JP5397503B2 - Single crystal growth equipment - Google Patents
Single crystal growth equipment Download PDFInfo
- Publication number
- JP5397503B2 JP5397503B2 JP2012123429A JP2012123429A JP5397503B2 JP 5397503 B2 JP5397503 B2 JP 5397503B2 JP 2012123429 A JP2012123429 A JP 2012123429A JP 2012123429 A JP2012123429 A JP 2012123429A JP 5397503 B2 JP5397503 B2 JP 5397503B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- polycrystal
- separation guide
- crystal growth
- guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
この発明は、炭化珪素などの単結晶を成長する単結晶成長装置および、炭化珪素などの単結晶の製造方法に係るものである。 The present invention relates to a single crystal growth apparatus for growing a single crystal such as silicon carbide and a method for producing a single crystal such as silicon carbide.
炭化珪素(SiC)は熱的、化学的に優れた特性を有しており、禁制帯幅が珪素(Si)半導体に比べ大きく電気的にも優れた特性を有する半導体材料として知られている。その特性を生かした炭化珪素半導体装置などを製造するために、単結晶の炭化珪素基板が用いられる。単結晶の炭化珪素基板はバルク状の炭化珪素単結晶をスライスして得られるが、その炭化珪素単結晶を成長させる方法として、改良レイリー法(昇華法)が広く用いられている。現在、直径100mmまでの炭化珪素基板が市販されているが、単結晶の大口径化や長尺化が十分でないため生産性が高くなくコスト高になっている。また、依然として結晶欠陥密度が高いため、半導体装置の製造に使用される単結晶炭化珪素基板としてはさらに結晶欠陥密度を下げることが求められている。 Silicon carbide (SiC) has excellent thermal and chemical characteristics, and is known as a semiconductor material that has a forbidden band width larger than that of silicon (Si) semiconductors and has excellent electrical characteristics. A single crystal silicon carbide substrate is used to manufacture a silicon carbide semiconductor device or the like that takes advantage of the characteristics. A single crystal silicon carbide substrate is obtained by slicing a bulk silicon carbide single crystal, and an improved Rayleigh method (sublimation method) is widely used as a method for growing the silicon carbide single crystal. Currently, silicon carbide substrates with a diameter of up to 100 mm are commercially available. However, since the single crystal is not sufficiently large and long, the productivity is not high and the cost is high. In addition, since the crystal defect density is still high, it is required to further reduce the crystal defect density as a single crystal silicon carbide substrate used for manufacturing a semiconductor device.
炭化珪素単結晶を形成する改良レイリー法において、成長中の単結晶の周囲に多結晶が接触すると多結晶から単結晶に歪みが導入されるため、大量の結晶欠陥が発生し単結晶の品質を著しく劣化させる。この問題を回避する方法として、例えば、単結晶と多結晶とを単結晶多結晶分離用ガイドを用いて分離する方法が提案されている(例えば特許文献1)。 In the modified Rayleigh method for forming a silicon carbide single crystal, when a polycrystal contacts the periphery of the growing single crystal, strain is introduced from the polycrystal to the single crystal, resulting in a large amount of crystal defects and an increase in the quality of the single crystal. Deteriorate significantly. As a method for avoiding this problem, for example, a method of separating a single crystal and a polycrystal using a single crystal polycrystal separation guide has been proposed (for example, Patent Document 1).
また、特許文献1のように単結晶多結晶分離用ガイドを設けて長尺な単結晶を成長させると、単結晶多結晶分離用ガイドの内壁に多結晶が析出し単結晶と多結晶を完全に分離できなくなる問題が発生することが知られている。この問題を解決するために、単結晶多結晶分離用ガイドの下端にガス経路を設け原料ガスの流れを制御することにより、高品質で長尺な単結晶を成長させる方法が提案されている(例えば特許文献2)。 In addition, when a single crystal polycrystal separation guide is provided as in Patent Document 1 to grow a long single crystal, polycrystal is deposited on the inner wall of the single crystal polycrystal separation guide, and the single crystal and polycrystal are completely separated. It is known that there will be a problem that it cannot be separated. In order to solve this problem, a method of growing a long single crystal of high quality by providing a gas path at the lower end of the single crystal polycrystal separation guide and controlling the flow of the source gas has been proposed ( For example, Patent Document 2).
