JPH03197386A - Preparation of compound semiconductor single crystal - Google Patents

Preparation of compound semiconductor single crystal

Info

Publication number
JPH03197386A
JPH03197386A JP33732289A JP33732289A JPH03197386A JP H03197386 A JPH03197386 A JP H03197386A JP 33732289 A JP33732289 A JP 33732289A JP 33732289 A JP33732289 A JP 33732289A JP H03197386 A JPH03197386 A JP H03197386A
Authority
JP
Japan
Prior art keywords
raw material
crystal
crucible
diameter
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33732289A
Other languages
Japanese (ja)
Inventor
Takayuki Sato
貴幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP33732289A priority Critical patent/JPH03197386A/en
Publication of JPH03197386A publication Critical patent/JPH03197386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To enable to readily prepare a long single crystal by specifying the free surface area of a raw material-melted liquid in a cruicible. CONSTITUTION:A ring-like member 6 having the same outer diameter as the inner diameter (D0) of a cruicible 3 and further having an inner diameter defined by an equation: pid<2>/4<=S<=pid<2> (S is the free surface area of a raw material- melted liquid) based on the diameter d of a growing crystal is dispersed between the raw material-melted liquid 5 and a liquid sealant 4 received in the cruicible 3. A seed crystal attached to the tip of a lifting shaft 2 is immersed in the raw material-melted liquid 5 in the opening of the member 6 and the single crystal 1 is lifted.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明は液体封止引上法CLEC法)による化合物半導
体単結晶の製造方法に係り、特に長尺の単結晶を効率よ
く製造する方法に関するものである。 【従来の技術】 LEC法は、GaAs、  InP%GaP等の化合物
半導体の単結晶の製造に用いられ1円型ウェハーが高い
歩留りで得られる技術であることが知られている。LE
C法で使用されるルツボ径のサイズについては、所望の
結晶径dに対し、ルツボDoは2d!1度であり、ルツ
ボ高さはDoとほぼ等しいものである。すなわち、所望
の結晶径に対して、ルツボサイズ、ヒータ等の炉内部材
構成、ひいては炉体サイズまでが決定されることになる
。 一方、製造するインゴットな長尺化することは、製造工
程のコストダウンのために重要であり、1回の単結晶製
造に用いる原料チャージ量を多くし、歩留り良く製造す
る技術が必要である。 【発明が解決しようとする課題] LEC法において単結晶の長尺化を目的とし、原料チャ
ージ量の増加をはかる方法として、同一口径のルツボに
対してチャージ量を増加させる方法、またはルツボの口
径を大きくする方法が一般的に用いられる。 しかしながら、これらの方法では、原料融液の厚さまた
は融液面積の変化にともない装置の変更が必要となる。 すなわち、前述したような育成結晶径とルツボ径の関係
から、具体的には2インチ径結晶の育成では4インチ径
ルツボ用の製造装置、あるいは3インチ径結晶の育成で
は、6インチ径ルツボ用の製造装置を用いるといったこ
とが従来行なわれてきている。 また、ルツボ径Doを育成結晶径dに対して、D、>2
dとなるような状況下、たとえば、6インチ径ルツボか
ら2インチ径結晶を育成する場合においては、結晶育成
中の融液自由表面積が増加することにともない、成長界
面近傍の融液対流。 成長界面形状が変化し、育成途中から多結晶等が発生し
、実質的に長尺化の達成は困難となる。 従来、引上単結晶の直径を制御する目的で、引上結晶の
周囲に引上結晶の直径よりも若干大きな内径を有するリ
ング状治具な浮かべて結晶成長される方法が行なわれて
