JPH11255597A - Apparatus for producing single crystal - Google Patents

Apparatus for producing single crystal

Info

Publication number
JPH11255597A
JPH11255597A JP8036098A JP8036098A JPH11255597A JP H11255597 A JPH11255597 A JP H11255597A JP 8036098 A JP8036098 A JP 8036098A JP 8036098 A JP8036098 A JP 8036098A JP H11255597 A JPH11255597 A JP H11255597A
Authority
JP
Japan
Prior art keywords
single crystal
growth substrate
shielding plate
crystal growth
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8036098A
Other languages
Japanese (ja)
Other versions
JP4110611B2 (en
Inventor
Hiroyuki Kondo
宏行 近藤
Fusao Hirose
富佐雄 廣瀬
Yasuo Kito
泰男 木藤
Harunobu Kuriyama
春宣 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP08036098A priority Critical patent/JP4110611B2/en
Publication of JPH11255597A publication Critical patent/JPH11255597A/en
Application granted granted Critical
Publication of JP4110611B2 publication Critical patent/JP4110611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the central part of a grown crystal from being thermally etched and provide a continuous length. SOLUTION: This apparatus for producing a single crystal 8 is obtained by oppositely arranging a silicon carbide raw material powder 4 and a single crystal growth substrate 6 in a crucible 2, providing a shielding plate 1 between both, forming the shielding plate 7 into a shape recessed in the central part and making the distance between the single crystal growth substrate 6 and the central part 71 of the shielding plate 7 larger then that between the single crystal growth substrate 6 and the peripheral part 72 of the shielding plate 1. Thereby, the radiant heat from the central part 71 is reduced to lower the temperature in the central part of the single crystal 8. As a result, the thermal etching can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化珪素等の単結
晶を成長させるために使用される単結晶製造装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal manufacturing apparatus used for growing a single crystal such as silicon carbide.

【0002】[0002]

【従来の技術】炭化珪素単結晶は、パワー素子等の半導
体装置に用いられる半導体基板として有用であり、従来
より、昇華法によって製造されている。昇華法は、黒鉛
るつぼ内で原料粉末と単結晶成長基板とを対向して配置
し、原料粉末を加熱、昇華させて、単結晶成長基板上に
導入し、再結晶させるものである。この際、るつぼ内
は、単結晶成長基板が他の部分より低温となるように温
度制御され、単結晶成長基板上に単結晶が成長しやすく
している。
2. Description of the Related Art A silicon carbide single crystal is useful as a semiconductor substrate used for a semiconductor device such as a power element, and has conventionally been manufactured by a sublimation method. In the sublimation method, a raw material powder and a single crystal growth substrate are arranged in a graphite crucible so as to face each other, the raw material powder is heated and sublimated, introduced on the single crystal growth substrate, and recrystallized. At this time, the temperature inside the crucible is controlled so that the temperature of the single crystal growth substrate is lower than that of the other portions, so that the single crystal grows easily on the single crystal growth substrate.

【0003】また、特開平8−295595号公報に記
載されるように、原料粉末と単結晶成長基板の間に遮蔽
板を設けたものがある。図4はその一例を示すもので、
図中、単結晶製造装置1のるつぼ2内には、底部に原料
粉末4として炭化珪素粉末が充填され、これに対向する
蓋体3の下面に、炭化珪素単結晶よりなる単結晶成長基
板6が接着剤5にて接合してある。原料粉末4と単結晶
成長基板6の間には、円板状の遮蔽板7が配設されて、
原料粉末4の輻射熱から単結晶成長基板6を保護してい
る。
Further, as disclosed in Japanese Patent Application Laid-Open No. 8-295595, there is a device in which a shielding plate is provided between a raw material powder and a single crystal growth substrate. FIG. 4 shows an example thereof.
In the figure, the crucible 2 of the single crystal manufacturing apparatus 1 is filled with silicon carbide powder as a raw material powder 4 at the bottom, and a single crystal growth substrate 6 made of silicon carbide single crystal is placed on the lower surface of the lid 3 opposed thereto. Are bonded with an adhesive 5. A disk-shaped shielding plate 7 is provided between the raw material powder 4 and the single crystal growth substrate 6,
The single crystal growth substrate 6 is protected from the radiant heat of the raw material powder 4.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記従来の
装置を用いて単結晶8を成長させた場合、図のように、
成長した単結晶8の中央部が熱エッチングされ、窪みが
生じるという問題があった。これは、遮蔽板7自体の温
度が上昇すると、この遮蔽板4からの熱輻射によって単
結晶8の中心部の温度が上昇し熱エッチングを誘発する
ためで、成長結晶の長尺化を妨げている。
However, when a single crystal 8 is grown using the above-mentioned conventional apparatus, as shown in FIG.
There has been a problem that the central portion of the grown single crystal 8 is thermally etched, and a dent is generated. This is because, when the temperature of the shielding plate 7 itself rises, the temperature of the central portion of the single crystal 8 rises due to the heat radiation from the shielding plate 4 and induces thermal etching. I have.

