JP4048606B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method Download PDF

Info

Publication number
JP4048606B2
JP4048606B2 JP19504198A JP19504198A JP4048606B2 JP 4048606 B2 JP4048606 B2 JP 4048606B2 JP 19504198 A JP19504198 A JP 19504198A JP 19504198 A JP19504198 A JP 19504198A JP 4048606 B2 JP4048606 B2 JP 4048606B2
Authority
JP
Japan
Prior art keywords
raw material
single crystal
material powder
sublimation
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19504198A
Other languages
Japanese (ja)
Other versions
JP2000007492A (en
Inventor
春宣 栗山
泰男 木藤
尚宏 杉山
篤人 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP19504198A priority Critical patent/JP4048606B2/en
Publication of JP2000007492A publication Critical patent/JP2000007492A/en
Application granted granted Critical
Publication of JP4048606B2 publication Critical patent/JP4048606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、昇華法によって炭化珪素等の単結晶を製造する方法に関するものである。
【0002】
【従来の技術】
炭化珪素(SiC)等の単結晶を製造する方法として、昇華法が広く知られている。昇華法は、種結晶上に原料の昇華ガスを供給して炭化珪素単結晶を成長させる方法で、図4に示すように、黒鉛るつぼ1内にSiC原料粉末を収容して原料部2とし、るつぼ1を加熱して、発生する原料粉末の昇華ガスを、上部に配した種結晶4上で再結晶化させる。また、昇華法による単結晶の成長を制御する種々の方法が提案されており、その1つとして、特表平3−501118号公報には、原料粉末の組成や粒径分布、温度勾配等を制御することで、所望の結晶形のより大型の単結晶が得られることが開示されている。例えば、SiC原料粉末の組成を規定することにより、生成する昇華ガス中の化学種の比率を一定とし、また、粒径分布を規定することにより、単位体積中の比表面積を一定にすることができ、発生する昇華ガスの一定性を高めて、一定した結晶成長を可能にすることが記載されている。
【0003】
【発明が解決しようとする課題】
このように、昇華法によるSiC単結晶の成長量や品位は、昇華ガスの発生量およびその経時変化に大きく影響される。しかしながら、SiC原料粉末は、るつぼ内空間に接している原料表面部から昇華する傾向がある。図4は原料部2各部の昇華効率を濃淡で表したもので、原料部2の深さ方向で昇華効率に分布があり、下方ほど昇華効率が低いことが分かる。しかも、原料表面部の原料粉末が底部より先に昇華して炭化および焼結するために、結晶成長が進むとこの炭化層および焼結層により表面に蓋がされたような状態となり、底部の原料粉末の昇華が阻害される問題があった。これは、特に原料が多い場合に顕著であり、このような状態では、昇華ガスの発生量が低減し、効率よい結晶成長が妨げられるおそれがある。
【0004】