いた(たとえば、特開昭51−64482 、特開昭6
0−112696等を参照)。 しかしながら、これらの方法では直径制御にのみ注目し
、原料融液面からの放散熱バランスは充分考慮させてお
らず、リング状治具とルツボ内壁との間にも開口部分が
あるため、熱的均衡ははかられていない。 このように育成結晶の長尺化には、単結晶が育成しうる
熱環境を作りつつ、原料チャージ量を増加させることが
必要であり、また、同一装置を用いて多種の結晶径での
育成を可能とすることは、装置コストを低減するために
有効である。これらを容易な方法で解決するのが本発明
の目的である。 【課題を解決−するための手段1 本発明は、LEC法において、融液と液体封止剤の間に
リング状の治具を浮遊させて設置し、そのリング状の治
具の内径と引上結晶との間の開口面積(すなわちルツボ
内の原料融液自由表面積)Sを所望の育成結晶径dに対
し、1/4xd”≦S≦πd2とすることにより、同一
口径のルツボから任意の口径を有する単結晶を歩留りよ
く製造することを可能にするものである。すなわち、ル
ツボ径の増加による原料チャージ量の増加を有効に利用
し、長尺単結晶の育成を可能とするとともに、同一製造
装置からの育成結晶径を任意に選択できることから、製
造装置の自由度が高まり、設置コストの低減をはかるこ
とが可能となる。 第1図は本発明の一具体例であり、結晶育成中のルツボ
内状態を示すものである。原料融液5及び液体封止剤4
の間に、リング状治具6を設置した状態でルツボ3内に
収容する。リング状治具6の内径は先に述べた育成結晶
径との関係から決定されるものであり、外径はルツボ3
の内径にほぼ等しくし、かつ結晶育成が進むにつれ、原
料融液5が減少するに対応し、上下方向にスムーズな移
動が行なえるように決定されることが望ましい。 リング状治具6の開口部の原料融液5に引上軸2の先端
に取りつけた種結晶を浸し、単結晶1を引上げる。 本発明の特徴は、リング状治具6を原料融液5と液体封
止剤4の間に設置することにあり、リング状治具6の断
熱作用により透明な液体封止剤4を通して放射伝熱によ
り原料融液5の表面から出ていく熱を制御し、結晶成長
に関与する原料融液5の自由表面における温度分布を育
成結晶径に適した状態に変化させることが可能となる。 原料融液自由表面積Sは引上結晶周囲にとることが重要
である。このためリング状治具の外周とルツボ内壁とは
、リング状治具が上下動可能な範囲で接するように設置
する。そしてリング状治具内径りと引上結晶直径dとの
関係は、融液原料の露出面積である原料融液自由表面積
をSとした場合に、1 / 4 x d ”≦S≦電d
1となるようにする。 ここでSとDおよびdとの関係はS=l/4°π(D”
 −d” )となる。 ここで用いられるリング状治具6は、第1図に示したよ
うに原料融液6と液体封止剤4の間に密度差を利用して
浮かべる方法によって設置する。 この場合、結晶の成長に伴って原料融液と成長結晶との
固液界面が下降するから、固液界面を発熱体に対して最
適位置に保つために、ルツボ3を一定速度で上昇させる
手段がとられている。このようにリング状治具6をルツ
ボ3の周囲に配置されるヒータ等の炉内部材に対して固
定する方法を取ってもよい、ただし、炉内部材に対して
固定する方法においても、リング状治具は、結晶育成を
通じて、所定の位置に設置される必要があることは言う
までもない、用いるリング状治具6の材質のついては、
PBN、PBNコートした黒鉛等、不純物混入防止、密
度等の点から選定すればよい。 第2図は、従来の治具を使用しない方法Tal及び本発
明であるリング状治具を設置した場合(b)の原料融液
表面の温度分布を示したものである。 (a)の従来法では、育成結晶径に対応する部分でのル
ツボ径方向の温度勾配が低いために、結晶育成時には、
結晶外周部近傍で第3図(a)に示すように結晶周辺部
で局部的に上に凸の成長界面形状となる。そのために、
その部分に応力集中がおこり、転位の増大から多結晶が
発生しやすい、それに対してlb)の本発明のリング状
治具を設置した方法によれば、リング状治具の断熱作用
により開口部を通しての放熱量が増大し、その結果とし
て第2図(b)に示すような温度分布を作り出すことが
できる。そのために、第3図(blに示すような全体的
になめらかに下に凸の固液界面形状となり、応力集中に
よる多結晶化が防止でき、長尺の単結晶が育成可能とな
る。 1作用1 本発明では原料融液表面からの熱放散を引上結晶の周辺
部からのみに限定し、しかも原料融液の露出部である原
料融液自由表面積を引上結晶の直径に対して一定範囲に
設定することにより、引上結晶直下の温度勾配を滑らか
に変化させ、もって引上結晶中に発生する応力の集中を
防止するものである。 【実施例1 実施例 1 原料融液表面と液体封止剤の間にリング状治具を設置す
る本発明の方法により、GaAs単結晶を育成した。1
86m5+ (約7.3インチ)径のPBNルツボ内に
アンドープGaAs原料融液約8kg、液体封止剤B1
01900 gを収容し、リング状治具は厚さ2mva
、内径120m5+で外径についてはルツボ内径より2
−一小さ(したPBN成形体を用いた。この場合、原料
融液自由表面積(S)は6769.8m rr1″であ
り、xd” =18,136.6mrn”、  1/4
πd” =4534、2m rn’である。 結晶回転速度10rpm 、ルツボ回転速度15rpm
で(100)方位の種結晶を用い、ルツボを徐々に上昇
させて発熱体に対して一定位置に保ちつつ、引上速度9
mm/Hrで76■−(約3インチ)径の結晶育成を行
なったところ、長さ250mm+の単結晶が得られた。 一方、リング状治具を設置しない従来の方法により、同