【0005】しかして、本発明の目的は、成長結晶の中
央部が熱エッチングされることを防止し、長尺の成長結
晶を得ることが可能な単結晶製造装置を提供することに
ある。
It is an object of the present invention to provide a single crystal manufacturing apparatus capable of preventing a central portion of a grown crystal from being thermally etched and obtaining a long grown crystal.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の単結晶製造装置は、るつぼ内に原料粉末と
単結晶成長基板とを対向して配置し、上記原料粉末と上
記単結晶成長基板の間に遮蔽板を設けて、上記原料粉末
が加熱昇華する際の輻射熱から上記単結晶成長基板を保
護しつつ、上記単結晶成長基板上に単結晶を成長させる
構成となしてある。上記遮蔽板は中央部が凹陥する形状
で、上記単結晶成長基板と上記遮蔽板の中央部との距離
が、上記単結晶成長基板と上記遮蔽板の周辺部との距離
より大きくなるようにしてある(請求項1)。
Means for Solving the Problems To solve the above problems, a single crystal manufacturing apparatus of the present invention comprises a raw material powder and a single crystal growth substrate arranged in a crucible so as to face each other. A shielding plate is provided between the crystal growth substrates, and a single crystal is grown on the single crystal growth substrate while protecting the single crystal growth substrate from radiant heat when the raw material powder is heated and sublimated. . The shielding plate has a shape in which the central portion is depressed, so that the distance between the single crystal growth substrate and the central portion of the shielding plate is larger than the distance between the single crystal growth substrate and the peripheral portion of the shielding plate. (Claim 1).

【0007】遮蔽板を設置した場合、上記単結晶成長基
板が原料粉末の輻射熱に直接さらされることはないが、
上記遮蔽板自体が高温となると、その輻射熱によって成
長結晶が熱エッチングされる不具合があった。本発明で
は、特に成長結晶の中央部が熱エッチングされやすく、
長尺化の妨げになっている点に着目し、上記遮蔽板の構
造を変更して、成長結晶の温度上昇を抑制する。具体的
には、上記遮蔽板の中央部で周辺部より上記単結晶成長
基板との距離が大きくなるようにし、中央部からの熱輻
射を低減して、成長結晶の中央部の温度を低くする。か
くして、熱エッチングが防止され、長尺の単結晶を得る
ことができる。
When a shielding plate is provided, the single crystal growth substrate is not directly exposed to the radiant heat of the raw material powder.
When the temperature of the shielding plate itself becomes high, there is a problem that the grown crystal is thermally etched by the radiant heat. In the present invention, particularly, the central portion of the grown crystal is easily thermally etched,
Focusing on the point that the lengthening is hindered, the structure of the shielding plate is changed to suppress the temperature rise of the grown crystal. Specifically, the distance between the single crystal growth substrate and the peripheral portion is made larger at the central portion of the shielding plate, the heat radiation from the central portion is reduced, and the temperature of the central portion of the grown crystal is reduced. . Thus, thermal etching is prevented, and a long single crystal can be obtained.

【0008】上記遮蔽板は、中央部を周辺部より熱伝導
率の小さい材料で構成することもできる(請求項2)。
具体的には、上記遮蔽板の中央部を多孔質黒鉛で構成
し、周辺部を黒鉛で構成する(請求項3)。上記遮蔽板
の中央部を、多孔質黒鉛等、熱伝導率の低い材料で構成
することで、中央部からの熱輻射を低減し、熱エッチン
グを防止する同様の効果が得られる。
[0008] The shielding plate may be made of a material having a lower thermal conductivity at the central portion than at the peripheral portion.
Specifically, the central part of the shielding plate is made of porous graphite, and the peripheral part is made of graphite (claim 3). By forming the central portion of the shielding plate with a material having low thermal conductivity such as porous graphite, a similar effect of reducing heat radiation from the central portion and preventing thermal etching can be obtained.

【0009】上記遮蔽板を中央部が上記原料粉末側に突
出する形状とし、中央部の板厚を周辺部の板厚より厚く
形成することもできる(請求項4)。板厚を厚くするこ
とで、上記遮蔽板中央部の温度上昇を抑制し、中央部か
らの熱輻射を低減して熱エッチングを防止する同様の効
果が得られる。
The shielding plate may be formed so that the central portion protrudes toward the raw material powder, and the central portion has a greater thickness than the peripheral portion. By increasing the plate thickness, a similar effect of suppressing a temperature rise in the central portion of the shielding plate and reducing thermal radiation from the central portion to prevent thermal etching can be obtained.