しかしながら、特許文献2のように単結晶多結晶分離用ガイドの下端にガス経路を設け原料ガスの流れを制御した単結晶成長方法においても、単結晶の長尺化を試みると、単結晶多結晶分離用ガイド下端のガス経路に多結晶が析出して単結晶多結晶分離用ガイド下端のガス経路が塞がれたり、単結晶多結晶分離用ガイドと単結晶との間のガス経路が塞がれたりすることによって、単結晶の長尺化が阻害されることがあった。
多結晶の析出により単結晶多結晶分離用ガイド下端のガス経路が塞がれると、単結晶多結晶分離用ガイド内壁に多結晶が析出しやすくなる。また、多結晶の析出により単結晶多結晶分離用ガイドと単結晶との間のガス経路が塞がれると、分離用ガイドの内側で原料ガスの対流が生じたり、その原料ガスの対流により分離用ガイドがエッチングされ分離用ガイドに穴が開いたりして、原料ガスが単結晶成長に寄与しない単結晶多結晶分離用ガイドの外側に流れてしまうことがあった。
このように、特許文献2に示された単結晶成長方法においても、単結晶の長尺化が阻害される場合があった。
However, in the single crystal growth method in which a gas path is provided at the lower end of the single crystal polycrystal separation guide as in Patent Document 2 and the flow of the raw material gas is controlled, if an attempt is made to lengthen the single crystal, single crystal polycrystal Polycrystals are deposited in the gas path at the lower end of the separation guide to block the gas path at the lower end of the single crystal polycrystal separation guide, or the gas path between the single crystal polycrystal separation guide and the single crystal is blocked. In some cases, the lengthening of the single crystal may be hindered.
When the gas path at the lower end of the single crystal polycrystal separation guide is blocked by the polycrystal precipitation, the polycrystal is likely to be deposited on the inner wall of the single crystal polycrystal separation guide. In addition, if the gas path between the single crystal polycrystal separation guide and the single crystal is blocked by the precipitation of the polycrystal, convection of the source gas occurs inside the guide for separation, or separation occurs due to the convection of the source gas. In some cases, the etching guide is etched and a hole is formed in the separation guide, so that the source gas flows outside the single crystal polycrystal separation guide that does not contribute to single crystal growth.
Thus, even in the single crystal growth method disclosed in Patent Document 2, there is a case where the lengthening of the single crystal is hindered.
この発明は、上記のような問題を解決するためになされたもので、多結晶の析出を抑制し単結晶を多結晶と分離して成長させることにより大口径、長尺かつ欠陥の少ない炭化珪素単結晶を得ることを目的とする。 The present invention has been made to solve the above-described problems, and has a large diameter, long length, and few defects by suppressing the precipitation of polycrystals and growing the single crystals separately from the polycrystals. The object is to obtain a single crystal.
この発明に係る単結晶成長装置は、原料を充填する充填部を有する坩堝と、前記坩堝の蓋となる蓋体と、前記蓋体に前記充填部に対向して設けられた、種結晶を取り付ける台座と、前記坩堝から前記台座に向けて設けられた単結晶多結晶分離用ガイドと、前記充填部の上部に設けられた、その上面が前記単結晶多結晶分離用ガイドに対向して設けられ、前記単結晶多結晶分離用ガイドを下方から放射加熱する放射面である、原料ガス整流ガイドとを備えたものである。 A single crystal growth apparatus according to the present invention includes a crucible having a filling portion for filling a raw material, a lid that serves as a lid for the crucible, and a seed crystal that is provided on the lid so as to face the filling portion. A pedestal, a single crystal polycrystal separation guide provided from the crucible toward the pedestal, and an upper surface provided on an upper portion of the filling portion provided to face the single crystal polycrystal separation guide. The single crystal polycrystal separation guide is provided with a raw material gas rectifying guide which is a radiation surface for radiant heating from below.