一条件で結晶成長を行なったところ、単結晶の長さが1
50mmをこえるような結晶の育成はできなかった。 実施例 2 152mm (約6インチ)口径のルツボより50su
e(約2インチ)径のGaAs単結晶を育成した場合に
おいても、従来方法では単結晶長さが100■−を超え
なかった条件で本発明の方法により外径150■■、内
径94■園、厚さ21111のPBN成形体よりなるリ
ング状治具をルツボ内に固定することにより。 230−一の単結晶育成が可能となった。この場合、原
料融液自由表面積(S)は4974.8■−1πd2=
7850m rn’、1 / 4 x d ” = 1
962.5mm’である。 〔発明の効果] 本発明による方法で結晶製造を行なうことにより、使用
するルツボ径によらず、所望の結晶径に適した成長界面
の熱環境を作りだすことができ、製造装置の自由度を高
め、容易に長尺の単結晶が装造可能となる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for manufacturing compound semiconductor single crystals by liquid confinement pulling method (CLEC method), and particularly relates to a method for efficiently manufacturing long single crystals. It is something. BACKGROUND OF THE INVENTION The LEC method is known to be a technique used for manufacturing single crystals of compound semiconductors such as GaAs, InP%GaP, etc., and is capable of obtaining 1-circular wafers at a high yield. L.E.
Regarding the size of the crucible diameter used in the C method, for the desired crystal diameter d, the crucible Do is 2d! 1 degree, and the crucible height is approximately equal to Do. In other words, the crucible size, the configuration of the furnace interior materials such as the heater, and even the furnace body size are determined with respect to the desired crystal diameter. On the other hand, increasing the length of the ingot to be manufactured is important for reducing the cost of the manufacturing process, and a technology is required to increase the amount of raw material charged for one single crystal manufacturing and to manufacture with high yield. [Problems to be Solved by the Invention] In the LEC method, for the purpose of increasing the length of a single crystal, a method of increasing the charge amount of raw materials for a crucible of the same diameter, or a crucible diameter A method of increasing the value is generally used. However, in these methods, it is necessary to change the equipment as the thickness of the raw material melt or the area of the melt changes. In other words, due to the relationship between the grown crystal diameter and the crucible diameter as described above, specifically, a manufacturing device for a 4-inch crucible is used for growing a 2-inch crystal, or a manufacturing device for a 6-inch crucible is used for growing a 3-inch crystal. It has been conventional practice to use manufacturing equipment such as In addition, the crucible diameter Do is D,>2 with respect to the grown crystal diameter d.