【0010】上記遮蔽板の中央部と周辺部の面積比は、
具体的には、1:3〜1:10の範囲とするのがよい
(請求項5)。従来の装置構成において熱エッチングが
生じる中心部面積は、通常、結晶全面積の1/10〜1
/3程度であり、従って、上記範囲で上記遮蔽板の中央
部と周辺部の面積比を設定すれば、効果的に熱エッチン
グを防止できる。
[0010] The area ratio between the central part and the peripheral part of the shielding plate is as follows:
Specifically, it is preferable to set the range of 1: 3 to 1:10 (claim 5). In the conventional apparatus configuration, the central area where thermal etching occurs is usually 1/10 to 1 of the entire crystal area.
Therefore, if the area ratio between the central portion and the peripheral portion of the shielding plate is set within the above range, thermal etching can be effectively prevented.

【0011】また、本発明の単結晶製造装置で製造する
上記単結晶としては、具体的には炭化珪素単結晶が挙げ
られ(請求項6)、長尺化による利点が大きい。
The single crystal produced by the single crystal production apparatus of the present invention is, specifically, a silicon carbide single crystal (claim 6), which has a great advantage in elongation.

【0012】[0012]

【発明の実施の形態】図1に本発明の第1の実施の形態
を示す。図において、単結晶製造装置1は、上端開口の
黒鉛製るつぼ2と、その開口を閉鎖するように配置され
る黒鉛製蓋体3とを有しており、るつぼ2の底部には、
原料粉末4としての炭化珪素粉末が充填してある。蓋体
3は、下面中央部が下方に突出して基板貼付用の台座3
aを形成している。台座3aには、接着剤5を介して単
結晶成長基板6となる種結晶が接合してある。種結晶と
しては、例えば、アチソン法、昇華法等により成長させ
た炭化珪素単結晶を使用することができ、これを口径φ
10mm〜φ100mm程度のウエハー状に加工したも
のを用いる。
FIG. 1 shows a first embodiment of the present invention. In the figure, a single crystal manufacturing apparatus 1 has a graphite crucible 2 having an upper end opening and a graphite lid 3 arranged to close the opening, and the bottom of the crucible 2 has:
Silicon carbide powder as raw material powder 4 is filled. The lid 3 has a pedestal 3 for sticking a substrate, with a lower central portion protruding downward.
a. A seed crystal serving as a single crystal growth substrate 6 is bonded to the pedestal 3 a via an adhesive 5. As the seed crystal, for example, a silicon carbide single crystal grown by Acheson method, sublimation method or the like can be used.
A wafer processed into a wafer shape of about 10 mm to φ100 mm is used.

【0013】単結晶成長基板6の下方には、黒鉛製の遮
蔽板7が所定間隔をおいて対向配設してある。遮蔽板7
は円板状で、るつぼ2底面に固定される棒状の支持部材
7aにて下方より支持され、単結晶成長基板6が原料粉
末4の輻射熱に直接さらされないように、これを保護し
ている。遮蔽板7の高さは、単結晶成長基板6の下方に
単結晶8が成長するための十分な空間が形成されるよう
に設定され、ここでは、単結晶成長基板6と原料粉末4
の間のほぼ中間位置に配置している。遮蔽板7の大きさ
は、通常、単結晶成長基板6の口径の0.9〜9倍程度
の範囲で適宜設定される。一般に、単結晶成長基板6の
口径が小さい時は倍率を大きくし、口径が大きい時は倍
率を小さくする。また、遮蔽板7の外周とるつぼ2との
間に所定の間隔を設けて、原料粉末4の昇華ガスが遮蔽
板7の周囲から単結晶成長基板3に到達可能となしてあ
る。
Below the single-crystal growth substrate 6, a graphite shielding plate 7 is disposed oppositely at a predetermined interval. Shield plate 7
Is disc-shaped and is supported from below by a rod-shaped support member 7 a fixed to the bottom of the crucible 2, and protects the single crystal growth substrate 6 from being directly exposed to the radiant heat of the raw material powder 4. The height of the shielding plate 7 is set so that a sufficient space for growing the single crystal 8 is formed below the single crystal growth substrate 6. Here, the single crystal growth substrate 6 and the raw material powder 4 are formed.
It is located at a substantially intermediate position between the two. Usually, the size of the shielding plate 7 is appropriately set within a range of about 0.9 to 9 times the diameter of the single crystal growth substrate 6. Generally, when the diameter of the single crystal growth substrate 6 is small, the magnification is increased, and when the diameter is large, the magnification is decreased. A predetermined distance is provided between the outer periphery of the shielding plate 7 and the crucible 2 so that the sublimation gas of the raw material powder 4 can reach the single crystal growth substrate 3 from around the shielding plate 7.