本発明は上記実情に鑑みてなされたものであり、その目的は、原料部全体で均一な昇華を行って、効率よく昇華ガスを発生させ、かつその経時変化を小さくして、高品位の単結晶を効率よく製造する方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明の請求項1では、単結晶製造容器内に種結晶と炭化珪素原料粉末を配して、上記原料粉末を昇華させ、上記種結晶上に炭化珪素単結晶を成長させる単結晶の製造方法において、上記容器下部内に上記原料粉末を収容するに際し、上記容器内空間に接する表面部に配置される原料粉末の粒子径が、底部に配置される上記原料粉末の粒子径より大径であり、これら大径の粒子間の間隙が、底部側で発生する昇華ガスの通路となるようにする。
【0006】
原料粉末の粒径が小さいと粒子同士の焼結が起こりやすく、粒子間の空間が小さくなって、昇華ガスを通しにくくなる。また、昇華が進んだ炭化層も同様に昇華ガスを通しにくくなること、上記容器内空間に接する表面部およびその近傍で上記原料粉末が焼結または炭化すると底部の昇華が阻害されることが、実験により判明した。そこで、本発明では、上記表面部およびその近傍の上記原料粉末で他の部分より大径粒子が多くなるようにし、粒子間の間隙を他の部分より大きくする。これにより原料底部で発生する昇華ガスを通しやすくなり、また、大径粒子は焼結や炭化が生じにくいので、昇華ガスの通路が閉塞されるのが防止できる。従って、原料底部の昇華が阻害されず、原料部全体で均一な昇華を行って、原料重量当たりの昇華量を増加させることができ、しかも、その経時変化を小さくして、良質の単結晶を効率よく製造することができる。
【0007】
請求項2の方法では、上記容器内空間に接する表面部の原料粉末が、粒径500〜1000μmの大径粒子を主に含み、粒径250μm以下の小径粒子を含まないようにする。好ましくは、粒径500〜1000μmの大径粒子で主に構成すると、空間を形成し焼結等を抑制する上記効果が大きい。また、粒径250μm以下の小径粒子を含まないので、大径粒子間の間隙に小径粒子が入り込まず、粒子間の空間を大きくする効果が高い。
【0008】
請求項3の方法では、上記原料粉末を、上記容器内空間に接する表面部から底部へ向けて平均粒径が小さくなるように配置する。粒径が小さいと単位重量当たりの表面積が大きくなり、また、単位重量当たりの表面積が大きいほど昇華ガスの発生量が多くなるので、原料底部の昇華を促進して、効率よい昇華が可能になる。
【0009】
請求項4の方法では、上記原料粉末を、上記容器内空間に接する表面部から底部へ向けて上記原料粉末の粒径分布が大きくなるように配置する。粒径分布を大きくすることによってパッキングを密にし、単位体積当たりの原料量を大きくして、原料底部からの昇華量を増加させ、効率よい昇華を可能にする。
【0012】
【発明の実施の形態】
以下、本発明の第1の実施の形態について、炭化珪素(SiC)単結晶の成長を例に説明する。図1(a)は本実施の形態で使用した単結晶製造装置の概略図で、単結晶製造容器となる黒鉛製のるつぼ1は、下半部内にSiC粉末を充填して原料部2となしてある。原料部2の上方は単結晶が成長するための空間部3となしてある。原料部2と対向するるつぼ1の頂面中央部には、図略の台座に支持されて種結晶4となるSiC単結晶が配設してある。種結晶4を構成するSiC単結晶は、例えばアチソン法による単結晶、またはアチソン結晶から成長させた昇華法単結晶等からなり、これを台座形状に合わせてウエハ状に加工した後、例えば、接着剤を用いて台座に接合される。
【0013】
本発明では、図1(b)に模式的に示すように、るつぼ1内にSiC粉末を充填する際に、空間部3に接する原料部2の表面部を含む上部が、他の部分より大径の粒子を多く含み、粒子間の間隙が他の部分より大きくなるようにする。好ましくは、空間部3に接する表面部を含む上部で、粒径500〜1000μmの大径粒子を主に含み、粒径250μm以下の小径粒子を含まないようにSiC粉末を充填するのがよい。粒径が500〜1000μmの範囲にある大径粒子を多く存在させることで、粒子同士の焼結や炭化を抑制し、粒径分布を小さく、特に、粒径250μm以下の小径粒子を含まないようにすることで、粒子間に空間を形成しやすくすることができる。
【0014】
空間部3に接する表面部を含む上部より下方の部位では、粒径または粒径分布は特に規定されず、小径粒子を含んでもよい。図1(b)では、原料部2の上部を粒径のほぼ同じ大径粒子のみで構成し、下部をより小径の粒子で構成するとともに、その粒径分布が
大きくなるようにしている。粒径分布が大きいとパッキングが密になり、空隙率が小さくなって単位重量当たりの表面積が大きくなる。つまり、原料部2の表面部と比較して底部の方が比表面積が大きければ、底部の昇華が促進されるので、深さ方向で均一な昇華が可能になる。なお、図1(b)では、原料部2の上部と下部でSiC粉末の充填方法を変えたが、表面部から底部に向けて平均粒径が連続的または段階的に小さくなるようにしてもよい。あるいは、平均粒径は同じで、粒径分布が連続的または段階的に大きくなるようにしてもよく、同様の効果が得られる。
【0015】
上記図1(a)の装置を用いて単結晶を製造する場合には、頂部に種結晶4を固定したるつぼ1内に、上記のようにしてSiC粉末を充填する。このるつぼ1を加熱装置内に配設し、図略のヒータで所定温度まで加熱する。るつぼ1内の雰囲気はアルゴンガス等の不活性ガス雰囲気とし、減圧下で、所定温度に加熱すると、原料部2のSiC粉末が昇華し、昇華ガスとなって種結晶4に供給される。原料部2の温度は、通常、2000℃〜2500℃となるようにし、種結晶4の温度がこれより10℃〜100℃程度、低温となるように保持して、るつぼ1内に上下方向に温度勾配が形成されるようにする。この時、昇華ガスは、るつぼ1内の温度勾配に従い、高温の原料部2から低温の種結晶4へ流れ、種結晶4表面で再結晶化してSiC単結晶が成長する。
【0016】
上記構成では、原料部2の上半部を小径粒子を含まない大径粒子で構成したので、粒子間の空間が大きく、また、結晶成長が進んでも、粒子同士の焼結や炭化または粒成長が起こりにくく、昇華ガスの通路が確保できる。さらに、原料部2の下半部をより小径の粒子で構成し、粒径分布を大きくして比表面積を大きくしたので、下半部のSiC粉末の昇華が促進され、深さ方向で均一な昇華を行うことができる。よって、下半部における原料の昇華が阻害されることがなく、原料部全体で均一な昇華を行い、原料重量当たりの昇華量を増加させることができる。かくして、効率よく昇華ガスを発生させ、かつその経時変化を小さくして、品質の良好な大型の単結晶を効率よく製造することができる。
【0017】
図2に本発明の第2の実施の形態を示す。本実施の形態では、原料部2の表面部が凹凸を有する形状となるようにSiC粉末を充填する。昇華は空間部3に接する原料部2の表面積に依存し、表面積が大きいほど昇華量が多くなることから、凹凸を設けて表面積を大きくすることで、表面が平坦な場合より昇華ガスの発生量を多くして、結晶成長を促進することができる。また、図3に示す本発明の第3の実施の形態のように、SiC粉末と化学的反応を起こしにくい材料、例えばTaCやグラファイトよりなる棒状または平板状部材5を、原料部2の表面部に埋設することもできる。この場合も、空間部3ないし棒状または平板状部材5と接する原料部2の表面が凹凸を有する形状となり、表面積を増大させて、昇華ガスの発生量を多くする同様の効果が得られる。
【0018】
なお、上記各実施の形態では、SiC単結晶の製造について説明したが、本発明に基づいて製造可能な単結晶はSiCに限られるものではなく、例えば、ZnSe、ZnS、CdS、CdSe、AlN、GaN、BN等、昇華法等の気相法により成長可能な単結晶のいずれに適用してもよい。
【図面の簡単な説明】
【図1】図1(a)は本発明の第1の実施の形態において使用した単結晶製造装置の全体概略断面図、図1(b)は図1(a)の要部拡大断面図である。
【図2】図2は本発明の第2の実施の形態において使用した単結晶製造装置の要部拡大断面図である。
【図3】図3は本発明の第3の実施の形態において使用した単結晶製造装置の要部拡大断面図である。
【図4】図4は従来の単結晶製造方法における原料部の昇華効率を示す単結晶製造装置の全体概略断面図である。
【符号の説明】
1 るつぼ(単結晶製造容器)
2 原料部
3 空間部
4 種結晶
5 棒状または平板状部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a single crystal such as silicon carbide by a sublimation method.
[0002]
[Prior art]
As a method for producing a single crystal such as silicon carbide (SiC), a sublimation method is widely known. The sublimation method is a method of growing a silicon carbide single crystal by supplying a sublimation gas of a raw material on a seed crystal. As shown in FIG. 4, a SiC raw material powder is accommodated in a graphite crucible 1 to form a raw material part 2, The crucible 1 is heated, and the generated sublimation gas of the raw material powder is recrystallized on the seed crystal 4 arranged on the top. In addition, various methods for controlling the growth of single crystals by the sublimation method have been proposed. As one of the methods, Japanese Patent Publication No. 3-501118 discloses the composition, particle size distribution, temperature gradient, etc. of the raw material powder. It is disclosed that, by controlling, a larger single crystal having a desired crystal form can be obtained. For example, by defining the composition of the SiC raw material powder, the ratio of chemical species in the generated sublimation gas can be made constant, and by defining the particle size distribution, the specific surface area in the unit volume can be made constant. It is described that the crystallinity of the generated sublimation gas can be increased to enable constant crystal growth.
[0003]
[Problems to be solved by the invention]
Thus, the growth amount and quality of the SiC single crystal by the sublimation method are greatly influenced by the generation amount of sublimation gas and its change with time. However, the SiC raw material powder tends to sublime from the raw material surface portion in contact with the crucible space. FIG. 4 shows the sublimation efficiency of each part of the raw material part 2 in light and shade, and it can be seen that the sublimation efficiency is distributed in the depth direction of the raw material part 2 and lower in the lower part. Moreover, since the raw material powder on the surface of the raw material sublimates before the bottom and carbonizes and sinters, when the crystal growth progresses, the surface is covered with the carbonized layer and the sintered layer. There was a problem that sublimation of the raw material powder was hindered. This is particularly noticeable when the amount of raw materials is large. In such a state, the generation amount of sublimation gas is reduced, and efficient crystal growth may be hindered.
[0004]
The present invention has been made in view of the above circumstances, and an object of the present invention is to perform uniform sublimation throughout the raw material part, efficiently generate sublimation gas, and reduce the change with time, thereby achieving high-quality single unit. The object is to provide a method for efficiently producing crystals.
[0005]
[Means for Solving the Problems]
According to claim 1 of the present invention, a method for producing a single crystal is provided in which a seed crystal and a silicon carbide raw material powder are arranged in a single crystal production vessel, the raw material powder is sublimated, and a silicon carbide single crystal is grown on the seed crystal. When the raw material powder is accommodated in the lower part of the container, the particle diameter of the raw material powder disposed on the surface part in contact with the space in the container is larger than the particle diameter of the raw material powder disposed on the bottom part . The gap between the large-diameter particles is used as a passage for sublimation gas generated on the bottom side .
[0006]
When the particle size of the raw material powder is small, the particles are likely to sinter, the space between the particles becomes small, and the sublimation gas is difficult to pass. Also, the carbonized layer that has undergone sublimation is similarly difficult to pass sublimation gas, and the sublimation at the bottom is inhibited when the raw material powder is sintered or carbonized in the vicinity of the surface portion in contact with the inner space of the container and in the vicinity thereof, It became clear by experiment. Therefore, in the present invention, the surface powder and the raw material powder in the vicinity thereof have more large-diameter particles than other portions, and the gaps between the particles are made larger than other portions. This facilitates the passage of sublimation gas generated at the bottom of the raw material, and the large-diameter particles are less likely to be sintered or carbonized, so that the passage of the sublimation gas can be prevented from being blocked. Therefore, sublimation at the bottom of the raw material is not hindered, and uniform sublimation can be performed on the entire raw material part to increase the amount of sublimation per weight of the raw material. It can be manufactured efficiently.
[0007]
In the method of claim 2, the raw material powder in the surface portion in contact with the inner space of the container mainly contains large-diameter particles having a particle diameter of 500 to 1000 μm and does not contain small-diameter particles having a particle diameter of 250 μm or less. Preferably, when mainly composed of large-diameter particles having a particle diameter of 500 to 1000 μm, the above-described effect of forming a space and suppressing sintering or the like is large. In addition, since small particles having a particle size of 250 μm or less are not included, the small particles do not enter the gaps between the large particles, and the effect of increasing the space between the particles is high.
[0008]
In the method of claim 3, the raw material powder is disposed so that the average particle diameter decreases from the surface portion in contact with the space in the container toward the bottom. When the particle size is small, the surface area per unit weight increases, and as the surface area per unit weight increases, the amount of sublimation gas generated increases, so that sublimation at the bottom of the raw material is promoted and efficient sublimation becomes possible. .
[0009]
In the method of claim 4, the raw material powder is arranged so that the particle size distribution of the raw material powder increases from the surface part in contact with the inner space of the container to the bottom part. The packing is made dense by increasing the particle size distribution, the amount of raw material per unit volume is increased, the amount of sublimation from the bottom of the raw material is increased, and efficient sublimation is enabled.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the first embodiment of the present invention will be described by taking the growth of a silicon carbide (SiC) single crystal as an example. FIG. 1A is a schematic diagram of a single crystal production apparatus used in the present embodiment. A graphite crucible 1 serving as a single crystal production container has a raw material part 2 formed by filling SiC powder in the lower half part. It is. Above the raw material portion 2 is a space portion 3 for growing a single crystal. An SiC single crystal that is supported by a pedestal (not shown) and serves as a seed crystal 4 is disposed at the center of the top surface of the crucible 1 facing the raw material portion 2. The SiC single crystal constituting the seed crystal 4 is composed of, for example, a single crystal by the Atchison method, or a sublimation single crystal grown from the Atchison crystal. After processing this into a pedestal shape into a wafer shape, for example, bonding It is joined to the pedestal using an agent.
[0013]
In the present invention, as schematically shown in FIG. 1 (b), when the SiC powder is filled in the crucible 1, the upper part including the surface part of the raw material part 2 in contact with the space part 3 is larger than the other parts. A large number of particles having a diameter are included so that the gap between the particles is larger than that of other portions. Preferably, the SiC powder is preferably filled so as to mainly include large-diameter particles having a particle diameter of 500 to 1000 μm and not including small-diameter particles having a particle diameter of 250 μm or less in the upper part including the surface part in contact with the space part 3. By having many large particles having a particle size in the range of 500 to 1000 μm, sintering and carbonization of the particles are suppressed, particle size distribution is small, and in particular, small particles having a particle size of 250 μm or less are not included. By making it, it can make it easy to form a space between particles.
[0014]
In the region below the upper part including the surface part in contact with the space part 3, the particle size or particle size distribution is not particularly defined, and may include small-diameter particles. In FIG. 1 (b), the upper part of the raw material part 2 is composed only of large-diameter particles having substantially the same particle diameter, and the lower part is composed of smaller-diameter particles, and the particle size distribution is increased. When the particle size distribution is large, the packing becomes dense, the porosity is reduced, and the surface area per unit weight is increased. That is, if the specific surface area of the bottom part is larger than that of the surface part of the raw material part 2, sublimation of the bottom part is promoted, so that uniform sublimation in the depth direction is possible. In FIG. 1B, the filling method of the SiC powder is changed between the upper part and the lower part of the raw material part 2, but the average particle diameter may be decreased continuously or stepwise from the surface part to the bottom part. Good. Alternatively, the average particle size may be the same, and the particle size distribution may be increased continuously or stepwise, and the same effect can be obtained.
[0015]
When a single crystal is manufactured using the apparatus of FIG. 1A, the SiC powder is filled in the crucible 1 having the seed crystal 4 fixed on the top as described above. This crucible 1 is disposed in a heating device and heated to a predetermined temperature with a heater (not shown). When the atmosphere in the crucible 1 is an inert gas atmosphere such as argon gas and heated to a predetermined temperature under reduced pressure, the SiC powder in the raw material part 2 is sublimated and supplied to the seed crystal 4 as a sublimation gas. The temperature of the raw material part 2 is usually set to 2000 ° C. to 2500 ° C., and the temperature of the seed crystal 4 is held at a low temperature of about 10 ° C. to 100 ° C. A temperature gradient is formed. At this time, the sublimation gas flows from the high temperature raw material portion 2 to the low temperature seed crystal 4 according to the temperature gradient in the crucible 1 and recrystallizes on the surface of the seed crystal 4 to grow a SiC single crystal.
[0016]
In the above configuration, since the upper half of the raw material portion 2 is composed of large-sized particles not containing small-sized particles, the space between the particles is large, and even if crystal growth proceeds, the particles are sintered or carbonized or grown. It is difficult to cause sublimation gas passage. Furthermore, since the lower half of the raw material part 2 is composed of particles having a smaller diameter and the particle size distribution is increased to increase the specific surface area, the sublimation of the SiC powder in the lower half is promoted and uniform in the depth direction. Sublimation can be performed. Therefore, sublimation of the raw material in the lower half is not hindered, and uniform sublimation can be performed throughout the raw material portion, so that the sublimation amount per raw material weight can be increased. Thus, it is possible to efficiently generate a sublimation gas and to reduce the change with time, and to efficiently produce a large single crystal with good quality.
[0017]
FIG. 2 shows a second embodiment of the present invention. In the present embodiment, the SiC powder is filled so that the surface portion of the raw material portion 2 has an uneven shape. Sublimation depends on the surface area of the raw material part 2 in contact with the space part 3, and the larger the surface area, the greater the amount of sublimation. By increasing the surface area by providing irregularities, the amount of sublimation gas generated is higher than when the surface is flat. The crystal growth can be promoted by increasing. Further, as in the third embodiment of the present invention shown in FIG. 3, a rod-like or flat plate-like member 5 made of a material that hardly causes a chemical reaction with SiC powder, such as TaC or graphite, is used as the surface portion of the raw material portion 2. It can also be embedded in Also in this case, the surface of the raw material portion 2 in contact with the space portion 3 or the rod-like or flat plate-like member 5 has an uneven shape, and the same effect can be obtained that the surface area is increased and the amount of sublimation gas generated is increased.
[0018]
In each of the above embodiments, the manufacture of the SiC single crystal has been described. However, the single crystal that can be manufactured based on the present invention is not limited to SiC. For example, ZnSe, ZnS, CdS, CdSe, AlN, The present invention may be applied to any of single crystals that can be grown by vapor phase methods such as sublimation methods such as GaN and BN.
[Brief description of the drawings]
FIG. 1 (a) is an overall schematic cross-sectional view of a single crystal manufacturing apparatus used in the first embodiment of the present invention, and FIG. 1 (b) is an enlarged cross-sectional view of a main part of FIG. 1 (a). is there.
FIG. 2 is an enlarged cross-sectional view of a main part of a single crystal manufacturing apparatus used in the second embodiment of the present invention.
FIG. 3 is an enlarged cross-sectional view of a main part of a single crystal manufacturing apparatus used in a third embodiment of the present invention.
FIG. 4 is an overall schematic cross-sectional view of a single crystal production apparatus showing the sublimation efficiency of a raw material part in a conventional single crystal production method.
[Explanation of symbols]
1 Crucible (single crystal production container)
2 Raw material part 3 Space part 4 Seed crystal 5 Bar-shaped or flat plate-shaped member

Claims (4)

単結晶製造容器内に種結晶と炭化珪素原料粉末を配して、上記原料粉末を昇華させ、上記種結晶上に炭化珪素単結晶を成長させる単結晶の製造方法において、上記容器下部内に上記原料粉末を収容するに際し、上記容器内空間に接する表面部に配置される上記原料粉末の粒子径が、底部に配置される上記原料粉末の粒子径より大径であり、これら大径の粒子間の間隙が、底部側で発生する昇華ガスの通路となるようにすることを特徴とする単結晶の製造方法。The single crystal production vessel by disposing a silicon carbide raw material powder and the seed crystal, sublimated the raw material powder, the method for producing a single crystal to grow a silicon carbide single crystal on the seed crystal, the above container bottom When containing the raw material powder , the particle diameter of the raw material powder disposed on the surface portion in contact with the space in the container is larger than the particle diameter of the raw material powder disposed on the bottom portion , and between these large-diameter particles A method for producing a single crystal, wherein the gap is a passage for sublimation gas generated on the bottom side . 上記容器内空間に接する表面部の原料粉末が、粒径500〜1000μmの大径粒子を主に含み、粒径250μm以下の小径粒子を含まないようにする請求項1記載の単結晶の製造方法。2. The method for producing a single crystal according to claim 1, wherein the raw material powder in the surface portion in contact with the inner space of the container mainly contains large-diameter particles having a particle diameter of 500 to 1000 μm and does not contain small-diameter particles having a particle diameter of 250 μm or less. . 上記原料粉末を、上記容器内空間に接する表面部から底部へ向けて上記原料粉末の平均粒径が小さくなるように配置する請求項1または2記載の単結晶の製造方法。  The method for producing a single crystal according to claim 1 or 2, wherein the raw material powder is arranged so that an average particle diameter of the raw material powder decreases from a surface part in contact with the space in the container toward a bottom part. 上記原料粉末を、上記容器内空間に接する表面部から底部へ向けて上記原料粉末の粒径分布が大きくなるように配置する請求項1または2記載の単結晶の製造方法。  The method for producing a single crystal according to claim 1 or 2, wherein the raw material powder is arranged so that a particle size distribution of the raw material powder increases from a surface portion in contact with the space in the container toward a bottom portion.
JP19504198A 1998-06-25 1998-06-25 Single crystal manufacturing method Expired - Lifetime JP4048606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19504198A JP4048606B2 (en) 1998-06-25 1998-06-25 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19504198A JP4048606B2 (en) 1998-06-25 1998-06-25 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2000007492A JP2000007492A (en) 2000-01-11
JP4048606B2 true JP4048606B2 (en) 2008-02-20

Family

ID=16334569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19504198A Expired - Lifetime JP4048606B2 (en) 1998-06-25 1998-06-25 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP4048606B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603530A (en) * 2016-01-12 2016-05-25 台州市一能科技有限公司 Raw material for high-speed growth of silicon carbide crystals and silicon carbide crystal growing method
KR101841109B1 (en) * 2011-07-28 2018-03-22 엘지이노텍 주식회사 Apparatus for fabricating ingot

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387680B2 (en) * 2005-05-13 2008-06-17 Cree, Inc. Method and apparatus for the production of silicon carbide crystals
JP4872283B2 (en) * 2005-09-12 2012-02-08 パナソニック株式会社 Single crystal manufacturing apparatus and manufacturing method
US20070110657A1 (en) * 2005-11-14 2007-05-17 Hunter Charles E Unseeded silicon carbide single crystals
JP2007284306A (en) * 2006-04-19 2007-11-01 Nippon Steel Corp Silicon carbide single crystal and method for manufacturing the same
JP4924291B2 (en) * 2007-08-28 2012-04-25 株式会社デンソー Method for producing silicon carbide single crystal
CN102758242B (en) * 2011-04-25 2015-04-08 江西赛维Ldk太阳能高科技有限公司 Charging method in monocrystalline silicon ingot casting, and monocrystalline silicon ingot casting method
KR20130022596A (en) * 2011-08-25 2013-03-07 엘지이노텍 주식회사 Apparatus for fabricating ingot and method for providing material
JP5582585B2 (en) * 2012-04-25 2014-09-03 國防部軍備局中山科學研究院 Crucible
JP6598368B2 (en) * 2015-12-02 2019-10-30 昭和電工株式会社 Manufacturing method of silicon carbide sintered body raw material, and manufacturing method of silicon carbide single crystal
CN106968018B (en) * 2017-04-10 2019-02-05 山东大学 A kind of growing method for the single-crystal silicon carbide material that germanium nitrogen is co-doped with
CN108946735B (en) * 2017-05-19 2022-11-11 新疆天科合达蓝光半导体有限公司 Synthesis method of large-particle-size silicon carbide powder for silicon carbide crystal growth
JP7242978B2 (en) * 2018-11-26 2023-03-22 株式会社レゾナック Manufacturing method of SiC single crystal ingot
JP7358944B2 (en) 2019-11-27 2023-10-12 株式会社レゾナック Heat transfer member for SiC single crystal growth, crucible for SiC single crystal growth, method for manufacturing SiC single crystal
CN113026095A (en) * 2021-03-15 2021-06-25 哈尔滨科友半导体产业装备与技术研究院有限公司 Method for improving growth rate of silicon carbide crystal prepared by PVT method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101841109B1 (en) * 2011-07-28 2018-03-22 엘지이노텍 주식회사 Apparatus for fabricating ingot
CN105603530A (en) * 2016-01-12 2016-05-25 台州市一能科技有限公司 Raw material for high-speed growth of silicon carbide crystals and silicon carbide crystal growing method
CN105603530B (en) * 2016-01-12 2018-02-27 台州市一能科技有限公司 For the raw material of carborundum crystals high-speed rapid growth and the growing method of carborundum crystals

Also Published As

Publication number Publication date
JP2000007492A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JP4048606B2 (en) Single crystal manufacturing method
US11761117B2 (en) SiC single crystal sublimation growth apparatus
US6786969B2 (en) Method and apparatus for producing single crystal, substrate for growing single crystal and method for heating single crystal
JP3961750B2 (en) Single crystal growth apparatus and growth method
JP4530542B2 (en) Production of bulk single crystals of aluminum nitride, silicon carbide, and aluminum nitride: silicon carbide alloys
JP4514339B2 (en) Method and apparatus for growing silicon carbide single crystal
US9376764B2 (en) Physical vapor transport growth system for simultaneously growing more than one SiC single crystal and method of growing
JP2007308364A (en) Method and apparatus for aluminum nitride monocrystal boule growth
CN110325670B (en) Silicon carbide substrate and method for growing SiC single crystal ingot
WO2000022203A9 (en) Production of bulk single crystals of aluminum nitride, silicon carbide and aluminum nitride:silicon carbide alloy
JPH10291899A (en) Production of silicon carbide single crystal and apparatus for production therefor
RU2094547C1 (en) Sublimation method for growing silicon carbide monocrystals and silicon carbide source involved
CN108624963A (en) A kind of raw material sintering process of carborundum crystals for the growth of PVT methods
KR102107626B1 (en) Apparatus for growing silicon carbide single cryatal and method for growing silicon carbide single cryatal
JP2000264795A (en) Apparatus and method for producing silicon carbide single crystal
JP4431647B2 (en) Method for improving surface of single crystal silicon carbide substrate and method for growing single crystal silicon carbide
JP2000264793A (en) Method and apparatus for producing silicon carbide single crystal
US7371281B2 (en) Silicon carbide single crystal and method and apparatus for producing the same
Hartmann et al. Homoepitaxial seeding and growth of bulk AlN by sublimation
JPH0637354B2 (en) Method and apparatus for growing silicon carbide single crystal
JP4505202B2 (en) Method and apparatus for producing silicon carbide single crystal
JP4110611B2 (en) Single crystal manufacturing equipment
JP2005126249A (en) Method for growing single crystal silicon carbide
JPH0570276A (en) Device for producing single crystals
KR101409424B1 (en) Method for decreasing defects of silicon-carbide seed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term