For example, when growing a 2-inch crystal from a 6-inch crucible under conditions such as d, as the free surface area of the melt increases during crystal growth, melt convection near the growth interface occurs. The growth interface shape changes, polycrystals, etc. occur during the growth, and it becomes difficult to achieve substantial lengthening. Conventionally, in order to control the diameter of a pulled single crystal, crystal growth was carried out by floating a ring-shaped jig with an inner diameter slightly larger than the diameter of the pulled crystal around the pulled crystal ( For example, JP-A-51-64482, JP-A-6
0-112696 etc.). However, these methods only focus on diameter control and do not take into account the heat dissipation balance from the surface of the raw material melt, and because there is an opening between the ring-shaped jig and the inner wall of the crucible, thermal Equilibrium has not been determined. In order to increase the length of the grown crystal in this way, it is necessary to increase the amount of raw material charge while creating a thermal environment in which single crystals can grow. Enabling this is effective for reducing device costs. It is an object of the present invention to solve these problems in a simple manner. [Means for Solving the Problems 1] The present invention provides an LEC method in which a ring-shaped jig is installed in a suspended state between the melt and the liquid sealant, and the inner diameter and tension of the ring-shaped jig are By setting the opening area (that is, the free surface area of the raw material melt in the crucible) between the upper crystal and the crucible to 1/4 This makes it possible to produce single crystals with a large diameter with a good yield.In other words, it makes it possible to grow long single crystals by effectively utilizing the increase in the amount of raw material charged due to an increase in the crucible diameter, and also enables the production of long single crystals with the same Since the diameter of the grown crystal from the manufacturing equipment can be arbitrarily selected, the degree of freedom of the manufacturing equipment is increased and it is possible to reduce the installation cost. This shows the state inside the crucible. Raw material melt 5 and liquid sealant 4
In between, the crucible 3 is housed with a ring-shaped jig 6 installed therein. The inner diameter of the ring-shaped jig 6 is determined from the relationship with the growth crystal diameter mentioned above, and the outer diameter is determined by the crucible 3.
It is desirable that the inner diameter is approximately equal to the inner diameter of the molten material 5, and that smooth movement in the vertical direction is possible as the raw material melt 5 decreases as crystal growth progresses. A seed crystal attached to the tip of the pulling shaft 2 is immersed in the raw material melt 5 at the opening of the ring-shaped jig 6, and the single crystal 1 is pulled up. A feature of the present invention is that a ring-shaped jig 6 is installed between the raw material melt 5 and the liquid sealant 4, and radiation is transmitted through the transparent liquid sealant 4 due to the heat insulation effect of the ring-shaped jig 6. By controlling the heat emitted from the surface of the raw material melt 5, it is possible to change the temperature distribution on the free surface of the raw material melt 5, which is involved in crystal growth, to a state suitable for the grown crystal diameter. It is important that the raw material melt free surface area S is set around the pulled crystal. For this reason, the outer periphery of the ring-shaped jig and the inner wall of the crucible are installed so as to be in contact with each other within a range in which the ring-shaped jig can move up and down. The relationship between the inner diameter of the ring-shaped jig and the pulled crystal diameter d is 1/4 x d''≦S≦Electrical d, where S is the free surface area of the raw material melt, which is the exposed area of the melted raw material.
Make it 1. Here, the relationship between S, D, and d is S=l/4°π(D”
-d"). The ring-shaped jig 6 used here is installed by a method of floating between the raw material melt 6 and the liquid sealant 4 by utilizing the density difference, as shown in FIG. In this case, as the crystal grows, the solid-liquid interface between the raw material melt and the growing crystal descends, so the crucible 3 is raised at a constant speed in order to keep the solid-liquid interface at the optimal position relative to the heating element. In this way, the ring-shaped jig 6 may be fixed to the furnace internal materials such as the heater placed around the crucible 3. However, if the ring-shaped jig 6 is fixed to the furnace internal materials such as the heater In the fixing method, it goes without saying that the ring-shaped jig needs to be installed in a predetermined position through crystal growth.As for the material of the ring-shaped jig 6 used,
PBN, PBN-coated graphite, etc. may be selected from the viewpoints of prevention of impurity contamination, density, etc. FIG. 2 shows the temperature distribution on the surface of the raw material melt in the conventional method Tal that does not use a jig and in the case (b) when a ring-shaped jig according to the present invention is installed. In the conventional method (a), since the temperature gradient in the radial direction of the crucible at the portion corresponding to the grown crystal diameter is low, during crystal growth,
Near the outer periphery of the crystal, as shown in FIG. 3(a), the growth interface shape locally becomes convex upward at the periphery of the crystal. for that,
Stress concentration occurs in that part, and polycrystals are likely to occur due to an increase in dislocations.In contrast, according to the method of installing the ring-shaped jig of the present invention in lb), the opening is The amount of heat dissipated through the tube increases, and as a result, a temperature distribution as shown in FIG. 2(b) can be created. As a result, the overall shape of the solid-liquid interface is smoothly convex downward as shown in Figure 3 (bl), which prevents polycrystalization due to stress concentration and enables the growth of long single crystals.1. 1 In the present invention, heat dissipation from the surface of the raw material melt is limited to only from the peripheral area of the pulled crystal, and moreover, the free surface area of the raw material melt, which is the exposed part of the raw material melt, is limited to a certain range with respect to the diameter of the pulled crystal. By setting to A GaAs single crystal was grown by the method of the present invention in which a ring-shaped jig is installed between the sealants.1
Approximately 8 kg of undoped GaAs raw material melt and liquid sealant B1 were placed in a PBN crucible with a diameter of 86 m5+ (approximately 7.3 inches).