この発明によれば、単結晶多結晶分離用ガイドを種結晶より高温に保ち原料ガスを種結晶上に集中させることにより、単結晶多結晶分離用ガイドへの多結晶の析出を防止でき、単結晶のみを長尺かつ大口径に成長させることができる。 According to the present invention, the single crystal polycrystal separation guide is kept at a higher temperature than the seed crystal, and the source gas is concentrated on the seed crystal, so that the precipitation of the polycrystal on the single crystal polycrystal separation guide can be prevented. Only crystals can be grown long and large in diameter.
実施の形態1.
図1は、この発明を実施するための実施の形態1における単結晶成長装置の主要部を示す断面模式図である。図1において、外形が円筒形でグラファイト製の坩堝10の一方には、掘り込み部とその開口部が形成されており、開口部から見て掘り込み部の奥側には、原料を充填するための、その内径が掘り込み部の内径より小さい充填部13が形成されている。掘り込み部の内径と充填部13の内径には差があるため、掘り込み部と充填部13の境界には放射面15と呼ぶ面ができる。
また、開口部は、坩堝10の外形と同程度の外径のグラファイト製の蓋体20により被蓋されており、蓋体20の中央部には、坩堝10の奥側に向けて種結晶を固定するための突起物である台座21が形成されている。台座21の外径は、充填部13の内径と等しく形成されている。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view showing the main part of a single crystal growth apparatus according to Embodiment 1 for carrying out the present invention. In FIG. 1, a digging portion and its opening are formed in one of the crucibles 10 having a cylindrical outer shape and made of graphite, and a raw material is filled in the back side of the digging portion as viewed from the opening. Therefore, a filling portion 13 having an inner diameter smaller than the inner diameter of the dug portion is formed. Since there is a difference between the inner diameter of the digging portion and the inner diameter of the filling portion 13, a surface called a radiation surface 15 is formed at the boundary between the digging portion and the filling portion 13.
The opening is covered with a graphite lid 20 having the same outer diameter as that of the crucible 10, and a seed crystal is placed in the center of the lid 20 toward the back of the crucible 10. A pedestal 21 which is a protrusion for fixing is formed. The outer diameter of the pedestal 21 is formed to be equal to the inner diameter of the filling portion 13.
坩堝10の掘り込み部には、坩堝10の掘り込み部の外周の奥側から、蓋体20が蓋されたときに台座21の先端が配置される位置に向けて、グラファイト製の単結晶多結晶分離用ガイド30が配置されている。単結晶多結晶分離用ガイド30の径は、上部では台座21との間隙が2mm程度となるように設計されており、下部ではそれより大きくなっている。
ここで、坩堝10と蓋体20と単結晶多結晶分離用ガイド30とは全て坩堝10の中心の軸1を中心に上部から見て対称の形状を有している。
In the digging portion of the crucible 10, a graphite single crystal polycrystal is formed from the back side of the outer periphery of the digging portion of the crucible 10 toward the position where the tip of the pedestal 21 is arranged when the lid 20 is covered. A crystal separation guide 30 is arranged. The diameter of the single crystal polycrystal separation guide 30 is designed so that the gap with the pedestal 21 is about 2 mm in the upper part and larger in the lower part.
Here, the crucible 10, the lid 20, and the single crystal polycrystal separation guide 30 all have a symmetrical shape when viewed from above with the axis 1 at the center of the crucible 10 as the center.
次に、図1に示した単結晶成長装置の主要部を用いた単結晶の製造方法について説明する。
まず、図2に示すように蓋体20の台座21の先端に単結晶炭化珪素の種結晶40を取り付ける。つづいて、図3に示すように、充填部13に炭化珪素原料50を充填する。また、種結晶40を取り付けた蓋体20で坩堝10に蓋をする。
つづいて、図3に示した単結晶成長装置の主要部を真空引きし、高純度アルゴン(Ar)ガスで置換する。次に、高純度アルゴンガス雰囲気下に設置された図3に示した単結晶成長装置の主要部を、図示しない誘導コイルなどの加熱手段により加熱する。このとき、炭化珪素原料50が充填された充填部13の温度が炭化珪素の昇華する温度(2000〜2500℃)となるようにし、種結晶40を取り付けた蓋体20の温度を炭化珪素原料50の温度より低く設定する。Ar雰囲気の圧力を減圧することにより、炭化珪素原料50が昇華したガスが種結晶40部に届くようになり、単結晶成長が始まる。
Next, a method for manufacturing a single crystal using the main part of the single crystal growth apparatus shown in FIG. 1 will be described.
First, as shown in FIG. 2, single crystal silicon carbide seed crystal 40 is attached to the tip of pedestal 21 of lid 20. Subsequently, as shown in FIG. 3, the filling portion 13 is filled with a silicon carbide raw material 50. Moreover, the crucible 10 is covered with the lid 20 to which the seed crystal 40 is attached.
Subsequently, the main part of the single crystal growth apparatus shown in FIG. 3 is evacuated and replaced with high-purity argon (Ar) gas. Next, the main part of the single crystal growth apparatus shown in FIG. 3 installed in a high-purity argon gas atmosphere is heated by heating means such as an induction coil (not shown). At this time, the temperature of the filling portion 13 filled with the silicon carbide raw material 50 is set to a temperature at which silicon carbide sublimates (2000 to 2500 ° C.), and the temperature of the lid 20 to which the seed crystal 40 is attached is changed to the silicon carbide raw material 50. Set lower than the temperature of. By reducing the pressure of the Ar atmosphere, the gas obtained by sublimating the silicon carbide raw material 50 reaches the 40 parts of the seed crystal, and single crystal growth starts.
ここで、単結晶多結晶分離用ガイド30は、充填部13の周囲にあるグラファイト製の放射面15から放射加熱され、単結晶多結晶分離用ガイド30の温度は台座21に設置された種結晶40より高温になる。このように温度を設定することにより、単結晶多結晶分離用ガイド30に多結晶を析出させることなく、図4に示すように、種結晶40から下方に向かって単結晶60を成長させることができる。単結晶成長に寄与しない余剰な原料ガスは、単結晶多結晶分離用ガイド30と台座21との隙間を経由して台座21の周囲に流れ、多結晶70として台座21の周囲に付着する。 Here, the single crystal polycrystal separation guide 30 is radiantly heated from the radiation surface 15 made of graphite around the filling portion 13, and the temperature of the single crystal polycrystal separation guide 30 is set to a seed crystal placed on the pedestal 21. Higher than 40. By setting the temperature in this way, the single crystal 60 can be grown downward from the seed crystal 40 as shown in FIG. 4 without precipitating the polycrystal in the single crystal polycrystal separation guide 30. it can. Excess source gas that does not contribute to the single crystal growth flows around the pedestal 21 via the gap between the single crystal polycrystal separation guide 30 and the pedestal 21, and adheres as the polycrystal 70 around the pedestal 21.
