JP6925208B2 - Method for producing silicon carbide single crystal - Google Patents

Method for producing silicon carbide single crystal Download PDF

Info

Publication number
JP6925208B2
JP6925208B2 JP2017172967A JP2017172967A JP6925208B2 JP 6925208 B2 JP6925208 B2 JP 6925208B2 JP 2017172967 A JP2017172967 A JP 2017172967A JP 2017172967 A JP2017172967 A JP 2017172967A JP 6925208 B2 JP6925208 B2 JP 6925208B2
Authority
JP
Japan
Prior art keywords
heat transfer
raw material
transfer member
silicon carbide
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017172967A
Other languages
Japanese (ja)
Other versions
JP2019048736A (en
Inventor
麟平 金田一
麟平 金田一
好成 奥野
好成 奥野
智博 庄内
智博 庄内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2017172967A priority Critical patent/JP6925208B2/en
Publication of JP2019048736A publication Critical patent/JP2019048736A/en
Application granted granted Critical
Publication of JP6925208B2 publication Critical patent/JP6925208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は種結晶を用いた昇華再結晶法によって炭化珪素単結晶を成長させる方法に関する。 The present invention relates to a method for growing a silicon carbide single crystal by a sublimation recrystallization method using a seed crystal.

炭化珪素単結晶の作製方法の一つとして、昇華再結晶法が知られている。この昇華再結晶法は昇華用原料粉末を高温で昇華させて昇華ガスを発生させ、昇華ガスを種結晶部分に供給することにより、種結晶から炭化珪素の単結晶を成長させる方法である。 A sublimation recrystallization method is known as one of the methods for producing a silicon carbide single crystal. This sublimation recrystallization method is a method of growing a single crystal of silicon carbide from a seed crystal by sublimating a sublimation raw material powder at a high temperature to generate a sublimation gas and supplying the sublimation gas to a seed crystal portion.

加熱方法としては、高周波誘導加熱を用いて坩堝を発熱させ、発熱した坩堝からの伝熱により坩堝に充填された昇華用原料を加熱する方法が一般的である。このような方法では坩堝壁近傍で強い発熱が生じ、炭化珪素原料へと熱が伝達されることから、坩堝の形状によって原料充填部の昇華用原料に温度勾配が生じる。この温度勾配によって、原料昇華ガスの生成量に分布が生じ、低温部分では高温部分よりも原料が昇華しにくい。 As a heating method, a method of heating a crucible by using high-frequency induction heating and heating the sublimation raw material filled in the crucible by heat transfer from the generated crucible is common. In such a method, strong heat is generated near the crucible wall and heat is transferred to the silicon carbide raw material, so that a temperature gradient is generated in the sublimation raw material of the raw material filling portion depending on the shape of the crucible. Due to this temperature gradient, the amount of raw material sublimation gas produced is distributed, and the raw material is less likely to sublimate in the low temperature portion than in the high temperature portion.

内側の側壁が円筒状の坩堝に炭化珪素原料が充填されていると、坩堝側壁に接している原料部分は坩堝の中心軸付近の原料に比べ、強く加熱される。特にインゴットの大型化を指向する場合には、より大きな径の坩堝を使用する必要があり、また多くの原料昇華ガスを供給するために多くの炭化珪素原料を充填する必要がある。この場合、原料充填部の原料における温度勾配は更に大きくなり、効率よく原料昇華を行うことが困難となる。 When a crucible having a cylindrical inner side wall is filled with a silicon carbide raw material, the raw material portion in contact with the crucible side wall is heated more strongly than the raw material near the central axis of the crucible. In particular, when aiming to increase the size of the ingot, it is necessary to use a crucible having a larger diameter, and it is necessary to fill a large amount of silicon carbide raw material in order to supply a large amount of raw material sublimation gas. In this case, the temperature gradient in the raw material of the raw material filling portion becomes larger, and it becomes difficult to efficiently sublimate the raw material.

そこで、原料充填部の原料における温度勾配を小さくし、原料の昇華効率を上げるために、坩堝構造に種々の改良を加える提案がなされてきた。
例えば、原料充填部底面の中心付近で支持される結晶成長容器の一部となる黒鉛部材を導入した坩堝構造を用いることにより、坩堝の中心軸付近の原料を効率よく昇華させる製造方法が開示されている(特許文献1)。また、坩堝の壁面に円板状の黒鉛製隔壁を固定することで、中心部を効率よく加熱する製造方法が開示されている(特許文献2)。
Therefore, it has been proposed to make various improvements to the crucible structure in order to reduce the temperature gradient in the raw material of the raw material filling portion and improve the sublimation efficiency of the raw material.
For example, a manufacturing method for efficiently sublimating a raw material near the central axis of a crucible is disclosed by using a crucible structure in which a graphite member that becomes a part of a crystal growth container supported near the center of the bottom surface of the raw material filling portion is used. (Patent Document 1). Further, a manufacturing method for efficiently heating the central portion by fixing a disk-shaped graphite partition wall to the wall surface of the crucible is disclosed (Patent Document 2).

また、原料充填部の上部に特定の熱伝導率の部材を導入することで原料充填部の原料の温度を制御する方法も提案されている。
例えば、原料充填部上部に断熱材を配置することで原料中心部上面から種結晶側に向かって生じる熱の流れを遮り、原料中心部と周辺部の温度差を小さくすることで、効率よく原料中心部を加熱する製造方法が開示されている(特許文献3)。また、坩堝の径方向の中心部を含む原料表面に熱伝導性が高い均熱部材を配置する製造方法も開示されている(特許文献4)。
In addition, a method of controlling the temperature of the raw material in the raw material filling portion by introducing a member having a specific thermal conductivity above the raw material filling portion has also been proposed.
For example, by arranging a heat insulating material on the upper part of the raw material filling part, the heat flow generated from the upper surface of the raw material center part toward the seed crystal side is blocked, and the temperature difference between the raw material center part and the peripheral part is reduced, so that the raw material is efficiently used. A manufacturing method for heating a central portion is disclosed (Patent Document 3). Further, a manufacturing method of arranging a heat equalizing member having high thermal conductivity on the surface of a raw material including a radial center portion of a crucible is also disclosed (Patent Document 4).

特開平5−58774号公報Japanese Unexamined Patent Publication No. 5-587774 特開2017−65969号公報JP-A-2017-56969 特開2015−212207号公報Japanese Unexamined Patent Publication No. 2015-212207 特開2006−69851号公報Japanese Unexamined Patent Publication No. 2006-69851

炭化珪素原料を効率よく昇華させるには、原料充填部の中心軸付近を十分に加熱する必要がある。
一般に、原料充填部に充填された原料を十分に加熱するには、坩堝の側壁部分の温度を高くする必要がある。一方で、坩堝の側壁部分の温度を高くすると坩堝全体の温度が高くなり、成長中の結晶温度も上昇するため結晶を十分に成長させることが困難となる。
In order to efficiently sublimate the silicon carbide raw material, it is necessary to sufficiently heat the vicinity of the central axis of the raw material filling portion.
Generally, in order to sufficiently heat the raw material filled in the raw material filling portion, it is necessary to raise the temperature of the side wall portion of the crucible. On the other hand, if the temperature of the side wall portion of the crucible is increased, the temperature of the entire crucible is increased and the crystal temperature during growth is also increased, which makes it difficult to sufficiently grow the crystals.

上述した従来の炭化珪素単結晶の製造方法、製造装置を用いる場合、特許文献1に開示された技術では、依然として中心軸付近を十分に加熱する必要があるという問題が残り、単結晶の大口径化のために口径の大きな坩堝の中心軸付近の原料を効率よく加熱することは困難である。また、坩堝の一部として伝熱部材を導入していることから、形状の自由度が小さく制御が難しい。 When the above-mentioned conventional method and apparatus for producing a silicon carbide single crystal are used, the technique disclosed in Patent Document 1 still has a problem that the vicinity of the central axis still needs to be sufficiently heated, and the large diameter of the single crystal remains. It is difficult to efficiently heat the raw material near the central axis of a crucible with a large diameter due to the conversion. In addition, since the heat transfer member is introduced as a part of the crucible, the degree of freedom of the shape is small and it is difficult to control.

特許文献2に開示された技術では、坩堝の壁面に接して開口部を有する円盤状の部材を設けているため、加熱が強い坩堝の壁面付近で生じる大量の昇華ガスの上昇する流れが、部材によって阻害されるという問題がある。この影響は単結晶の大口径化のために大口径の坩堝を使用する場合に顕著になり、坩堝の中心軸付近と壁面付近の原料からの昇華ガスの供給を両立できないという問題が生じる。また、特許文献3、4に開示された技術では原料の表面上で坩堝の中心軸付近に部材を導入するため、中心部付近の上部への流れが制限され、単結晶の大口径化のために口径の大きな坩堝を使用した場合、中心軸付近の昇華量を十分に確保することが困難である。 In the technique disclosed in Patent Document 2, since a disk-shaped member having an opening in contact with the wall surface of the crucible is provided, a large amount of rising flow of sublimation gas generated near the wall surface of the crucible, which is strongly heated, is a member. There is a problem that it is hindered by. This effect becomes remarkable when a crucible with a large diameter is used to increase the diameter of a single crystal, and there arises a problem that the supply of sublimation gas from the raw materials near the central axis of the crucible and the wall surface cannot be compatible. Further, in the techniques disclosed in Patent Documents 3 and 4, since the member is introduced on the surface of the raw material near the central axis of the crucible, the flow to the upper part near the central portion is restricted, and the diameter of the single crystal is increased. When a crucible with a large diameter is used, it is difficult to secure a sufficient amount of sublimation near the central axis.

上記のことから特許文献1〜4に開示された方法では口径の大きな坩堝を使用した場合に坩堝の中心軸付近の原料を十分に昇華させることが困難である。 From the above, it is difficult to sufficiently sublimate the raw material near the central axis of the crucible when a crucible having a large diameter is used by the methods disclosed in Patent Documents 1 to 4.

本発明は上記問題に鑑みてなされたものであり、口径の大きな坩堝を用いた場合でも、壁面付近の原料からの昇華ガスの供給を抑制することなく、坩堝中心付近の原料を十分に加熱することにより効率よく原料を昇華させることができる炭化珪素単結晶の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and even when a crucible having a large diameter is used, the raw material near the center of the crucible is sufficiently heated without suppressing the supply of sublimation gas from the raw material near the wall surface. It is an object of the present invention to provide a method for producing a silicon carbide single crystal capable of efficiently sublimating a raw material.

本発明者らは口径の大きな坩堝を使用した昇華再結晶法による炭化珪素単結晶の製造において、坩堝の原料充填部内に充填された炭化珪素原料(以降、単に原料と呼ぶことがある)を効率よく昇華させる方法を検討した。その結果、特定の形状の伝熱部材を原料充填部に充填された炭化珪素原料内部の特定の位置に配置することによって、大口径かつ長尺の炭化珪素単結晶を効率的に製造することができることを見出し、本発明を完成させるに至った。
すなわち、本発明は、上記課題を解決するために、以下の手段を提供する。
In the production of a silicon carbide single crystal by the sublimation recrystallization method using a crucible having a large diameter, the present inventors use the silicon carbide raw material (hereinafter, may be simply referred to as a raw material) filled in the raw material filling portion of the crucible for efficiency. I examined how to sublimate well. As a result, by arranging a heat transfer member having a specific shape at a specific position inside the silicon carbide raw material filled in the raw material filling portion, it is possible to efficiently produce a large-diameter and long silicon carbide single crystal. We found what we could do and came to complete the present invention.
That is, the present invention provides the following means for solving the above problems.

[1] 黒鉛製の坩堝本体と、該坩堝本体の下部に位置する原料充填部と、該原料充填部と対向する位置に種結晶が設置される種結晶設置部を有する単結晶成長装置を用いて、該原料充填部内に充填された炭化珪素原料を加熱して発生させた昇華ガスを、該種結晶設置部に設置した炭化珪素種結晶上に再結晶させる昇華再結晶法による炭化珪素単結晶の製造方法であって、
前記坩堝本体は円筒状の内側壁を有し、
前記炭化珪素原料より熱伝導率の高い物質からなる環状の伝熱部材が前記炭化珪素原料の内部に配置され、
前記伝熱部材が、前記坩堝本体の中心軸からの距離が5mm以上かつ該坩堝本体の内半径の0.85倍以下の領域内に配置されることを特徴とする炭化珪素単結晶の製造方法。
[2] 前記伝熱部材の熱伝導率が2000℃以上の温度において30W/mK以上である前記1に記載の炭化珪素単結晶の製造方法。
[3] 前記伝熱部材が黒鉛またはタングステンで構成される前記2に記載の炭化珪素単結晶の製造方法。
[4] 前記伝熱部材の形状が軸対称であり、該伝熱部材は、該伝熱部材の中心軸が前記坩堝本体の中心軸と一致するように配置される前記1〜3のいずれか一項に記載の炭化珪素単結晶の製造方法。
[5] 前記伝熱部材の形状が円筒状、孔あき円板状、または円環状のいずれかである前記4に記載の炭化珪素単結晶の製造方法。
[6] 前記伝熱部材が前記炭化珪素原料の内部に複数配置されている前記4〜5に記載の炭化珪素単結晶の製造方法。
[1] A single crystal growth apparatus having a graphite-made pit body, a raw material filling portion located at the lower part of the pit body, and a seed crystal setting portion in which a seed crystal is installed at a position facing the raw material filling portion is used. Then, the sublimation gas generated by heating the silicon carbide raw material filled in the raw material filling part is recrystallized on the silicon carbide seed crystal installed in the seed crystal installation part, and the silicon carbide single crystal by the sublimation recrystallization method is performed. It is a manufacturing method of
The crucible body has a cylindrical inner wall surface and has a cylindrical inner wall surface.
An annular heat transfer member made of a substance having a higher thermal conductivity than the silicon carbide raw material is arranged inside the silicon carbide raw material.
A method for producing a silicon carbide single crystal, wherein the heat transfer member is arranged in a region where the distance from the central axis of the crucible body is 5 mm or more and 0.85 times or less the inner radius of the crucible body. ..
[2] The method for producing a silicon carbide single crystal according to 1 above, wherein the heat transfer member has a thermal conductivity of 30 W / mK or more at a temperature of 2000 ° C. or higher.
[3] The method for producing a silicon carbide single crystal according to 2 above, wherein the heat transfer member is made of graphite or tungsten.
[4] The shape of the heat transfer member is axisymmetric, and the heat transfer member is arranged so that the central axis of the heat transfer member coincides with the central axis of the crucible body. The method for producing a silicon carbide single crystal according to item 1.
[5] The method for producing a silicon carbide single crystal according to 4 above, wherein the heat transfer member has a cylindrical shape, a perforated disk shape, or an annular shape.
[6] The method for producing a silicon carbide single crystal according to 4 to 5, wherein a plurality of the heat transfer members are arranged inside the silicon carbide raw material.

本発明の炭化珪素単結晶の製造方法によれば、大口径かつ長尺の炭化珪素単結晶を製造する際に、坩堝内に充填された炭化珪素原料について、高温となりやすい坩堝の側壁付近の原料の利用を確保しながら、坩堝の中心軸付近の原料の加熱が効率的に行われるため、原料を効率的に昇華させることができる。 According to the method for producing a silicon carbide single crystal of the present invention, when producing a large-diameter and long silicon carbide single crystal, the silicon carbide raw material filled in the crucible is a raw material near the side wall of the crucible, which tends to be hot. Since the raw material near the central axis of the crucible is efficiently heated while ensuring the use of the raw material, the raw material can be efficiently sublimated.

本発明の炭化珪素単結晶の製造方法に用いる単結晶成長装置(実施例1)の断面模式図である。It is sectional drawing of the single crystal growth apparatus (Example 1) used in the manufacturing method of the silicon carbide single crystal of this invention. 実施例1における50時間結晶成長後の原料充填部内原料における空隙率のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the porosity in the raw material in a raw material filling part after crystal growth for 50 hours in Example 1. FIG. 従来の方法における50時間結晶成長後の原料充填部内原料における空隙率のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the porosity in the raw material in a raw material filling part after crystal growth for 50 hours in a conventional method. 実施例4の坩堝内の構造を示す断面模式図である。It is sectional drawing which shows the structure in the crucible of Example 4. FIG. 実施例5の坩堝内の構造を示す断面模式図である。It is sectional drawing which shows the structure in the crucible of Example 5. FIG. 実施例6の坩堝内の構造を示す断面模式図である。It is sectional drawing which shows the structure in the crucible of Example 6. 伝熱部材の水平方向の位置および形状を変化させた場合の原料昇華量の増加率を示す図である。It is a figure which shows the increase rate of the raw material sublimation amount when the position and shape in the horizontal direction of a heat transfer member are changed.

以下、本発明の一実施形態に係る炭化珪素単結晶の製造方法について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, a method for producing a silicon carbide single crystal according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate. The drawings used in the following description may be enlarged for convenience in order to make the features of the present invention easy to understand, and the dimensional ratios of each component may differ from the actual ones. .. The materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.

本発明の一実施形態に係る炭化珪素単結晶の製造方法は、黒鉛製の坩堝本体と、坩堝本体の下部に位置する原料充填部と、原料充填部と対向する位置に種結晶が設置される種結晶支持部を有する単結晶成長装置を用いる。
単結晶成長は、原料充填部内に充填された炭化珪素原料(炭化珪素粉末)を加熱して発生させた昇華ガスを、該種結晶設置部に設置した炭化珪素種結晶上に再結晶させる昇華再結晶法により行われる。
ここで、炭化珪素原料より熱伝導率の高い物質からなる環状の伝熱部材が炭化珪素原料の内部に配置され、原料充填部内の炭化珪素原料の温度分布の均一化が図られる。
In the method for producing a silicon carbide single crystal according to an embodiment of the present invention, a graphite crucible body, a raw material filling portion located at the lower part of the crucible main body, and a seed crystal are installed at positions facing the raw material filling portion. A single crystal growth device having a seed crystal support is used.
Single crystal growth is a recrystallization in which a sublimation gas generated by heating a silicon carbide raw material (silicon carbide powder) filled in a raw material filling portion is recrystallized on a silicon carbide seed crystal installed in the seed crystal setting portion. It is carried out by the crystallization method.
Here, an annular heat transfer member made of a substance having a higher thermal conductivity than the silicon carbide raw material is arranged inside the silicon carbide raw material, and the temperature distribution of the silicon carbide raw material in the raw material filling portion can be made uniform.

[炭化珪素単結晶成長装置]
まず本発明で用いる炭化珪素単結晶成長装置について説明する。図1は本発明で用いる炭化珪素単結晶成長装置の全体の断面模式図である。
[Silicon Carbide Single Crystal Growth Device]
First, the silicon carbide single crystal growth apparatus used in the present invention will be described. FIG. 1 is a schematic cross-sectional view of the entire silicon carbide single crystal growth apparatus used in the present invention.

図1に示す炭化珪素単結晶成長装置は黒鉛製の円筒状の坩堝本体1と、坩堝本体の下部に位置する昇華用の炭化珪素原料8が充填される原料充填部2と、原料充填部2と対向する位置に種結晶が設置される種結晶支持部3と、坩堝本体1を取り囲むように設置される黒鉛製の断熱材4と、断熱材4の外部に発熱部材として機能する前記坩堝本体1を発熱させるための高周波誘導加熱用のワークコイル5を備える。
さらに上記単結晶成長装置を使用して単結晶成長を行う際には、種結晶支持部3には炭化珪素単結晶からなる種結晶6が設置され、原料充填部2に炭化珪素原料8が充填され、炭化珪素原料8の内部にはワークコイル5によって発熱した坩堝本体1からの熱を原料充填部の中心領域に効率よく伝える伝熱部材7が配置される。
The silicon carbide single crystal growth apparatus shown in FIG. 1 includes a cylindrical crucible body 1 made of graphite, a raw material filling section 2 in which a silicon carbide raw material 8 for sublimation located at the lower part of the crucible body is filled, and a raw material filling section 2. A seed crystal support portion 3 in which a seed crystal is installed at a position facing the surface, a graphite heat insulating material 4 installed so as to surround the crucible body 1, and the crucible body functioning as a heat generating member outside the heat insulating material 4. A work coil 5 for high-frequency induction heating for generating heat of 1 is provided.
Further, when single crystal growth is performed using the single crystal growth apparatus, a seed crystal 6 made of a silicon carbide single crystal is installed in the seed crystal support portion 3, and the raw material filling portion 2 is filled with the silicon carbide raw material 8. A heat transfer member 7 is arranged inside the silicon carbide raw material 8 to efficiently transfer the heat generated by the work coil 5 from the crucible body 1 to the central region of the raw material filling portion.

[伝熱部材]
伝熱部材7は原料充填部2内部の熱伝導を向上させる目的で配置されるため、伝熱部材7は少なくとも2000℃以上の温度において炭化珪素の熱伝導率(25W/mK)よりも高い熱伝導率をもつ必要がある。また、伝熱部材7の熱伝導率は2000℃以上において30W/mK以上であることが好ましく、40W/mK以上であることがより好ましく、50W/mK以上であることがより一層好ましい。
[Heat transfer member]
Since the heat transfer member 7 is arranged for the purpose of improving the heat conduction inside the raw material filling portion 2, the heat transfer member 7 has a heat higher than the thermal conductivity (25 W / mK) of silicon carbide at a temperature of at least 2000 ° C. or higher. Must have conductivity. Further, the thermal conductivity of the heat transfer member 7 is preferably 30 W / mK or more, more preferably 40 W / mK or more, and even more preferably 50 W / mK or more at 2000 ° C. or higher.

さらに、伝熱部材7は高温域においても安定である必要があるため融点が高い黒鉛やタングステンで構成されることが好ましい。 Further, since the heat transfer member 7 needs to be stable even in a high temperature region, it is preferably made of graphite or tungsten having a high melting point.

伝熱部材7の形状は、炭化珪素単結晶の成長時に原料充填部2内部で発生する昇華ガスの流れを阻害しないように環状である。本明細書において「環状」とは、中心を含む部分に開口部(貫通部)がある形状を意味する。更に、伝熱部材7の形状は軸対称な環状形状であることが好ましい。伝熱部材7の形状が軸対称である場合は、伝熱部材7の中心軸が坩堝本体1の中心軸と一致するように配置することが好ましい。 The shape of the heat transfer member 7 is annular so as not to obstruct the flow of the sublimation gas generated inside the raw material filling portion 2 during the growth of the silicon carbide single crystal. As used herein, the term "annular" means a shape having an opening (penetration portion) in a portion including the center. Further, the shape of the heat transfer member 7 is preferably an axially symmetric annular shape. When the shape of the heat transfer member 7 is axisymmetric, it is preferable to arrange the heat transfer member 7 so that the central axis of the heat transfer member 7 coincides with the central axis of the crucible body 1.

また、軸対称の環状形状の中でも、円筒状、孔あき円板状、または円環状であることが更に好ましい。尚、本明細書では、軸対称の環状形状を中心軸を通る平面で切断した場合に、その断面が長方形でかつ軸方向の長さが径方向の長さに較べて長い形状を円筒状と呼び、断面が長方形でかつ径方向の長さが長い形状を孔あき円板形状と呼び、断面が円である形状を円環状、断面が楕円である形状を円環状に類する形状と呼ぶこととする。
円筒状および孔あき円板状の伝熱部材は表面積に対して占有体積が小さいため、同等の伝熱効果を得るため他の形状に較べて伝熱部材の体積を小さくすることができ、原料充填部に充填される原料の量を多くできる点で好ましい。また、円環状および円環状に類する形状は、表面積に対して占有体積は大きいが、形状に角がなく昇華ガスの流れを阻害しにくい点で好ましい。
Further, among the axisymmetric annular shapes, a cylindrical shape, a perforated disc shape, or an annular shape is more preferable. In the present specification, when an axially symmetric annular shape is cut along a plane passing through the central axis, a shape having a rectangular cross section and a length in the axial direction that is longer than the length in the radial direction is referred to as a cylinder. A shape with a rectangular cross section and a long radial length is called a perforated disk shape, a shape with a circular cross section is called an annular shape, and a shape with an elliptical cross section is called an annular shape. do.
Since the cylindrical and perforated disk-shaped heat transfer members occupy a small volume with respect to the surface area, the volume of the heat transfer members can be reduced as compared with other shapes in order to obtain the same heat transfer effect, and the raw material. It is preferable in that the amount of the raw material to be filled in the filling portion can be increased. Further, the annular shape and the annular shape are preferable because they occupy a large volume with respect to the surface area, but the shape has no corners and the flow of the sublimation gas is not easily obstructed.

また、円筒状、孔あき円板状は、その中心軸を坩堝本体1の中心軸に一致させて坩堝本体1(原料充填部2)内に配置した場合、坩堝本体1の内側壁面または底面に対して平行でない面を有する形状でもよく、坩堝本体1の中心軸に対して軸対称となる限り自由に設計することが可能である。伝熱部材7の体積については、部材が小さすぎると原料充填部内の伝熱を効率化する効果が得られないことや強度に問題が生じると考えられることから、円筒状、孔あき円板状およびそれらに類する形状の場合は伝熱部材の最も短い辺の長さが1mm以上、円環状およびそれに類する形状の場合は断面の直径が1mm以上であることが好ましい。 Further, in the case of the cylindrical shape and the perforated disk shape, when the central axis is aligned with the central axis of the crucible main body 1 and arranged in the crucible main body 1 (raw material filling portion 2), the inner wall surface or the bottom surface of the crucible main body 1 is formed. The shape may have surfaces that are not parallel to each other, and can be freely designed as long as it is axisymmetric with respect to the central axis of the crucible body 1. Regarding the volume of the heat transfer member 7, if the member is too small, the effect of improving the efficiency of heat transfer in the raw material filling portion cannot be obtained and it is considered that there is a problem in strength. And in the case of a shape similar to them, the length of the shortest side of the heat transfer member is preferably 1 mm or more, and in the case of an annular shape or a similar shape, the diameter of the cross section is preferably 1 mm or more.

