JP5304600B2 - SiC single crystal manufacturing apparatus and manufacturing method - Google Patents

SiC single crystal manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
JP5304600B2
JP5304600B2 JP2009256066A JP2009256066A JP5304600B2 JP 5304600 B2 JP5304600 B2 JP 5304600B2 JP 2009256066 A JP2009256066 A JP 2009256066A JP 2009256066 A JP2009256066 A JP 2009256066A JP 5304600 B2 JP5304600 B2 JP 5304600B2
Authority
JP
Japan
Prior art keywords
graphite crucible
single crystal
sic single
raw material
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009256066A
Other languages
Japanese (ja)
Other versions
JP2011098870A (en
Inventor
秀光 坂元
郷栄 中島
靖幸 藤原
祐二 池村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009256066A priority Critical patent/JP5304600B2/en
Publication of JP2011098870A publication Critical patent/JP2011098870A/en
Application granted granted Critical
Publication of JP5304600B2 publication Critical patent/JP5304600B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、いわゆる溶液法によってSiC単結晶を製造するための装置及び方法に関する。   The present invention relates to an apparatus and a method for producing a SiC single crystal by a so-called solution method.

SiCは、バンドギャップがSiの約3倍、絶縁破壊電界強度がSiの約10倍など優れた物性を有する半導体であり、これをパワーデバイスに応用することができれば、Siパワーデバイスよりも低電力損失のデバイスを実現することができる。また、SiCパワーデバイスは、Siパワーデバイスと比べて電力損失が小さいだけでなく、より高温・高速での動作が可能である。それゆえ、SiCパワーデバイスを用いることでインバータ等の電力変換器において高効率化及び小型化を達成することが可能である。   SiC is a semiconductor having excellent physical properties such as a band gap of about 3 times that of Si and a breakdown electric field strength of about 10 times that of Si. If this can be applied to a power device, the power consumption is lower than that of a Si power device. A lossy device can be realized. In addition, the SiC power device not only has a small power loss compared to the Si power device, but can operate at a higher temperature and a higher speed. Therefore, high efficiency and miniaturization can be achieved in a power converter such as an inverter by using a SiC power device.

従来、このようなSiCの単結晶を製造する方法として、昇華法や溶液法が知られている。   Conventionally, a sublimation method or a solution method is known as a method for producing such a SiC single crystal.

溶液法は、原料を溶解した融液中に種結晶を浸漬させ、例えば、融液内部から融液表面に向けて温度が低下するよう温度勾配を設けることにより、種結晶周辺の融液中に溶解している原料を過飽和状態とし、それを種結晶上に析出させる方法である。溶液法によるSiC単結晶の製造では、種結晶に存在するマイクロパイプが成長過程において消滅することが報告されている。一方で、溶液法によるSiC単結晶の製造では、一般的に黒鉛からなる坩堝が用いられ、この黒鉛坩堝からSi融液中にSiC単結晶のもう一方の原料である炭素(C)が供給される。しかしながら、黒鉛坩堝からSi融液中に炭素が溶解する量は非常に少ないため、溶液法によるSiC単結晶の製造では、結晶成長における成長速度が遅いという問題がある。このため、原料を溶解した融液中にTi、Mn、Cr等の元素を添加して融液中の炭素濃度を高め、それによってSiC単結晶の成長速度を向上させる技術が従来から提案されている(例えば、特許文献1〜5を参照)。   In the solution method, the seed crystal is immersed in the melt in which the raw material is dissolved, and, for example, a temperature gradient is provided so that the temperature decreases from the inside of the melt toward the melt surface. This is a method in which a dissolved raw material is supersaturated and deposited on a seed crystal. In the production of a SiC single crystal by a solution method, it has been reported that micropipes present in a seed crystal disappear during the growth process. On the other hand, in the production of a SiC single crystal by a solution method, a crucible made of graphite is generally used, and carbon (C), which is the other raw material of the SiC single crystal, is supplied from this graphite crucible into the Si melt. The However, since the amount of carbon dissolved in the Si melt from the graphite crucible is very small, the production of SiC single crystal by the solution method has a problem that the growth rate in crystal growth is slow. For this reason, a technique has been conventionally proposed in which elements such as Ti, Mn, and Cr are added to a melt in which raw materials are dissolved to increase the carbon concentration in the melt, thereby improving the growth rate of the SiC single crystal. (For example, refer to Patent Documents 1 to 5).

しかしながら、SiC単結晶の原料である炭素は、上記のように黒鉛坩堝から供給されるため、Ti、Mn、Cr等の元素を添加して融液中の炭素濃度を高めると、当然ながら黒鉛坩堝壁付近における融液中の炭素濃度が最も高くなる。一方で、融液表面は雰囲気ガスとの界面でもあるため、融液表面付近に最も温度勾配がつきやすい。したがって、黒鉛坩堝壁付近の融液表面では、炭素濃度が過飽和な状態となり、SiCの粗粒な結晶(以下、多結晶と称する)が析出しやすいという傾向がある。このような多結晶は、例えば、それが成長中の種結晶の表面に付着等すると、本来の目的である種結晶からの単結晶成長を阻害する虞がある。それゆえ、このような多結晶の析出は、溶液法による単結晶成長においては重大な問題である。   However, since the carbon that is the raw material of the SiC single crystal is supplied from the graphite crucible as described above, if the carbon concentration in the melt is increased by adding elements such as Ti, Mn, Cr, etc., naturally the graphite crucible The carbon concentration in the melt near the wall is the highest. On the other hand, since the melt surface is also an interface with the atmospheric gas, the temperature gradient is most likely to be near the melt surface. Therefore, on the surface of the melt near the graphite crucible wall, the carbon concentration tends to be supersaturated, so that SiC coarse crystals (hereinafter referred to as polycrystals) tend to precipitate. When such a polycrystal adheres to the surface of the growing seed crystal, for example, there is a possibility that the single crystal growth from the seed crystal which is the original purpose is hindered. Therefore, such polycrystalline precipitation is a serious problem in single crystal growth by the solution method.

特許文献6では、チャンバー内に設置された坩堝の内部を筒状の隔壁で内側部分と外側部分に区画し、該坩堝の外側部分の単結晶原料の融液に更にその粒状原料を連続的に供給しながら単結晶を育成させる装置であって、育成中の単結晶を同心的に囲繞する筒体をチャンバー上部から下方へ延設するとともに、該筒体の下端部に、下方に向かって縮径する截頭円錐状の断熱リングを取り付けて構成される単結晶引上装置において、前記断熱リングの外殻をカーボン材で構成し、該外殻の内部に断熱材を充填したことを特徴とする単結晶引上装置が記載されている。また、特許文献6では、このような単結晶引上装置によれば、隔壁と融液表面との界面付近を高温に保つことができるので、隔壁近傍における融液の固化を防ぐことができ、単結晶の成長速度を高めて生産性の向上を図ることができると記載されている。   In Patent Document 6, the inside of a crucible installed in a chamber is divided into an inner part and an outer part by a cylindrical partition, and the granular raw material is continuously added to the melt of the single crystal raw material in the outer part of the crucible. A device for growing a single crystal while supplying it, and extending a cylinder that concentrically surrounds the single crystal being grown from the upper part of the chamber and shrinking it downward at the lower end of the cylinder. In a single crystal pulling apparatus configured by attaching a heat insulating ring in the shape of a truncated cone having a diameter, the outer shell of the heat insulating ring is made of a carbon material, and the heat insulating material is filled in the outer shell. A single crystal pulling apparatus is described. Further, in Patent Document 6, according to such a single crystal pulling apparatus, the vicinity of the interface between the partition walls and the melt surface can be maintained at a high temperature, so that solidification of the melt in the vicinity of the partition walls can be prevented, It describes that productivity can be improved by increasing the growth rate of single crystals.