【0014】本実施の形態では、遮蔽板7を中央部71
が周辺部72に対して凹陥する形状とし、単結晶成長基
板6からの距離が、遮蔽板7の中央部71で周辺部72
より大きくなるようにする。このように、遮蔽板7の中
央部71と単結晶8との距離を大きくすることで、単結
晶8中央部の熱エッチングを抑制する効果がある。ここ
で、中央部71と周辺部72との面積比は、通常、1:
3〜1:10程度の範囲とする。従来の装置構成におい
て熱エッチングが生じる中心部面積は、通常、結晶全面
積の1/10〜1/3程度であり、従って、中央部71
と周辺部72の面積比を上記範囲とすれば上記効果が得
られる。また、中央部71と周辺部72の単結晶成長基
板6との距離の差(中央部71上面と周辺部72上面と
の段差)は、通常、2〜10mm程度とし、この範囲で
適宜選択することができる。
In the present embodiment, the shielding plate 7 is
Have a shape depressed with respect to the peripheral portion 72, and the distance from the single crystal growth substrate 6 is set at the central portion 71 of the shielding plate 7.
Try to be bigger. As described above, increasing the distance between the central portion 71 of the shielding plate 7 and the single crystal 8 has an effect of suppressing thermal etching of the central portion of the single crystal 8. Here, the area ratio between the central portion 71 and the peripheral portion 72 is usually 1:
The range is about 3 to 1:10. The central area where thermal etching occurs in the conventional device configuration is usually about 1/10 to 1/3 of the entire area of the crystal.
By setting the area ratio of the peripheral portion 72 to the above range, the above-described effect can be obtained. The difference in the distance between the central portion 71 and the peripheral portion 72 between the single crystal growth substrate 6 (the step between the upper surface of the central portion 71 and the upper surface of the peripheral portion 72) is usually about 2 to 10 mm, and is appropriately selected within this range. be able to.

【0015】上記装置を用いて単結晶を成長させる場合
には、るつぼ2内に原料粉末4と単結晶成長基板6を対
向して配し、図略の加熱装置によりるつぼ2を所定温度
に加熱して、原料粉末4を昇華させる。るつぼ2内は、
アルゴンガス等の不活性ガス雰囲気とし、圧力は0.1
〜数Torr程度とする。また、原料粉末4の温度は約
2000〜2500℃程度とし、単結晶成長基板6は原
料粉末4より温度が低くなるようにしてるつぼ2内に温
度勾配を設ける。原料粉末4の昇華ガスは、遮蔽板7の
周囲から単結晶成長基板6に到達し、相対的に低温とな
る単結晶成長基板6上に単結晶8が成長する。
When a single crystal is grown by using the above apparatus, the raw material powder 4 and the single crystal growth substrate 6 are arranged in the crucible 2 so as to face each other, and the crucible 2 is heated to a predetermined temperature by a heating device (not shown). Then, the raw material powder 4 is sublimated. In the crucible 2,
Inert gas atmosphere such as argon gas, pressure 0.1
To about several Torr. The temperature of the raw material powder 4 is set to about 2000 to 2500 ° C., and a temperature gradient is provided in the crucible 2 so that the temperature of the single crystal growth substrate 6 is lower than that of the raw material powder 4. The sublimation gas of the raw material powder 4 reaches the single crystal growth substrate 6 from around the shielding plate 7, and the single crystal 8 grows on the single crystal growth substrate 6 at a relatively low temperature.

【0016】本実施の形態では、遮蔽板7を中央部71
が凹陥する形状としたので、遮蔽板7の中央部71から
の輻射熱が低減する。よって、これに対向する単結晶8
の中央部の温度上昇を抑制することができ、熱エッチン
グが防止できるので、成長する単結晶8を長尺とするこ
とができる。
In the present embodiment, the shielding plate 7 is
Is recessed, so that radiant heat from the central portion 71 of the shielding plate 7 is reduced. Therefore, the single crystal 8 facing this
Can be suppressed, and thermal etching can be prevented, so that the growing single crystal 8 can be made long.

【0017】図2に本発明の第2の実施の形態を示す。
本実施の形態では、遮蔽板7を平板状とし、その中央部
71をポーラスカーボン(多孔質黒鉛)で構成してい
る。周辺部72は、黒鉛製とする。このように、中央部
71を熱伝導率の低いポーラスカーボンで構成すること
で、遮蔽板7の中央部71から単結晶成長基板6への熱
輻射を低減することができる。よって、単結晶8の中央
部の熱エッチングを防止し、単結晶8を長尺化する同様
の効果が得られる。なお、中央部71と周辺部72との
面積比は、上記第1の実施の形態と同様で、通常、1:
3〜1:10の範囲で適宜設定すればよい。
FIG. 2 shows a second embodiment of the present invention.
In the present embodiment, the shielding plate 7 has a flat plate shape, and the central portion 71 is made of porous carbon (porous graphite). The peripheral portion 72 is made of graphite. By forming the central portion 71 from porous carbon having a low thermal conductivity, heat radiation from the central portion 71 of the shielding plate 7 to the single crystal growth substrate 6 can be reduced. Therefore, the same effect of preventing thermal etching of the central portion of single crystal 8 and lengthening single crystal 8 can be obtained. The area ratio between the central portion 71 and the peripheral portion 72 is the same as in the first embodiment, and is usually 1: 1.
What is necessary is just to set suitably in the range of 3 to 1:10.

