermal surface is generated on the raw material surface that sublimates. it is believed that the crucible center downdraft reversed for the temperature is low (hollow heat transfer hollow upper part of) the that has occurred. In such a situation, the transport force of the substance works due to the rising air flow that crosses the isothermal surface of the outer periphery of the crucible, so that solid impurities released from the raw material and adhesion-blocking particles are directed to the lid around the crystal above the sublimation surface. It is presumed that solid impurities and adhesion hindering particles that have reached the lid are fixed to the peripheral edge of the lid controlled at a low temperature and rarely reach the crystal growth surface.
Because of the diffusion effect in the transport of sublimation gas, solid impurities (eg, Fe, Ti, etc.) contained in the raw material, etc., or other fine particles that interfere with the growth of high quality crystals (eg, generated from the crucible wall) Carbon particles) can be prevented from scattering into the crucible and adhering to the crystals on which they grow.
[0015]
Furthermore, by generating an even sublimation gas by making the isothermal surface in the depth direction of the heated raw material close to parallel to the sublimation surface (raw material surface), the generation of uneven carbon concentration in the raw material layer results. It is possible to suppress the generation of carbon clumps that can be disturbing fine particles by suppressing. This is presumably because the heat transfer body is a hollow body and there is no dust generation source below the seed crystal.
From the above, it is presumed that high quality single crystals can be obtained by reducing the deterioration of the quality of the growing crystal, for example, the occurrence of micropipes, crystal dislocations, etc. and producing for a long time.
[0016]
In order to describe the present invention more specifically, an example of an embodiment will be described.
For the crucible and crucible lid for containing and heating the SiC raw material used in the present invention, a carbon material, usually graphite, is preferably used, but any material from crystalline to amorphous can be used as long as it is a carbon material. . In addition, as long as the carbon material is used for the member for holding the seed crystal substrate of the crucible lid and the peripheral member, any material from crystalline to amorphous can be used. For holding, there is a method in which a SiC seed crystal is attached to a holding member or mechanically bonded.
A hollow heat transfer body is installed in the crucible, and SiC raw material powder is accommodated around it. The lower horizontal cross-sectional shape of the hollow heat transfer body is preferably a circle or a regular polygon in terms of thermal symmetry and crystal system shape. The thickness of the hollow heat transfer member is not particularly limited, but is preferably 0.5 mm to 10 mm, more preferably 1 mm to 3 mm from the viewpoint of thermal conductivity and material strength. The material of the hollow heat transfer body is preferably a carbon material, usually graphite, but any material from crystalline to amorphous can be used as long as it is a carbon material. The diameter of the circumscribed circle of the upper cross-sectional shape of the hollow heat transfer body is the ratio of the diameter of the seed crystal and the diameter of the circumscribed circle of the cross-sectional shape of the upper hollow part of the hollow heat transfer body. The relationship is preferably 0.2 to 5, and preferably 0.5 to 2 from the efficiency of the apparatus.
[0017]
The inner diameter of the inner cross section of the crucible and the diameter of the circumscribed circle of the upper cross section of the hollow heat transfer body are not particularly limited as long as the amount of raw materials to be accommodated and a predetermined temperature setting and control are possible. The height of the hollow heat transfer body can be adjusted by adjusting the distance between the surface of the SiC raw material and the seed crystal to optimum crystal growth conditions. The positional relationship between the center of gravity of the cross-sectional shape in the crucible, the center of gravity of the upper cross-sectional shape of the hollow heat transfer body, and the center of gravity of the lower cross-sectional shape of the hollow heat transfer body is preferably as identical as possible from the point of symmetry. The fixing method of the hollow heat transfer body is mechanically fitted or adhesive (phenol resin or a mixture of carbon powder or the like) if the thermal bonding is appropriate and the strength is appropriate. Can be used.
[0018]
For example, as shown in FIG. 1, the bottom of a graphite crucible 1 having an inner diameter of 50 mm and a depth of 95 mm is 77 mm high, an upper inner diameter is 14.2 mm, and a lower inner diameter is 30 mm. Shape) hollow heat transfer body 2 is fixed and installed at the center position of the bottom of the crucible by a mechanical fitting method, and the raw material SiC powder 3 is filled to a height of 70 mm between the crucible and the hollow heat transfer body. .
This graphite crucible is wrapped with a heat insulating material 4 and set in a reaction tube 6 in a heating furnace 5 (a high frequency heating furnace is exemplified). The reaction tube 6 can introduce a rare gas such as helium or argon or an inert gas such as nitrogen, and can also control the pressure in the reaction tube.
The seed crystal substrate 7 used in the present invention has the same crystal structure as the crystal to be grown. The growth crystal plane can be used in any plane orientation. For example, a C-axis vertical plane ({0001} plane), a C-axis parallel plane ({1-100} plane), a plane with an off angle introduced, and the like can be used. If the surface of the seed crystal substrate 7 is polished and planarized, it is desirable because the quality of the grown single crystal can be improved.
[0019]
The seed crystal substrate 7 is attached to the crucible lid 8, and is preferably installed in the central portion away from the side surface of the inner wall of the crucible. In order to recrystallize the sublimation gas, it is necessary to install the seed crystal substrate in a locally low temperature region in order to lower the temperature of the seed crystal substrate 7 relative to the peripheral portion.
As a heating method, a general method such as high-frequency heating or resistance heating can be used. In the high-frequency heating method, if the coil is divided and installed above and below the crucible 1, the temperature distribution above and below the crucible 1 can be controlled more appropriately. The temperature of the surface of the seed crystal substrate 7 is, for example, in the range of 1500 to 2500 ° C., and is preferably 1700 to 2300 ° C., more preferably 1900 to 2300 ° C., for ease of temperature control.
If the seed crystal substrate temperature is lower than 1500 ° C. or higher than 2500 ° C., the precipitated crystal is likely to be mixed with polymorphic crystals. If the seed crystal substrate 7 is rotated during the growth, the temperature, gas composition and the like are homogenized, and the effect of suppressing undesired crystal growth can be obtained.
[0020]
Seed crystal substrate 7 is not in contact with SiC raw material powder 3. Further, as the single crystal grows, if the seed crystal substrate 7 or the SiC raw material surface is adjusted and moved in order to keep the distance between the seed crystal substrate 7 and the SiC raw material powder 3 constant, the growth conditions such as temperature become stable and homogeneous. Single crystal can be grown. As the raw material SiC powder, it is desirable to use a material that has been previously cleaned with an acid or the like to remove impurities as much as possible.
The hollow heat transfer body installed inside is a hexagonal spindle having a height of 77 mm, an upper inner diameter of 14.2 mm, and a lower inner diameter of 14.2 mm as an example of a regular polygon. When the growth was carried out, the same effect was obtained as when a conical hollow heat transfer body was installed.
[0021]
FIG. 3 shows a case where the cross section of the hollow heat transfer body is curved. Again the like crucible temperature distribution similar effect can be obtained, further hollow heat transfer section could be performed for a long time crystal growth than for raw material powder often be filled compared with the case of the straight line.
Even in the cross-sectional shape as shown in FIG. 4, the same effect as in FIG. 2 is obtained.
As described above, the reason could not be clarified at the time of the present invention, but even if the crystal growth by the sublimation method is performed in the graphite crucible in which the raw material and the growing single crystal coexist, the raw material is added to the growing single crystal. It was found that impurities / adhesion-preventing particles from the metal hardly reach the seed crystal surface, and only the sublimation gas that contributes to crystal growth reaches the crystal surface and can produce high-quality crystals.
[0022]
In addition, the temperature distribution on the surface of the raw material becomes uniform, the sublimation gas is supplied uniformly from the surface of the raw material for a long time, and the crystal growth temperature is not affected by the temporal deterioration of the purity of the raw material. Therefore, the crystal shape (the shape of the crystal growth surface) is flattened and a crystal with less distortion can be obtained, and furthermore, a high quality crystal that is stable for a long time that has not been conventionally available can be manufactured.
The method of the present invention and the apparatus therefor are characterized in that the crystal growth on the seed crystal can be monitored from the hollow portion of the hollow heat transfer body, and is not limited to the SiC single crystal manufacturing method and apparatus, but other semiconductor raw material single crystals It can be applied to a crystal manufacturing method by sublimation crystal growth.
[0023]
【Example】
Example 1
It implemented using the apparatus shown in FIG. 1 which is an example of the crystal growth apparatus by this invention. For crystal growth, a graphite crucible is used as a portion for storing and heating the SiC raw material. A 6H-SiC single crystal produced by the Atchison method is used as a seed crystal substrate (6H-SiC single crystal (Si) surface, 10 mm diameter, 0.5 mm thickness) at the center of the lower surface of the crucible lid made of graphite. Pasted and held.
A hollow heat transfer body having a height of 77 mm, an upper inner diameter of 14.2 mm, and a lower inner diameter of 30 mm is placed in a graphite crucible having an inner diameter of 50 mm and a depth of 95 mm, and SiC powder (# 240 manufactured by Showa Denko) is used as a raw material around the crucible. ) Was stored until the height reached 70 mm. This graphite crucible was wrapped with a heat insulating material and set in a reaction tube in a high-frequency heating furnace.
[0024]
After evacuating from the gas discharge port 9 and reducing the pressure in the reaction tube to 5 × 10 −5 torr, the inert gas introduction port 10 is filled with argon gas to normal pressure, and then exhausted from the gas discharge port again to 5 × 10 −5 torr. The pressure in the reaction tube was reduced, and the air in the reaction tube was expelled. Then, argon gas is again filled up to 700 Torr from the inert gas inlet, and the graphite crucible is heated to 2300 ° C. Thereafter, the SiC single crystal was grown in a state where the gas was exhausted from the gas outlet and the argon atmosphere pressure was reduced to 10 torr. The crystal growth time was 8 hours. The temperature setting was controlled while measuring the temperature on the outer wall side of the graphite crucible using a radiation thermometer.
The grown thickness of the grown single crystal in the length direction was 3 mm, and the resulting diameter was 16 mm. From the peak position of the obtained single crystal measured by Raman spectroscopy and the peak pattern of X-ray diffraction, it was confirmed that the single crystal was 6H-SiC and was free of other polymorphs.
This crystal was subjected to component analysis using SIMS. As a result, the peak of Fe was smaller than that of the conventional example. When this crystal was cut in the crystal growth direction, polished and observed with a microscope, the number of hollow defects called micropipes was 15 [pieces / cm 2 ]. The enlargement ratio of the diameter of the crystal was 16/10 = 1.6 times.
Further, when nitrogen was introduced at the same time interval and marked in the crystal, it was found that the crystal speed was constant.
[0025]
(Comparative example)
Crystal growth was performed in the same manner as in Example 1 except that a crucible in a conventional state in which a hollow heat transfer body was not installed in the crucible was used.
The grown crystal had a growth thickness in the length direction of 4 mm and a diameter of 12 mm as a result of growth. From the peak position by Raman spectroscopic measurement and the peak pattern of X-ray diffraction, it was confirmed that the single crystal was 6H-SiC and had no other polymorphic contamination.
As a result of component analysis of this crystal in the same manner as in the example, the Fe peak was larger than that in the example. When this crystal was cut in the crystal growth direction, polished, and observed with a microscope, the number of hollow defects called micropipes was several thousand [pieces / cm 2 ]. Further, the enlargement ratio of the diameter of the crystal was 12/10 = 1.2 times.
In addition, when nitrogen was introduced at the same time interval and marked in the crystal, it was confirmed that the crystal growth rate was slow at the beginning of growth and increased as it approached the end (crystal uniformity was lost). It was.
[0026]
【The invention's effect】
According to the present invention, when performing crystal growth by a sublimation method in a graphite crucible having a hollow heat transfer body in which a raw material and a crystal to grow coexist, a single crystal from which impurities and adhesion-preventing particles from the raw material are obtained by growth Since only the sublimation gas that contributes to crystal growth reaches the crystal without reaching directly, it is possible to produce a high-quality crystal with a flat crystal shape with little distortion. Also, by using this crucible, the temperature distribution on the raw material surface becomes uniform, the sublimation gas is supplied uniformly from the raw material surface for a long time, the temperature dependency of the raw material purity is reduced, and the crystal growth temperature is deteriorated with time of the raw material. As a result, crystal growth can be performed for a long time at a constant and uniform temperature.
[Brief description of the drawings]
FIG. 1 is a flowchart of an apparatus for producing a single crystal according to the present invention.
FIG. 2 is a cross-sectional view of a crucible used in the apparatus of the present invention.
FIG. 3 is another cross-sectional view of the crucible used in the apparatus of the present invention.
FIG. 4 is another cross-sectional view of the crucible used in the apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crucible 2 Hollow heat transfer body 3 SiC powder 4 Heat insulating material 5 High-frequency heating furnace 6 Reaction tube 7 Seed crystal substrate 8 Crucible lid 9 Gas outlet 10 Gas inlet

Claims (4)

昇華法による結晶成長方法において、ルツボ中に上部が細く、下部が太い中空状伝熱体を設置し、ルツボと中空状伝熱体の間に原料を充填して、結晶成長を行うことにより、原料表面の温度分布をより均一とし、原料からの不純物・付着妨害物粒子の付着が少ない高品質の結晶を得ることを特徴とする単結晶の製造方法。  In the crystal growth method by the sublimation method, by installing a hollow heat transfer body with a thin upper part and a thick lower part in the crucible, filling the raw material between the crucible and the hollow heat transfer object, and performing crystal growth, A method for producing a single crystal, characterized in that the temperature distribution on the surface of the raw material is made more uniform, and high quality crystals are obtained with less adhesion of impurities and adhesion obstructing particles from the raw material. 上記中空状伝熱体の上部開口部の径(円形でないときはその外接円の径)を種結晶の径の0.2〜5倍の大きさとすることを特徴とする結晶口径拡大率の大きい請求項1に記載の単結晶の製造方法。  The diameter of the upper opening of the hollow heat transfer body (the diameter of the circumscribed circle when it is not circular) is 0.2 to 5 times the diameter of the seed crystal, and has a large crystal diameter expansion rate The method for producing a single crystal according to claim 1. 単結晶が、ワイドバンドギャップ半導体用結晶である請求項1または2に記載の単結晶の製造方法。  The method for producing a single crystal according to claim 1 or 2, wherein the single crystal is a crystal for a wide band gap semiconductor. 炭化けい素の昇華法による結晶成長方法において、ルツボ中に上部が細く、下部が太い中空状伝熱体を設け、ルツボと中空状伝熱体の間に原料炭化けい素を充填し、希ガス雰囲気あるいは窒素ガス雰囲気またはそれらの混合雰囲気中で1800〜2400℃に加熱することを特徴とする空洞状欠陥の少ない炭化けい素単結晶の製造方法。  In the crystal growth method by sublimation method of silicon carbide, a hollow heat transfer body with a thin upper part and a thick lower part is provided in the crucible, and raw material silicon carbide is filled between the crucible and the hollow heat transfer substance, and a rare gas A method for producing a silicon carbide single crystal with few cavity defects, characterized by heating to 1800 to 2400 ° C in an atmosphere, a nitrogen gas atmosphere or a mixed atmosphere thereof.
JP24434899A 1999-08-31 1999-08-31 Method and apparatus for producing single crystal Expired - Lifetime JP4503736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24434899A JP4503736B2 (en) 1999-08-31 1999-08-31 Method and apparatus for producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24434899A JP4503736B2 (en) 1999-08-31 1999-08-31 Method and apparatus for producing single crystal

Publications (2)

Publication Number Publication Date
JP2001072491A JP2001072491A (en) 2001-03-21
JP4503736B2 true JP4503736B2 (en) 2010-07-14

Family

ID=17117375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24434899A Expired - Lifetime JP4503736B2 (en) 1999-08-31 1999-08-31 Method and apparatus for producing single crystal

Country Status (1)

Country Link
JP (1) JP4503736B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108396384A (en) * 2018-05-25 2018-08-14 深圳大学 A kind of device and method preparing aluminum nitride crystal
CN109023513A (en) * 2018-08-20 2018-12-18 深圳大学 Prepare the Crucible equipment and method of aluminum nitride crystal

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619567B2 (en) * 2001-04-10 2011-01-26 株式会社ブリヂストン Silicon carbide single crystal and method for producing the same
US6936357B2 (en) 2001-07-06 2005-08-30 Technologies And Devices International, Inc. Bulk GaN and ALGaN single crystals
JP5186733B2 (en) * 2005-07-29 2013-04-24 住友電気工業株式会社 AlN crystal growth method
JP4872283B2 (en) * 2005-09-12 2012-02-08 パナソニック株式会社 Single crystal manufacturing apparatus and manufacturing method
JP2007230846A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Crucible for single crystal producing apparatus
KR100766720B1 (en) 2006-06-07 2007-10-11 구갑렬 Focusing tube of saw type
JP5012655B2 (en) * 2008-05-16 2012-08-29 三菱電機株式会社 Single crystal growth equipment
JP5397503B2 (en) * 2012-05-30 2014-01-22 三菱電機株式会社 Single crystal growth equipment
JP2016532629A (en) * 2013-09-06 2016-10-20 ジーティーエイティー コーポレーションGtat Corporation Method and apparatus for producing bulk silicon carbide from silicon carbide precursor
JP2014015394A (en) * 2013-10-30 2014-01-30 Sumitomo Electric Ind Ltd Method for producing silicon carbide crystal
CN106367812A (en) * 2016-10-21 2017-02-01 北京鼎泰芯源科技发展有限公司 Graphite crucible capable of enhancing radial temperature uniformity of silicon carbide powder source
JP6925208B2 (en) * 2017-09-08 2021-08-25 昭和電工株式会社 Method for producing silicon carbide single crystal
KR102228137B1 (en) * 2018-12-27 2021-03-16 (주) 세라컴 Vessel for growing a single crystal and growing method of single crystal using the vessel
JP7358944B2 (en) 2019-11-27 2023-10-12 株式会社レゾナック Heat transfer member for SiC single crystal growth, crucible for SiC single crystal growth, method for manufacturing SiC single crystal
JP7351219B2 (en) 2019-12-26 2023-09-27 株式会社レゾナック Single crystal manufacturing equipment
CN111349971B (en) 2020-03-30 2021-04-23 福建北电新材料科技有限公司 Crystal raw material containing device and crystal growing device
CN112877771A (en) * 2021-01-04 2021-06-01 山西烁科晶体有限公司 Crucible and method for single crystal growth
CN114525587B (en) * 2022-04-22 2022-07-19 中电化合物半导体有限公司 Equipment and method for growing silicon carbide single crystal based on PVT method
CN115537926B (en) * 2022-12-01 2023-03-17 浙江晶越半导体有限公司 Large-size physical vapor phase method silicon carbide growth crucible capable of improving growth efficiency
CN115537929B (en) * 2022-12-06 2023-03-10 浙江晶越半导体有限公司 Crystal growth device for growing aluminum nitride by vapor phase sublimation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286696A (en) * 1996-04-22 1997-11-04 Sumitomo Electric Ind Ltd Production of zinc selenide single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286696A (en) * 1996-04-22 1997-11-04 Sumitomo Electric Ind Ltd Production of zinc selenide single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108396384A (en) * 2018-05-25 2018-08-14 深圳大学 A kind of device and method preparing aluminum nitride crystal
CN109023513A (en) * 2018-08-20 2018-12-18 深圳大学 Prepare the Crucible equipment and method of aluminum nitride crystal

Also Published As

Publication number Publication date
JP2001072491A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
JP4503736B2 (en) Method and apparatus for producing single crystal
JP4514339B2 (en) Method and apparatus for growing silicon carbide single crystal
JP5068423B2 (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof
US6110279A (en) Method of producing single-crystal silicon carbide
JP2007204309A (en) Single crystal growth device and single crystal growth method
JPWO2010122801A1 (en) Aluminum nitride single crystal manufacturing apparatus, aluminum nitride single crystal manufacturing method, and aluminum nitride single crystal
JPH11278985A (en) Production of single crystal
JP4523733B2 (en) Method for producing silicon carbide single crystal ingot and method for mounting seed crystal for growing silicon carbide single crystal
CN111819311A (en) Method for producing silicon carbide single crystal
TWI750630B (en) PREPERATION METHOD FOR SiC INGOT, PREPERATION METHOD FOR SiC WAFER AND A SYSTEM THEREOF
KR101299037B1 (en) Apparatus for growing single crystal using micro-wave and method for growing the same
WO2007148486A1 (en) SINGLE-CRYSTAL SiC, PROCESS FOR PRODUCING THE SAME, AND APPARATUS FOR PRODUCING SINGLE-CRYSTAL SiC
JP4604728B2 (en) Method for producing silicon carbide single crystal
JP2003104798A (en) Silicon carbide single crystal and its manufacturing method and raw material for silicon carbide crystal for growing silicon carbide single crystal
JPH09263497A (en) Production of silicon carbide single crystal
JP3508519B2 (en) Epitaxial growth apparatus and epitaxial growth method
JP4054197B2 (en) Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal ingot
JP5602093B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP5418210B2 (en) Nitride semiconductor crystal manufacturing method, AlN crystal and nitride semiconductor crystal manufacturing apparatus
JP4304783B2 (en) SiC single crystal and growth method thereof
JP2004189549A (en) Method of manufacturing aluminum nitride single crystal
JP5418236B2 (en) Nitride semiconductor crystal manufacturing apparatus, nitride semiconductor crystal manufacturing method, and aluminum nitride crystal
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
JP5761264B2 (en) Method for manufacturing SiC substrate
KR20130083653A (en) Growing apparatus for single crystal

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090710

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Ref document number: 4503736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term