このように、本実施の形態における単結晶成長装置および単結晶成長方法によれば、炭化珪素原料50を入れる充填部13の内径を種結晶40が取り付けられる台座21の直径と同じとしているため、放射面15により放射加熱される単結晶多結晶分離用ガイド30の温度が種結晶40より高温になるので、炭化珪素原料50から昇華した原料ガスが効率よく種結晶40に向かい単結晶多結晶分離用ガイド30に多結晶が析出し難くなるため、長尺で大口径の単結晶を製造することができる。 Thus, according to the single crystal growth apparatus and single crystal growth method in the present embodiment, the inner diameter of filling portion 13 into which silicon carbide raw material 50 is placed is the same as the diameter of pedestal 21 to which seed crystal 40 is attached. Since the temperature of the single crystal polycrystal separation guide 30 that is radiantly heated by the radiation surface 15 is higher than that of the seed crystal 40, the source gas sublimated from the silicon carbide raw material 50 efficiently moves toward the seed crystal 40 and separates the single crystal polycrystal. Since it is difficult for polycrystals to precipitate in the guide 30 for use, a long and large-diameter single crystal can be manufactured.
なお、本実施の形態においては、台座21の直径が充填部13の内径と等しい単結晶成長装置の例を示したが、台座21の直径と充填部13の内径とは必ずしも厳密に等しくする必要はなく、同程度またはそれ以下であればよい。また、単結晶多結晶分離用ガイド30の下端の位置については坩堝10の掘り込み部の最下端で最外周の例を示したが、最下部よりある程度高い位置でもよく、また、最外周よりある程度内側であってもよい。
また、本実施の形態においては、充填部13の周囲に設けられた放射面15が水平である例を示したが、放射面15は水平である必要はなく傾斜していてもよい。放射面15の傾斜が単結晶多結晶分離用ガイド30の傾斜に近づくような傾斜であると、放射面15と単結晶多結晶分離用ガイド30の下面とがより対向するので、より好ましい。
In the present embodiment, an example of a single crystal growth apparatus in which the diameter of the pedestal 21 is equal to the inner diameter of the filling portion 13 has been described. However, the diameter of the pedestal 21 and the inner diameter of the filling portion 13 need not be exactly equal. However, it may be the same or less. In addition, as for the position of the lower end of the single crystal polycrystal separation guide 30, an example of the outermost periphery is shown at the lowermost end of the digging portion of the crucible 10, but the position may be higher to some extent than the lowermost portion, and to some extent from the outermost periphery. It may be inside.
Moreover, in this Embodiment, although the radiation surface 15 provided in the circumference | surroundings of the filling part 13 showed the horizontal example, the radiation surface 15 does not need to be horizontal and may incline. It is more preferable that the inclination of the radiating surface 15 is close to the inclination of the single crystal polycrystal separation guide 30 because the radiating surface 15 and the lower surface of the single crystal polycrystal separation guide 30 are more opposed to each other.
実施の形態2.
図5は、この発明を実施するための実施の形態2における、単結晶成長中の単結晶成長装置の主要部を示す断面模式図である。図5において、坩堝10の掘り込み部と充填部13の内径が同じであり、充填部13の上部にはグラファイト製の原料ガス整流ガイド31が設けられている。原料ガス整流ガイド31の上側の面は、放射面15であり、単結晶多結晶分離用ガイド30に対向して形成されている。これら以外は、実施の形態1と同様であるので説明を省略する。ここで、原料ガス整流ガイド31は坩堝10の中心軸を中心に上部から見て点対称の形状を有しており、原料ガス整流ガイド31の最上部の開口径は種結晶40が設置される台座21の径と等しい。また、本実施の形態における単結晶成長方法は、本実施の形態の単結晶成長装置を用いて実施の形態1と同様に行うものである。
Embodiment 2. FIG.
FIG. 5 is a schematic cross-sectional view showing the main part of the single crystal growth apparatus during single crystal growth in the second embodiment for carrying out the present invention. In FIG. 5, the digging portion of the crucible 10 and the filling portion 13 have the same inner diameter, and a graphite material gas rectifying guide 31 is provided on the top of the filling portion 13. The upper surface of the source gas rectifying guide 31 is a radiation surface 15, which is formed to face the single crystal polycrystal separation guide 30. Since other than these are the same as those in the first embodiment, description thereof is omitted. Here, the raw material gas rectifying guide 31 has a point-symmetrical shape as viewed from above with respect to the central axis of the crucible 10, and the seed crystal 40 is installed at the uppermost opening diameter of the raw material gas rectifying guide 31. It is equal to the diameter of the base 21. The single crystal growth method in this embodiment is performed in the same manner as in Embodiment 1 using the single crystal growth apparatus of this embodiment.