特開2004−2173号公報JP 2004-2173 A 特開2007−76986号公報JP 2007-76986 A 特開2007−261843号公報JP 2007-261843 A 特開2007−261844号公報JP 2007-261844 A 特開2000−264790号公報JP 2000-264790 A 特開平7−69779号公報Japanese Unexamined Patent Publication No. 7-69779

特許文献6に記載の単結晶引上装置では、上記の断熱リングは、その下端が融液表面と10mm以上離れた位置に配置されている。したがって、このような装置を用いてSiC単結晶の製造を行った場合には、SiC単結晶の製造において坩堝として使用される黒鉛坩堝の内壁付近における多結晶の析出を十分に防ぐことができない。   In the single crystal pulling apparatus described in Patent Document 6, the lower end of the heat insulating ring is disposed at a position 10 mm or more away from the melt surface. Therefore, when an SiC single crystal is manufactured using such an apparatus, the precipitation of polycrystals in the vicinity of the inner wall of a graphite crucible used as a crucible in the manufacture of an SiC single crystal cannot be sufficiently prevented.

そこで、本発明は、溶液法によってSiC単結晶を製造する際、上記のような多結晶の析出を抑制することができるSiC単結晶の製造装置及び製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a SiC single crystal manufacturing apparatus and a manufacturing method capable of suppressing the precipitation of the polycrystal as described above when the SiC single crystal is manufactured by a solution method.

上記課題を解決する本発明は下記にある。
(1)SiC単結晶の原料となる原料融液を収容するための黒鉛坩堝と、該黒鉛坩堝の周囲に配置された加熱手段と、前記黒鉛坩堝の上方で上下方向に移動可能に配置された種結晶保持部とを備え、該種結晶保持部の下端に保持された種結晶を前記黒鉛坩堝内の原料融液に浸漬させることにより種結晶の下にSiC単結晶を成長させるSiC単結晶製造装置において、前記黒鉛坩堝の内壁と前記原料融液の液面が接触する部分の少なくとも一部に、それらが接触しないように前記黒鉛坩堝の内壁上に断熱材が配置されたことを特徴とする、SiC単結晶製造装置。
(2)前記黒鉛坩堝の内壁と前記原料融液の液面が接触しないように、黒鉛坩堝の内壁の全周に前記断熱材が配置されたことを特徴とする、上記(1)に記載のSiC単結晶製造装置。
(3)前記断熱材の形状が円環状であることを特徴とする、上記(1)又は(2)に記載のSiC単結晶製造装置。
(4)前記断熱材が炭素繊維を含むことを特徴とする、上記(1)〜(3)のいずれか1つに記載のSiC単結晶製造装置。
(5)前記断熱材がカーボンフェルトからなることを特徴とする、上記(1)〜(3)のいずれか1つに記載のSiC単結晶製造装置。
(6)SiC単結晶の原料となる原料融液を収容するための黒鉛坩堝と、該黒鉛坩堝の周囲に配置された加熱手段と、前記黒鉛坩堝の上方で上下方向に移動可能に配置された種結晶保持部とを備え、前記黒鉛坩堝の内壁と前記原料融液の液面が接触する部分の少なくとも一部に、それらが接触しないように前記黒鉛坩堝の内壁上に断熱材が配置されたSiC単結晶製造装置を用いて、前記種結晶保持部の下端に保持された種結晶を前記黒鉛坩堝内の原料融液に浸漬させることにより種結晶の下にSiC単結晶を成長させることを特徴とする、SiC単結晶の製造方法。
(7)前記黒鉛坩堝の内壁と前記原料融液の液面が接触しないように、黒鉛坩堝の内壁の全周に前記断熱材が配置されたことを特徴とする、上記(6)に記載の方法。
(8)前記断熱材の形状が円環状であることを特徴とする、上記(6)又は(7)に記載の方法。
(9)前記断熱材が炭素繊維を含むことを特徴とする、上記(6)〜(8)のいずれか1つに記載の方法。
(10)前記断熱材がカーボンフェルトからなることを特徴とする、上記(6)〜(8)のいずれか1つに記載の方法。
The present invention for solving the above problems is as follows.
(1) A graphite crucible for containing a raw material melt as a raw material for SiC single crystal, a heating means arranged around the graphite crucible, and arranged to be movable in the vertical direction above the graphite crucible. A SiC single crystal production comprising: a seed crystal holding part; and a seed crystal held at a lower end of the seed crystal holding part is immersed in a raw material melt in the graphite crucible to grow a SiC single crystal under the seed crystal In the apparatus, a heat insulating material is disposed on the inner wall of the graphite crucible so as not to contact at least a part of a portion where the inner wall of the graphite crucible and the liquid surface of the raw material melt contact. SiC single crystal production equipment.
(2) The heat insulating material is disposed on the entire circumference of the inner wall of the graphite crucible so that the inner wall of the graphite crucible does not contact the liquid surface of the raw material melt. SiC single crystal manufacturing equipment.
(3) The SiC single crystal manufacturing apparatus according to (1) or (2), wherein the heat insulating material has an annular shape.
(4) The SiC single crystal manufacturing apparatus according to any one of (1) to (3), wherein the heat insulating material includes carbon fiber.
(5) The SiC single crystal manufacturing apparatus according to any one of (1) to (3), wherein the heat insulating material is made of carbon felt.
(6) A graphite crucible for containing a raw material melt as a raw material for SiC single crystal, a heating means arranged around the graphite crucible, and arranged to be movable in the vertical direction above the graphite crucible. A seed crystal holding portion, and at least part of the portion where the inner wall of the graphite crucible and the liquid surface of the raw material melt are in contact with each other, a heat insulating material is disposed on the inner wall of the graphite crucible so as not to contact A SiC single crystal is grown under a seed crystal by immersing the seed crystal held at the lower end of the seed crystal holding unit in a raw material melt in the graphite crucible using an SiC single crystal manufacturing apparatus. A method for producing a SiC single crystal.
(7) The heat insulating material is arranged on the entire circumference of the inner wall of the graphite crucible so that the inner wall of the graphite crucible does not contact the liquid surface of the raw material melt. Method.
(8) The method according to (6) or (7) above, wherein the heat insulating material has an annular shape.
(9) The method according to any one of (6) to (8), wherein the heat insulating material includes carbon fiber.
(10) The method according to any one of (6) to (8) above, wherein the heat insulating material is made of carbon felt.

本発明のSiC単結晶の製造装置及び製造方法によれば、融液表面、特には坩堝壁付近の融液表面における多結晶の析出を顕著に抑制することができる。したがって、本発明のSiC単結晶の製造装置及び製造方法によれば、このような多結晶体が坩堝壁から徐々に拡大して融液表面全体を覆うことを防ぐことができるので、種結晶からの単結晶成長が阻害されることなく、長時間にわたってSiC単結晶を安定に成長させることが可能である。   According to the SiC single crystal manufacturing apparatus and manufacturing method of the present invention, it is possible to significantly suppress the precipitation of polycrystals on the melt surface, particularly on the melt surface near the crucible wall. Therefore, according to the SiC single crystal manufacturing apparatus and manufacturing method of the present invention, it is possible to prevent such a polycrystalline body from gradually expanding from the crucible wall and covering the entire melt surface. It is possible to stably grow the SiC single crystal for a long time without hindering the single crystal growth.