01900 g, ring-shaped jig has a thickness of 2 mva
, the inner diameter is 120m5+ and the outer diameter is 2 from the crucible inner diameter.
- A small PBN molded body was used. In this case, the free surface area (S) of the raw material melt was 6769.8 mrr1", xd" = 18,136.6 mrn", 1/4
πd" = 4534, 2m rn'. Crystal rotation speed 10 rpm, crucible rotation speed 15 rpm.
Using a (100) oriented seed crystal, gradually raise the crucible and keep it at a constant position relative to the heating element, at a pulling rate of 9.
When a crystal with a diameter of 76 mm/hr was grown, a single crystal with a length of 250 mm+ was obtained. On the other hand, when crystal growth was performed under the same conditions using the conventional method without installing a ring-shaped jig, the length of the single crystal was 1.
It was not possible to grow crystals larger than 50 mm. Example 2 50su from a 152mm (approximately 6 inch) diameter crucible
Even when growing a GaAs single crystal with a diameter of about 2 inches, the method of the present invention can grow a single crystal with an outer diameter of 150 inches and an inner diameter of 94 inches, under conditions where the single crystal length did not exceed 100 inches in the conventional method. , by fixing a ring-shaped jig made of a PBN molded body with a thickness of 21111 mm in the crucible. It became possible to grow a single crystal of 230-1. In this case, the free surface area (S) of the raw material melt is 4974.8■-1πd2=
7850m rn', 1/4 x d'' = 1
It is 962.5 mm'. [Effects of the Invention] By producing crystals using the method of the present invention, it is possible to create a thermal environment at the growth interface suitable for the desired crystal diameter regardless of the crucible diameter used, increasing the flexibility of the production equipment. , it becomes possible to easily fabricate long single crystals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一具体例である単結晶引上の概念図、
第2図は原料融液表面の温度分布、第3図は成長界面形
状の様子を模式的に示す図である。図中!alは従来例
、(blは本発明の場合を示す。 l・・・・・・引上単結晶   2・・・・・・引上軸
3・・・・・・ルツボ     4・・・・・・液体封
止剤5・・−・−原料融液    6−・・・・・リン
グ状治具第1図 嘉2図
FIG. 1 is a conceptual diagram of single crystal pulling, which is a specific example of the present invention.
FIG. 2 is a diagram schematically showing the temperature distribution on the surface of the raw material melt, and FIG. 3 is a diagram schematically showing the shape of the growth interface. In the diagram! al indicates the conventional example, (bl indicates the case of the present invention. l... Pulled single crystal 2... Pulling shaft 3... Crucible 4...・Liquid sealant 5 --- Raw material melt 6 --- Ring-shaped jig Fig. 1 Ka 2

Claims (3)

【特許請求の範囲】[Claims] (1)液体封止引上法により化合物半導体単結晶を製造
する方法において、開口部分が育成結晶の周囲だけであ
り、ルツボ内の原料融液自由表面積(S)を使用するル
ツボ径D_oにかかわらず育成結晶径dに対してπ/4
d^2≦S≦πd^2とすることを特徴とする化合物半
導体単結晶の製造方法。
(1) In the method of manufacturing a compound semiconductor single crystal by liquid-sealed pulling method, the opening part is only around the grown crystal, and the free surface area (S) of the raw material melt in the crucible is used, regardless of the crucible diameter D_o. π/4 for the grown crystal diameter d
A method for manufacturing a compound semiconductor single crystal, characterized in that d^2≦S≦πd^2.
(2)原料融液自由表面積の決定手段が、原料融液と液
体封止剤の間にルツボ内壁面と摺接するリング状の治具
を浮かべることを特徴とする特許請求の範囲第1項記載
の化合物半導体単結晶の製造方法。
(2) The means for determining the free surface area of the raw material melt comprises floating a ring-shaped jig that makes sliding contact with the inner wall surface of the crucible between the raw material melt and the liquid sealant. A method for producing a compound semiconductor single crystal.
(3)原料融液自由表面積の決定手段が、加熱体に対し
て固定された位置で、原料融液と液体封止剤の間にルツ
ボ内壁面と摺接するリング状の治具を設置することを特
徴とする特許請求の範囲第2項記載の化合物半導体単結
晶の製造方法。
(3) The means for determining the free surface area of the raw material melt is to install a ring-shaped jig that comes into sliding contact with the inner wall surface of the crucible between the raw material melt and the liquid sealant at a fixed position relative to the heating body. A method for manufacturing a compound semiconductor single crystal according to claim 2, characterized in that:
JP33732289A 1989-12-26 1989-12-26 Preparation of compound semiconductor single crystal Pending JPH03197386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33732289A JPH03197386A (en) 1989-12-26 1989-12-26 Preparation of compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33732289A JPH03197386A (en) 1989-12-26 1989-12-26 Preparation of compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH03197386A true JPH03197386A (en) 1991-08-28

Family

ID=18307536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33732289A Pending JPH03197386A (en) 1989-12-26 1989-12-26 Preparation of compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH03197386A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098870A (en) * 2009-11-09 2011-05-19 Toyota Motor Corp APPARATUS AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JPWO2014017648A1 (en) * 2012-07-27 2016-07-11 京セラ株式会社 Crucible, crystal growth apparatus and crystal growth method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098870A (en) * 2009-11-09 2011-05-19 Toyota Motor Corp APPARATUS AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JPWO2014017648A1 (en) * 2012-07-27 2016-07-11 京セラ株式会社 Crucible, crystal growth apparatus and crystal growth method

Similar Documents

Publication Publication Date Title
JPH03197386A (en) Preparation of compound semiconductor single crystal
JPH09175889A (en) Single crystal pull-up apparatus
KR20180111668A (en) Growth of a shaped silicon ingot by feeding liquid onto a shaped ingot
JPH01294592A (en) Growth of single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JP2814796B2 (en) Method and apparatus for producing single crystal
KR101956754B1 (en) DEVICE FOR SINGLE CRYSTAL GROWTH OF GaAs
JPH03193689A (en) Production of compound semiconductor crystal
JP2757865B2 (en) Method for producing group III-V compound semiconductor single crystal
JP2005343737A (en) Apparatus for manufacturing compound semiconductor single crystal
JPH0474788A (en) Production of compound semiconductor single crystal
JPH04198084A (en) Jig for preventing bottom adhesion in pull-up of semiconductor single crystal
JPH01160894A (en) Apparatus for pulling up single crystal
JPH04187585A (en) Device of growing crystal
JP3042168B2 (en) Single crystal manufacturing equipment
KR101597207B1 (en) Silicon single crystalline ingot, method and apparatus for manufacturing the ingot
KR20050062128A (en) A method of producing silicon ingot by moving magnet
JPS62171984A (en) Apparatus for production of crystal
KR101455922B1 (en) Apparatus and Method for growing single crystal ingot using CUSP magnetic field
JPS60239389A (en) Pulling device for single crystal
JPH0940492A (en) Production of single crystal and apparatus for production therefor
JPH0269386A (en) Device for growing single crystal
JPH01301580A (en) Apparatus for producing single crystal
JPH02188490A (en) Crucible for pulling up single crystal
JPH09142982A (en) Apparatus for growing single crystal and method for growing single crystal