本実施の形態の単結晶成長装置によれば、実施の形態1の単結晶成長装置と同様に、放射面15により放射加熱される単結晶多結晶分離用ガイド30の温度が種結晶40より高温になるので、炭化珪素原料50から昇華した原料ガスが効率よく種結晶40に向かい単結晶多結晶分離用ガイド30に多結晶が析出することを抑制できるため、長尺で大口径の単結晶を成長させることができる。また、充填部13の内容積を大きくすることができるので多くの炭化珪素原料50を充填でき、長尺化により有利となる。 According to the single crystal growth apparatus of the present embodiment, the temperature of the single crystal polycrystal separation guide 30 that is radiantly heated by the radiation surface 15 is higher than that of the seed crystal 40 as in the single crystal growth apparatus of the first embodiment. Therefore, since the source gas sublimated from the silicon carbide source material 50 can be efficiently suppressed toward the seed crystal 40 and the polycrystal is deposited on the single crystal polycrystal separation guide 30, a long and large-diameter single crystal can be formed. Can be grown. Moreover, since the internal volume of the filling part 13 can be enlarged, many silicon carbide raw materials 50 can be filled, and it becomes advantageous by lengthening.
実施の形態3.
図6は、この発明を実施するための実施の形態3における、単結晶成長中の単結晶成長装置の主要部を示す断面模式図である。図6において、実施の形態2の図5の単結晶多結晶分離用ガイド30が折り返し構造部32を備えていることのほかは図5と同じである。また、その単結晶成長方法も実施の形態2と同様である。単結晶多結晶分離ガイド30の折り返し構造部32は、軸1に対してほぼ全周に設けられ、真空引きのための経路以外には円周方向に隙間はないものとする。
Embodiment 3 FIG.
FIG. 6 is a schematic cross-sectional view showing the main part of the single crystal growth apparatus during single crystal growth in the third embodiment for carrying out the present invention. 6 is the same as FIG. 5 except that the single crystal polycrystal separation guide 30 of FIG. The single crystal growth method is the same as that of the second embodiment. The folded structure portion 32 of the single crystal polycrystal separation guide 30 is provided almost all around the shaft 1 and there is no gap in the circumferential direction other than the path for vacuuming.
本実施の形態の単結晶成長装置は、折り返し構造部32を有する単結晶多結晶分離ガイド30を備えているために、単結晶多結晶分離ガイド30から蓋体20への放射熱が抑制され、蓋体20の温度上昇を抑えることができる。また、単結晶多結晶分離ガイド30は、実施の形態2と同様に原料ガス整流ガイド31からの放射熱によって加熱されるのに加え、折り返し構造部32を有するために折り返し構造部32からの熱反射および折り返し構造部32を介した坩堝10からの伝導熱により単結晶多結晶分離ガイド30をさらに高温にすることができるため、種結晶40と単結晶多結晶分離ガイド30の温度差をより大きくすることができる。したがって、より長尺で大口径の単結晶を製造できる。 Since the single crystal growth apparatus of the present embodiment includes the single crystal polycrystal separation guide 30 having the folded structure portion 32, radiant heat from the single crystal polycrystal separation guide 30 to the lid 20 is suppressed, The temperature rise of the lid 20 can be suppressed. Further, the single crystal polycrystal separation guide 30 is heated by the radiant heat from the source gas rectifying guide 31 as in the second embodiment, and in addition to having the folded structure portion 32, the heat from the folded structure portion 32 is provided. The single crystal polycrystal separation guide 30 can be heated to a higher temperature by conduction heat from the crucible 10 via the reflection and folding structure portion 32, so that the temperature difference between the seed crystal 40 and the single crystal polycrystal separation guide 30 is further increased. can do. Therefore, a longer and larger-diameter single crystal can be manufactured.
また、この折り返し構造部32の下面に、図7に示すように黒鉛製柔軟シート33を貼り付けると、先に説明した折り返し構造部33からの熱反射をさらに増加させることができるため、種結晶40と単結晶多結晶分離ガイド30のガイド部の温度差をより大きくすることができ、さらに長尺で大口径の単結晶を製造できる。 Further, when a graphite flexible sheet 33 is attached to the lower surface of the folded structure portion 32 as shown in FIG. 7, the heat reflection from the folded structure portion 33 described above can be further increased. The temperature difference between the guide portions of 40 and the single crystal polycrystal separation guide 30 can be further increased, and a long and large diameter single crystal can be manufactured.
なお、実施の形態1〜3に示したグラファイト製の単結晶多結晶分離ガイド30、原料ガス整流ガイド31および折り返し構造部32は高温になるため、昇華したり原料ガスによりエッチングされたりする場合がある。この劣化を防止するために、単結晶多結晶分離ガイド30、原料ガス整流ガイド31および折り返し構造部32を炭化タンタルにより被覆することにより、装置の信頼性をさらに高めることができ、さらに長尺の単結晶を製造できる。 In addition, since the single crystal polycrystal separation guide 30 made of graphite, the raw material gas rectifying guide 31 and the folded structure portion 32 shown in the first to third embodiments are at a high temperature, they may be sublimated or etched by the raw material gas. is there. In order to prevent this deterioration, the reliability of the apparatus can be further improved by coating the single crystal polycrystal separation guide 30, the raw material gas rectifying guide 31 and the folded structure portion 32 with tantalum carbide. Single crystals can be produced.
10 坩堝、13 充填部、15 放射面、20 蓋体、21 台座、30 単結晶多結晶分離用ガイド、31 原料ガス整流ガイド、32 折り返し構造部、33 黒鉛製柔軟シート、40 種結晶、50 炭化珪素原料、60 単結晶、70 多結晶。 DESCRIPTION OF SYMBOLS 10 Crucible, 13 Filling part, 15 Radiation surface, 20 Lid body, 21 Base, 30 Guide for single crystal polycrystal separation, 31 Source gas rectification guide, 32 Folding structure part, 33 Flexible sheet made of graphite, 40 seed crystal, 50 Carbonization Silicon raw material, 60 single crystal, 70 polycrystal.
Claims (4)
前記坩堝の蓋となる蓋体と、
前記蓋体に前記充填部に対向して設けられた、種結晶を取り付ける台座と、
前記坩堝から前記台座に向けて設けられた単結晶多結晶分離用ガイドと、
前記充填部の上部に設けられた、その上面が前記単結晶多結晶分離用ガイドに対向して設けられ、前記単結晶多結晶分離用ガイドを下方から放射加熱する放射面である、原料ガス整流ガイドとを備えたことを特徴とする単結晶成長装置。 A crucible having a filling portion for filling raw materials;
A lid that serves as a lid for the crucible;
A pedestal for attaching a seed crystal provided on the lid facing the filling portion;
A single-crystal polycrystal separation guide provided from the crucible toward the pedestal;
A raw material gas rectifier provided on an upper portion of the filling portion, the upper surface of which is provided to face the single crystal polycrystal separation guide and is a radiation surface for radiatively heating the single crystal polycrystal separation guide from below. A single crystal growth apparatus comprising a guide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012123429A JP5397503B2 (en) | 2012-05-30 | 2012-05-30 | Single crystal growth equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012123429A JP5397503B2 (en) | 2012-05-30 | 2012-05-30 | Single crystal growth equipment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008129417A Division JP5012655B2 (en) | 2008-05-16 | 2008-05-16 | Single crystal growth equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012158520A JP2012158520A (en) | 2012-08-23 |
JP5397503B2 true JP5397503B2 (en) | 2014-01-22 |
Family
ID=46839365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012123429A Active JP5397503B2 (en) | 2012-05-30 | 2012-05-30 | Single crystal growth equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5397503B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11078599B2 (en) | 2018-12-12 | 2021-08-03 | Skc Co., Ltd. | Apparatus for producing an ingot comprising a crucible body with a lid assembly having a movable core member and method for producing silicon carbide ingot using the apparatus |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6354399B2 (en) * | 2014-07-04 | 2018-07-11 | 住友電気工業株式会社 | Method for producing crucible and single crystal |
CN108103569A (en) * | 2017-12-29 | 2018-06-01 | 苏州奥趋光电技术有限公司 | A kind of crucible device by physical vapor transport growing aluminum nitride monocrystalline |
JP7400450B2 (en) * | 2019-12-25 | 2023-12-19 | 株式会社レゾナック | SiC single crystal manufacturing apparatus and SiC single crystal manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4503736B2 (en) * | 1999-08-31 | 2010-07-14 | 独立行政法人産業技術総合研究所 | Method and apparatus for producing single crystal |
JP3961750B2 (en) * | 2000-08-21 | 2007-08-22 | 独立行政法人産業技術総合研究所 | Single crystal growth apparatus and growth method |
JP2007204309A (en) * | 2006-02-01 | 2007-08-16 | Matsushita Electric Ind Co Ltd | Single crystal growth device and single crystal growth method |
JP4692394B2 (en) * | 2006-05-31 | 2011-06-01 | 株式会社デンソー | Method and apparatus for producing silicon carbide single crystal |
-
2012
- 2012-05-30 JP JP2012123429A patent/JP5397503B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11078599B2 (en) | 2018-12-12 | 2021-08-03 | Skc Co., Ltd. | Apparatus for producing an ingot comprising a crucible body with a lid assembly having a movable core member and method for producing silicon carbide ingot using the apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2012158520A (en) | 2012-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5012655B2 (en) | Single crystal growth equipment | |
JP5562641B2 (en) | Micropipe-free silicon carbide and method for producing the same | |
JP4388538B2 (en) | Silicon carbide single crystal manufacturing equipment | |
JP5346821B2 (en) | Silicon carbide single crystal manufacturing equipment | |
JP5304600B2 (en) | SiC single crystal manufacturing apparatus and manufacturing method | |
JP2018030773A (en) | Apparatus used for single crystal growth | |
JP5397503B2 (en) | Single crystal growth equipment | |
JP5240100B2 (en) | Silicon carbide single crystal manufacturing equipment | |
JP2004099340A (en) | Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same | |
JP5732288B2 (en) | Manufacturing method of free-standing substrate | |
JP4459211B2 (en) | Single crystal growth apparatus and growth method | |
JP7170470B2 (en) | Single crystal growth crucible and single crystal growth method | |
JP2018140903A (en) | Method for manufacturing silicon carbide single crystal ingot | |
JP4850807B2 (en) | Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same | |
KR101829981B1 (en) | Method for producing sic single crystal | |
JP5831339B2 (en) | Method for producing silicon carbide single crystal | |
JP5252495B2 (en) | Method for producing aluminum nitride single crystal | |
JP2010275166A (en) | Method for producing silicon carbide single crystal | |
JP2021091566A (en) | SiC SUBSTRATE AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL | |
JP7490775B2 (en) | Method for producing SiC crystal | |
WO2022045291A1 (en) | Sic polycrystal manufacturing method | |
JP7305818B1 (en) | Thermal field adjustment method for silicon carbide single crystal growth | |
KR20190092417A (en) | Silicon single crystal manufacturing method and silicon single crystal wafer | |
JP2000044396A (en) | Production of silicon carbide single crystal | |
JP2010241619A (en) | Production method of silicon carbide single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130924 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131007 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5397503 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |