JP2000264795A - Apparatus and method for producing silicon carbide single crystal - Google Patents

Apparatus and method for producing silicon carbide single crystal

Info

Publication number
JP2000264795A
JP2000264795A JP11078292A JP7829299A JP2000264795A JP 2000264795 A JP2000264795 A JP 2000264795A JP 11078292 A JP11078292 A JP 11078292A JP 7829299 A JP7829299 A JP 7829299A JP 2000264795 A JP2000264795 A JP 2000264795A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
carbide single
crystal substrate
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11078292A
Other languages
Japanese (ja)
Other versions
JP4089073B2 (en
Inventor
Hidemi Oguri
英美 小栗
Fusao Hirose
富佐雄 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP07829299A priority Critical patent/JP4089073B2/en
Publication of JP2000264795A publication Critical patent/JP2000264795A/en
Application granted granted Critical
Publication of JP4089073B2 publication Critical patent/JP4089073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To flatten the growing surface by making radiant heat from a flat plate uniform. SOLUTION: Growing of a silicon carbide single crystal is carried out by laminatedly arranging plural shielding plates 5a having a flat surface part of a diameter at least not less than that of a silicon carbide single crystal substrate 3, between the silicon carbide single crystal substrate 3 and a silicon carbide powdery raw material 4 so that the growing surface of the silicon carbide single crystal substrate 3 opposes to the flat surface part. Thus, in the case that the plural shield plates 5a are arranged between the silicon carbide single crystal substrate 3 and the silicon carbide powdery raw material 4, the temp. at the upper surface of the shield plate 5a, which is arranged at the nearest side to the silicon carbide single crystal substrate 3, among plural shield plates 5a, is made almost uniform by each heat radiation of the plural shield plates 5a. Thus, the growing surface of silicon carbide single crystal 10 can be flattened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体や発光ダイ
オードなどの素材に利用することができる炭化珪素単結
晶の製造方法及び製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a silicon carbide single crystal which can be used for a material such as a semiconductor or a light emitting diode.

【0002】[0002]

【従来の技術】従来の炭化珪素単結晶の製造用の黒鉛製
るつぼを図7に示す。従来、昇華法によるSiCバルク
単結晶の製造においては、図7に示すように、容器51
上方に配置された種結晶52と容器51下方に配置され
た原料部53との温度差をつけるために、種結晶52と
原料部53との間に厚さ10mm程度の円形の平板54
を1枚配置するようにしている(特開平8−29559
5号公報参照)。
2. Description of the Related Art FIG. 7 shows a conventional graphite crucible for producing a silicon carbide single crystal. Conventionally, in the production of a SiC bulk single crystal by a sublimation method, as shown in FIG.
A circular flat plate 54 having a thickness of about 10 mm is provided between the seed crystal 52 and the raw material part 53 in order to make a temperature difference between the seed crystal 52 disposed above and the raw material part 53 disposed below the container 51.
(See Japanese Unexamined Patent Publication No. 8-29559).
No. 5).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、円形平
板54の表面温度が不均一であるため、円形平板54の
熱輻射を受ける種結晶52及び成長結晶55の表面温度
も不均一となり、成長した炭化珪素単結晶55の成長表
面が平坦にならず、高品位な炭化珪素単結晶55が得ら
れないという問題がある。
However, since the surface temperature of the circular flat plate 54 is non-uniform, the surface temperatures of the seed crystal 52 and the grown crystal 55 which receive the heat radiation of the circular flat plate 54 also become non-uniform, and There is a problem that the growth surface of silicon single crystal 55 is not flat and high-quality silicon carbide single crystal 55 cannot be obtained.

【0004】本発明は上記問題に鑑みて成され、平板か
らの輻射熱を均一化させることにより、成長表面を平坦
にできる炭化珪素単結晶の製造方法及びそれに適用され
る製造装置を提供することを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a method of manufacturing a silicon carbide single crystal capable of flattening a growth surface by making radiant heat from a flat plate uniform, and a manufacturing apparatus applied to the method. Aim.

【0005】[0005]

【課題を解決するための手段】上記問題を解決すべく、
請求項1に記載の発明においては、容器(1、2)内
に、成長させる炭化珪素単結晶の原料(4)と、種結晶
となる炭化珪素単結晶基板(3)を配置し、原料を昇華
させて炭化珪素単結晶基板上に炭化珪素単結晶(10)
を成長させる単結晶製造方法において、少なくとも炭化
珪素単結晶基板の直径以上の平面部を有する複数枚の板
部材(5a)を、炭化珪素単結晶基板と原料との間に、
炭化珪素単結晶基板の成長表面と平面部とが対向するよ
うに積層配置して炭化珪素単結晶の成長を行なうことを
特徴としている。
In order to solve the above problems,
According to the first aspect of the present invention, a raw material (4) of a silicon carbide single crystal to be grown and a silicon carbide single crystal substrate (3) serving as a seed crystal are arranged in containers (1, 2), and the raw materials are Sublimated silicon carbide single crystal on silicon carbide single crystal substrate (10)
In the method for producing a single crystal, a plurality of plate members (5a) having at least a plane portion having a diameter equal to or larger than the diameter of the silicon carbide single crystal substrate are placed between the silicon carbide single crystal substrate and the raw material.
It is characterized in that a silicon carbide single crystal is grown by being stacked and arranged so that a growth surface of a silicon carbide single crystal substrate and a plane portion face each other.

【0006】このように、炭化珪素単結晶基板と炭化珪
素原料との間に複数の板部材を配置することによって、
複数の板部材それぞれの熱輻射によって、複数の板部材
のうち最も炭化珪素単結晶基板に近い側において板部材
の上面温度が略均一になるようにできる。これにより、
炭化珪素単結晶の成長表面を平坦にできる。例えば、請
求項2に示すように、複数枚の板部材のそれぞれの間に
隙間を設けて配置し、該複数枚の板部材それぞれの外周
部で支持されるようにすることができる。
By arranging a plurality of plate members between the silicon carbide single crystal substrate and the silicon carbide raw material,
By the thermal radiation of each of the plurality of plate members, the upper surface temperature of the plate members can be made substantially uniform on the side closest to the silicon carbide single crystal substrate among the plurality of plate members. This allows
The growth surface of the silicon carbide single crystal can be made flat. For example, as described in claim 2, a gap may be provided between each of the plurality of plate members so as to be supported by the outer periphery of each of the plurality of plate members.

【0007】請求項3に記載の発明においては、少なく
とも炭化珪素単結晶基板の直径以上の平面部を有すると
共に原料の蒸気を通過させることができる貫通孔が形成
された板部材(5c)を、炭化珪素単結晶基板と原料と
の間に、炭化珪素単結晶基板の成長表面と平面部とが対
向するように配置し、この板部材の外周を容器の内壁で
支持するようにして炭化珪素単結晶の成長を行なうこと
を特徴としている。
According to the third aspect of the present invention, a plate member (5c) having at least a flat portion having a diameter equal to or larger than the diameter of the silicon carbide single crystal substrate and having a through-hole through which a raw material vapor can pass is formed. The silicon carbide single-crystal substrate is placed between the raw material and the raw material such that the growth surface of the silicon carbide single-crystal substrate and the flat portion face each other, and the outer periphery of this plate member is supported by the inner wall of the container. It is characterized by growing crystals.

【0008】このように、板部材の外周を容器の内壁で
支持するようにすることで、支持棒などによる支持とこ
となり、支持部分からの熱伝導による影響を受け難くで
きる。これにより、請求項1と同様の効果が得られる。
請求項4に記載の発明においては、支持棒(7)にて、
少なくとも炭化珪素単結晶基板の直径以上の平面部を有
すると共に該平面部における厚みが支持棒の支持部分の
直径以上となっている板部材(5b)を、炭化珪素単結
晶基板と原料との間に、炭化珪素単結晶基板の成長表面
と平面部とが対向するように配置して炭化珪素単結晶の
成長を行なうことを特徴としている。
As described above, by supporting the outer periphery of the plate member with the inner wall of the container, the plate member is supported by a support rod or the like, and is less likely to be affected by heat conduction from the support portion. Thereby, the same effect as the first aspect can be obtained.
In the invention according to claim 4, the support rod (7)
A plate member (5b) having at least a plane portion having a diameter equal to or greater than the diameter of the silicon carbide single crystal substrate and having a thickness in the plane portion equal to or greater than the diameter of the support portion of the support rod is placed between the silicon carbide single crystal substrate and the raw material. In addition, a silicon carbide single crystal is grown by arranging a growth surface of a silicon carbide single crystal substrate and a plane portion to face each other.

【0009】このように、板部材の板厚を支持棒による
支持部分の直径以上にすることにより、板部材の厚みに
よって板部材の上面において熱伝導が略均一に行われる
ようにできる。これにより、請求項1と同様の効果が得
られる。好ましくは、請求項5に示すように、板部材の
板厚が、支持棒の支持部の直径に対して少なくとも2倍
以上となっているものがよい。
As described above, by making the thickness of the plate member equal to or greater than the diameter of the portion supported by the support rod, heat conduction can be performed substantially uniformly on the upper surface of the plate member by the thickness of the plate member. Thereby, the same effect as the first aspect can be obtained. Preferably, the thickness of the plate member is at least twice as large as the diameter of the support portion of the support bar.

【0010】なお、請求項6に示すように、板部材を均
質な黒鉛で構成したり、請求項7に示すように、板部材
を多孔質黒鉛で構成することができる。また、請求項8
に示すように、板部材を円形状で構成すると、板部材内
での熱伝導が板部材の中央部を中心として対称とするこ
とができる。なお、上記各請求項に示す炭化珪素単結晶
の製造方法は、請求項10乃至14に示す炭化珪素単結
晶の製造装置を用いるて実施可能である。
[0010] The plate member can be made of homogeneous graphite as described in claim 6, or the plate member can be formed of porous graphite as described in claim 7. Claim 8
As shown in (1), when the plate member is formed in a circular shape, the heat conduction in the plate member can be symmetric about the center of the plate member. The method for manufacturing a silicon carbide single crystal described in each of the above claims can be implemented using the apparatus for manufacturing a silicon carbide single crystal described in claims 10 to 14.

【0011】なお、上記した 括弧内の符号は後述する
実施形態における図中の符号と対応している。
Note that the reference numerals in parentheses correspond to the reference numerals in the drawings in the embodiment described later.

【0012】[0012]

【発明の実施の形態】(第1実施形態)図1に、本発明
の第1実施形態で用いる結晶成長装置としての黒鉛製る
つぼを示す。この黒鉛製るつぼは、黒鉛製るつぼの底部
に備えられた炭化珪素原料粉末4を熱処理によって昇華
させ、種結晶である炭化珪素単結晶基板3上に炭化珪素
単結晶10を結晶成長させるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 shows a graphite crucible as a crystal growth apparatus used in a first embodiment of the present invention. In this graphite crucible, silicon carbide raw material powder 4 provided at the bottom of the graphite crucible is sublimated by heat treatment to grow silicon carbide single crystal 10 on silicon carbide single crystal substrate 3 as a seed crystal. .

【0013】この黒鉛製るつぼは、上面が開口している
略円筒形状のるつぼ本体1と、るつぼ本体1の開口部を
塞ぐ蓋材2とを備えて構成されている。この黒鉛製るつ
ぼを構成する蓋材2を台座として、台座上に炭化珪素単
結晶基板3が配置されている。そして、るつぼ本体1の
底部には炭化珪素原料粉末4が充填されており、この炭
化珪素原料粉末4を昇華させることによって、炭化珪素
単結晶基板3を種結晶として、種結晶の表面に炭化珪素
単結晶を結晶成長させられるようになっている。
The graphite crucible includes a substantially cylindrical crucible body 1 having an open upper surface, and a lid 2 for closing the opening of the crucible body 1. Using the lid member 2 constituting the graphite crucible as a pedestal, a silicon carbide single crystal substrate 3 is arranged on the pedestal. Silicon carbide raw material powder 4 is filled in the bottom of crucible body 1, and by sublimating silicon carbide raw material powder 4, silicon carbide single crystal substrate 3 is used as a seed crystal, and silicon carbide is formed on the surface of the seed crystal. A single crystal can be grown.

【0014】また、黒鉛製るつぼには、炭化珪素原料粉
末4と炭化珪素単結晶基板3との間に配置された複数枚
(本実施形態では2枚)の遮蔽板(板部材)5aが備え
られている。これらの遮蔽板5aは、炭化珪素単結晶基
板3の成長表面と対向する平面を有する略円形の平板で
構成されている。そして、複数枚の遮蔽板5aそれぞれ
の間に遮蔽板5aの外周と同等の径を有する円環状の環
状部材6が配置され、複数枚の遮蔽板5aのそれぞれの
間に隙間が空けられた構成されている。これら遮蔽板5
aは、均一材質のもの、例えば黒鉛でされている。
The graphite crucible is provided with a plurality of (two in this embodiment) shielding plates (plate members) 5a disposed between the silicon carbide raw material powder 4 and the silicon carbide single crystal substrate 3. Have been. Shielding plate 5 a is formed of a substantially circular flat plate having a plane facing the growth surface of silicon carbide single crystal substrate 3. An annular member 6 having a diameter equal to the outer circumference of the shielding plate 5a is arranged between each of the shielding plates 5a, and a gap is provided between each of the shielding plates 5a. Have been. These shielding plates 5
“a” is made of a uniform material, for example, graphite.

【0015】また、これらの遮蔽板5aのうち最も炭化
珪素原料粉末4側のものは、その中心部がるつぼ本体1
の底部から延ばされた支持棒7によって支持されてい
る。この遮蔽板5aの板厚は、該遮蔽板5aの支持部
分、つまり遮蔽板5aと支持棒7との接合部位における
支持棒7の直径以上となっている。なお、図示しない
が、黒鉛製るつぼは、アルゴンガスが導入できる真空容
器の中でヒータにより加熱できるようになっており、こ
のヒータのパワーを調節することによって種結晶である
炭化珪素単結晶基板3の温度が炭化珪素原料粉末4の温
度よりも100℃程度低温に保たれるようにできる。
The one of these shielding plates 5a which is closest to the silicon carbide raw material powder 4 has a central portion whose crucible body 1
Is supported by a support rod 7 extending from the bottom of the support. The thickness of the shield plate 5a is equal to or greater than the diameter of the support bar 7 at the portion where the shield plate 5a is supported, that is, at the joint between the shield plate 5a and the support bar 7. Although not shown, the graphite crucible can be heated by a heater in a vacuum vessel into which an argon gas can be introduced. By adjusting the power of the heater, the silicon carbide single crystal substrate 3 serving as a seed crystal can be heated. Can be maintained at about 100 ° C. lower than the temperature of the silicon carbide raw material powder 4.

【0016】このように構成された結晶成長装置を用い
た炭化珪素単結晶の製造工程について説明する。まず、
炭化珪素原料粉末4の温度を2000〜2500℃に加
熱する。そして、ヒータ調節等により、炭化珪素単結晶
基板3の温度が炭化珪素原料粉末4の温度よりも低くな
るように、黒鉛製るつぼ内に温度勾配を設ける。
A process for manufacturing a silicon carbide single crystal using the thus-configured crystal growth apparatus will be described. First,
The temperature of silicon carbide raw material powder 4 is heated to 2000 to 2500 ° C. Then, a temperature gradient is provided in the graphite crucible so that the temperature of silicon carbide single crystal substrate 3 is lower than the temperature of silicon carbide raw material powder 4 by adjusting a heater or the like.

【0017】次に、黒鉛製るつぼ内の圧力は0. 1〜5
0Torrとして、昇華法成長を開始すると、炭化珪素
粉末4が昇華して昇華ガスとなり、炭化珪素単結晶基板
3に到達し、炭化珪素粉末4側よりも相対的に低温とな
る炭化珪素単結晶基板3の表面上に炭化珪素単結晶10
が成長する。その際、遮蔽板5aの下面の温度は、炭化
珪素原料粉末4及び支持棒7による厚みによる熱輻射や
熱伝導により不均一になるが、最も炭化珪素単結晶基板
3に近い遮蔽板5aの上面の温度は、複数の遮蔽板5a
の熱輻射によって略均一になる。
Next, the pressure in the graphite crucible is 0.1-5.
When the sublimation growth is started at 0 Torr, the silicon carbide powder 4 sublimates and becomes a sublimation gas, reaches the silicon carbide single crystal substrate 3, and has a relatively lower temperature than the silicon carbide powder 4 side. 3 on the surface of silicon carbide single crystal 10
Grows. At this time, the temperature of the lower surface of shielding plate 5a becomes non-uniform due to heat radiation and heat conduction due to the thickness of silicon carbide raw material powder 4 and support bar 7, but the upper surface of shielding plate 5a closest to silicon carbide single crystal substrate 3 Of the plurality of shielding plates 5a
And becomes substantially uniform due to heat radiation.

【0018】図2に、本実施形態における結晶成長装置
を用いて炭化珪素単結晶10を結晶成長させた場合(支
持棒による支持)における遮蔽板5aの上面温度のシミ
ュレーション結果を示す。なお、参考として、遮蔽板5
aを1枚のみにした従来構造で結晶成長を行なった場合
における遮蔽板5aの上面温度のシミュレーション結果
を図2中に示す。なお、本図において遮蔽板5aの中心
部からの距離をRとし、その場所における温度をTとし
ている。
FIG. 2 shows a simulation result of the upper surface temperature of shielding plate 5a when silicon carbide single crystal 10 is grown (supported by a support rod) using the crystal growth apparatus of the present embodiment. For reference, the shielding plate 5
FIG. 2 shows a simulation result of the upper surface temperature of the shielding plate 5a in the case where the crystal growth is performed with the conventional structure having only one a. In this figure, the distance from the center of the shielding plate 5a is R, and the temperature at that location is T.

【0019】この図からも、遮蔽板5aを複数枚積層し
た場合に方が、従来のように1枚の場合よりも上面温度
が均一となっていることが判る。なお、図2中では、遮
蔽板5aの中心部からの距離が遠くなった場所で遮蔽板
5aの上面の温度が上昇した状態となっているが、これ
らの場所は炭化珪素単結晶基板3の径を超えたところで
あり、少なくとも炭化珪素単結晶基板3と対向する場所
においては遮蔽板5aの上面の温度が均一となった状態
となっている。
From this figure, it can be seen that the upper surface temperature is more uniform when a plurality of shielding plates 5a are stacked than in the conventional case where one shielding plate 5a is stacked. In FIG. 2, the temperature of the upper surface of shielding plate 5 a is increased at a place where the distance from the center of shielding plate 5 a is long. The temperature of the upper surface of shielding plate 5a has become uniform at least at a place where the diameter exceeds the diameter and at least a place facing silicon carbide single crystal substrate 3.

【0020】従って、遮蔽板5aの上面の熱輻射を直接
受ける炭化珪素単結晶基板3及び炭化珪素単結晶10の
表面温度は均一になり、炭化珪素単結晶10の表面は平
坦化され、高品質な炭化珪素単結晶10を成長させるこ
とができる。なお、図2中の容器内壁での支持について
は後述する。 (第2実施形態)図3に、本発明の第2実施形態で用い
る黒鉛製るつぼを示す。なお、本実施形態における黒鉛
製るつぼは、第1実施形態とほぼ同様の構成であるた
め、異なる構成についてのみ説明する。
Therefore, the surface temperatures of silicon carbide single crystal substrate 3 and silicon carbide single crystal 10 which directly receive heat radiation on the upper surface of shielding plate 5a become uniform, the surface of silicon carbide single crystal 10 is flattened, and high quality is obtained. Silicon carbide single crystal 10 can be grown. The support on the inner wall of the container in FIG. 2 will be described later. (Second Embodiment) FIG. 3 shows a graphite crucible used in a second embodiment of the present invention. The graphite crucible according to the present embodiment has substantially the same configuration as that of the first embodiment, and thus only different configurations will be described.

【0021】本実施形態における黒鉛製るつぼには、炭
化珪素原料粉末4と炭化珪素単結晶基板3との間に配置
された遮蔽板(板部材)5bが備えられている。この遮
蔽板5bは、炭化珪素単結晶基板3の成長表面と対向す
る平面を有する略円形の平板で構成されている。この遮
蔽板5bは、均一材質のもの、例えば黒鉛でされてい
る。この遮蔽板5bは、中心部がるつぼ本体1の底部か
ら延ばされた支持棒7によって支持されている。この遮
蔽板5bの板厚は、該遮蔽板5bの支持部分、つまり遮
蔽板5bと支持棒との接合部位における支持棒の直径の
略2倍以上となっている。
The graphite crucible according to the present embodiment is provided with a shielding plate (plate member) 5 b disposed between the silicon carbide raw material powder 4 and the silicon carbide single crystal substrate 3. Shielding plate 5 b is formed of a substantially circular flat plate having a plane facing the growth surface of silicon carbide single crystal substrate 3. The shielding plate 5b is made of a uniform material, for example, graphite. The shielding plate 5 b is supported by a support bar 7 whose center extends from the bottom of the crucible body 1. The thickness of the shield plate 5b is approximately twice or more the diameter of the support bar at the portion where the shield plate 5b is supported, that is, at the joint between the shield plate 5b and the support bar.

【0022】このように構成された結晶成長装置を用い
て、第1実施形態と同様の工程を施して炭化珪素単結晶
を結晶成長させる。その際、遮蔽板5bの下面の温度
は、炭化珪素原料粉末4及び支持棒7による熱輻射や熱
伝導により不均一になるが、遮蔽板5bの上面の温度
は、遮蔽板5bの厚みに熱伝導によって略均一になる。
Using the crystal growth apparatus configured as described above, the same process as in the first embodiment is performed to grow a silicon carbide single crystal. At this time, the temperature of the lower surface of the shielding plate 5b becomes non-uniform due to heat radiation and heat conduction by the silicon carbide raw material powder 4 and the support rods 7, but the temperature of the upper surface of the shielding plate 5b is reduced by the thickness of the shielding plate 5b. It becomes substantially uniform by conduction.

【0023】図4に、本実施形態における結晶成長装置
を用いて炭化珪素単結晶10を結晶成長させた場合にお
ける遮蔽板5bの上面温度のシミュレーション結果を示
す。なお、参考として、遮蔽板5bの板厚を支持棒7の
直径と同等にした場合、及び遮蔽板5bの板厚を支持棒
7の直径の1/2にした場合における遮蔽板5bの上面
温度のシミュレーション結果を図4中に示す。
FIG. 4 shows a simulation result of the upper surface temperature of shielding plate 5b in the case where silicon carbide single crystal 10 is grown using the crystal growth apparatus of this embodiment. For reference, the upper surface temperature of the shielding plate 5b when the thickness of the shielding plate 5b is equal to the diameter of the support rod 7 and when the thickness of the shielding plate 5b is 1/2 of the diameter of the support rod 7 are set. FIG. 4 shows the result of the simulation.

【0024】この図からも、遮蔽板5bの板厚を厚くし
た場合の方が、従来のように薄い場合よりも上面温度が
均一となっていることが判る。従って、遮蔽板5bの上
面の熱輻射を直接受ける炭化珪素単結晶基板3及び炭化
珪素単結晶10の表面温度は均一になり、炭化珪素単結
晶10の表面は平坦化され、高品質な炭化珪素単結晶1
0を成長させることができる (第3実施形態)図5に、本発明の第2実施形態で用い
る黒鉛製るつぼを示す。なお、本実施形態における黒鉛
製るつぼは、第1実施形態とほぼ同様の構成であるた
め、異なる構成についてのみ説明する。
From this figure, it can be seen that the upper surface temperature is more uniform when the shielding plate 5b is made thicker than when it is thinner as in the conventional case. Therefore, the surface temperatures of silicon carbide single crystal substrate 3 and silicon carbide single crystal 10 that directly receive heat radiation on the upper surface of shielding plate 5b become uniform, the surface of silicon carbide single crystal 10 is flattened, and high quality silicon carbide is obtained. Single crystal 1
Third Embodiment FIG. 5 shows a graphite crucible used in the second embodiment of the present invention. The graphite crucible according to the present embodiment has substantially the same configuration as that of the first embodiment, and thus only different configurations will be described.

【0025】本実施形態における黒鉛製るつぼには、炭
化珪素原料粉末4と炭化珪素単結晶基板3との間に配置
された遮蔽板(板部材)5cが備えられている。遮蔽板
5cは、炭化珪素単結晶基板3の成長表面と対向する平
面を有する略円形の平板で構成されている。遮蔽板5c
は、略円形の外周がるつぼ本体1の内壁のガイドに支持
された構成となっている。この遮蔽板5cは、例えば均
一材質の多孔質黒鉛でされており、炭化珪素の昇華ガス
が通過できるようになっている。
The graphite crucible according to this embodiment is provided with a shielding plate (plate member) 5 c disposed between the silicon carbide raw material powder 4 and the silicon carbide single crystal substrate 3. Shielding plate 5 c is formed of a substantially circular flat plate having a plane facing the growth surface of silicon carbide single crystal substrate 3. Shield plate 5c
Has a substantially circular outer periphery supported by a guide on the inner wall of the crucible body 1. The shielding plate 5c is made of, for example, porous graphite of a uniform material so that a sublimation gas of silicon carbide can pass therethrough.

【0026】このように構成された結晶成長装置を用い
て、第1実施形態と同様の工程を施して炭化珪素単結晶
10を結晶成長させる。その際、遮蔽板5cは、第1、
第2実施形態のように支持棒7によって支持されるもの
ではなく、るつぼ本体1の内壁のガイドによって支持さ
れるものであるため、支持される部分から受ける熱伝導
による影響を受け難く、遮蔽板5cの上面の温度が遮蔽
板5cの厚みに熱伝導によって略均一になる。
Using the crystal growth apparatus configured as described above, the same steps as in the first embodiment are performed to grow silicon carbide single crystal 10. At that time, the shielding plate 5c is
It is not supported by the support bar 7 as in the second embodiment, but is supported by a guide on the inner wall of the crucible main body 1, so it is hardly affected by the heat conduction received from the supported portion, and the shielding plate The temperature of the upper surface of 5c becomes substantially uniform by the heat conduction to the thickness of the shielding plate 5c.

【0027】図6に、本実施形態における結晶成長装置
を用いて炭化珪素単結晶10を結晶成長させた場合にお
ける遮蔽板5cの上面温度のシミュレーション結果を示
す。なお、参考として、従来のように支持棒で遮蔽板5
cを支持した場合における遮蔽板5cの上面温度のシミ
ュレーション結果を図4中に示す。この図からも、遮蔽
板5cの外周をるつぼ本体1で支持した場合の方が、従
来のように支持棒で支持する場合よりも上面温度が均一
となっていることが判る。
FIG. 6 shows a simulation result of the upper surface temperature of shielding plate 5c when silicon carbide single crystal 10 is grown using the crystal growth apparatus of this embodiment. For reference, the shielding plate 5 is supported by a support rod as in the prior art.
FIG. 4 shows a simulation result of the upper surface temperature of the shielding plate 5c in the case where c is supported. From this figure, it can be seen that the upper surface temperature is more uniform when the outer periphery of the shielding plate 5c is supported by the crucible body 1 than when it is supported by a support rod as in the related art.

【0028】従って、遮蔽板5cの上面の熱輻射を直接
受ける炭化珪素単結晶基板3及び炭化珪素単結晶10の
表面温度は均一になり、炭化珪素単結晶10の表面は平
坦化され、高品質な炭化珪素単結晶10を成長させるこ
とができる。 (他の実施形態)上記第1実施形態では、複数枚の遮蔽
板5aを円環部材で支持するようにしたが、形状のもの
で支持するようにしてもよい。また、複数枚の遮蔽板5
aを重ねた場合を示したが、この遮蔽板5aの板厚を適
宜変更してもよい。さらに、複数枚の遮蔽板5aを重ね
ることによって第2実施形態に示したように板厚の大き
な遮蔽板5bとしてもよい。
Therefore, the surface temperatures of silicon carbide single crystal substrate 3 and silicon carbide single crystal 10 which directly receive thermal radiation on the upper surface of shielding plate 5c become uniform, the surface of silicon carbide single crystal 10 is flattened, and high quality is obtained. Silicon carbide single crystal 10 can be grown. (Other Embodiments) In the first embodiment, the plurality of shielding plates 5a are supported by the annular member. However, the shielding plates 5a may be supported by shapes. In addition, a plurality of shielding plates 5
Although the case where “a” is overlapped is shown, the plate thickness of the shielding plate 5a may be appropriately changed. Further, a plurality of shielding plates 5a may be stacked to form a thick shielding plate 5b as shown in the second embodiment.

【0029】また、第1、第2実施形態では、遮蔽板5
a、5bの中心を支持棒で支持するようにしているが、
第3実施形態のように容器の内壁で支持するようにして
もよい。例えば、第1実施形態の遮蔽板5aを容器の内
壁で支持するようにした場合のシミュレーション結果を
図2中に示す。このように、遮蔽板5aを支持棒で支持
しないで容器の内壁で支持するようにすれば、さらに遮
蔽板5aの上面温度の均一化を図ることができる。
In the first and second embodiments, the shielding plate 5
Although the center of a, 5b is supported by the support rod,
You may make it support with the inner wall of a container like 3rd Embodiment. For example, FIG. 2 shows a simulation result when the shielding plate 5a of the first embodiment is supported by the inner wall of the container. If the shielding plate 5a is supported by the inner wall of the container without being supported by the support rod, the temperature of the upper surface of the shielding plate 5a can be further uniformed.

【0030】また、第3実施形態では、遮蔽板5cとし
てポーラスカーボンを用いているが、板材に貫通孔が形
成されたものでもよい。
Further, in the third embodiment, porous carbon is used as the shielding plate 5c, but a shielding plate having a through hole may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態における黒鉛製るつぼの
全体構成を示す図である。
FIG. 1 is a diagram showing an overall configuration of a graphite crucible according to a first embodiment of the present invention.

【図2】図1に示す黒鉛製るつぼを用いて炭化系珪素単
結晶を成長させた場合における遮蔽板の上面温度のシミ
ュレーション結果を示す図である。
FIG. 2 is a diagram showing a simulation result of an upper surface temperature of a shielding plate when a silicon carbide single crystal is grown using the graphite crucible shown in FIG.

【図3】本発明の第2実施形態における黒鉛製るつぼの
全体構成を示す図である。
FIG. 3 is a diagram showing an overall configuration of a graphite crucible according to a second embodiment of the present invention.

【図4】図3に示す黒鉛製るつぼを用いて炭化系珪素単
結晶を成長させた場合における遮蔽板の上面温度のシミ
ュレーション結果を示す図である。
4 is a diagram showing a simulation result of an upper surface temperature of a shielding plate when a silicon carbide single crystal is grown using the graphite crucible shown in FIG.

【図5】本発明の第3実施形態における黒鉛製るつぼの
全体構成を示す図である。
FIG. 5 is a view showing an entire configuration of a graphite crucible according to a third embodiment of the present invention.

【図6】図5に示す黒鉛製るつぼを用いて炭化系珪素単
結晶を成長させた場合における遮蔽板の上面温度のシミ
ュレーション結果を示す図である。
FIG. 6 is a diagram showing a simulation result of an upper surface temperature of a shielding plate when a silicon carbide single crystal is grown using the graphite crucible shown in FIG.

【図7】従来の黒鉛製るつぼの全体構成を示す図であ
る。
FIG. 7 is a view showing the entire configuration of a conventional graphite crucible.

【符号の説明】[Explanation of symbols]

1…るつぼ本体、2…蓋材、3…炭化珪素単結晶基板、
4…炭化珪素原料粉末、5a、5b、5c…遮蔽板、6
…円環部材、7…支持棒、10…炭化珪素単結晶。
DESCRIPTION OF SYMBOLS 1 ... Crucible main body, 2 ... Lid material, 3 ... Silicon carbide single crystal substrate,
4 ... silicon carbide raw material powder, 5a, 5b, 5c ... shielding plate, 6
... annular member, 7 ... support rod, 10 ... silicon carbide single crystal.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 容器(1、2)内に、成長させる炭化珪
素単結晶の原料(4)と、種結晶となる炭化珪素単結晶
基板(3)を配置し、前記原料を昇華させて前記炭化珪
素単結晶基板上に炭化珪素単結晶(10)を成長させる
炭化珪素単結晶製造方法において、 少なくとも前記炭化珪素単結晶基板の直径以上の平面部
を有する複数枚の板部材(5a)を、前記炭化珪素単結
晶基板と前記原料との間に、前記炭化珪素単結晶基板の
成長表面と前記平面部とが対向するように積層配置して
前記単結晶の成長を行なうことを特徴とする炭化珪素単
結晶の製造方法。
A raw material (4) of a silicon carbide single crystal to be grown and a silicon carbide single crystal substrate (3) serving as a seed crystal are arranged in containers (1, 2), and the raw material is sublimated to In a silicon carbide single crystal manufacturing method for growing a silicon carbide single crystal (10) on a silicon carbide single crystal substrate, a plurality of plate members (5a) having at least a plane portion having a diameter equal to or larger than the diameter of the silicon carbide single crystal substrate are provided. The single crystal is grown by arranging between the silicon carbide single crystal substrate and the raw material such that the growth surface of the silicon carbide single crystal substrate and the plane portion face each other. A method for producing a silicon single crystal.
【請求項2】 前記複数枚の板部材のそれぞれの間に隙
間を設けて配置し、該複数枚の板部材それぞれの外周部
で支持されるようにすることを特徴とする請求項1に記
載の炭化珪素単結晶の製造方法。
2. The apparatus according to claim 1, wherein a gap is provided between each of the plurality of plate members so that the plurality of plate members are supported by the outer peripheral portions of each of the plurality of plate members. Of producing a silicon carbide single crystal.
【請求項3】 容器(1、2)内に、成長させる炭化珪
素単結晶の原料(4)と、種結晶となる炭化珪素単結晶
基板(3)を配置し、前記原料を昇華させて前記炭化珪
素単結晶基板上に炭化珪素単結晶(10)を成長させる
炭化珪素単結晶製造方法において、 少なくとも前記炭化珪素単結晶基板の直径以上の平面部
を有すると共に前記原料の蒸気を通過させることができ
る貫通孔が形成された板部材(5c)を、前記炭化珪素
単結晶基板と前記原料との間に、前記炭化珪素単結晶基
板の成長表面と前記平面部とが対向するように配置して
前記炭化珪素単結晶の成長を行なうことを特徴とする炭
化珪素単結晶の製造方法。
3. A silicon carbide single crystal raw material (4) to be grown and a silicon carbide single crystal substrate (3) serving as a seed crystal are arranged in containers (1, 2), and the raw material is sublimated. In a silicon carbide single crystal manufacturing method for growing a silicon carbide single crystal (10) on a silicon carbide single crystal substrate, it is preferable that the raw material vapor has at least a plane portion larger than the diameter of the silicon carbide single crystal substrate. A plate member (5c) having a through hole formed therein is arranged between the silicon carbide single crystal substrate and the raw material such that the growth surface of the silicon carbide single crystal substrate and the plane portion face each other. A method for producing a silicon carbide single crystal, comprising growing the silicon carbide single crystal.
【請求項4】 前記板部材の外周を前記容器の内壁で支
持することを特徴とする請求項1乃至3のいずれか1つ
に記載の炭化珪素単結晶の製造方法。
4. The method for producing a silicon carbide single crystal according to claim 1, wherein an outer periphery of said plate member is supported by an inner wall of said container.
【請求項5】 容器(1、2)内に、成長させる炭化珪
素単結晶の原料(4)と、種結晶となる炭化珪素単結晶
基板(3)を配置し、前記原料を昇華させて前記炭化珪
素単結晶基板上に炭化珪素単結晶(10)を成長させる
炭化珪素単結晶製造方法において、 支持棒(7)にて、少なくとも前記炭化珪素単結晶基板
の直径以上の平面部を有すると共に該平面部における厚
みが前記支持棒の支持部分の直径以上となっている板部
材(5b)を、前記炭化珪素単結晶基板と前記原料との
間に、前記炭化珪素単結晶基板の成長表面と前記平面部
とが対向するように配置して前記炭化珪素単結晶の成長
を行なうことを特徴とする炭化珪素単結晶の製造方法。
5. A silicon carbide single crystal raw material (4) to be grown and a silicon carbide single crystal substrate (3) serving as a seed crystal are arranged in containers (1, 2), and the raw material is sublimated to form the silicon carbide single crystal substrate. A silicon carbide single crystal manufacturing method for growing a silicon carbide single crystal (10) on a silicon carbide single crystal substrate, comprising: a support rod (7) having at least a plane portion having a diameter equal to or larger than the diameter of the silicon carbide single crystal substrate; A plate member (5b) having a thickness in a plane portion that is equal to or greater than the diameter of the support portion of the support rod is placed between the silicon carbide single crystal substrate and the raw material and the growth surface of the silicon carbide single crystal substrate and A method for producing a silicon carbide single crystal, comprising arranging a silicon carbide single crystal so as to face a plane portion.
【請求項6】 前記板部材の板厚が、前記支持棒の支持
部の直径に対して少なくとも2倍以上となっているもの
を用いることを特徴とする請求項5に記載の炭化珪素単
結晶の製造方法。
6. The silicon carbide single crystal according to claim 5, wherein a thickness of said plate member is at least twice as large as a diameter of a support portion of said support rod. Manufacturing method.
【請求項7】 前記板部材を均質な黒鉛で構成すること
を特徴とする請求項1乃至6のいずれか1つに記載の炭
化珪素単結晶の製造方法。
7. The method for producing a silicon carbide single crystal according to claim 1, wherein said plate member is made of homogeneous graphite.
【請求項8】 前記板部材を多孔質黒鉛で構成すること
を特徴とする請求項1乃至6のいずれか1つに記載の炭
化珪素単結晶の製造方法。
8. The method of manufacturing a silicon carbide single crystal according to claim 1, wherein said plate member is made of porous graphite.
【請求項9】 前記板部材を円形状で構成することを特
徴とする請求項1乃至8のいずれか1つに記載の炭化珪
素単結晶の製造方法。
9. The method for producing a silicon carbide single crystal according to claim 1, wherein said plate member is formed in a circular shape.
【請求項10】 容器(1、2)内に、成長させる炭化
珪素単結晶の原料(4)と、種結晶となる炭化珪素単結
晶基板(3)を配置し、前記原料を昇華させて前記炭化
珪素単結晶基板上に炭化珪素単結晶(10)を成長させ
る炭化珪素単結晶製造装置において、 前記容器内において、前記炭化珪素単結晶基板が配置さ
れる部位と前記原料が配置される部位との間に、少なく
とも前記炭化珪素単結晶基板の直径以上の平面部を有す
る複数枚の板部材(5a)が、前記炭化珪素単結晶基板
の成長表面と前記平面部とが対向するように積層されて
配置されていることを特徴とする炭化珪素単結晶製造装
置。
10. A silicon carbide single crystal raw material (4) to be grown and a silicon carbide single crystal substrate (3) serving as a seed crystal are arranged in vessels (1, 2), and the raw material is sublimated to In a silicon carbide single crystal manufacturing apparatus for growing a silicon carbide single crystal (10) on a silicon carbide single crystal substrate, a part where the silicon carbide single crystal substrate is arranged and a part where the raw material is arranged in the container. A plurality of plate members (5a) having at least a plane portion having a diameter equal to or greater than the diameter of the silicon carbide single crystal substrate are stacked so that the growth surface of the silicon carbide single crystal substrate and the plane portion face each other. An apparatus for producing a silicon carbide single crystal, wherein:
【請求項11】 前記複数枚の板部材のそれぞれの間が
隙間を設けて配置され、該複数枚の板部材それぞれの外
周部に配置された支持部材(6)で前記複数枚の板部材
のそれぞれが支持されていることを特徴とする請求項1
0に記載の炭化珪素単結晶の製造装置。
11. A support member (6) disposed between each of the plurality of plate members with a gap provided therebetween, and a support member (6) disposed on an outer peripheral portion of each of the plurality of plate members. 2. The method according to claim 1, wherein each is supported.
0. An apparatus for producing a silicon carbide single crystal according to 0.
【請求項12】 容器(1、2)内に、成長させる炭化
珪素単結晶の原料(4)と、種結晶となる炭化珪素単結
晶基板(3)を配置し、前記原料を昇華させて前記炭化
珪素単結晶基板上に炭化珪素単結晶(10)を成長させ
る炭化珪素単結晶製造装置において、 前記容器内において、前記炭化珪素単結晶基板が配置さ
れる部位と前記原料が配置される部位との間に、少なく
とも前記炭化珪素単結晶基板の直径以上の平面部を有す
ると共に前記原料の蒸気を通過させることができる貫通
孔が形成された板部材(5c)が、前記炭化珪素単結晶
基板の成長表面と前記平面部とが対向するように配置さ
れていることを特徴とする炭化珪素単結晶の製造装置。
12. A silicon carbide single crystal raw material (4) to be grown and a silicon carbide single crystal substrate (3) serving as a seed crystal are arranged in containers (1, 2), and the raw material is sublimated. In a silicon carbide single crystal manufacturing apparatus for growing a silicon carbide single crystal (10) on a silicon carbide single crystal substrate, a part where the silicon carbide single crystal substrate is arranged and a part where the raw material is arranged in the container. A plate member (5c) having at least a plane portion having a diameter equal to or larger than the diameter of the silicon carbide single crystal substrate and having a through hole through which the vapor of the raw material can pass is formed. An apparatus for manufacturing a silicon carbide single crystal, wherein a growth surface and said plane portion are arranged to face each other.
【請求項13】 容器(1、2)内に、成長させる炭化
珪素単結晶の原料(4)と、種結晶となる炭化珪素単結
晶基板(3)を配置し、前記原料を昇華させて前記炭化
珪素単結晶基板上に炭化珪素単結晶(10)を成長させ
る炭化珪素単結晶製造装置において、 前記容器内において、前記炭化珪素単結晶基板が配置さ
れる部位と前記原料が配置される部位との間に、支持棒
(7)にて、少なくとも前記炭化珪素単結晶基板の直径
以上の平面部を有すると共に該平面部における厚みが前
記支持棒の支持部分の直径以上となっている板部材(5
b)が、前記炭化珪素単結晶基板の成長表面と前記平面
部とが対向するように配置されていることを特徴とする
炭化珪素単結晶の製造装置。
13. A silicon carbide single crystal material (4) to be grown and a silicon carbide single crystal substrate (3) serving as a seed crystal are arranged in containers (1, 2), and the material is sublimated to form the silicon carbide single crystal substrate. In a silicon carbide single crystal manufacturing apparatus for growing a silicon carbide single crystal (10) on a silicon carbide single crystal substrate, a part where the silicon carbide single crystal substrate is arranged and a part where the raw material is arranged in the container. A plate member having at least a flat portion having a diameter equal to or greater than the diameter of the silicon carbide single crystal substrate and having a thickness at the flat portion equal to or greater than the diameter of the support portion of the support rod. 5
b), a silicon carbide single crystal manufacturing apparatus, wherein a growth surface of the silicon carbide single crystal substrate and the plane portion are arranged to face each other.
【請求項14】 前記板部材の板厚が、前記支持棒の支
持部の直径に対して少なくとも2倍以上となっているこ
とを特徴とする請求項13に記載の炭化珪素単結晶の製
造装置。
14. The apparatus for producing a silicon carbide single crystal according to claim 13, wherein a thickness of said plate member is at least twice as large as a diameter of a support portion of said support rod. .
JP07829299A 1999-03-23 1999-03-23 Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method Expired - Lifetime JP4089073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07829299A JP4089073B2 (en) 1999-03-23 1999-03-23 Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07829299A JP4089073B2 (en) 1999-03-23 1999-03-23 Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2000264795A true JP2000264795A (en) 2000-09-26
JP4089073B2 JP4089073B2 (en) 2008-05-21

Family

ID=13657871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07829299A Expired - Lifetime JP4089073B2 (en) 1999-03-23 1999-03-23 Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP4089073B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028116B1 (en) 2008-12-09 2011-04-08 한국전기연구원 growth apparatus for multiple silicon carbide single crystal
US20120103249A1 (en) * 2009-03-26 2012-05-03 Ii-Vi Incorporated Sic single crystal sublimation growth method and apparatus
JP2013189355A (en) * 2012-03-15 2013-09-26 Sumitomo Electric Ind Ltd Method and device for manufacturing silicon carbide single crystal
RU2562486C1 (en) * 2014-07-22 2015-09-10 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" METHOD OF PRODUCING MONOCRYSTALLINE SiC
JP2015212207A (en) * 2014-05-02 2015-11-26 新日鐵住金株式会社 Method for manufacturing silicon carbide single crystal ingot
KR101619610B1 (en) 2014-09-18 2016-05-11 주식회사 포스코 Apparatus and method for growing large diameter single crystal
JP2016187253A (en) * 2015-03-27 2016-10-27 株式会社三井ハイテック Laminate iron core and manufacturing method of the same
KR101854727B1 (en) * 2011-06-24 2018-05-04 엘지이노텍 주식회사 Apparatus for fabricating ingot
JP2019189494A (en) * 2018-04-26 2019-10-31 昭和電工株式会社 Insulative shield member and single crystal manufacturing apparatus including the same
JP2019194136A (en) * 2018-05-01 2019-11-07 昭和電工株式会社 Shield member and single crystal growth apparatus
CN110820042A (en) * 2018-08-08 2020-02-21 昭和电工株式会社 Shielding member and single crystal growth apparatus
WO2020045833A1 (en) * 2018-08-30 2020-03-05 에스케이씨 주식회사 Method of growing semi-insulating silicon carbide single crystal ingot and apparatus for growing silicon carbide single crystal ingot
US10995418B2 (en) 2018-05-11 2021-05-04 Showa Denko K.K. Shielding member and single crystal growth device having the same
DE102020104226A1 (en) 2020-02-18 2021-08-19 Friedrich-Alexander-Universität Erlangen-Nürnberg Method for producing a single crystal in a growth crucible
US11111599B2 (en) 2018-09-06 2021-09-07 Showa Denko K.K. Single crystal growth method which includes covering a part of a surface of a raw material for sublimation with a metal carbide powder
JP7306217B2 (en) 2019-10-23 2023-07-11 株式会社レゾナック Crucible and SiC single crystal growth apparatus
US11814749B2 (en) * 2018-09-06 2023-11-14 Resonac Corporation Single crystal growth crucible and single crystal growth method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730841U (en) * 1993-11-30 1995-06-13 株式会社ヤマコウ Cup with handle
JP5666150B2 (en) 2010-02-26 2015-02-12 昭和電工株式会社 Shielding member and single crystal growth apparatus including the same

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028116B1 (en) 2008-12-09 2011-04-08 한국전기연구원 growth apparatus for multiple silicon carbide single crystal
US10294584B2 (en) * 2009-03-26 2019-05-21 Ii-Vi Incorporated SiC single crystal sublimation growth method and apparatus
US20120103249A1 (en) * 2009-03-26 2012-05-03 Ii-Vi Incorporated Sic single crystal sublimation growth method and apparatus
KR101854727B1 (en) * 2011-06-24 2018-05-04 엘지이노텍 주식회사 Apparatus for fabricating ingot
JP2013189355A (en) * 2012-03-15 2013-09-26 Sumitomo Electric Ind Ltd Method and device for manufacturing silicon carbide single crystal
JP2015212207A (en) * 2014-05-02 2015-11-26 新日鐵住金株式会社 Method for manufacturing silicon carbide single crystal ingot
RU2562486C1 (en) * 2014-07-22 2015-09-10 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" METHOD OF PRODUCING MONOCRYSTALLINE SiC
KR101619610B1 (en) 2014-09-18 2016-05-11 주식회사 포스코 Apparatus and method for growing large diameter single crystal
US10581303B2 (en) 2015-03-27 2020-03-03 Mitsui High-Tec, Inc. Laminated iron core and manufacturing method of laminated iron core
US11632023B2 (en) 2015-03-27 2023-04-18 Mitsui High-Tec, Inc. Laminated iron core and manufacturing method of laminated iron core
JP2016187253A (en) * 2015-03-27 2016-10-27 株式会社三井ハイテック Laminate iron core and manufacturing method of the same
US20190330765A1 (en) * 2018-04-26 2019-10-31 Showa Denko K.K. Heat-insulating shield member and single crystal manufacturing apparatus having the same
CN110408997A (en) * 2018-04-26 2019-11-05 昭和电工株式会社 Thermal insulation shading member and the single-crystal manufacturing apparatus for having the component
JP7068914B2 (en) 2018-04-26 2022-05-17 昭和電工株式会社 Insulation shielding member and single crystal manufacturing equipment equipped with it
US11453958B2 (en) 2018-04-26 2022-09-27 Showa Denko K.K. Heat-insulating shield member and single crystal manufacturing apparatus having the same
DE102019109551A1 (en) 2018-04-26 2019-12-19 Showa Denko K.K. THERMAL INSULATING SHIELDING ELEMENT AND SINGLE CRYSTAL MANUFACTURING DEVICE THAT HAS THIS
JP2019189494A (en) * 2018-04-26 2019-10-31 昭和電工株式会社 Insulative shield member and single crystal manufacturing apparatus including the same
DE102019109551B4 (en) 2018-04-26 2024-05-02 Resonac Corporation HEAT-INSULATING SHIELDING ELEMENT AND SINGLE CRYSTAL MANUFACTURING DEVICE COMPRISING THE SAME
JP2019194136A (en) * 2018-05-01 2019-11-07 昭和電工株式会社 Shield member and single crystal growth apparatus
US11041257B2 (en) 2018-05-01 2021-06-22 Showa Denko K.K. Shielding member including a plurality of shielding plates arranged without gaps therebetween in plan view and apparatus for growing single crystals
CN110424051B (en) * 2018-05-01 2021-08-13 昭和电工株式会社 Shielding member and single crystal growth apparatus
CN110424051A (en) * 2018-05-01 2019-11-08 昭和电工株式会社 Shading member and single-crystal growing apparatus
JP7085886B2 (en) 2018-05-01 2022-06-17 昭和電工株式会社 Shielding member and single crystal growth device
US10995418B2 (en) 2018-05-11 2021-05-04 Showa Denko K.K. Shielding member and single crystal growth device having the same
CN110820042A (en) * 2018-08-08 2020-02-21 昭和电工株式会社 Shielding member and single crystal growth apparatus
US11261541B2 (en) 2018-08-08 2022-03-01 Showa Denko K.K. Shielding member and apparatus for single crystal growth
CN110820042B (en) * 2018-08-08 2021-11-12 昭和电工株式会社 Shielding member and single crystal growth apparatus
US11846038B2 (en) 2018-08-30 2023-12-19 Senic Inc. Method of growing semi-insulating silicon carbide single crystal using dopant coated with a carbon-based material
US11859305B2 (en) 2018-08-30 2024-01-02 Senic Inc. Apparatus for growing a SiC single crystal ingot comprising a filter unit having a porous body surrounding an opening unit that is located under a seed crystal
WO2020045833A1 (en) * 2018-08-30 2020-03-05 에스케이씨 주식회사 Method of growing semi-insulating silicon carbide single crystal ingot and apparatus for growing silicon carbide single crystal ingot
US11111599B2 (en) 2018-09-06 2021-09-07 Showa Denko K.K. Single crystal growth method which includes covering a part of a surface of a raw material for sublimation with a metal carbide powder
US11814749B2 (en) * 2018-09-06 2023-11-14 Resonac Corporation Single crystal growth crucible and single crystal growth method
JP7306217B2 (en) 2019-10-23 2023-07-11 株式会社レゾナック Crucible and SiC single crystal growth apparatus
EP3868925A1 (en) * 2020-02-18 2021-08-25 Friedrich-Alexander-Universität Erlangen-Nürnberg Method for producing a single crystal in a growth crucible
DE102020104226A1 (en) 2020-02-18 2021-08-19 Friedrich-Alexander-Universität Erlangen-Nürnberg Method for producing a single crystal in a growth crucible

Also Published As

Publication number Publication date
JP4089073B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP2000264795A (en) Apparatus and method for producing silicon carbide single crystal
US6786969B2 (en) Method and apparatus for producing single crystal, substrate for growing single crystal and method for heating single crystal
US9068277B2 (en) Apparatus for manufacturing single-crystal silicon carbide
JPH11116399A (en) Coating of tantalum carbide and single crystal production apparatus produced by the coating
JP5560862B2 (en) Silicon carbide single crystal ingot manufacturing equipment
JP4288792B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
US20120234231A1 (en) Process for producing silicon carbide single crystals
JP2002060297A (en) Apparatus and method for growing single crystal
US9376764B2 (en) Physical vapor transport growth system for simultaneously growing more than one SiC single crystal and method of growing
KR102107626B1 (en) Apparatus for growing silicon carbide single cryatal and method for growing silicon carbide single cryatal
JP3419144B2 (en) Single crystal growth equipment
KR102163489B1 (en) Growth device for single crystal
JP4048606B2 (en) Single crystal manufacturing method
JP2011011926A (en) Apparatus for producing silicon carbide single crystal
JPH11268990A (en) Production of single crystal and production device
JP2006298722A (en) Method for manufacturing single crystal silicon carbide substrate
JPH0637354B2 (en) Method and apparatus for growing silicon carbide single crystal
JP3843615B2 (en) Single crystal growth equipment
JPH11209198A (en) Synthesis of silicon carbide single crystal
JPH10139589A (en) Production of single crystal
JPH11255597A (en) Apparatus for producing single crystal
JP2000053493A (en) Production of single crystal and single crystal production device
JP6300990B1 (en) Aluminum nitride single crystal production equipment
JPH05117074A (en) Method for producing semiconductor single crystal and apparatus therefor
US20240068127A1 (en) Simultaneous growth of two silicon carbide layers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term