【0018】図3に本発明の第3の実施の形態を示す。
本実施の形態では、遮蔽板7を、中央部71が下方に突
出する形状とし、中央部71の板厚が周辺部72の板厚
より厚くなるようにしている。このような構成によって
も、中央部71の熱伝導率が周辺部72より低くなるた
め、遮蔽板7の中央部71からの輻射熱を低減すること
ができる。よって、単結晶8の中央部の熱エッチングを
防止し、単結晶8を長尺化する同様の効果が得られる。
なお、中央部71と周辺部72との面積比は、上記第
1、2の実施の形態と同様で、通常、1:3〜1:10
の範囲で適宜設定すればよい。また、板厚は、周辺部7
2で7〜10mm程度、中央部71では、その1.5〜
5倍程度とするのがよい。
FIG. 3 shows a third embodiment of the present invention.
In the present embodiment, the shielding plate 7 has a shape in which the central portion 71 protrudes downward, so that the central portion 71 has a greater thickness than the peripheral portion 72. Even with such a configuration, the heat conductivity of the central portion 71 is lower than that of the peripheral portion 72, so that radiant heat from the central portion 71 of the shielding plate 7 can be reduced. Therefore, the same effect of preventing thermal etching of the central portion of single crystal 8 and lengthening single crystal 8 can be obtained.
The area ratio between the central portion 71 and the peripheral portion 72 is the same as in the first and second embodiments, and is usually 1: 3 to 1:10.
May be set as appropriate within the range. The thickness of the peripheral portion 7
2, about 7 to 10 mm, and the central
It is good to make it about 5 times.

【0019】[0019]

【実施例】(実施例1)上記図1に示した装置を用いて
実際に単結晶を成長させる実験を行った。直径25m
m、厚さ1mmのウエハ状の炭化珪素単結晶を単結晶成
長基板6として用い、蓋体3下面に設けた台座3aに貼
り付けた。遮蔽板7は、口径80mm、板厚10mmと
し、中心部71の口径を30mm、中心部71と周辺部
72の段差は5mmとした。また、単結晶成長基板6と
遮蔽板7の中心部71との距離は40mm、単結晶成長
基板6と遮蔽板7の周辺部72との距離は35mmとし
た。
EXAMPLE (Example 1) An experiment was conducted to actually grow a single crystal using the apparatus shown in FIG. Diameter 25m
A wafer-like silicon carbide single crystal having a thickness of 1 mm and a thickness of 1 mm was used as a single crystal growth substrate 6 and attached to a pedestal 3 a provided on the lower surface of the lid 3. The shielding plate 7 had a diameter of 80 mm and a plate thickness of 10 mm, a diameter of the central portion 71 of 30 mm, and a step between the central portion 71 and the peripheral portion 72 of 5 mm. The distance between the single crystal growth substrate 6 and the central portion 71 of the shielding plate 7 was 40 mm, and the distance between the single crystal growth substrate 6 and the peripheral portion 72 of the shielding plate 7 was 35 mm.

【0020】るつぼ2の底部に、原料粉末4として成長
に十分な量の炭化珪素粉末を充填し、その上端開口に単
結晶成長基板6を貼り付けた蓋体3を固定した。これを
図略の加熱装置内に配し、図略の真空排気系にて排気し
てアルゴンガス雰囲気に置換した。次いで、原料粉末4
が約2300℃、単結晶成長基板6が約2230℃とな
るように加熱し、約1Torrに減圧して、原料粉末4
を昇華させ、単結晶成長基板6上に単結晶8を成長させ
た。その後、加熱を停止し、アルゴンガスを導入した。
The bottom of the crucible 2 was filled with a sufficient amount of silicon carbide powder as a raw material powder 4 for growth, and the lid 3 to which the single crystal growth substrate 6 was attached was fixed to the upper end opening. This was placed in a heating device (not shown), evacuated by a vacuum exhaust system (not shown), and replaced with an argon gas atmosphere. Then, the raw material powder 4
Is heated to about 2300 ° C., and the single crystal growth substrate 6 is heated to about 2230 ° C., and the pressure is reduced to about 1 Torr.
Was sublimated to grow a single crystal 8 on the single crystal growth substrate 6. Thereafter, the heating was stopped, and argon gas was introduced.

【0021】この時、成長速度0.5〜0.6mm/時
間で単結晶8が成長し、時間経過に伴う成長速度低下は
観察されなかった。また、成長した単結晶8は、中心部
で成長速度が速く、略凸型に成長しており、中心部が熱
エッチングされるといった現象は見られなかった。以上
より、遮蔽板7形状を変更することで、熱エッチングを
防止し、長尺化が可能であることが確認された。
At this time, the single crystal 8 grew at a growth rate of 0.5 to 0.6 mm / hour, and no decrease in the growth rate over time was observed. Further, the grown single crystal 8 has a high growth rate at the center and grows in a substantially convex shape, and the phenomenon that the center is thermally etched was not observed. From the above, it was confirmed that by changing the shape of the shielding plate 7, thermal etching could be prevented and the length could be increased.

【0022】(実施例2)上記図2に示した装置を用い
て実際に単結晶を成長させる実験を行った。遮蔽板7
(口径80mm、板厚を10mm)の、中心部71を口
径30mmのポーラスカーボン製とし、周辺部72を黒
鉛製とした以外は、実施例1と同様の方法で、単結晶を
成長させた。その結果、成長した単結晶8は、略凸型
で、熱エッチングは観察されず、長尺化が可能であるこ
とが確認された。
Example 2 An experiment was conducted to actually grow a single crystal using the apparatus shown in FIG. Shield plate 7
A single crystal was grown in the same manner as in Example 1 except that the central part 71 (of a diameter of 80 mm and a plate thickness of 10 mm) was made of porous carbon having a diameter of 30 mm and the peripheral part 72 was made of graphite. As a result, the grown single crystal 8 was substantially convex, no thermal etching was observed, and it was confirmed that the single crystal 8 could be elongated.

【0023】(実施例3)上記図3に示した装置を用い
て実際に単結晶を成長させる実験を行った。遮蔽板7は
口径を80mmとし、板厚を、中心部71(口径30m
m)で20mm、周辺部72で10mmとした。それ以
外は、実施例1と同様の方法で、単結晶を成長させた。
その結果、成長した単結晶8は、略凸型で、熱エッチン
グは観察されず、長尺化が可能であることが確認され
た。
EXAMPLE 3 An experiment was conducted to actually grow a single crystal using the apparatus shown in FIG. The shielding plate 7 has a diameter of 80 mm and a thickness of the central portion 71 (a diameter of 30 m).
m) was 20 mm, and the peripheral portion 72 was 10 mm. Otherwise, a single crystal was grown in the same manner as in Example 1.
As a result, the grown single crystal 8 was substantially convex, no thermal etching was observed, and it was confirmed that the single crystal 8 could be elongated.

【0024】(比較例1)比較のため、上記図4に示し
た装置を用いて実際に単結晶を成長させる実験を行っ
た。遮蔽板7は、口径80mmとし、板厚10mmの平
板状とし、遮蔽板7と単結晶成長基板6との距離は35
mmとした。それ以外は、実施例1と同様の方法で、単
結晶を成長させた。
Comparative Example 1 For comparison, an experiment was conducted to actually grow a single crystal using the apparatus shown in FIG. The shielding plate 7 has a diameter of 80 mm and a plate shape with a thickness of 10 mm, and the distance between the shielding plate 7 and the single crystal growth substrate 6 is 35.
mm. Otherwise, a single crystal was grown in the same manner as in Example 1.

【0025】この時、成長速度0.4〜0.5mm/時
間で単結晶8が成長し、時間経過に伴う成長速度低下は
観察されなかったものの、成長速度が上記実施例1〜3
と比較するとやや小さい。また、成長した単結晶8は、
中心部で成長速度が遅く、略凹型に成長しており、中心
部に熱エッチング現象が見られた。
At this time, the single crystal 8 grew at a growth rate of 0.4 to 0.5 mm / hour, and although the growth rate did not decrease with time, the growth rate was reduced in Examples 1 to 3.
Slightly smaller than. The grown single crystal 8
The growth rate was slow at the center, the growth was almost concave, and a thermal etching phenomenon was observed at the center.

【0026】以上のように、本発明の単結晶製造装置に
より単結晶の長尺化が可能である。なお、本発明の単結
晶製造装置は、炭化珪素単結晶の成長に限らず、硫化カ
ドミウム等、昇華法によって成長可能な単結晶であれば
いずれにも適用することができる。
As described above, the single crystal manufacturing apparatus of the present invention can make a single crystal longer. The single crystal manufacturing apparatus of the present invention is not limited to the growth of a silicon carbide single crystal, but can be applied to any single crystal that can be grown by a sublimation method, such as cadmium sulfide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す単結晶製造装
置の全体断面図である。
FIG. 1 is an overall cross-sectional view of a single crystal manufacturing apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態を示す単結晶製造装
置の全体断面図である。
FIG. 2 is an overall cross-sectional view of a single crystal manufacturing apparatus according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態を示す単結晶製造装
置の全体断面図である。
FIG. 3 is an overall cross-sectional view of a single crystal manufacturing apparatus according to a third embodiment of the present invention.

【図4】従来の単結晶製造装置の全体断面図である。FIG. 4 is an overall sectional view of a conventional single crystal manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 単結晶製造装置 2 るつぼ 3 蓋体 3a 台座 4 原料粉末 5 接着剤 6 単結晶成長基板 7 遮蔽板 71 中央部 72 周辺部 8 単結晶 DESCRIPTION OF SYMBOLS 1 Single crystal manufacturing apparatus 2 Crucible 3 Lid 3a Pedestal 4 Raw material powder 5 Adhesive 6 Single crystal growth substrate 7 Shielding plate 71 Central part 72 Peripheral part 8 Single crystal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栗山 春宣 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Harunobu Kuriyama 1-1-1, Showa-cho, Kariya-shi, Aichi Pref.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 るつぼ内に原料粉末と単結晶成長基板と
を対向して配置し、上記原料粉末と上記単結晶成長基板
の間に遮蔽板を設けて、上記原料粉末が加熱昇華する際
の輻射熱から上記単結晶成長基板を保護しつつ、上記単
結晶成長基板上に単結晶を成長させる単結晶製造装置に
おいて、上記遮蔽板を中央部が凹陥する形状とし、上記
単結晶成長基板と上記遮蔽板の中央部との距離が、上記
単結晶成長基板と上記遮蔽板の周辺部との距離より大き
くなるようにしたことを特徴とする単結晶製造装置。
1. A raw material powder and a single crystal growth substrate are arranged in a crucible so as to face each other, and a shielding plate is provided between the raw material powder and the single crystal growth substrate to allow the raw material powder to be heated and sublimated. In a single crystal manufacturing apparatus for growing a single crystal on the single crystal growth substrate while protecting the single crystal growth substrate from radiant heat, the shielding plate has a shape in which a central portion is recessed, and the single crystal growth substrate and the shielding A single crystal manufacturing apparatus, wherein a distance from a central portion of the plate is larger than a distance between the single crystal growth substrate and a peripheral portion of the shielding plate.
【請求項2】 るつぼ内に原料粉末と単結晶成長基板と
を対向して配置し、上記原料粉末と上記単結晶成長基板
の間に遮蔽板を設けて、上記原料粉末が加熱昇華する際
の輻射熱から上記単結晶成長基板を保護しつつ、上記単
結晶成長基板上に単結晶を成長させる単結晶製造装置に
おいて、上記遮蔽板の中央部を周辺部より熱伝導率の小
さい材料で構成したことを特徴とする単結晶製造装置。
2. A raw material powder and a single crystal growth substrate are arranged in a crucible so as to face each other, and a shielding plate is provided between the raw material powder and the single crystal growth substrate to allow the raw material powder to be heated and sublimated. In a single crystal manufacturing apparatus for growing a single crystal on the single crystal growth substrate while protecting the single crystal growth substrate from radiant heat, the central portion of the shielding plate is made of a material having a lower thermal conductivity than the peripheral portion. An apparatus for producing a single crystal.
【請求項3】 上記遮蔽板の中央部を多孔質黒鉛で構成
し、上記遮蔽板の周辺部を黒鉛で構成した請求項1記載
の単結晶製造装置。
3. The single crystal manufacturing apparatus according to claim 1, wherein a central portion of said shielding plate is made of porous graphite, and a peripheral portion of said shielding plate is made of graphite.
【請求項4】 るつぼ内に原料粉末と単結晶成長基板と
を対向して配置し、上記原料粉末と上記単結晶成長基板
の間に遮蔽板を設けて、上記原料粉末が加熱昇華する際
の輻射熱から上記単結晶成長基板を保護しつつ、上記単
結晶成長基板上に単結晶を成長させる単結晶製造装置に
おいて、上記遮蔽板を中央部が上記原料粉末側に突出す
る形状とし、上記遮蔽板の中央部の板厚が周辺部の板厚
より厚くなるようにしたことを特徴とする単結晶製造装
置。
4. A raw material powder and a single crystal growth substrate are arranged in a crucible so as to face each other, and a shielding plate is provided between the raw material powder and the single crystal growth substrate so that the raw material powder is heated and sublimated. In a single crystal manufacturing apparatus for growing a single crystal on the single crystal growth substrate while protecting the single crystal growth substrate from radiant heat, the shielding plate has a shape in which a central portion protrudes toward the raw material powder, and the shielding plate Wherein the thickness of the central portion is larger than the thickness of the peripheral portion.
【請求項5】 上記遮蔽板の中央部と周辺部の面積比が
1:3〜1:10である請求項1ないし3のいずれか記
載の単結晶製造装置。
5. The single crystal manufacturing apparatus according to claim 1, wherein an area ratio between a central portion and a peripheral portion of the shielding plate is 1: 3 to 1:10.
【請求項6】 上記単結晶が炭化珪素単結晶である請求
項1ないし5のいずれか記載の単結晶製造装置。
6. The single crystal manufacturing apparatus according to claim 1, wherein said single crystal is a silicon carbide single crystal.
JP08036098A 1998-03-12 1998-03-12 Single crystal manufacturing equipment Expired - Lifetime JP4110611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08036098A JP4110611B2 (en) 1998-03-12 1998-03-12 Single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08036098A JP4110611B2 (en) 1998-03-12 1998-03-12 Single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH11255597A true JPH11255597A (en) 1999-09-21
JP4110611B2 JP4110611B2 (en) 2008-07-02

Family

ID=13716099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08036098A Expired - Lifetime JP4110611B2 (en) 1998-03-12 1998-03-12 Single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4110611B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069851A (en) * 2004-09-02 2006-03-16 Bridgestone Corp Method and device for manufacturing silicon carbide single crystal
JP2011132083A (en) * 2009-12-25 2011-07-07 Denso Corp Apparatus for producing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP2019189494A (en) * 2018-04-26 2019-10-31 昭和電工株式会社 Insulative shield member and single crystal manufacturing apparatus including the same
CN110424051A (en) * 2018-05-01 2019-11-08 昭和电工株式会社 Shading member and single-crystal growing apparatus
CN110820042A (en) * 2018-08-08 2020-02-21 昭和电工株式会社 Shielding member and single crystal growth apparatus
EP3868925A1 (en) * 2020-02-18 2021-08-25 Friedrich-Alexander-Universität Erlangen-Nürnberg Method for producing a single crystal in a growth crucible
WO2023282000A1 (en) * 2021-07-08 2023-01-12 住友電気工業株式会社 Silicon carbide single crystal and silicon carbide substrate

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069851A (en) * 2004-09-02 2006-03-16 Bridgestone Corp Method and device for manufacturing silicon carbide single crystal
JP2011132083A (en) * 2009-12-25 2011-07-07 Denso Corp Apparatus for producing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP2019189494A (en) * 2018-04-26 2019-10-31 昭和電工株式会社 Insulative shield member and single crystal manufacturing apparatus including the same
DE102019109551B4 (en) 2018-04-26 2024-05-02 Resonac Corporation HEAT-INSULATING SHIELDING ELEMENT AND SINGLE CRYSTAL MANUFACTURING DEVICE COMPRISING THE SAME
DE102019109551A1 (en) 2018-04-26 2019-12-19 Showa Denko K.K. THERMAL INSULATING SHIELDING ELEMENT AND SINGLE CRYSTAL MANUFACTURING DEVICE THAT HAS THIS
US11453958B2 (en) 2018-04-26 2022-09-27 Showa Denko K.K. Heat-insulating shield member and single crystal manufacturing apparatus having the same
US11041257B2 (en) 2018-05-01 2021-06-22 Showa Denko K.K. Shielding member including a plurality of shielding plates arranged without gaps therebetween in plan view and apparatus for growing single crystals
CN110424051B (en) * 2018-05-01 2021-08-13 昭和电工株式会社 Shielding member and single crystal growth apparatus
CN110424051A (en) * 2018-05-01 2019-11-08 昭和电工株式会社 Shading member and single-crystal growing apparatus
CN110820042B (en) * 2018-08-08 2021-11-12 昭和电工株式会社 Shielding member and single crystal growth apparatus
US11261541B2 (en) 2018-08-08 2022-03-01 Showa Denko K.K. Shielding member and apparatus for single crystal growth
CN110820042A (en) * 2018-08-08 2020-02-21 昭和电工株式会社 Shielding member and single crystal growth apparatus
EP3868925A1 (en) * 2020-02-18 2021-08-25 Friedrich-Alexander-Universität Erlangen-Nürnberg Method for producing a single crystal in a growth crucible
WO2023282000A1 (en) * 2021-07-08 2023-01-12 住友電気工業株式会社 Silicon carbide single crystal and silicon carbide substrate

Also Published As

Publication number Publication date
JP4110611B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
EP2508655B1 (en) Method of producing silicon carbide monocrystals
US5441011A (en) Sublimation growth of single crystal SiC
JP2002060297A (en) Apparatus and method for growing single crystal
JP2001114599A (en) Method of and device for producing single crystal
JP3419144B2 (en) Single crystal growth equipment
JPH11278985A (en) Production of single crystal
JPH0558774A (en) Vessel for silicone carbide single crystal growing device
JP2000264795A (en) Apparatus and method for producing silicon carbide single crystal
JPH11268990A (en) Production of single crystal and production device
CN216274462U (en) Silicon carbide crystal growing device
JPH11255597A (en) Apparatus for producing single crystal
JP3843615B2 (en) Single crystal growth equipment
JP5602093B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP4450118B2 (en) Method for producing silicon carbide single crystal
JP2868328B2 (en) Method for producing large diameter silicon carbide single crystal ingot and silicon carbide single crystal for seed crystal
JP6829767B2 (en) Manufacturing method and manufacturing equipment for SiC raw materials for SiC crystal growth
KR20130083653A (en) Growing apparatus for single crystal
JP4509258B2 (en) Single crystal growth apparatus and manufacturing method
JP5094811B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP2000219594A (en) Crucible, crystal growth device and crystal growth method
JPH09263498A (en) Production of silicon carbide single crystal
JP3717562B2 (en) Single crystal manufacturing method
CN214032756U (en) Silicon carbide single crystal growth device
JP7490775B2 (en) Method for producing SiC crystal
JP3078574B2 (en) Vapor phase growth equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term