伝熱部材7は原料充填部2の内部で、坩堝本体1の内側壁と接しない位置に配置される。伝熱部材7の位置はその形状にも依存するが、坩堝本体1の中心軸からの距離が5mm以上かつ坩堝本体1の内半径(内径の半分の長さ)の0.85倍以下の領域内に配置される。更に、伝熱部材7は、坩堝本体1の中心軸からの距離が10mm以上かつ坩堝本体1の内半径の0.75倍以下の領域内に配置されることが好ましい。 The heat transfer member 7 is arranged inside the raw material filling portion 2 at a position not in contact with the inner side wall of the crucible main body 1. The position of the heat transfer member 7 depends on its shape, but is a region where the distance from the central axis of the crucible body 1 is 5 mm or more and 0.85 times or less of the inner radius (half the inner diameter) of the crucible body 1. Placed inside. Further, it is preferable that the heat transfer member 7 is arranged in a region where the distance from the central axis of the crucible body 1 is 10 mm or more and 0.75 times or less the inner radius of the crucible body 1.

伝熱部材7は単結晶成長時に最も加熱が難しい原料充填部2の坩堝本体1の中心軸付近の上部の原料に対して効果を発揮できるように、原料8の内部に設置され、すなわち原料8の表面から露出しない位置に配置される。 The heat transfer member 7 is installed inside the raw material 8 so that it can exert an effect on the raw material in the upper part near the central axis of the crucible body 1 of the raw material filling portion 2 which is the most difficult to heat during single crystal growth, that is, the raw material 8 It is placed in a position that is not exposed from the surface of the.

伝熱部材7は坩堝本体1の底面に接するように配置されてもよいが、原料充填部の上部にも熱が伝わる構造である必要があるため、また伝熱部材7の体積が大きすぎると原料充填部2に充填可能な原料の量が制限されることから、坩堝本体1の底面からの距離が原料充填高さの0.25倍以上である領域に配置されることが好ましい。 The heat transfer member 7 may be arranged so as to be in contact with the bottom surface of the pit body 1, but since the structure needs to transfer heat to the upper part of the raw material filling portion, and if the volume of the heat transfer member 7 is too large, Since the amount of raw material that can be filled in the raw material filling portion 2 is limited, it is preferable that the raw material is arranged in a region where the distance from the bottom surface of the pit body 1 is 0.25 times or more the raw material filling height.

伝熱部材7は原料8内部に複数配置されていてもよい。例えば、図6に示すように、円筒状の伝熱部材7aと、伝熱部材7aの内半径(内径の半分の長さ)より小さい外半径(外径の半分の長さ)を有する伝熱部材7bを原料内に、坩堝本体の中心軸に2つの伝熱部材の中心軸を一致させるように、すなわち上から見た場合に2つの伝熱部材が同心円状になるように配置してもよい。
また、複数の孔あき円板状の伝熱部材を、それぞれの中心軸を坩堝本体の中心軸に一致させて上下方向に並べて配置してもよい。
また、異なる構造(断面形状)を有する複数の伝熱部材を、互いに接することなく水平面内の異なる位置に配置してもよい。
伝熱部材を原料充填部に充填された原料の内部に配置する方法としては、例えば、原料充填部の所定の高さ1まで原料を充填し、その原料表面に伝熱部材を置いた後、再び所定の高さ2まで原料を充填する方法が挙げられるが、これに限定されるものではない。
A plurality of heat transfer members 7 may be arranged inside the raw material 8. For example, as shown in FIG. 6, a cylindrical heat transfer member 7a and a heat transfer member having an outer radius (half the outer diameter) smaller than the inner radius (half the inner diameter) of the heat transfer member 7a. Even if the member 7b is arranged in the raw material so that the central axes of the two heat transfer members are aligned with the central axis of the radius body, that is, the two heat transfer members are concentric when viewed from above. good.
Further, a plurality of perforated disk-shaped heat transfer members may be arranged side by side in the vertical direction so that their central axes coincide with the central axes of the crucible body.
Further, a plurality of heat transfer members having different structures (cross-sectional shapes) may be arranged at different positions in the horizontal plane without being in contact with each other.
As a method of arranging the heat transfer member inside the raw material filled in the raw material filling portion, for example, the raw material is filled to a predetermined height 1 of the raw material filling portion, the heat transfer member is placed on the surface of the raw material, and then the heat transfer member is placed. A method of filling the raw material up to a predetermined height 2 again can be mentioned, but the method is not limited thereto.

以下に本発明の実施例および比較例を示し、本発明をより具体的に説明する。尚、これらは説明のための単なる例示であって、本発明はこれらによって何ら制限されるものではない。 Examples and comparative examples of the present invention will be shown below, and the present invention will be described in more detail. It should be noted that these are merely examples for explanation, and the present invention is not limited thereto.

本発明の実施例および比較例では、図1に示す炭化珪素単結晶成長装置について、シミュレーションにより温度分布および原料昇華量を求めた。尚、実施例または比較例によっては、図1に示される伝熱部材7とは異なる形状の伝熱部材を使用する場合がある。
シミュレーションには結晶成長解析ソフト「Virtual Reactor」(STR−Group Ltd社製)を用いた。本シミュレーションソフトは昇華再結晶法による炭化珪素単結晶の成長において、温度分布、原料昇華、結晶成長のシミュレーションに広く用いられているものである。
In the examples and comparative examples of the present invention, the temperature distribution and the amount of sublimation of raw materials were determined by simulation for the silicon carbide single crystal growth apparatus shown in FIG. Depending on the examples or comparative examples, a heat transfer member having a shape different from that of the heat transfer member 7 shown in FIG. 1 may be used.
Crystal growth analysis software "Virtual Factor" (manufactured by STR-Group Ltd) was used for the simulation. This simulation software is widely used for simulating temperature distribution, raw material sublimation, and crystal growth in the growth of silicon carbide single crystals by the sublimation recrystallization method.

本実施例および比較例における結晶成長のシミュレーションがベースとする結晶成長工程は以下の通りである。
すなわち、炭化珪素単結晶の成長方法は種結晶設置部3に設置した種結晶8から単結晶を結晶成長する工程を有する。単結晶は原料充填部2に充填されたから昇華した原料ガスが種結晶8の表面で再結晶化することにより成長する。炭化珪素原料は坩堝本体1の外部に設けたワークコイル5に電力を供給し、坩堝本体1を高周波誘導加熱することにより炭化珪素原料を昇華させる。昇華した原料ガスは坩堝内を上昇し種結晶6に向かって供給される。このときのワークコイル5の出力は原料充填部内に充填された原料の最高温度が少なくとも2300℃以上になるように設定する。坩堝の外部領域はArガスで満たされておりAr分圧は10000Pa以下に制御して炭化珪素単結晶の成長を行う。
The crystal growth steps based on the crystal growth simulations in this example and the comparative example are as follows.
That is, the method for growing a silicon carbide single crystal includes a step of crystal growing a single crystal from the seed crystal 8 installed in the seed crystal setting unit 3. Since the single crystal is filled in the raw material filling portion 2, the sublimated raw material gas is recrystallized on the surface of the seed crystal 8 to grow. The silicon carbide raw material sublimates the silicon carbide raw material by supplying electric power to the work coil 5 provided outside the crucible main body 1 and inducing and heating the crucible main body 1 at a high frequency. The sublimated raw material gas rises in the crucible and is supplied toward the seed crystal 6. The output of the work coil 5 at this time is set so that the maximum temperature of the raw material filled in the raw material filling portion is at least 2300 ° C. or higher. The outer region of the crucible is filled with Ar gas, and the Ar partial pressure is controlled to 10,000 Pa or less to grow a silicon carbide single crystal.

本実施例および比較例においては、上記の炭化珪素単結晶成長を50時間行うシミュレーションを実施した。 In this example and the comparative example, a simulation was carried out in which the above-mentioned silicon carbide single crystal growth was carried out for 50 hours.

(実施例1)
実施例1では、図1に示すように、原料充填部2内に充填された原料8の内部に孔あき円板状の伝熱部材7を配置した単結晶成長装置についてシミュレーションを行った。以下に条件の詳細を示す。
坩堝本体1の内半径:120mm
原料充填部2内の原料の充填高さ:125mm
原料充填部2内の原料の上面から種結晶下端までの距離:119mm
原料充填部2内の原料10:炭化珪素粉末
伝熱部材7の材質:黒鉛
伝熱部材7の熱伝導率:約40W/mK(2000℃において)
伝熱部材7の形状:内半径10mm、外半径80mm、厚さ5mmの孔あき円板
伝熱部材7の水平方向位置:伝熱部材9の中心軸が坩堝本体1の中心軸に一致するように配置
伝熱部材7の上下方向位置:坩堝本体1の底面からの距離が原料充填部2内の原料充填高さの0.5倍となる高さに伝熱部材7の下端が一致するように配置
(Example 1)
In Example 1, as shown in FIG. 1, a simulation was performed on a single crystal growth apparatus in which a perforated disk-shaped heat transfer member 7 was arranged inside the raw material 8 filled in the raw material filling portion 2. The details of the conditions are shown below.
Inner radius of crucible body 1: 120 mm
Filling height of raw material in raw material filling part 2: 125 mm
Distance from the upper surface of the raw material in the raw material filling portion 2 to the lower end of the seed crystal: 119 mm
Raw material 10 in raw material filling part 2: Silicon carbide powder Material of heat transfer member 7: Graphite Thermal conductivity of heat transfer member 7: Approximately 40 W / mK (at 2000 ° C)
Shape of heat transfer member 7: Perforated disk with inner radius of 10 mm, outer radius of 80 mm, thickness of 5 mm Horizontal position of heat transfer member 7: So that the central axis of the heat transfer member 9 coincides with the central axis of the pit body 1. Position in the vertical direction of the heat transfer member 7: The lower end of the heat transfer member 7 coincides with the height at which the distance from the bottom surface of the radius body 1 is 0.5 times the raw material filling height in the raw material filling portion 2. set on

本シミュレーションでは、原料内の最高温度(坩堝の内壁付近)が2460℃に達するようにワークコイル5の出力を調整して坩堝本体1の加熱を行い、最高温度が2460℃に達した時点から結晶成長を開始し、50時間の結晶成長シミュレーションを行った。 In this simulation, the output of the work coil 5 is adjusted so that the maximum temperature in the raw material (near the inner wall of the crucible) reaches 2460 ° C., and the crucible body 1 is heated. Growth was started and a 50-hour crystal growth simulation was performed.

本実施例においては上記の条件を用いて50時間の炭化珪素単結晶成長について各成長時間における温度分布のシミュレーションおよび結晶成長シミュレーションを実施した。尚、結晶成長シミュレーション中は、坩堝本体1や他部材の移動や配置の変更、ワークコイル5の出力の変更による温度制御等を行わなかった。また、シミュレーション開始時の原料充填部内の原料の空隙率は80%とした。 In this example, the temperature distribution simulation and the crystal growth simulation at each growth time were carried out for the silicon carbide single crystal growth for 50 hours using the above conditions. During the crystal growth simulation, the temperature was not controlled by changing the movement or arrangement of the crucible body 1 and other members, or changing the output of the work coil 5. The porosity of the raw material in the raw material filling portion at the start of the simulation was set to 80%.

温度分布シミュレーショションの結果、原料充填部内で、高さ方向は伝熱部材の厚さ方向の中央の高さで、径方向は坩堝本体の中心軸の位置において、結晶成長開示時点で、上記伝熱部材の使用により伝熱部材を使用しない場合と較べて4℃の温度上昇が確認された(表1)。ここで、伝熱部材を使用しない場合の原料充填部内の原料の充填高さは、伝熱部材を使用した場合の原料の充填高さに一致させた。尚、以下の実施例および比較例についても、上記の温度上昇を評価する原料充填部内の位置は実施例1と同じである。 As a result of temperature distribution simulation, in the raw material filling part, the height direction is the center height in the thickness direction of the heat transfer member, and the radial direction is the position of the central axis of the pit body. It was confirmed that the temperature rise of 4 ° C. was confirmed by using the heat transfer member as compared with the case where the heat transfer member was not used (Table 1). Here, the filling height of the raw material in the raw material filling portion when the heat transfer member is not used is made to match the filling height of the raw material when the heat transfer member is used. In the following Examples and Comparative Examples, the positions in the raw material filling section for evaluating the temperature rise are the same as those in Example 1.

結晶成長シミュレーションの結果、50時間成長後において伝熱部材を使用しない場合と比較して炭化珪素原料の昇華量が17%増加した(表1)。
図2は、実施例1のシミュレーションによる50時間成長後の時点での原料充填部内で原料が充填された領域の断面における空隙率の分布を示す。図3には比較のため伝熱部材を使用せずに結晶成長を行った場合の50時間成長後の空隙率の分布を示す。ここで、例えば図中の「0.2」という数値は空隙率が20%であることを示す。尚、図2と図3のシミュレーションでは原料充填部内の原料の充填高さを一致させた。実施例1では、従来の方法で原料昇華が生じやすい坩堝の側壁付近だけでなく、伝熱部材の上部領域、開口部の領域およびその下方の領域においても空隙率の大きい領域が存在することがわかる。温度シミュレーションによる原料充填部の中心付近の温度上昇と空隙率分布の変化から、伝熱部材により原料充填部内の中心軸側に熱が供給されて炭化珪素原料の昇華が促進されることにより、原料充填部内の炭化珪素原料をより効率的に使用できていることがわかる。
尚、図2および図3において、シミュレーション開始時の空隙率0.8より空隙率が小さくなっている領域は、原料充填部の内部で発生した昇華ガスが外部へ出る前に温度の低い領域を通過し、ここで多結晶が析出することにより空隙率が低下した領域であると考えられる。
As a result of the crystal growth simulation, the sublimation amount of the silicon carbide raw material increased by 17% after 50 hours of growth as compared with the case where the heat transfer member was not used (Table 1).
FIG. 2 shows the distribution of porosity in the cross section of the region filled with the raw material in the raw material filling portion at the time point after 50 hours of growth by the simulation of Example 1. FIG. 3 shows the distribution of porosity after 50-hour growth when crystal growth is performed without using a heat transfer member for comparison. Here, for example, the numerical value "0.2" in the figure indicates that the porosity is 20%. In the simulations of FIGS. 2 and 3, the filling heights of the raw materials in the raw material filling section were matched. In the first embodiment, there may be a region having a large porosity not only in the vicinity of the side wall of the crucible where sublimation of the raw material is likely to occur by the conventional method, but also in the upper region, the opening region and the region below the heat transfer member. Recognize. Due to the temperature rise near the center of the raw material filling part and the change in the porosity distribution by the temperature simulation, heat is supplied to the central axis side in the raw material filling part by the heat transfer member to promote the sublimation of the silicon carbide raw material. It can be seen that the silicon carbide raw material in the filling portion can be used more efficiently.
In FIGS. 2 and 3, the region where the porosity is smaller than the porosity of 0.8 at the start of the simulation is a region where the temperature is low before the sublimation gas generated inside the raw material filling portion goes out. It is considered that this is a region where the porosity is lowered due to the passage and the precipitation of polycrystals here.

(実施例2)
実施例2においては、図1に示す実施例1の伝熱部材に代え、厚さ5mm、内半径20mm、外半径60mmの円板形状の黒鉛で構成される伝熱部材を使用した。坩堝本体1の底面からの距離が原料充填部高さの0.7倍となる高さに伝熱部材の下端が一致するように伝熱部材を配置した。それ以外は実施例1と同様にしてシミュレーションを行った。
(Example 2)
In Example 2, instead of the heat transfer member of Example 1 shown in FIG. 1, a heat transfer member made of disc-shaped graphite having a thickness of 5 mm, an inner radius of 20 mm, and an outer radius of 60 mm was used. The heat transfer member was arranged so that the lower end of the heat transfer member coincided with the height at which the distance from the bottom surface of the crucible body 1 was 0.7 times the height of the raw material filling portion. Other than that, the simulation was performed in the same manner as in Example 1.

温度分布シミュレーショションの結果、上記伝熱部材の使用により1℃の温度上昇が確認された(表1)。結晶成長シミュレーションの結果、伝熱部材を使用しない場合と比較して昇華量が22%増加し(表1)、上記伝熱部材の使用による炭化珪素原料の昇華が効率化されたことがわかる。本実施例では伝熱部材の水平方向への広がりが小さいため中心軸付近における温度上昇は小さいが、坩堝内全体の温度分布に対して局所的に伝熱部材が作用する場合でも炭化珪素原料の昇華を促進する効果が認められる。 As a result of temperature distribution simulation, it was confirmed that the temperature rose by 1 ° C. due to the use of the above heat transfer member (Table 1). As a result of the crystal growth simulation, it can be seen that the sublimation amount increased by 22% as compared with the case where the heat transfer member was not used (Table 1), and the sublimation of the silicon carbide raw material by the use of the heat transfer member was made more efficient. In this embodiment, since the heat transfer member spreads in the horizontal direction is small, the temperature rise near the central axis is small, but even when the heat transfer member acts locally on the temperature distribution in the entire crucible, the silicon carbide raw material is used. The effect of promoting sublimation is recognized.

(実施例3)
実施例3においては、実施例2の伝熱部材に代えて、同形状のタングステンで構成される伝熱部材を使用した以外は実施例1と同様にしてシミュレーションを行った。タングステンの熱伝導率は2000℃において104W/mKである。
(Example 3)
In Example 3, the simulation was performed in the same manner as in Example 1 except that a heat transfer member made of tungsten having the same shape was used instead of the heat transfer member of Example 2. The thermal conductivity of tungsten is 104 W / mK at 2000 ° C.

温度分布シミュレーショションの結果、上記伝熱部材の使用により2℃の温度上昇が確認された(表1)。結晶成長シミュレーションの結果、伝熱部材を使用しない場合と比較して昇華量が21%増加し(表1)、上記伝熱部材の使用による炭化珪素原料の昇華が効率化されたことがわかる。 As a result of temperature distribution simulation, it was confirmed that the temperature rose by 2 ° C. due to the use of the above heat transfer member (Table 1). As a result of the crystal growth simulation, it can be seen that the amount of sublimation increased by 21% as compared with the case where the heat transfer member was not used (Table 1), and the sublimation of the silicon carbide raw material by the use of the heat transfer member was made more efficient.

(実施例4)
実施例4においては、実施例1の伝熱部材に代えて、図4に断面図で示す円環状の伝熱部材7を使用した。円環状の伝熱部材7の内半径は25mm、外半径は55mmである。また、坩堝の底面からの距離が原料充填高さの0.5倍となる高さに伝熱部材7の断面円の中心高さが一致するように伝熱部材7を配置した。それ以外は実施例1と同様にしてシミュレーションを行った。
(Example 4)
In the fourth embodiment, the annular heat transfer member 7 shown in the cross-sectional view in FIG. 4 was used instead of the heat transfer member of the first embodiment. The annular heat transfer member 7 has an inner radius of 25 mm and an outer radius of 55 mm. Further, the heat transfer member 7 was arranged so that the center height of the cross-sectional circle of the heat transfer member 7 coincided with the height at which the distance from the bottom surface of the crucible was 0.5 times the raw material filling height. Other than that, the simulation was performed in the same manner as in Example 1.

温度分布シミュレーショションの結果、上記伝熱部材の使用により4℃の温度上昇が確認された(表1)。結晶成長シミュレーションの結果、伝熱部材を使用しない場合と比較して昇華量が15%増加し(表1)、上記伝熱部材の使用による炭化珪素の原料昇華が効率化されたことがわかる。 As a result of temperature distribution simulation, it was confirmed that the temperature rose by 4 ° C. due to the use of the above heat transfer member (Table 1). As a result of the crystal growth simulation, it can be seen that the amount of sublimation increased by 15% as compared with the case where the heat transfer member was not used (Table 1), and the sublimation of the raw material of silicon carbide by the use of the heat transfer member was made more efficient.

(実施例5)
実施例5においては、実施例1の伝熱部材に代えて、図5に断面図で示すタングステンで構成される円筒状伝熱部材7を使用した。円筒状伝熱部材7の内半径は20mm、外半径は25mm、高さは55mmである。坩堝本体1の底面からの距離が原料充填高さの0.4倍となる高さに伝熱部材7の下端が一致するように伝熱部材7を配置した。それ以外は実施例1と同様にしてシミュレーションを行った。
(Example 5)
In Example 5, instead of the heat transfer member of Example 1, a cylindrical heat transfer member 7 made of tungsten shown in the cross-sectional view of FIG. 5 was used. The cylindrical heat transfer member 7 has an inner radius of 20 mm, an outer radius of 25 mm, and a height of 55 mm. The heat transfer member 7 was arranged so that the lower end of the heat transfer member 7 coincided with the height at which the distance from the bottom surface of the crucible body 1 was 0.4 times the raw material filling height. Other than that, the simulation was performed in the same manner as in Example 1.

温度分布シミュレーショションの結果、上記伝熱部材の使用により1℃の温度上昇が確認された(表1)。結晶成長シミュレーションの結果、伝熱部材を使用しない場合と比較して昇華量が17%増加し(表1)、上記伝熱部材の導入による炭化珪素原料昇華が効率化されたことがわかる。 As a result of temperature distribution simulation, it was confirmed that the temperature rose by 1 ° C. due to the use of the above heat transfer member (Table 1). As a result of the crystal growth simulation, it can be seen that the amount of sublimation increased by 17% as compared with the case where the heat transfer member was not used (Table 1), and the sublimation of the silicon carbide raw material by the introduction of the heat transfer member was made more efficient.

(実施例6)
実施例6においては、実施例1の伝熱部材に代えて、図6に断面図で示すタングステンで構成される円筒状伝熱部材を2つ使用した。円筒状伝熱部材の一方(7a)は内半径20mm内半径25mm高さ55mmであり、他方(7b)は内半径50mm、外半径55mm、高さ55mmである。2つの伝熱部材7aと7bは、それぞれの中心軸が坩堝本体1の中心軸に一致し、共に坩堝本体1の底面からの距離が原料充填高さの0.2倍となる高さに伝熱部材の下端が一致するように配置した。それ以外は実施例1と同様にしてシミュレーションを行った。
(Example 6)
In Example 6, instead of the heat transfer member of Example 1, two cylindrical heat transfer members made of tungsten shown in the cross-sectional view of FIG. 6 were used. One (7a) of the cylindrical heat transfer member has an inner radius of 20 mm, an inner radius of 25 mm and a height of 55 mm, and the other (7b) has an inner radius of 50 mm, an outer radius of 55 mm and a height of 55 mm. The central axes of the two heat transfer members 7a and 7b coincide with the central axis of the crucible body 1, and both are transmitted to a height at which the distance from the bottom surface of the crucible body 1 is 0.2 times the raw material filling height. The thermal members were arranged so that the lower ends of the members coincided with each other. Other than that, the simulation was performed in the same manner as in Example 1.

温度分布シミュレーショションの結果、上記伝熱部材の使用により3℃の温度上昇が確認された(表1)。また、結晶成長シミュレーションの結果、伝熱部材を使用しない場合と比較して昇華量が15%増加し(表1)、上記伝熱部材の使用による炭化珪素原料の昇華が効率化されたことがわかる。 As a result of temperature distribution simulation, it was confirmed that the temperature rose by 3 ° C. due to the use of the above heat transfer member (Table 1). In addition, as a result of the crystal growth simulation, the amount of sublimation increased by 15% as compared with the case where the heat transfer member was not used (Table 1), and the sublimation of the silicon carbide raw material by using the heat transfer member was made more efficient. Recognize.

(比較例1)
実施例1で用いた伝熱部材と同じ外半径と内半径の差(内半径50mm、外半径120mm)および厚さを有する伝熱部材が坩堝本体の内側壁に接する以外は実施例1と同様にしてシミュレーションを行った。
温度分布シミュレーショションの結果、上記伝熱部材の使用により4℃の温度上昇が確認された(表1)。
また、結晶成長シミュレーションの結果、伝熱部材を使用しない場合と比較して昇華量の増加率は1%にとどまった(表1)。
(Comparative Example 1)
Same as Example 1 except that the heat transfer member having the same outer radius and inner radius difference (inner radius 50 mm, outer radius 120 mm) and thickness as the heat transfer member used in Example 1 contacts the inner side wall of the crucible body. And simulated.
As a result of temperature distribution simulation, it was confirmed that the temperature rose by 4 ° C. due to the use of the above heat transfer member (Table 1).
In addition, as a result of the crystal growth simulation, the rate of increase in the amount of sublimation was only 1% as compared with the case where the heat transfer member was not used (Table 1).

比較例1においては、伝熱部材の外周が坩堝本体の内壁に接しているため、伝熱部材の下側で昇華した昇華ガスの流れが阻害される。これにより伝熱部材の下部に多結晶が析出し(実際の成長で確認されている)、昇華量が低下する。また、坩堝本体の壁に伝熱部材が接しているため、昇華ガスの逃げ道が一部ふさがれたことも昇華量が低下した原因と考えられる。 In Comparative Example 1, since the outer circumference of the heat transfer member is in contact with the inner wall of the crucible body, the flow of the sublimated gas sublimated under the heat transfer member is obstructed. As a result, polycrystals are deposited on the lower part of the heat transfer member (confirmed by actual growth), and the amount of sublimation is reduced. In addition, since the heat transfer member is in contact with the wall of the crucible body, it is considered that the sublimation amount is reduced because the escape route of the sublimation gas is partially blocked.

(比較例2)
実施例1との比較するために、実施例1で用いた伝熱部材と同じ外半径と厚さを有するが中心に孔を持たない円板形状(すなわち外半径70mmの円板)である伝熱部材を用いる以外は実施例1と同様にしてシミュレーションを行った。
温度分布シミュレーショションの結果、上記伝熱部材の使用により4℃の温度上昇が確認された(表1)。
また、結晶成長シミュレーションの結果、伝熱部材を使用しない場合と比較して昇華量の増加率は−3%(昇華量が減少)となり効果は見られなかった(表1)。
(Comparative Example 2)
For comparison with Example 1, the heat transfer member has the same outer radius and thickness as the heat transfer member used in Example 1, but has a disk shape without a hole in the center (that is, a disk having an outer radius of 70 mm). The simulation was performed in the same manner as in Example 1 except that the thermal member was used.
As a result of temperature distribution simulation, it was confirmed that the temperature rose by 4 ° C. due to the use of the above heat transfer member (Table 1).
In addition, as a result of the crystal growth simulation, the rate of increase in the amount of sublimation was -3% (decrease in the amount of sublimation) as compared with the case where the heat transfer member was not used, and no effect was observed (Table 1).

比較例2においても、比較例1の場合と同様に伝熱部材の下側に多結晶の析出が見られ、昇華量が低下している。比較例2の場合には、伝熱部材に開口部がないため、坩堝本体の中心部において伝熱部材の下側部分を通る昇華ガスの逃げ道がふさがれることが、昇華量低下の原因と考えられる。 In Comparative Example 2, as in the case of Comparative Example 1, the precipitation of polycrystals was observed on the lower side of the heat transfer member, and the amount of sublimation was reduced. In the case of Comparative Example 2, since the heat transfer member has no opening, it is considered that the cause of the decrease in the amount of sublimation is that the escape route of the sublimation gas passing through the lower part of the heat transfer member is blocked at the center of the crucible body. Be done.

(実施例7〜8、比較例3)
実施例1、比較例1、比較例2のシミュレーション結果を参考に、伝熱部材の水平方向の位置、構造が効果に及ぼす影響を確かめるため、伝熱部材の形状を以下のように変えた以外は実施例1と同様にしてシミュレーションを行った。
すなわち、実施例1で用いた伝熱部材と同じ外半径と内半径の差、厚さを有する伝熱部材の内半径を変え、比較例1と比較例2をそれぞれ内半径が最大(50mm)、最少(0mm、開口部なし)の場合として、その間を10mm刻みでシミュレーションを行った。尚、内半径が10mmの場合は実施例1である。
上記の条件で内半径が20mmの場合を実施例7、内半径が30mmの場合を実施例8、内半径が40mmの場合を比較例3とする。伝熱部材を使用しない場合に対する温度上昇と昇華量の増加率のシミュレーション結果を表1に示す。
また、伝熱部材の内半径に対する炭化珪素原料昇華量の増加率の変化を図7に示す。内半径が10〜30mmの範囲では、炭化珪素原料の昇華量が大きく増加していることがわかる。一方で、比較例2および3のように伝熱部材の外半径が大きく坩堝の側壁に近い場合と、比較例1のように伝熱部材の外半径が小さく内半径が0mm(開口部なし)の場合に原料昇華量の増加割合が小さいか、または逆に減少し、炭化珪素原料の効率的な昇華が達成されていないことがわかる。
(Examples 7 to 8, Comparative Example 3)
With reference to the simulation results of Example 1, Comparative Example 1, and Comparative Example 2, the shape of the heat transfer member was changed as follows in order to confirm the influence of the horizontal position and structure of the heat transfer member on the effect. Performed a simulation in the same manner as in Example 1.
That is, the inner radius of the heat transfer member having the same difference and thickness as the heat transfer member used in Example 1 is changed, and the inner radius of Comparative Example 1 and Comparative Example 2 is maximum (50 mm). In the case of the minimum (0 mm, no opening), the simulation was performed in increments of 10 mm between them. When the inner radius is 10 mm, it is the first embodiment.
Under the above conditions, the case where the inner radius is 20 mm is referred to as Example 7, the case where the inner radius is 30 mm is referred to as Example 8, and the case where the inner radius is 40 mm is referred to as Comparative Example 3. Table 1 shows the simulation results of the temperature rise and the rate of increase in the amount of sublimation when the heat transfer member is not used.
Further, FIG. 7 shows a change in the rate of increase in the amount of sublimation of the silicon carbide raw material with respect to the inner radius of the heat transfer member. It can be seen that the amount of sublimation of the silicon carbide raw material is greatly increased in the range of the inner radius of 10 to 30 mm. On the other hand, when the outer radius of the heat transfer member is large and close to the side wall of the crucible as in Comparative Examples 2 and 3, the outer radius of the heat transfer member is small and the inner radius is 0 mm (without an opening) as in Comparative Example 1. In this case, the rate of increase in the amount of sublimation of the raw material is small or conversely decreases, and it can be seen that efficient sublimation of the silicon carbide raw material has not been achieved.

Figure 0006925208
Figure 0006925208

本発明の原料内に伝熱部材を備えた炭化珪素単結晶製造方法は、特に大口径でかつ長尺の炭化珪素単結晶の製造に利用することができる。 The method for producing a silicon carbide single crystal having a heat transfer member in the raw material of the present invention can be used for producing a silicon carbide single crystal having a particularly large diameter and a long length.

1・・・坩堝本体、2・・・原料充填部、3・・・種結晶支持部、4・・・断熱材、5・・・ワークコイル、6・・・種結晶、 7・・・伝熱部材、8・・・原料

1 ... Crucible body, 2 ... Raw material filling part, 3 ... Seed crystal support part, 4 ... Insulation material, 5 ... Work coil, 6 ... Seed crystal, 7 ... Transmission Thermal parts, 8 ... Raw materials

Claims (8)

黒鉛製の坩堝本体と、該坩堝本体の下部に位置する原料充填部と、該原料充填部と対向する位置に種結晶が設置される種結晶支持部を有する単結晶成長装置を用いて、該原料充填部内に充填された炭化珪素原料を加熱して発生させた昇華ガスを、該種結晶支持部に設置した炭化珪素種結晶上に再結晶させる昇華再結晶法による炭化珪素単結晶の製造方法であって、
前記坩堝本体は円筒状の内側壁を有し、
前記炭化珪素原料より熱伝導率の高い物質からなる環状の伝熱部材が、前記炭化珪素原料の内部に配置され、
前記伝熱部材が、前記坩堝本体の中心軸からの距離が5mm以上かつ該坩堝本体の内半径の0.85倍以下の領域内に配置され
前記伝熱部材の熱伝導率が2000℃以上の温度において30W/mK以上であり、
前記伝熱部材がタングステンで構成されることを特徴とする炭化珪素単結晶の製造方法。
Using a single crystal growth apparatus having a graphite-made pit body, a raw material filling portion located at the lower part of the pit main body, and a seed crystal support portion in which a seed crystal is installed at a position facing the raw material filling portion. A method for producing a silicon carbide single crystal by a sublimation recrystallization method in which a sublimation gas generated by heating a silicon carbide raw material filled in a raw material filling portion is recrystallized on a silicon carbide seed crystal installed on the seed crystal support portion. And
The crucible body has a cylindrical inner wall surface and has a cylindrical inner wall surface.
An annular heat transfer member made of a substance having a higher thermal conductivity than the silicon carbide raw material is arranged inside the silicon carbide raw material.
The heat transfer member is arranged in a region where the distance from the central axis of the crucible body is 5 mm or more and 0.85 times or less of the inner radius of the crucible body .
The thermal conductivity of the heat transfer member is 30 W / mK or more at a temperature of 2000 ° C. or more.
A method for producing a silicon carbide single crystal, wherein the heat transfer member is made of tungsten.
黒鉛製の坩堝本体と、該坩堝本体の下部に位置する原料充填部と、該原料充填部と対向する位置に種結晶が設置される種結晶支持部を有する単結晶成長装置を用いて、該原料充填部内に充填された炭化珪素原料を加熱して発生させた昇華ガスを、該種結晶支持部に設置した炭化珪素種結晶上に再結晶させる昇華再結晶法による炭化珪素単結晶の製造方法であって、
前記坩堝本体は円筒状の内側壁を有し、
前記炭化珪素原料より熱伝導率の高い物質からなる環状の伝熱部材が、前記炭化珪素原料の内部に配置され、
前記伝熱部材が、前記坩堝本体の中心軸からの距離が5mm以上かつ該坩堝本体の内半径の0.85倍以下の領域内に配置され
前記伝熱部材の熱伝導率が2000℃以上の温度において30W/mK以上であり、
前記伝熱部材の形状が軸対称であり、該伝熱部材は、該伝熱部材の中心軸が前記坩堝本体の中心軸と一致するように配置され、
前記伝熱部材の形状は、前記伝熱部材の中心軸を通る平面で切断した際の断面が長方形でかつ径方向の長さが軸方向の長さより長い、孔あき円板状である、炭化珪素単結晶の製造方法。
Using a single crystal growth apparatus having a graphite-made pit body, a raw material filling portion located at the lower part of the pit main body, and a seed crystal support portion in which a seed crystal is installed at a position facing the raw material filling portion. A method for producing a silicon carbide single crystal by a sublimation recrystallization method in which a sublimation gas generated by heating a silicon carbide raw material filled in a raw material filling portion is recrystallized on a silicon carbide seed crystal installed on the seed crystal support portion. And
The crucible body has a cylindrical inner wall surface and has a cylindrical inner wall surface.
An annular heat transfer member made of a substance having a higher thermal conductivity than the silicon carbide raw material is arranged inside the silicon carbide raw material.
The heat transfer member is arranged in a region where the distance from the central axis of the crucible body is 5 mm or more and 0.85 times or less of the inner radius of the crucible body .
The thermal conductivity of the heat transfer member is 30 W / mK or more at a temperature of 2000 ° C. or more.
The shape of the heat transfer member is axisymmetric, and the heat transfer member is arranged so that the central axis of the heat transfer member coincides with the central axis of the crucible body.
The shape of the heat transfer member is a perforated disk-like shape having a rectangular cross section when cut in a plane passing through the central axis of the heat transfer member and a length in the radial direction longer than the length in the axial direction. A method for producing a silicon single crystal.
黒鉛製の坩堝本体と、該坩堝本体の下部に位置する原料充填部と、該原料充填部と対向する位置に種結晶が設置される種結晶支持部を有する単結晶成長装置を用いて、該原料充填部内に充填された炭化珪素原料を加熱して発生させた昇華ガスを、該種結晶支持部に設置した炭化珪素種結晶上に再結晶させる昇華再結晶法による炭化珪素単結晶の製造方法であって、
前記坩堝本体は円筒状の内側壁を有し、
前記炭化珪素原料より熱伝導率の高い物質からなる環状の伝熱部材が、前記炭化珪素原料の内部に配置され、
前記伝熱部材が、前記坩堝本体の中心軸からの距離が5mm以上かつ該坩堝本体の内半径の0.85倍以下の領域内に配置され
前記伝熱部材の熱伝導率が2000℃以上の温度において30W/mK以上であり、
前記伝熱部材の形状が軸対称であり、該伝熱部材は、該伝熱部材の中心軸が前記坩堝本体の中心軸と一致するように配置され、
前記伝熱部材の形状は、前記伝熱部材の中心軸を通る平面で切断した際の断面が円である円環状、又は、楕円である円環状に類する形状である、炭化珪素単結晶の製造方法。
Using a single crystal growth apparatus having a graphite-made pit body, a raw material filling portion located at the lower part of the pit main body, and a seed crystal support portion in which a seed crystal is installed at a position facing the raw material filling portion. A method for producing a silicon carbide single crystal by a sublimation recrystallization method in which a sublimation gas generated by heating a silicon carbide raw material filled in a raw material filling portion is recrystallized on a silicon carbide seed crystal installed on the seed crystal support portion. And
The crucible body has a cylindrical inner wall surface and has a cylindrical inner wall surface.
An annular heat transfer member made of a substance having a higher thermal conductivity than the silicon carbide raw material is arranged inside the silicon carbide raw material.
The heat transfer member is arranged in a region where the distance from the central axis of the crucible body is 5 mm or more and 0.85 times or less of the inner radius of the crucible body .
The thermal conductivity of the heat transfer member is 30 W / mK or more at a temperature of 2000 ° C. or more.
The shape of the heat transfer member is axisymmetric, and the heat transfer member is arranged so that the central axis of the heat transfer member coincides with the central axis of the crucible body.
Manufacture of a silicon carbide single crystal in which the shape of the heat transfer member is similar to an annular shape having a circular cross section or an elliptical annular shape when cut in a plane passing through the central axis of the heat transfer member. Method.
前記伝熱部材がタングステンで構成される請求項2または3に記載の炭化珪素単結晶の製造方法。 Method for producing a silicon carbide single crystal according to claim 2 or 3 consisting of the heat transfer member backlash tungsten. 前記伝熱部材の内半径が10〜30mmである、請求項1〜4のいずれか一項に記載の炭化珪素単結晶の製造方法。The method for producing a silicon carbide single crystal according to any one of claims 1 to 4, wherein the heat transfer member has an inner radius of 10 to 30 mm. 前記伝熱部材が前記炭化珪素原料の内部に複数配置されている請求項〜5のいずれか一項に記載の炭化珪素単結晶の製造方法。 The method for producing a silicon carbide single crystal according to any one of claims 1 to 5, wherein a plurality of the heat transfer members are arranged inside the silicon carbide raw material. 複数の前記伝熱部材が、それぞれの中心軸を坩堝本体の中心軸に一致させて、上下方向に並べて配置されている、請求項6に記載の炭化珪素単結晶の製造方法。 The method for producing a silicon carbide single crystal according to claim 6, wherein the plurality of heat transfer members are arranged side by side in the vertical direction with their respective central axes aligned with the central axis of the crucible body. 異なる構造を有する複数の前記伝熱部材が、互いに接することなく水平面内の異なる位置に配置されている、請求項6に記載の炭化珪素単結晶の製造方法。 The method for producing a silicon carbide single crystal according to claim 6, wherein a plurality of the heat transfer members having different structures are arranged at different positions in a horizontal plane without contacting each other.
JP2017172967A 2017-09-08 2017-09-08 Method for producing silicon carbide single crystal Active JP6925208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017172967A JP6925208B2 (en) 2017-09-08 2017-09-08 Method for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017172967A JP6925208B2 (en) 2017-09-08 2017-09-08 Method for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2019048736A JP2019048736A (en) 2019-03-28
JP6925208B2 true JP6925208B2 (en) 2021-08-25

Family

ID=65906221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017172967A Active JP6925208B2 (en) 2017-09-08 2017-09-08 Method for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP6925208B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503736B2 (en) * 1999-08-31 2010-07-14 独立行政法人産業技術総合研究所 Method and apparatus for producing single crystal
JP4872283B2 (en) * 2005-09-12 2012-02-08 パナソニック株式会社 Single crystal manufacturing apparatus and manufacturing method
JP6338439B2 (en) * 2014-05-02 2018-06-06 昭和電工株式会社 Method for producing silicon carbide single crystal ingot
JP6681687B2 (en) * 2015-09-30 2020-04-15 昭和電工株式会社 Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot

Also Published As

Publication number Publication date
JP2019048736A (en) 2019-03-28

Similar Documents

Publication Publication Date Title
KR101909439B1 (en) Heater assembly for crystal growth apparatus
JP5925319B2 (en) SiC single crystal manufacturing apparatus and SiC single crystal manufacturing method
JP6111873B2 (en) Method for producing silicon carbide single crystal ingot
JP6338439B2 (en) Method for producing silicon carbide single crystal ingot
CN106929919A (en) A kind of growing silicon carbice crystals crucible
JP2018168023A (en) Device and method for manufacturing silicon carbide single crystal ingot
CN106929913A (en) A kind of split type growing silicon carbice crystals crucible
JP6033650B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP6681687B2 (en) Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot
JP2018145071A (en) Crystal growth apparatus
JP6925208B2 (en) Method for producing silicon carbide single crystal
JP5715159B2 (en) Single crystal growth equipment
KR101724291B1 (en) Apparatus for growing silicon carbide single crystal using the method of reversal of Physical Vapor Transport
JP2016117624A (en) crucible
CN105112993A (en) Device and method for regulating growth temperature gradients of mu-PD (micro-pulling-down) crystals
JP6597537B2 (en) Single crystal manufacturing crucible and silicon single crystal manufacturing equipment
JP6872346B2 (en) Single crystal growth device
JP7186534B2 (en) Crystal growth device
JP2004123510A (en) Apparatus for manufacturing single crystal and method for manufacturing the same
JP2021088476A (en) Crystal growth apparatus
JP2021102531A (en) MANUFACTURING APPARATUS OF SiC SINGLE CRYSTAL AND MANUFACTURING METHOD OF SiC SINGLE CRYSTAL
US9932690B2 (en) Device for producing a monocrystal by crystallizing said monocrystal in a melting area
US11441235B2 (en) Crystal growing apparatus and crucible having a main body portion and a low radiation portion
JP6394124B2 (en) Method for producing crucible and single crystal
JP2019043788A (en) Method and apparatus for growing single crystal

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210604

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210803

R150 Certificate of patent or registration of utility model

Ref document number: 6925208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350