本発明によるSiC単結晶製造装置の一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the SiC single crystal manufacturing apparatus by this invention. (a)は、断熱材なしで原料融液を1900〜1935℃の温度で5時間加熱保持した後の融液表面を示す写真であり、(b)は、同様に断熱材なしで原料融液を1900〜1935℃の温度で10時間加熱保持した後の融液表面を示す写真である。(A) is the photograph which shows the melt surface after heat-maintaining a raw material melt for 5 hours at the temperature of 1900-1935 degreeC without a heat insulating material, (b) is a raw material melt similarly without a heat insulating material. Is a photograph showing the surface of the melt after being heated and held at a temperature of 1900-1935 ° C. for 10 hours. 本発明のSiC単結晶製造装置において使用される黒鉛坩堝とカーボンフェルトからなる断熱材の例である。It is an example of the heat insulating material which consists of a graphite crucible and a carbon felt used in the SiC single crystal manufacturing apparatus of this invention. (a)は、円環状カーボンフェルトからなる断熱材を用いて、原料融液を1900〜1935℃の温度で5時間加熱保持した後の融液表面を示す写真であり、(b)は、円環状カーボンフェルトからなる断熱材の一部を欠いた断熱材を用いて、原料融液を1900〜1935℃の温度で5時間加熱保持した後の融液表面を示す写真である。(A) is the photograph which shows the melt surface after heat-maintaining the raw material melt for 5 hours at the temperature of 1900-1935 degreeC using the heat insulating material which consists of annular carbon felt, (b) is a circle. It is a photograph which shows the melt surface after heat-maintaining a raw material melt for 5 hours at the temperature of 1900-1935 degreeC using the heat insulating material which lacked one part of heat insulating material consisting of cyclic carbon felt. 本発明における断熱材の効果を示す黒鉛坩堝壁付近の模式断面図である。It is a schematic cross section near the graphite crucible wall showing the effect of the heat insulating material in the present invention.

本発明のSiC単結晶製造装置は、SiC単結晶の原料となる原料融液を収容するための黒鉛坩堝と、該黒鉛坩堝の周囲に配置された加熱手段と、前記黒鉛坩堝の上方で上下方向に移動可能に配置された種結晶保持部とを備え、該種結晶保持部の下端に保持された種結晶を前記黒鉛坩堝内の原料融液に浸漬させることにより種結晶の下にSiC単結晶を成長させるSiC単結晶製造装置において、前記黒鉛坩堝の内壁と前記原料融液の液面が接触する部分の少なくとも一部に、それらが接触しないように前記黒鉛坩堝の内壁上に断熱材が配置されたことを特徴としている。   The SiC single crystal production apparatus of the present invention includes a graphite crucible for containing a raw material melt as a raw material for SiC single crystal, a heating means disposed around the graphite crucible, and a vertical direction above the graphite crucible. And a seed crystal holding part movably arranged on the bottom of the seed crystal holding part, and immersing the seed crystal held at the lower end of the seed crystal holding part in the raw material melt in the graphite crucible, In the SiC single crystal manufacturing apparatus for growing the material, a heat insulating material is disposed on the inner wall of the graphite crucible so that they do not contact at least a part of a portion where the inner wall of the graphite crucible and the liquid surface of the raw material melt contact each other. It is characterized by that.

先に記載したように、溶液法によるSiC単結晶の製造では、一般的に黒鉛からなる坩堝が用いられ、この黒鉛坩堝からSi融液中にSiC単結晶のもう一方の原料である炭素(C)が供給される。一方で、融液表面は雰囲気ガスとの界面でもあるため、融液表面付近に最も温度勾配がつきやすい。したがって、黒鉛坩堝壁付近の融液表面では、炭素濃度が過飽和な状態となり、SiCの粗粒な結晶、すなわち、多結晶が析出しやすい。このような現象は、原料を溶解した融液中の炭素濃度の向上を図るために、Ti、Mn、Cr等の元素を添加した場合に特に顕著となる。また、溶液法によるSiC単結晶の製造では、例えば、黒鉛坩堝から原料融液中に溶解した炭素を種結晶のほうへ移動させるために、黒鉛坩堝及び/又は種結晶を保持する種結晶保持部を回転等させている。それゆえ、上記のように黒鉛坩堝の内壁に析出した多結晶は、次第に融液表面の中央部へと拡大し、いずれは融液表面全体を覆ってしまう。このような状態になると、種結晶上にSiCの単結晶を成長させることができなくなることはもちろんであるが、融液表面全体がこのような多結晶によって覆われる途中の段階においても、例えば、析出した多結晶が成長中の種結晶の表面に付着等すると、本来の目的である種結晶からの単結晶成長が阻害されてしまう。   As described above, in the production of an SiC single crystal by the solution method, a crucible made of graphite is generally used, and carbon (C), which is another raw material of the SiC single crystal, is introduced into the Si melt from the graphite crucible. ) Is supplied. On the other hand, since the melt surface is also an interface with the atmospheric gas, the temperature gradient is most likely to be near the melt surface. Therefore, on the surface of the melt near the graphite crucible wall, the carbon concentration becomes supersaturated, and SiC coarse crystals, that is, polycrystals tend to precipitate. Such a phenomenon becomes particularly prominent when elements such as Ti, Mn, and Cr are added in order to improve the carbon concentration in the melt in which the raw material is dissolved. Further, in the production of the SiC single crystal by the solution method, for example, in order to move the carbon dissolved in the raw material melt from the graphite crucible toward the seed crystal, a seed crucible and / or a seed crystal holding unit that holds the seed crystal. Is rotating. Therefore, the polycrystals deposited on the inner wall of the graphite crucible as described above gradually expand to the center of the melt surface, and eventually cover the entire melt surface. In such a state, of course, it becomes impossible to grow a SiC single crystal on the seed crystal, but even at the stage where the entire melt surface is covered with such a polycrystal, for example, If the deposited polycrystal adheres to the surface of the growing seed crystal, the single crystal growth from the seed crystal which is the original purpose is hindered.

本発明者らは、黒鉛坩堝の内壁と原料融液の液面が接触する部分の少なくとも一部に、それらが接触しないように黒鉛坩堝の内壁上に断熱材を配置することで、好ましくは黒鉛坩堝の内壁と原料融液の液面が接触しないように黒鉛坩堝の内壁の全周に断熱材を配置することで、黒鉛坩堝の内壁付近の融液表面にSiCの多結晶が析出するのを顕著に抑制できることを見出した。さらに、本発明者らは、黒鉛坩堝の内壁付近における多結晶の析出を抑制することで、SiCの単結晶を成長させる融液中央部の状態を常に良好な状態に維持できることを見出した。   The present inventors preferably arrange a heat insulating material on the inner wall of the graphite crucible so that they do not contact at least a part of the portion where the inner wall of the graphite crucible and the liquid surface of the raw material melt contact, By arranging a heat insulating material on the entire circumference of the inner wall of the graphite crucible so that the inner wall of the crucible and the liquid surface of the raw material melt do not come into contact with each other, SiC polycrystal is deposited on the melt surface near the inner wall of the graphite crucible. It was found that it can be remarkably suppressed. Furthermore, the present inventors have found that the state of the melt central portion for growing a SiC single crystal can always be maintained in a good state by suppressing the precipitation of polycrystals in the vicinity of the inner wall of the graphite crucible.

図1は、本発明によるSiC単結晶製造装置の一例を模式的に示した断面図である。   FIG. 1 is a cross-sectional view schematically showing an example of a SiC single crystal manufacturing apparatus according to the present invention.

図1を参照すると、SiC単結晶製造装置10は、SiC単結晶の原料となる原料融液1を収容するための黒鉛坩堝2と、該黒鉛坩堝2の周囲に配置された加熱手段3と、前記黒鉛坩堝2の上方で上下方向に移動可能に配置され、下端に種結晶4を保持した種結晶保持部5とを備え、前記黒鉛坩堝2に対する任意選択の蓋部7と、該蓋部7の両側に配置される任意選択の断熱材8とをさらに備え、前記黒鉛坩堝2の内壁と前記原料融液1の液面が接触する部分の少なくとも一部に、それらが接触しないように前記黒鉛坩堝2の内壁上に断熱材6が配置されている。より詳しくは、前記黒鉛坩堝2は、その内側部2aとそれを保持するサセプタ部2bとによって構成されている。また、このSiC単結晶製造装置10を用いたSiC単結晶の製造では、製造されるSiC単結晶と雰囲気ガスとの化学反応等を防ぐために、黒鉛坩堝2、加熱手段3等は、チャンバー9内に配置され、このチャンバー9の内部がアルゴン等の不活性ガスで満たされる。   Referring to FIG. 1, an SiC single crystal manufacturing apparatus 10 includes a graphite crucible 2 for containing a raw material melt 1 that is a raw material of an SiC single crystal, a heating means 3 disposed around the graphite crucible 2, The graphite crucible 2 is arranged so as to be movable in the vertical direction above the graphite crucible 2, and includes a seed crystal holding part 5 holding the seed crystal 4 at the lower end, an optional lid part 7 for the graphite crucible 2, and the lid part 7 And an optional heat insulating material 8 disposed on both sides of the graphite crucible, and the graphite crucible 2 and the liquid surface of the raw material melt 1 are in contact with at least a part of a portion where the graphite wall does not contact the graphite. A heat insulating material 6 is disposed on the inner wall of the crucible 2. More specifically, the graphite crucible 2 is composed of an inner portion 2a and a susceptor portion 2b that holds the inner portion 2a. Further, in the production of the SiC single crystal using the SiC single crystal production apparatus 10, the graphite crucible 2, the heating means 3, etc. are provided in the chamber 9 in order to prevent a chemical reaction between the produced SiC single crystal and the atmospheric gas. The chamber 9 is filled with an inert gas such as argon.

本発明によるSiC単結晶製造装置10を用いてSiC単結晶を製造する場合には、例えば、まず、黒鉛坩堝2内に融液原料を導入し、チャンバー9内を排気した後、アルゴン等の不活性ガスによってチャンバー9内を大気圧又はそれよりも高い圧力に加圧する。次いで、加熱手段3により黒鉛坩堝2を加熱して融液原料を溶融し原料融液1を形成する。次いで、溶融された原料融液1の液面に対して上方から種結晶保持部5を下降させて種結晶を原料融液1の液面に接触させ、その後、例えば、種結晶保持部5をゆっくりと回転等させながら引き上げることにより種結晶の下にSiC単結晶を形成させる。   When an SiC single crystal is manufactured using the SiC single crystal manufacturing apparatus 10 according to the present invention, for example, first, a melt raw material is introduced into the graphite crucible 2 and the chamber 9 is evacuated. The inside of the chamber 9 is pressurized to atmospheric pressure or a pressure higher than that by the active gas. Next, the graphite crucible 2 is heated by the heating means 3 to melt the melt raw material to form the raw material melt 1. Next, the seed crystal holding unit 5 is lowered from above with respect to the melted raw material melt 1 to bring the seed crystal into contact with the liquid surface of the raw material melt 1. A SiC single crystal is formed under the seed crystal by pulling up while slowly rotating.

本発明のSiC単結晶製造装置10によれば、黒鉛坩堝2の内壁上に配置された断熱材6によって、黒鉛坩堝2の内壁付近における融液表面からの放熱を抑制することができる。したがって、この部分の急激な温度低下が抑えられ、すなわち、この部分の融液中に溶解している炭素が過飽和状態となるのを抑制することができるので、それが黒鉛坩堝2の内壁上に多結晶として析出するのを防ぐことができる。   According to the SiC single crystal manufacturing apparatus 10 of the present invention, heat radiation from the melt surface near the inner wall of the graphite crucible 2 can be suppressed by the heat insulating material 6 disposed on the inner wall of the graphite crucible 2. Therefore, a rapid temperature drop in this portion can be suppressed, that is, the carbon dissolved in the melt in this portion can be suppressed from being supersaturated, so that it is formed on the inner wall of the graphite crucible 2. Precipitation as a polycrystal can be prevented.

本発明によれば、黒鉛坩堝の内壁上に配置される断熱材としては、一般的には耐熱性に優れ、原料融液と反応しにくい材料を選択することができる。例えば、上記断熱材の材料として、タンタル等の耐熱性の高い金属を使用してもよい。しかしながら、このような金属は非常に高価であり、しかも原料融液中に溶解した場合には不純物として混入してしまうことになる。したがって、黒鉛坩堝の内壁上に配置される断熱材としては、好ましくは炭素系材料が使用され、より好ましくは炭素繊維を含む材料が使用され、最も好ましくは炭素繊維からなるカーボンフェルトが使用される。これらの材料は、安価で耐熱性にも優れ、さらには高温の原料融液によって侵食されて溶解しても、SiC単結晶のための炭素源として利用することができる。したがって、断熱材として炭素系材料を使用することで、原料融液中の炭素濃度が増加するので、SiC単結晶の成長速度を向上させることができる。   According to the present invention, as the heat insulating material disposed on the inner wall of the graphite crucible, a material that is generally excellent in heat resistance and hardly reacts with the raw material melt can be selected. For example, a metal having high heat resistance such as tantalum may be used as the material for the heat insulating material. However, such a metal is very expensive, and when it is dissolved in the raw material melt, it is mixed as an impurity. Therefore, as the heat insulating material disposed on the inner wall of the graphite crucible, a carbon-based material is preferably used, more preferably a material containing carbon fiber is used, and most preferably a carbon felt made of carbon fiber is used. . These materials are inexpensive and excellent in heat resistance, and even when eroded and dissolved by a high-temperature raw material melt, they can be used as a carbon source for a SiC single crystal. Therefore, by using a carbon-based material as the heat insulating material, the carbon concentration in the raw material melt increases, so that the growth rate of the SiC single crystal can be improved.

また、黒鉛坩堝の内壁上に配置される断熱材は、黒鉛坩堝の内壁と原料融液の液面が接触しないように、言い換えれば、原料融液の液面が上記断熱材の厚さの範囲内にあるように取り付けられる。なお、本発明において「原料融液の液面」とは、原料融液と雰囲気ガス、例えば、アルゴン等の不活性ガスとの界面を言うものである。本発明によれば、このような位置に断熱材を取り付けることで、黒鉛坩堝の内壁付近における融液表面からの放熱を確実に抑制することができる。したがって、先に記載したとおり、この部分の融液中に溶解している炭素が過飽和状態となるのを抑制することができるので、それが黒鉛坩堝の内壁上に多結晶として析出するのを防ぐことができる。これに対し、断熱材が原料融液の液面よりも高い位置に取り付けられるか、又は原料融液中に完全に浸漬した状態で取り付けられた場合には、黒鉛坩堝の内壁付近における融液表面からの放熱を確実に抑制することができないため、上記の効果を十分に得ることができない。   Further, the heat insulating material disposed on the inner wall of the graphite crucible is such that the inner wall of the graphite crucible and the liquid surface of the raw material melt do not contact each other, in other words, the liquid surface of the raw material melt falls within the range of the thickness of the heat insulating material. Installed to be inside. In the present invention, the “liquid surface of the raw material melt” refers to an interface between the raw material melt and an atmosphere gas, for example, an inert gas such as argon. According to the present invention, by attaching a heat insulating material to such a position, heat radiation from the melt surface in the vicinity of the inner wall of the graphite crucible can be reliably suppressed. Therefore, as described above, the carbon dissolved in the melt of this portion can be prevented from being supersaturated, and thus it is prevented from being precipitated as a polycrystal on the inner wall of the graphite crucible. be able to. On the other hand, when the heat insulating material is attached at a position higher than the liquid surface of the raw material melt, or is attached in a state of being completely immersed in the raw material melt, the melt surface near the inner wall of the graphite crucible Since the heat radiation from can not be reliably suppressed, the above effect cannot be obtained sufficiently.

本発明によれば、黒鉛坩堝の内壁上に配置される断熱材としては、黒鉛坩堝の内壁と原料融液の液面の接触を少なくとも部分的に防ぐことができる任意の形状のものを使用することができる。しかしながら、黒鉛坩堝の内壁付近における多結晶の析出を確実に抑制するためには、黒鉛坩堝の内壁の全周に断熱材を配置することが好ましく、このような断熱材としては、例えば、黒鉛坩堝の内径に相当する外径を有する円環状のものを使用することが好ましい。この円環状断熱材の内径は、特に限定されないが、種結晶上にSiC単結晶を成長させるのに十分な原料融液の自由表面が得られる大きさであればよい。   According to the present invention, as the heat insulating material disposed on the inner wall of the graphite crucible, one having an arbitrary shape that can at least partially prevent contact between the inner wall of the graphite crucible and the liquid surface of the raw material melt is used. be able to. However, in order to reliably suppress the precipitation of polycrystals in the vicinity of the inner wall of the graphite crucible, it is preferable to arrange a heat insulating material around the inner wall of the graphite crucible. As such a heat insulating material, for example, a graphite crucible It is preferable to use an annular one having an outer diameter corresponding to the inner diameter of the ring. The inner diameter of the annular heat insulating material is not particularly limited as long as the free surface of the raw material melt sufficient to grow a SiC single crystal on the seed crystal is obtained.

断熱材は、黒鉛坩堝の内壁上に任意の方法で取り付けることができる。例えば、接着剤を用いて断熱材を黒鉛坩堝の内壁に設置してもよいし、あるいは黒鉛坩堝の内壁にツバ部を設けてこの上に断熱材を乗せる形で設置してもよい。断熱材の設置又は固定方法としては種々のものが考えられるが、原料融液の液面が当該断熱材の厚さの範囲内にあるよう取り付けられる限り、その効果において大きな差異はない。   The heat insulating material can be attached to the inner wall of the graphite crucible by an arbitrary method. For example, the heat insulating material may be installed on the inner wall of the graphite crucible using an adhesive, or may be installed in such a manner that a flange portion is provided on the inner wall of the graphite crucible and the heat insulating material is placed thereon. Various methods of installing or fixing the heat insulating material are conceivable, but there is no significant difference in the effect as long as the surface of the raw material melt is attached so as to be within the thickness range of the heat insulating material.

また、黒鉛坩堝の内壁上に配置される断熱材の厚さは、特に限定されないが、一般的には5〜20mm、特には10〜20mm程度であることが好ましい。例えば、断熱材として、炭素系材料、特にはカーボンフェルトを用いた場合、それらは高温の原料融液によって単位時間当たり一定の量が侵食されるため、それらが完全に侵食された場合には、もはや多結晶析出の抑制効果を十分に発揮することができなくなる。したがって、断熱材の厚さは、SiC単結晶を製造する際の温度や時間並びに黒鉛坩堝のサイズ等を考慮して、例えば、SiC単結晶の製造操作の間に、当該断熱材が原料融液中に完全に溶解してしまうことがない範囲において適宜決定すればよい。   Moreover, the thickness of the heat insulating material disposed on the inner wall of the graphite crucible is not particularly limited, but is generally 5 to 20 mm, particularly preferably about 10 to 20 mm. For example, when carbon-based materials, particularly carbon felt, are used as heat insulating materials, they are eroded by a certain amount per unit time by a high-temperature raw material melt, so when they are completely eroded, It is no longer possible to fully exhibit the effect of suppressing the precipitation of polycrystals. Therefore, the thickness of the heat insulating material is determined by considering the temperature and time when manufacturing the SiC single crystal, the size of the graphite crucible, etc., for example, during the operation of manufacturing the SiC single crystal, What is necessary is just to determine suitably in the range which does not melt | dissolve completely in.

本発明によれば、黒鉛坩堝の周囲に配置される加熱手段としては、温度制御が可能な当業者に公知の任意の加熱手段を使用することができる。例えば、このような加熱手段としては、抵抗加熱、高周波誘導加熱などが使用可能である。   According to the present invention, as the heating means disposed around the graphite crucible, any heating means known to those skilled in the art capable of temperature control can be used. For example, resistance heating, high frequency induction heating, or the like can be used as such a heating means.

本発明によれば、黒鉛坩堝の上方で上下方向に移動可能に配置される種結晶保持部としては、一般的には耐熱性に優れ、原料融液と反応しにくい材料を選択することができ、好ましくは黒鉛からなる材料を使用することができる。また、本発明において、黒鉛坩堝の上部に任意選択で配置される蓋等の部材も同様に、黒鉛からなる材料を使用することが好ましい。   According to the present invention, as the seed crystal holding portion disposed so as to be movable in the vertical direction above the graphite crucible, a material that is generally excellent in heat resistance and hardly reacts with the raw material melt can be selected. Preferably, a material made of graphite can be used. In the present invention, it is also preferable to use a material made of graphite for a member such as a lid that is optionally disposed on the upper portion of the graphite crucible.

本発明によるSiC単結晶製造装置を用いたSiC単結晶の製造においては、上記の黒鉛坩堝及び種結晶保持部は、例えば、黒鉛坩堝から原料融液中に溶解した炭素を種結晶のほうへ移動させるために、任意選択でいずれか一方又はそれらの両方を回転させることができる。この際の回転は定常回転であっても、加減速回転であってもよい。また、黒鉛坩堝と種結晶保持部の回転方向は、互いに同じ方向でもよく、あるいは逆方向でもよい。これらの回転速度や回転方向等は、SiC単結晶製造装置の操作条件などに応じて適宜決定すればよい。   In the production of an SiC single crystal using the SiC single crystal production apparatus according to the present invention, the graphite crucible and the seed crystal holding unit move, for example, carbon dissolved in the raw material melt from the graphite crucible toward the seed crystal. Optionally, either one or both can be rotated. The rotation at this time may be steady rotation or acceleration / deceleration rotation. Further, the rotation directions of the graphite crucible and the seed crystal holding part may be the same direction or the opposite directions. These rotation speeds, rotation directions, and the like may be appropriately determined according to the operating conditions of the SiC single crystal manufacturing apparatus.

また、SiC単結晶を製造する際の原料融液の温度は、原料が溶解した状態を維持するために原料の融点以上の温度であればよく、例えば、1800℃以上の温度とすることができる。なお、原料融液の温度が2300℃を超えると、原料融液からSiが激しく蒸発する等の問題が生じるので、原料融液の温度は一般的に2300℃以下とすることが好ましい。また、安定な結晶成長を確保するためには、原料融液が、その内部から種結晶と接触する表面に向かって、例えば、10〜45℃/cmの温度勾配で以って温度が低下するよう温度制御することが好ましい。   Moreover, the temperature of the raw material melt at the time of manufacturing the SiC single crystal may be a temperature equal to or higher than the melting point of the raw material in order to maintain the dissolved state of the raw material, for example, a temperature of 1800 ° C. or higher. . If the temperature of the raw material melt exceeds 2300 ° C., problems such as Si evaporating vigorously from the raw material melt occur. Therefore, the temperature of the raw material melt is generally preferably 2300 ° C. or lower. In order to ensure stable crystal growth, the temperature of the raw material melt decreases from the inside toward the surface in contact with the seed crystal, for example, with a temperature gradient of 10 to 45 ° C./cm. It is preferable to control the temperature.

以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples at all.

本実施例では、図1に示す本発明のSiC単結晶製造装置を用いて、黒鉛坩堝の内壁上に断熱材を取り付けた場合の効果について調べた。   In this example, the effect of attaching a heat insulating material on the inner wall of a graphite crucible was examined using the SiC single crystal production apparatus of the present invention shown in FIG.

[比較例1]
比較例1として、断熱材を黒鉛坩堝の内壁上に取り付けなかったこと以外は、図1に示す本発明のSiC単結晶製造装置と同じSiC単結晶製造装置を用いて、溶液法によるSiC単結晶の製造を行い、その際の原料融液表面におけるSiC多結晶の析出状態を調べた。なお、SiC単結晶製造装置の種結晶保持部には、その内部(種結晶から2mmの位置)に熱電対が設置されており、当該熱電対により測定した温度に基づいて加熱手段への出力を調整することで、原料融液の表面温度を1900〜1935℃の範囲に保持した。その結果を図2(a)及び(b)に示す。
[Comparative Example 1]
As Comparative Example 1, a SiC single crystal produced by a solution method was used by using the same SiC single crystal production apparatus as the SiC single crystal production apparatus of the present invention shown in FIG. 1 except that the heat insulating material was not attached to the inner wall of the graphite crucible. And the precipitation state of SiC polycrystal on the surface of the raw material melt at that time was examined. The seed crystal holding unit of the SiC single crystal manufacturing apparatus is provided with a thermocouple inside (at a position 2 mm from the seed crystal), and outputs to the heating means based on the temperature measured by the thermocouple. By adjusting, the surface temperature of the raw material melt was maintained in the range of 1900 to 1935 ° C. The results are shown in FIGS. 2 (a) and 2 (b).

図2(a)は、原料融液を1900〜1935℃の温度で5時間にわたり加熱保持しながら、溶液法によるSiC単結晶の製造を行った後の融液表面を示す写真である。図2(a)において、外側のリング状に白く見える部分がSiCの多結晶であり、その内側に白く見えるリング状部分は、実験後の温度低下により原料融液が単に固化したものである。   FIG. 2 (a) is a photograph showing the melt surface after producing a SiC single crystal by a solution method while heating and holding the raw material melt at a temperature of 1900 to 1935 ° C. for 5 hours. In FIG. 2 (a), the portion that appears white in the outer ring shape is SiC polycrystal, and the ring-like portion that appears white on the inner side is simply a solidified raw material melt due to the temperature drop after the experiment.

図2(b)は、同様に原料融液を1900〜1935℃の温度で10時間にわたり加熱保持しながら、溶液法によるSiC単結晶の製造を行った後の融液表面を示す写真である。図2(b)から明らかなように、原料融液を1900〜1935℃の温度で10時間加熱保持した場合には、融液表面のほぼ全面が多結晶で覆われていることがわかる。図2(a)と図2(b)の結果から、このような多結晶の析出が、時間の経過とともに、黒鉛坩堝の内壁面から融液表面の中央部に向かって拡大していることがわかる。   FIG. 2B is a photograph showing the surface of the melt after the SiC single crystal is produced by the solution method while the raw material melt is similarly heated and held at a temperature of 1900 to 1935 ° C. for 10 hours. As is clear from FIG. 2B, it can be seen that when the raw material melt is heated and held at a temperature of 1900 to 1935 ° C. for 10 hours, almost the entire melt surface is covered with polycrystals. From the results of FIGS. 2 (a) and 2 (b), it can be seen that the precipitation of such polycrystals expands from the inner wall surface of the graphite crucible toward the center of the melt surface over time. Recognize.

[実施例1]
図3に黒鉛坩堝とカーボンフェルトからなる断熱材の例を示す。本実施例では、この図に示すような円環状のカーボンフェルトからなる断熱材を黒鉛坩堝の内壁上に配置した図1に示す本発明のSiC単結晶製造装置を用いた。
[Example 1]
FIG. 3 shows an example of a heat insulating material made of graphite crucible and carbon felt. In this example, the SiC single crystal manufacturing apparatus of the present invention shown in FIG. 1 in which a heat insulating material made of an annular carbon felt as shown in this figure was arranged on the inner wall of a graphite crucible was used.

[黒鉛坩堝へのカーボンフェルトの接着]
黒鉛坩堝の内径に相当する外形を有する円環状のカーボンフェルトからなる断熱材を、下表1に示す接着剤を用いて、以下の手順に従って黒鉛坩堝内壁の全周に取り付けた。
[Adhesion of carbon felt to graphite crucible]
A heat insulating material made of an annular carbon felt having an outer shape corresponding to the inner diameter of the graphite crucible was attached to the entire circumference of the inner wall of the graphite crucible according to the following procedure using the adhesive shown in Table 1 below.

まず、表1に示す組成を有する接着剤を黒鉛坩堝とカーボンフェルトの接着面にそれぞれ塗布し、次いで、それらを張り合わせ、この接着面に対して0.5〜2.0kgf程度の荷重をかけながら約200℃に加熱して一次脱脂と固化を行った。次いで、加熱雰囲気炉(脱脂炉及び焼成炉)を用いて、先と同様、接着面に0.5〜2.0kgf程度の荷重をかけながら、200℃で1時間、さらに700℃で3時間加熱保持することにより接着剤を熱硬化処理し、その後、室温まで炉冷した。   First, an adhesive having the composition shown in Table 1 was applied to the adhesion surfaces of the graphite crucible and the carbon felt, and then bonded together, while applying a load of about 0.5 to 2.0 kgf on the adhesion surface. Primary degreasing and solidification were performed by heating to about 200 ° C. Next, using a heating atmosphere furnace (degreasing furnace and firing furnace), heating is performed at 200 ° C. for 1 hour and further at 700 ° C. for 3 hours while applying a load of about 0.5 to 2.0 kgf to the bonding surface as before. The adhesive was heat-cured by holding, and then furnace-cooled to room temperature.

上記のSiC単結晶製造装置を用いてSiC単結晶の製造を行い、その際の原料融液表面におけるSiC多結晶の析出状態を調べた。なお、比較例1の場合と同様に、種結晶保持部の内部(種結晶から2mmの位置)に設置された熱電対と黒鉛坩堝の周囲に配置した加熱手段により原料融液の表面温度を1900〜1935℃の範囲に制御して5時間保持した。その結果を図4(a)に示す。   A SiC single crystal was manufactured using the above SiC single crystal manufacturing apparatus, and the precipitation state of the SiC polycrystal on the raw material melt surface at that time was examined. As in the case of Comparative Example 1, the surface temperature of the raw material melt was set to 1900 by a thermocouple installed inside the seed crystal holding part (position 2 mm from the seed crystal) and heating means arranged around the graphite crucible. The temperature was controlled in the range of ˜1935 ° C. and held for 5 hours. The result is shown in FIG.

図4(a)は、原料融液を1900〜1935℃の温度で5時間にわたり加熱保持しながら、溶液法によるSiC単結晶の製造を行った後の融液表面を示す写真である。図4(a)を参照すると、本発明のSiC単結晶製造装置を用いた場合には、カーボンフェルトからなる断熱材なしで同様の実験を行った比較例1の図2(a)と比較して、明らかにSiCの多結晶が析出していないことがわかる。   FIG. 4 (a) is a photograph showing the melt surface after producing a SiC single crystal by a solution method while keeping the raw material melt heated at a temperature of 1900 to 1935 ° C. for 5 hours. Referring to FIG. 4 (a), when the SiC single crystal manufacturing apparatus of the present invention is used, it is compared with FIG. 2 (a) of Comparative Example 1 in which a similar experiment was performed without a heat insulating material made of carbon felt. This clearly shows that no SiC polycrystal is precipitated.

[実施例2]
本実施例では、図4(b)の上に模式図で示すように、円環状カーボンフェルトからなる断熱材の一部を欠いた断熱材を用いて、実施例1の場合と同様の実験を行った。その結果を図4(b)に示す。
[Example 2]
In this example, as shown in a schematic diagram above FIG. 4B, an experiment similar to that in Example 1 was performed using a heat insulating material lacking a part of the heat insulating material made of an annular carbon felt. went. The result is shown in FIG.

図4(b)は、原料融液を1900〜1935℃の温度で5時間にわたり加熱保持しながら、溶液法によるSiC単結晶の製造を行った後の融液表面を示す写真である。図4(b)を参照すると、カーボンフェルトを欠いた部分には多結晶の析出が見られるが、カーボンフェルトが存在する部分には多結晶が析出していないことがわかる。また、図4(a)及び(b)の両方の場合において、カーボンフェルトからなる断熱材自体にも多結晶の析出は確認されなかった。これらの結果から、カーボンフェルトからなる断熱材を黒鉛坩堝の内壁上に原料融液と接触させて取り付けることで、多結晶の析出を顕著に抑制できることがわかった。   FIG. 4B is a photograph showing the melt surface after the SiC single crystal is produced by the solution method while the raw material melt is heated and held at a temperature of 1900 to 1935 ° C. for 5 hours. Referring to FIG. 4 (b), it can be seen that polycrystal precipitation is observed in the portion lacking the carbon felt, but polycrystal is not precipitated in the portion where the carbon felt exists. Further, in both cases of FIGS. 4 (a) and 4 (b), no polycrystalline precipitate was observed in the heat insulating material made of carbon felt itself. From these results, it was found that the precipitation of polycrystals can be remarkably suppressed by attaching a heat insulating material made of carbon felt on the inner wall of the graphite crucible in contact with the raw material melt.

実施例1及び2並びに比較例1の結果をまとめると、以下のとおりである。   The results of Examples 1 and 2 and Comparative Example 1 are summarized as follows.

溶液法によるSiC単結晶の製造操作においては、図5(a)に示すように、黒鉛坩堝12の内壁付近における原料融液11の表面からSiCが多結晶として析出する。このような多結晶体は、時間の経過とともに、次第に融液表面の中央部へと拡大して最終的に融液表面全体を覆ってしまう。しかしながら、本発明のSiC単結晶製造装置によれば、図5(b)に示すように、カーボンフェルトからなる断熱材13を、黒鉛坩堝12の内壁と原料融液11の液面が接触する部分の少なくとも一部にそれらが接触しないように配置することで、黒鉛坩堝壁12付近の融液表面における多結晶の析出を顕著に抑制することができる。特に、断熱材13を黒鉛坩堝12の内壁全周に配置することで、多結晶の析出を確実に抑制することができる。それゆえ、このような多結晶体が黒鉛坩堝壁から徐々に拡大して融液表面全体を覆うこともないため、SiC単結晶が成長する融液中央部の状態を常に良好な状態に維持することができる。   In the operation of manufacturing the SiC single crystal by the solution method, SiC is precipitated as a polycrystal from the surface of the raw material melt 11 near the inner wall of the graphite crucible 12 as shown in FIG. Such a polycrystalline body gradually expands to the center of the melt surface with the passage of time, and eventually covers the entire melt surface. However, according to the SiC single crystal manufacturing apparatus of the present invention, as shown in FIG. 5B, the heat insulating material 13 made of carbon felt is a portion where the inner wall of the graphite crucible 12 and the liquid surface of the raw material melt 11 are in contact with each other. By disposing them so that they do not come into contact with at least a part of them, it is possible to remarkably suppress the precipitation of polycrystals on the surface of the melt near the graphite crucible wall 12. In particular, by disposing the heat insulating material 13 around the entire inner wall of the graphite crucible 12, it is possible to reliably suppress the precipitation of polycrystals. Therefore, since such a polycrystalline body does not gradually expand from the graphite crucible wall and cover the entire melt surface, the state of the melt central portion where the SiC single crystal grows is always maintained in a good state. be able to.

[実施例3]
本実施例では、図1に示す本発明のSiC単結晶製造装置に関し、下表2に示すように、種々の厚さを有する円環状カーボンフェルト(外径100mm、内径80mm)を用いて実験を行い、原料融液を1900〜1950℃の温度で加熱保持した場合のカーボンフェルト及び融液表面の状態について調べた。
[Example 3]
In this example, with respect to the SiC single crystal manufacturing apparatus of the present invention shown in FIG. 1, as shown in Table 2 below, experiments were performed using annular carbon felts (outer diameter 100 mm, inner diameter 80 mm) having various thicknesses. The condition of the carbon felt and the melt surface when the raw material melt was heated and held at a temperature of 1900 to 1950 ° C. was examined.

図中の○印は、実験後、明らかに確認できる形でカーボンフェルトが残っていた場合を示している。また、△印は、カーボンフェルトの確認は困難な状態であったが、多結晶の析出は見られなかった場合を示し、×印は、高温の原料融液による侵食のためにカーボンフェルトが完全になくなっており、多結晶の析出が黒鉛坩堝の内壁面上に見られた場合を示している。   The circles in the figure indicate the case where carbon felt remains in a form that can be clearly confirmed after the experiment. In addition, △ marks indicate that it was difficult to confirm carbon felt, but no precipitation of polycrystals was observed, and X marks indicate that the carbon felt was completely damaged due to erosion by the high-temperature raw material melt. This shows a case where polycrystalline precipitates are observed on the inner wall surface of the graphite crucible.

なお、表2中のすべての実験に関して、融液中央部に多結晶は析出しなかった。すなわち、カーボンフェルトからなる断熱材を、その厚さの範囲内に原料融液の液面が存在するよう黒鉛坩堝の内壁面上に取り付けることで、融液表面、特には、実際にSiC単結晶が成長する融液中央部の状態を常に結晶成長可能な状態に維持することができた。   In all the experiments in Table 2, no polycrystal was deposited in the melt center. That is, by attaching a heat insulating material made of carbon felt on the inner wall surface of the graphite crucible so that the surface of the raw material melt exists within the thickness range, the surface of the melt, in particular, the actual SiC single crystal It was possible to always maintain the state of the center of the melt in which the crystal grows in a state where crystal growth is possible.

1 原料融液
2 黒鉛坩堝
3 加熱手段
4 種結晶
5 種結晶保持部
6 断熱材
7 蓋部
8 断熱材
9 チャンバー
10 SiC単結晶製造装置
DESCRIPTION OF SYMBOLS 1 Raw material melt 2 Graphite crucible 3 Heating means 4 Seed crystal 5 Seed crystal holding part 6 Heat insulating material 7 Cover part 8 Heat insulating material 9 Chamber 10 SiC single crystal manufacturing apparatus

Claims (10)

SiC単結晶の原料となる原料融液を収容するための黒鉛坩堝と、該黒鉛坩堝の周囲に配置された加熱手段と、前記黒鉛坩堝の上方で上下方向に移動可能に配置された種結晶保持部とを備え、該種結晶保持部の下端に保持された種結晶を前記黒鉛坩堝内の原料融液に浸漬させることにより種結晶の下にSiC単結晶を成長させるSiC単結晶製造装置において、前記黒鉛坩堝の内壁と前記原料融液の液面が接触する部分の少なくとも一部に、それらが接触しないように前記黒鉛坩堝の内壁上に断熱材が配置されたことを特徴とする、SiC単結晶製造装置。   A graphite crucible for containing a raw material melt serving as a raw material for SiC single crystal, a heating means arranged around the graphite crucible, and a seed crystal holding arranged so as to be vertically movable above the graphite crucible A SiC single crystal production apparatus for growing a SiC single crystal under a seed crystal by immersing the seed crystal held at the lower end of the seed crystal holding part in a raw material melt in the graphite crucible, A heat-insulating material is disposed on the inner wall of the graphite crucible so as not to contact at least a part of a portion where the inner wall of the graphite crucible and the liquid surface of the raw material melt are in contact with each other. Crystal manufacturing equipment. 前記黒鉛坩堝の内壁と前記原料融液の液面が接触しないように、黒鉛坩堝の内壁の全周に前記断熱材が配置されたことを特徴とする、請求項1に記載のSiC単結晶製造装置。   2. The SiC single crystal production according to claim 1, wherein the heat insulating material is disposed on the entire circumference of the inner wall of the graphite crucible so that the inner wall of the graphite crucible does not contact the liquid surface of the raw material melt. apparatus. 前記断熱材の形状が円環状であることを特徴とする、請求項1又は2に記載のSiC単結晶製造装置。   The SiC single crystal manufacturing apparatus according to claim 1, wherein the heat insulating material has an annular shape. 前記断熱材が炭素繊維を含むことを特徴とする、請求項1〜3のいずれか1項に記載のSiC単結晶製造装置。   The SiC single crystal manufacturing apparatus according to any one of claims 1 to 3, wherein the heat insulating material includes carbon fiber. 前記断熱材がカーボンフェルトからなることを特徴とする、請求項1〜3のいずれか1項に記載のSiC単結晶製造装置。   The SiC single crystal manufacturing apparatus according to claim 1, wherein the heat insulating material is made of carbon felt. SiC単結晶の原料となる原料融液を収容するための黒鉛坩堝と、該黒鉛坩堝の周囲に配置された加熱手段と、前記黒鉛坩堝の上方で上下方向に移動可能に配置された種結晶保持部とを備え、前記黒鉛坩堝の内壁と前記原料融液の液面が接触する部分の少なくとも一部に、それらが接触しないように前記黒鉛坩堝の内壁上に断熱材が配置されたSiC単結晶製造装置を用いて、前記種結晶保持部の下端に保持された種結晶を前記黒鉛坩堝内の原料融液に浸漬させることにより種結晶の下にSiC単結晶を成長させることを特徴とする、SiC単結晶の製造方法。   A graphite crucible for containing a raw material melt serving as a raw material for SiC single crystal, a heating means arranged around the graphite crucible, and a seed crystal holding arranged so as to be vertically movable above the graphite crucible A SiC single crystal, wherein a heat insulating material is disposed on the inner wall of the graphite crucible so that they do not contact at least part of a portion where the inner wall of the graphite crucible and the liquid surface of the raw material melt contact each other A SiC single crystal is grown under the seed crystal by immersing the seed crystal held at the lower end of the seed crystal holding part in the raw material melt in the graphite crucible using a manufacturing apparatus, A method for producing a SiC single crystal. 前記黒鉛坩堝の内壁と前記原料融液の液面が接触しないように、黒鉛坩堝の内壁の全周に前記断熱材が配置されたことを特徴とする、請求項6に記載の方法。   The method according to claim 6, wherein the heat insulating material is arranged on the entire circumference of the inner wall of the graphite crucible so that the inner wall of the graphite crucible does not contact the liquid surface of the raw material melt. 前記断熱材の形状が円環状であることを特徴とする、請求項6又は7に記載の方法。   The method according to claim 6 or 7, wherein the shape of the heat insulating material is an annular shape. 前記断熱材が炭素繊維を含むことを特徴とする、請求項6〜8のいずれか1項に記載の方法。   The method according to claim 6, wherein the heat insulating material includes carbon fibers. 前記断熱材がカーボンフェルトからなることを特徴とする、請求項6〜8のいずれか1項に記載の方法。   The method according to claim 6, wherein the heat insulating material is made of carbon felt.
JP2009256066A 2009-11-09 2009-11-09 SiC single crystal manufacturing apparatus and manufacturing method Expired - Fee Related JP5304600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256066A JP5304600B2 (en) 2009-11-09 2009-11-09 SiC single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256066A JP5304600B2 (en) 2009-11-09 2009-11-09 SiC single crystal manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2011098870A JP2011098870A (en) 2011-05-19
JP5304600B2 true JP5304600B2 (en) 2013-10-02

Family

ID=44190379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256066A Expired - Fee Related JP5304600B2 (en) 2009-11-09 2009-11-09 SiC single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP5304600B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5528396B2 (en) * 2011-06-20 2014-06-25 新日鐵住金株式会社 SiC single crystal manufacturing apparatus by solution growth method, SiC single crystal manufacturing method using the manufacturing apparatus, and crucible used in the manufacturing apparatus
KR20130002616A (en) * 2011-06-29 2013-01-08 에스케이이노베이션 주식회사 Reactor and method for growing silicon carbide single crystal
KR20130007109A (en) * 2011-06-29 2013-01-18 에스케이이노베이션 주식회사 Reactor and method for growing silicon carbide single crystal
JP5828810B2 (en) * 2012-07-18 2015-12-09 新日鐵住金株式会社 SiC single crystal manufacturing apparatus used in solution growth method, crucible used in the manufacturing apparatus, and SiC single crystal manufacturing method using the manufacturing apparatus
JP6001664B2 (en) * 2012-07-27 2016-10-05 京セラ株式会社 Crucible, crystal growth apparatus and crystal growth method
US20150225872A1 (en) * 2012-09-04 2015-08-13 Toyota Jidosha Kabushiki Kaisha Single crystal production apparatus, crucible for use therein, and method of producing single crystal
JP6129065B2 (en) * 2013-12-06 2017-05-17 信越化学工業株式会社 Crystal growth method of silicon carbide
EP2881499B1 (en) 2013-12-06 2020-03-11 Shin-Etsu Chemical Co., Ltd. Method for growing silicon carbide crystal
JP6129064B2 (en) * 2013-12-06 2017-05-17 信越化学工業株式会社 Crystal growth method of silicon carbide
JP2016064958A (en) * 2014-09-25 2016-04-28 トヨタ自動車株式会社 Manufacturing method of sic single crystal
JP6533716B2 (en) 2015-08-06 2019-06-19 信越化学工業株式会社 Method of manufacturing SiC single crystal
JP2016183105A (en) * 2016-06-24 2016-10-20 京セラ株式会社 Crystal growth apparatus, crystal growth method, and crystal growing crucible
KR101966696B1 (en) * 2017-08-31 2019-08-13 한국세라믹기술원 Constructional element lies inside the crucible for enhancing the growth rate of single crystal in solution growth

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156095A (en) * 1986-12-19 1988-06-29 Sanyo Electric Co Ltd Liquid phase epitaxy of sic single crystal
JPH03197386A (en) * 1989-12-26 1991-08-28 Showa Denko Kk Preparation of compound semiconductor single crystal
JP4265269B2 (en) * 2003-04-21 2009-05-20 トヨタ自動車株式会社 SiC single crystal manufacturing furnace
JP2007126335A (en) * 2005-11-04 2007-05-24 Toyota Motor Corp Manufacturing facility for manufacturing silicon carbide single crystal by means of solution method

Also Published As

Publication number Publication date
JP2011098870A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
JP5304600B2 (en) SiC single crystal manufacturing apparatus and manufacturing method
JP5170127B2 (en) Method for producing SiC single crystal
US11761117B2 (en) SiC single crystal sublimation growth apparatus
JP5803519B2 (en) Method and apparatus for producing SiC single crystal
JP6533716B2 (en) Method of manufacturing SiC single crystal
EP2287367B1 (en) Single crystal manufacturing device and manufacturing method
KR101809642B1 (en) Method for growing silicon carbide single crystal ingot with large diameter
EP2940196A1 (en) METHOD FOR PRODUCING n-TYPE SiC SINGLE CRYSTAL
JP5012655B2 (en) Single crystal growth equipment
KR101744287B1 (en) Growth device for silicon carbide single crystal
US10094044B2 (en) SiC single crystal and method for producing same
JP4645496B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP5397503B2 (en) Single crystal growth equipment
JP5602093B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP2010076990A (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
JP2010076991A (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
KR101636435B1 (en) Porous graphite crucible and the manufacturing method of SiC single crystal via solution growth using the same
US9822468B2 (en) Method for producing SiC single crystal
JP2007308355A (en) Apparatus and method for manufacturing silicon carbide single crystal
WO2011135669A1 (en) PROCESS FOR PRODUCTION OF SiC SUBSTRATE
WO2014073163A1 (en) Single-crystal manufacturing device
KR102060188B1 (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
JP2002012500A (en) Method of and device for producing silicon carbide single crystal, and silicon carbide single crystal
JP2014156373A (en) Manufacturing apparatus for sapphire single crystal
JP2022064015A (en) Manufacturing method and manufacturing apparatus for silicon carbide single crystal, and silicon carbide single crystal ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R151 Written notification of patent or utility model registration

Ref document number: 5304600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees