JP5094811B2 - Single crystal manufacturing method and manufacturing apparatus - Google Patents

Single crystal manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP5094811B2
JP5094811B2 JP2009247219A JP2009247219A JP5094811B2 JP 5094811 B2 JP5094811 B2 JP 5094811B2 JP 2009247219 A JP2009247219 A JP 2009247219A JP 2009247219 A JP2009247219 A JP 2009247219A JP 5094811 B2 JP5094811 B2 JP 5094811B2
Authority
JP
Japan
Prior art keywords
raw material
crucible
storage container
material storage
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009247219A
Other languages
Japanese (ja)
Other versions
JP2011093724A (en
Inventor
智明 古庄
隆夫 沢田
信之 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009247219A priority Critical patent/JP5094811B2/en
Publication of JP2011093724A publication Critical patent/JP2011093724A/en
Application granted granted Critical
Publication of JP5094811B2 publication Critical patent/JP5094811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭化珪素等の単結晶の製造方法および製造装置に関するものである。   The present invention relates to a method and an apparatus for producing a single crystal such as silicon carbide.

炭化珪素(SiC)半導体は、熱的・化学的に優れた特性を有し、且つ、電気的にも優れた特性を有する半導体材料として注目されている。このためSiCウェーハの低コスト化の要求が高まっている。   A silicon carbide (SiC) semiconductor has been attracting attention as a semiconductor material having excellent thermal and chemical properties and excellent electrical properties. For this reason, the request | requirement of the cost reduction of a SiC wafer is increasing.

炭化珪素の単結晶を成長させる方法としては昇華法が広く用いられている。昇華法は、SiC単結晶である種基板とSiC原料とをグラファイト(黒鉛)製の坩堝内に対向配置し、坩堝内を真空引き(排気)してアルゴン(Ar)等の不活性ガスで空気置換した後、高温で加熱してSiC原料を昇華させるものである。このとき種基板をSiCの成長温度域に保持し、かつ、原料部を種基板よりも高温に保持しておくことにより、SiC原料が昇華したガス(原料ガス)が種基板の表面に到達し、SiC単結晶のインゴットが成長する。   As a method for growing a silicon carbide single crystal, a sublimation method is widely used. In the sublimation method, a SiC single crystal seed substrate and a SiC raw material are placed opposite to each other in a graphite crucible, and the inside of the crucible is evacuated (exhausted) to air with an inert gas such as argon (Ar). After the substitution, the SiC raw material is sublimated by heating at a high temperature. At this time, by keeping the seed substrate in the SiC growth temperature region and keeping the raw material portion at a higher temperature than the seed substrate, the gas (raw material gas) obtained by sublimation of the SiC raw material reaches the surface of the seed substrate. A SiC single crystal ingot grows.

SiCウェーハを低コスト化する手段の一つとして、インゴットの成長速度を高くすることが挙げられる。昇華法においては、坩堝内の種基板付近の原料ガスの蒸気圧を高くする(不活性ガスの圧力を低くする、原料と種基板の温度差を大きくする等)ことにより、インゴットの成長速度を高めることができる。   One means for reducing the cost of SiC wafers is to increase the growth rate of ingots. In the sublimation method, the growth rate of the ingot is increased by increasing the vapor pressure of the source gas in the vicinity of the seed substrate in the crucible (lowering the pressure of the inert gas, increasing the temperature difference between the source and the seed substrate, etc.). Can be increased.

しかし、原料ガスの蒸気圧を高くすると坩堝の蓋と本体との隙間から原料ガスが漏れやすくなるため、それを抑制するために坩堝の気密性を高めることが必要になる。気密性を高める方法としては、坩堝の側壁を厚くして蓋と本体との接触面積を大きくすることが考えられる。また別の方法として、坩堝の蓋と本体をねじ切りして嵌め合わせることが提案されている(例えば下記の特許文献1)。   However, when the vapor pressure of the raw material gas is increased, the raw material gas is likely to leak from the gap between the crucible lid and the main body, so that it is necessary to improve the airtightness of the crucible to suppress this. As a method for improving the airtightness, it is conceivable to increase the contact area between the lid and the main body by thickening the side wall of the crucible. As another method, it has been proposed to screw the crucible lid and the main body together (for example, Patent Document 1 below).

特開2006−143497号公報JP 2006-143497 A

上記のように、坩堝内の原料ガスの蒸気圧を高くしてインゴットの成長速度を高めるためには、坩堝の気密性が重要である。坩堝の側壁を厚くすれば気密性を高くできるが、それによって坩堝の外径が大きくなると、新たに大きな結晶成長炉や断熱材などが必要になり、かえってコストを増大させる要因となり得る。坩堝の外径を維持して側壁を厚くすればその問題は生じないが、坩堝の内径が小さくなり、坩堝内で成長させることができるインゴット径が制限されるという別の問題が生じる。   As described above, in order to increase the vapor pressure of the raw material gas in the crucible and increase the growth rate of the ingot, the hermeticity of the crucible is important. If the crucible side wall is made thicker, the hermeticity can be increased. However, if the outer diameter of the crucible is increased, a new large crystal growth furnace or a heat insulating material is required, which may increase the cost. If the outer diameter of the crucible is maintained and the side wall is thickened, this problem does not occur, but another problem arises that the inner diameter of the crucible is reduced and the ingot diameter that can be grown in the crucible is limited.

また、坩堝の側壁を厚くする方法も、特許文献1のように坩堝の蓋と本体をねじ切りする方法も、蓋と本体と隙間を完全に無くすことは困難である。ねじ切りにしても、昇温後熱膨張によりねじが緩み、隙間が生じ、そこから原料ガスの漏れが発生する。   Moreover, it is difficult to completely eliminate the gap between the lid, the main body, and the method of thickening the side wall of the crucible and the method of threading the crucible lid and the main body as in Patent Document 1. Even when threading is performed, the screw loosens due to thermal expansion after the temperature rises, and a gap is formed, from which a raw material gas leaks.

本発明は以上のような課題を解決するためになされたものであり、単結晶の製造において、結晶成長に用いる坩堝の気密性を高めて材料ガスの漏れを防止し、且つ、坩堝内の充分な真空引きを可能にすることを目的とする。   The present invention has been made to solve the above-described problems. In the production of a single crystal, the crucible used for crystal growth is improved in hermeticity to prevent leakage of material gas, and sufficient in the crucible. The purpose is to enable easy vacuuming.

本発明に係る単結晶の製造方法は、坩堝内に種基板および原料を配置し、接着剤を用いて当該坩堝の原料収納容器と蓋とを接着させる工程と、前記坩堝内を、当該坩堝の側壁を介して排気する工程とを備えるものである。   The method for producing a single crystal according to the present invention includes a step of disposing a seed substrate and a raw material in a crucible and bonding the raw material storage container and the lid of the crucible using an adhesive, and the crucible inside the crucible. And a step of exhausting through the side wall.

本発明に係る単結晶の製造装置は、側壁に厚さ10mm以下の肉薄部を有するグラファイト製の原料収納容器、および前記原料収納容器の開口部に装着される蓋を有する坩堝と、前記蓋を前記原料収納容器に固定する接着剤とを備えるものである。   An apparatus for producing a single crystal according to the present invention includes a graphite raw material storage container having a thin wall portion having a thickness of 10 mm or less on a side wall, a crucible having a lid attached to an opening of the raw material storage container, and the lid. And an adhesive for fixing to the raw material storage container.

本発明によれば、原料収納容器と蓋との隙間が接着剤で埋められ、排気は坩堝の側壁を介して行われる。よって坩堝の気密性が高まり、結晶成長時の原料ガスの漏れを防止できる。よってインゴットの成長速度を高めることができる。また気密性を高めるために坩堝の側壁を厚くする必要がないため、坩堝の容積を大きく確保でき、インゴットの大口径化に対応できる。   According to the present invention, the gap between the raw material storage container and the lid is filled with the adhesive, and evacuation is performed through the side wall of the crucible. Therefore, the airtightness of the crucible is enhanced, and leakage of the raw material gas during crystal growth can be prevented. Therefore, the growth rate of the ingot can be increased. Further, since it is not necessary to increase the crucible side wall in order to improve the airtightness, a large crucible volume can be secured, and the ingot can be made large in diameter.

本発明の実施の形態に係る結晶成長装置の主要部の構成を示す図である。It is a figure which shows the structure of the principal part of the crystal growth apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る結晶成長装置の坩堝の原料収納容器の構造を示す図である。It is a figure which shows the structure of the raw material storage container of the crucible of the crystal growth apparatus which concerns on embodiment of this invention.

図1は本発明の実施の形態に係る単結晶の製造装置である結晶成長装置の主要部の構成を示す図である。当該結晶成長装置は、原料収納容器1と蓋3とから成るグラファイト製の坩堝10を備えている。原料収納容器1は、側壁の上部(開口部の近傍)に、他の部分よりも薄い肉薄部1aを備えている。   FIG. 1 is a diagram showing a configuration of a main part of a crystal growth apparatus which is a single crystal manufacturing apparatus according to an embodiment of the present invention. The crystal growth apparatus includes a graphite crucible 10 including a raw material storage container 1 and a lid 3. The raw material storage container 1 is provided with a thin part 1a thinner than other parts at the upper part of the side wall (in the vicinity of the opening).

詳細は後述するが、結晶成長を行う際には、原料収納容器1内に成長させる結晶の材料2が充填され、蓋3の中央部に設けられた台座3aに種基板4が設置される。蓋3が原料収納容器1の開口部に装着されると、図1のように種基板4が原料2に対向するようになる。このとき蓋3は、接着剤5を用いて原料収納容器1に固定される。また、過熱された原料2内の温度分布が均一になるように、坩堝10は断熱材6によって覆われる。   Although details will be described later, when crystal growth is performed, a crystal material 2 to be grown in the raw material storage container 1 is filled, and a seed substrate 4 is installed on a pedestal 3 a provided at the center of the lid 3. When the lid 3 is attached to the opening of the raw material container 1, the seed substrate 4 faces the raw material 2 as shown in FIG. At this time, the lid 3 is fixed to the raw material storage container 1 using an adhesive 5. The crucible 10 is covered with the heat insulating material 6 so that the temperature distribution in the overheated raw material 2 is uniform.

本実施の形態では、図1の成長装置を用いて、炭化珪素(SiC)の単結晶の成長を行う例を示す。   In this embodiment, an example is shown in which a single crystal of silicon carbide (SiC) is grown using the growth apparatus of FIG.

図2は、本実施の形態で用いた原料収納容器1の構造を示す図である。本実施の形態では、原料収納容器1の外径φ1を116mm、肉薄部1a以外の部分(底部)の内径φ2を92mm、肉薄部1aが設けられた部分(上部)の内径を105mmとした。即ち、原料収納容器1の側壁において、肉薄部1aの厚さWは5.5mm、それ以外の部分の厚さは12mmとなる。また原料収納容器1の高さL1を145mmとし、肉薄部1aを設ける位置の高さ(原料収納容器1内の底からの高さ)L2を100mmとした。原料収納容器1および蓋3を構成するグラファイトとしては、密度が1.75g/cm3のものと、1.82g/cm3のものの2種類を用いた。もっとも、原料収納容器1の各寸法およびグラファイトの密度は、上に示したものに限定されず、本発明の効果が得られる範囲で適宜変更してもよい。 FIG. 2 is a diagram showing the structure of the raw material storage container 1 used in the present embodiment. In the present embodiment, the outer diameter φ1 of the raw material storage container 1 is 116 mm, the inner diameter φ2 of the portion (bottom portion) other than the thin portion 1a is 92 mm, and the inner diameter of the portion (upper portion) provided with the thin portion 1a is 105 mm. That is, on the side wall of the raw material storage container 1, the thickness W of the thin portion 1a is 5.5 mm, and the thickness of the other portions is 12 mm. The height L1 of the raw material storage container 1 was 145 mm, and the height (height from the bottom in the raw material storage container 1) L2 of the position where the thin portion 1a was provided was 100 mm. As the graphite constituting the raw material storage container 1 and the lid 3, two types having a density of 1.75 g / cm 3 and 1.82 g / cm 3 were used. However, the dimensions of the raw material storage container 1 and the density of graphite are not limited to those shown above, and may be appropriately changed within a range in which the effects of the present invention can be obtained.

接着剤5は、蓋3を原料収納容器1に固定すると共に、蓋3と原料収納容器1との隙間を埋めることが可能なものであればよいが、結晶成長時の加熱工程での熱や、原料2が昇華したガス(原料ガス)によるエッチングに対する耐性を有する必要がある。   The adhesive 5 may be any adhesive as long as it fixes the lid 3 to the raw material storage container 1 and can fill the gap between the lid 3 and the raw material storage container 1. In addition, it is necessary to have resistance to etching by a gas (raw material gas) in which the raw material 2 is sublimated.

SiCの結晶成長では坩堝10が2000〜2500℃の高温に加熱されるため、本実施の形態では、それに絶え得る接着剤5としてカーボン接着剤を用いた。本明細書において「カーボン接着剤」とは、フェノールやノボラック等の樹脂成分に、フィラーとしてカーボン(例えばカーボンブラック等)を20%以上含有させた接着剤として定義する。   In the crystal growth of SiC, the crucible 10 is heated to a high temperature of 2000 to 2500 ° C. Therefore, in the present embodiment, a carbon adhesive is used as the adhesive 5 that can withstand it. In this specification, “carbon adhesive” is defined as an adhesive containing 20% or more of carbon (for example, carbon black) as a filler in a resin component such as phenol or novolac.

硬化したカーボン接着剤はSiC原料ガスによるエッチングに対し優れた耐性を有する上、仮に表面がエッチングされたとしても、カーボンはSiC単結晶を成長させる際の不純物とはならない。従ってカーボン接着剤は、SiC結晶成長に用いる接着剤5として特に好適である。接着剤5の厚みは、厚過ぎるとエッチングされやすくなるため、十分な接着力が得られる範囲で100μm以下が好ましい。   The cured carbon adhesive has excellent resistance to etching with SiC source gas, and even if the surface is etched, carbon does not become an impurity when growing a SiC single crystal. Therefore, the carbon adhesive is particularly suitable as the adhesive 5 used for SiC crystal growth. Since the adhesive 5 is easily etched when it is too thick, the thickness is preferably 100 μm or less as long as sufficient adhesive force can be obtained.

以下、本実施の形態に係るSiC単結晶の製造方法を説明する。   Hereinafter, a method for manufacturing a SiC single crystal according to the present embodiment will be described.

まず、坩堝10の原料収納容器1内にSiC原料2を収納し、蓋3の台座3aに種基板4を固定する。本実施の形態では4H型のポリタイプを有するSiC(4H−SiC)の種基板4を用いた。そして種基板4を原料収納容器1と蓋3との隙間を埋めるために、蓋3の外縁部(原料収納容器1に接触する部分)に接着剤5を塗布し、蓋3を原料収納容器1の開口部に嵌め込み、接着剤5を硬化させる。   First, the SiC raw material 2 is stored in the raw material storage container 1 of the crucible 10, and the seed substrate 4 is fixed to the base 3 a of the lid 3. In this embodiment, an SiC (4H—SiC) seed substrate 4 having a 4H type polytype is used. Then, in order to fill the gap between the raw material storage container 1 and the lid 3 with the seed substrate 4, an adhesive 5 is applied to the outer edge of the lid 3 (the part that contacts the raw material storage container 1), and the lid 3 is attached to the raw material storage container 1. And the adhesive 5 is cured.

カーボン接着剤である接着剤5の硬化工程は、次の手順の熱処理により行った。まず室温から80℃まで60分かけて昇温し、80℃で360分間保持する。続いて80℃から120℃まで80分かけて昇温し、120℃で360分間保持する。さらに120℃から200℃まで360分かけて昇温し、最後に200℃を60分間保持する。この熱処理は、大気中(N2、O2雰囲気)で恒温槽を用いて行った。 The hardening process of the adhesive 5 which is a carbon adhesive was performed by the heat treatment of the following procedure. First, the temperature is raised from room temperature to 80 ° C. over 60 minutes and held at 80 ° C. for 360 minutes. Subsequently, the temperature is raised from 80 ° C. to 120 ° C. over 80 minutes and held at 120 ° C. for 360 minutes. Further, the temperature is raised from 120 ° C. to 200 ° C. over 360 minutes, and finally, 200 ° C. is maintained for 60 minutes. This heat treatment was performed in the atmosphere (N 2 , O 2 atmosphere) using a thermostatic bath.

接着剤5を硬化させた後、坩堝10を断熱材6で覆い、結晶成長装置の炉(成長炉)内に設置し、成長炉内を真空引き(排気)する。坩堝10を構成するグラファイトは微細な空孔を有しており、原料収納容器1の肉薄部1aには側壁を貫通する空孔が存在する。従って成長炉内を真空引きすると、坩堝10内の空気(N2、O2)が肉薄部1aの空孔を通過し、坩堝10内も真空引きされる。真空引きの時間は12時間とした。 After the adhesive 5 is cured, the crucible 10 is covered with a heat insulating material 6 and placed in a furnace (growth furnace) of a crystal growth apparatus, and the inside of the growth furnace is evacuated (exhaust). The graphite constituting the crucible 10 has fine holes, and the thin part 1a of the raw material container 1 has holes that penetrate the side walls. Therefore, when the inside of the growth furnace is evacuated, the air (N 2 , O 2 ) in the crucible 10 passes through the holes of the thin portion 1a, and the crucible 10 is also evacuated. The vacuuming time was 12 hours.

成長炉を真空引きした後、成長炉内の雰囲気を高純度のアルゴンガスで置換する。このときアルゴンガスが原料収納容器1の肉薄部1aの空孔を通過し、坩堝10内もアルゴンガス雰囲気となる。   After evacuating the growth furnace, the atmosphere in the growth furnace is replaced with high-purity argon gas. At this time, the argon gas passes through the holes of the thin portion 1a of the raw material storage container 1, and the inside of the crucible 10 is also in an argon gas atmosphere.

このアルゴンガス雰囲気(600Torr)で、誘導コイル(不図示)などの加熱手段を用いて坩堝10を加熱し、SiC原料2の温度を炭化珪素が昇華する温度(2000〜2500℃)にする。一方、種基板4を取り付けた蓋3の温度は、SiC原料2の温度よりも低く設定する。この状態で、成長炉内のアルゴン雰囲気を減圧すると、坩堝10内のアルゴン雰囲気も減圧され、SiC原料2が昇華したガスが種基板4部に届くようになり、種基板4の表面でSiC単結晶インゴットが成長する。   In this argon gas atmosphere (600 Torr), the crucible 10 is heated using heating means such as an induction coil (not shown), and the temperature of the SiC raw material 2 is set to a temperature at which silicon carbide sublimates (2000 to 2500 ° C.). On the other hand, the temperature of the lid 3 to which the seed substrate 4 is attached is set lower than the temperature of the SiC raw material 2. When the argon atmosphere in the growth furnace is reduced in this state, the argon atmosphere in the crucible 10 is also reduced, so that the gas obtained by sublimation of the SiC raw material 2 reaches the seed substrate 4, and the SiC single substance is formed on the seed substrate 4 surface. Crystal ingot grows.

本実施の形態に係るSiC単結晶の製造方法によれば、坩堝10の原料収納容器1と蓋3との間の隙間が接着剤5で塞がれるため、その隙間から原料ガスが漏れることを防止でき、単結晶を高速に成長させることが可能である。   According to the method for producing a SiC single crystal according to the present embodiment, since the gap between the raw material storage container 1 and the lid 3 of the crucible 10 is closed by the adhesive 5, the source gas leaks from the gap. The single crystal can be grown at high speed.

具体的には、原料収納容器1の底部温度を2260℃、蓋3の上部温度を2140℃、アルゴン雰囲気圧力を2.8Torrとすることにより、成長速度1.53mm/hで、高さ69mmのインゴットが得られた。また結晶成長後に、硬化した接着剤5の表面を観察したが、エッチングされた痕跡は殆ど見られなかった。また原料収納容器1を構成するグラファイトの密度が1.75g/cm3の場合も、1.82g/cm3の場合も、同様に良好な結果が得られた。 Specifically, by setting the bottom temperature of the raw material storage container 1 to 2260 ° C., the top temperature of the lid 3 to 2140 ° C., and the argon atmosphere pressure to 2.8 Torr, the growth rate is 1.53 mm / h and the height is 69 mm. An ingot was obtained. Further, after the crystal growth, the surface of the cured adhesive 5 was observed, but almost no trace of etching was observed. Also, good results were obtained in the same manner when the density of the graphite constituting the raw material container 1 was 1.75 g / cm 3 and 1.82 g / cm 3 .

本発明者は比較のため、原料収納容器1と蓋3を接着剤で固定せずに、上記と同じ条件でのSiC結晶成長も行った。その場合、原料ガスが原料収納容器1と蓋3の隙間から漏れ出し、SiCは坩堝10外の断熱材6や成長炉の内壁に堆積してしまい、種基板4の表面には成長しなかった。   For comparison, the inventor also performed SiC crystal growth under the same conditions as described above without fixing the raw material storage container 1 and the lid 3 with an adhesive. In that case, the source gas leaks from the gap between the source container 1 and the lid 3, and SiC accumulates on the heat insulating material 6 outside the crucible 10 and the inner wall of the growth furnace, and does not grow on the surface of the seed substrate 4. .

また本発明者が、原料収納容器1と蓋3を接着剤で固定しない場合において、アルゴン雰囲気圧力、あるいは坩堝温度を変化させて成長速度を変えたところ、インゴットの成長速度が0.5mm/h程度までは原料ガスの漏れが問題にならない程度であった。しかしアルゴン雰囲気をさらに減圧して、インゴットの成長速度0.5mm/h以上で成長させようとすると、原料収納容器1と蓋3の隙間からの原料ガス漏れが増大し、所望の成長速度が得られなくなった。   Further, when the inventor did not fix the raw material storage container 1 and the lid 3 with an adhesive, the growth rate was changed by changing the argon atmosphere pressure or the crucible temperature, and the growth rate of the ingot was 0.5 mm / h. To the extent, leakage of raw material gas was not a problem. However, if the argon atmosphere is further depressurized to grow at an ingot growth rate of 0.5 mm / h or more, the raw material gas leakage from the gap between the raw material container 1 and the lid 3 increases, and a desired growth rate is obtained. I can't.

それに対し、本実施の形態のように原料収納容器1と蓋3を接着剤5で固定した場合は、原料収納容器1と蓋3の隙間からの原料ガス漏れが生じないため、成長速度1mm/h以上でインゴットを成長させることができる。また種基板4付近での原料ガスの圧力が安定するため、インゴットの成長速度も安定し、インゴットの結晶性が向上するという効果も得られる。さらに、原料ガスの漏れによる断熱材6の劣化を大幅に抑えることでき、それによってもウェーハ製造コストの削減に寄与できる。また、従来のように坩堝の側壁を厚くして気密性を高めるのではないため、坩堝10の容積を大きく確保でき、大口径インゴットの製造にも対応可能である。   On the other hand, when the raw material storage container 1 and the lid 3 are fixed with the adhesive 5 as in the present embodiment, the raw material gas does not leak from the gap between the raw material storage container 1 and the lid 3, so that the growth rate is 1 mm / Ingots can be grown at h or higher. In addition, since the pressure of the source gas in the vicinity of the seed substrate 4 is stabilized, the growth rate of the ingot is also stabilized and the crystallinity of the ingot is improved. Furthermore, it is possible to greatly suppress the deterioration of the heat insulating material 6 due to the leakage of the raw material gas, thereby contributing to the reduction of the wafer manufacturing cost. Further, since the side wall of the crucible is not thickened to increase the airtightness as in the conventional case, the crucible 10 can have a large volume and can be used for manufacturing a large-diameter ingot.

上記のように本実施の形態では、原料収納容器1と蓋3の隙間が接着剤で埋められており、その隙間を通しての坩堝10内の真空引きができないので、坩堝10内の真空引きは、原料収納容器1側壁の肉薄部1aの空孔を通して行われる。原料収納容器1と蓋3を接着させない場合に比べると、坩堝10内が真空引きされにくいため、真空引きの時間を充分に確保すべきである。真空引きの時間は12時間以上であることが好ましい。真空引きの時間を長くするほど真空引きを良好に行うことができるが、長過ぎるとウェーハの製造効率が低下することに留意すべきである。   As described above, in the present embodiment, the gap between the raw material storage container 1 and the lid 3 is filled with an adhesive, and vacuuming in the crucible 10 cannot be performed through the gap. This is carried out through a hole in the thin part 1a on the side wall of the raw material container 1. Compared to the case where the raw material storage container 1 and the lid 3 are not bonded together, the inside of the crucible 10 is hard to be evacuated, so a sufficient time for evacuation should be secured. The evacuation time is preferably 12 hours or more. The longer the evacuation time, the better the evacuation can be performed, but it should be noted that if it is too long, the production efficiency of the wafer will be reduced.

坩堝10内を効率よく真空引きさせるためには、肉薄部1aの厚さを薄くすればよい。肉薄部1aを薄くすると、それを貫通する空孔の数が増えるためである。肉薄部1aの最適な厚さは、断熱材6や成長炉の構造にもよるが、10mm以下が好ましく、より好ましくは5mm以下である。   In order to evacuate the crucible 10 efficiently, the thickness of the thin portion 1a may be reduced. This is because if the thin portion 1a is thinned, the number of holes passing through the thin portion 1a increases. The optimum thickness of the thin portion 1a is preferably 10 mm or less, more preferably 5 mm or less, although it depends on the heat insulating material 6 and the structure of the growth furnace.

但し、坩堝10の内壁は原料ガスによりエッチングされるため、肉薄部1aが薄過ぎると結晶成長の途中で穴が空き、そこから原料ガスが坩堝10外へ漏れてしまう。このため、肉薄部1aの厚さは、結晶成長に要する時間や、成長させるインゴットの長さ合わせて決定する必要がある。即ち、インゴットを長く成長させる場合は、それだけ結晶成長に長時間を要するので、その間のエッチングに耐え得るように肉薄部1aを厚めに設定する。本発明者の検証によると、厚さが5mmの肉薄部1aを有する坩堝10を用いて、高さ70mmのインゴットを成長させることができた。なお、肉薄部1aが比較的厚い場合には、原料収納容器1内の真空引きが困難になるので、それを補うために真空引き時間は長めに設定することが好ましい。   However, since the inner wall of the crucible 10 is etched by the source gas, if the thin portion 1a is too thin, a hole is formed in the middle of crystal growth, and the source gas leaks out of the crucible 10 from there. For this reason, the thickness of the thin part 1a needs to be determined according to the time required for crystal growth and the length of the ingot to be grown. That is, when the ingot is grown for a long time, the crystal growth takes a long time. Therefore, the thin portion 1a is set to be thick so that it can withstand etching during that time. According to the verification by the present inventor, an ingot having a height of 70 mm could be grown using the crucible 10 having the thin part 1a having a thickness of 5 mm. In addition, when the thin part 1a is comparatively thick, since it becomes difficult to evacuate the raw material storage container 1, it is preferable to set a longer evacuation time to compensate for this.

なお、SiC原料2の近傍(即ち原料収納容器1内の底部近傍)では、原料ガスによる原料収納容器1の内壁のエッチングが比較的激しいため、その部分の側壁はある程度の厚さを確保すべきである。つまり図2のように、肉薄部1aは、原料収納容器1の開口部近傍に設けることが好ましい。   In the vicinity of the SiC raw material 2 (that is, in the vicinity of the bottom in the raw material storage container 1), the inner wall of the raw material storage container 1 is relatively intensely etched by the raw material gas. It is. That is, as shown in FIG. 2, the thin portion 1 a is preferably provided in the vicinity of the opening of the raw material storage container 1.

坩堝10の内壁のエッチング耐性を高めるには、原料収納容器1を構成するグラファイトの密度(g/cm3)の密度を高くすることも有効である。但し、グラファイトの密度が高ければ、空孔の数は少なくなり真空引きが困難になると考えられるため、肉薄部1aをより薄く、あるいは真空引き時間をより長く設定することが好ましい。 In order to increase the etching resistance of the inner wall of the crucible 10, it is also effective to increase the density of graphite (g / cm 3 ) constituting the raw material storage container 1. However, if the density of graphite is high, the number of vacancies will decrease and it will be difficult to evacuate. Therefore, it is preferable to set the thin part 1a thinner or set the evacuation time longer.

また結晶成長時に坩堝10を過熱した際、熱膨張率の違いに起因する応力により坩堝10が割れることを防止するため、原料収納容器1と蓋3の材質は、互いに熱膨張係数が等しいものを用いることが好ましい。さらに、熱膨張率の違いに起因する応力によりインゴットにクラック等の欠陥が発生することを防止するため、蓋3の材質は、それに取り付ける種基板4と熱膨張係数が等しいことが好ましい。なお、種基板4の熱膨張係数は結晶軸の方向によって異なるので、種基板4の面方位に応じて蓋3および原料収納容器1の材質(熱膨張係数)を選択するとよい。   In addition, when the crucible 10 is overheated during crystal growth, in order to prevent the crucible 10 from cracking due to the stress due to the difference in thermal expansion coefficient, the material of the raw material storage container 1 and the lid 3 should have the same thermal expansion coefficient. It is preferable to use it. Furthermore, in order to prevent the occurrence of defects such as cracks in the ingot due to the stress due to the difference in thermal expansion coefficient, it is preferable that the material of the lid 3 has the same thermal expansion coefficient as the seed substrate 4 attached thereto. Since the thermal expansion coefficient of the seed substrate 4 varies depending on the crystal axis direction, the material (thermal expansion coefficient) of the lid 3 and the raw material storage container 1 may be selected according to the plane orientation of the seed substrate 4.

本実施の形態では4H−SiCの種基板4を用いたが、本発明は6H−SiCなど、他のポリタイプの種基板4に対しても適用可能である。またSiCの結晶成長に限らず、例えばAlNやGaNの結晶成長に対しても適用可能である。   Although the 4H—SiC seed substrate 4 is used in the present embodiment, the present invention is also applicable to other polytype seed substrates 4 such as 6H—SiC. Further, the present invention is not limited to SiC crystal growth but can be applied to AlN or GaN crystal growth, for example.

1 原料収納容器、1a 肉薄部、2 原料、3 蓋、3a 台座、4 種基板、5 接着剤、6 断熱材、10 坩堝。   DESCRIPTION OF SYMBOLS 1 Raw material storage container, 1a Thin part, 2 Raw material, 3 Cover, 3a pedestal, 4 type | mold board | substrate, 5 Adhesive, 6 Heat insulating material, 10 Crucible.

Claims (6)

坩堝内に種基板および原料を配置し、接着剤を用いて当該坩堝の原料収納容器と蓋とを接着させる工程と、
前記坩堝内を、当該坩堝の側壁を介して排気する工程とを備える
ことを特徴とする単結晶の製造方法。
Placing the seed substrate and the raw material in the crucible, and bonding the raw material storage container and the lid of the crucible using an adhesive;
And a step of exhausting the inside of the crucible through the side wall of the crucible.
前記坩堝の原料収納容器は、グラファイト製であり、側壁に厚さ10mm以下の肉薄部を有する
請求項1記載の単結晶の製造方法。
The method for producing a single crystal according to claim 1, wherein the crucible raw material storage container is made of graphite, and has a thin wall portion having a thickness of 10 mm or less on a side wall.
前記接着剤は、カーボン接着剤である
請求項1または請求項2記載の単結晶の製造方法。
The method for producing a single crystal according to claim 1, wherein the adhesive is a carbon adhesive.
側壁に厚さ10mm以下の肉薄部を有するグラファイト製の原料収納容器、および前記原料収納容器の開口部に装着される蓋を有する坩堝と、
前記蓋を前記原料収納容器に固定する接着剤とを備える
ことを特徴とする単結晶の製造装置。
A raw material storage container made of graphite having a thin wall portion having a thickness of 10 mm or less on the side wall, and a crucible having a lid attached to an opening of the raw material storage container;
An apparatus for producing a single crystal, comprising: an adhesive that fixes the lid to the raw material storage container.
前記肉薄部は、前記側壁における前記開口部近傍に設けられている
請求項4記載の単結晶の製造装置。
The single crystal manufacturing apparatus according to claim 4, wherein the thin portion is provided in the vicinity of the opening in the side wall.
前記接着剤は、カーボン接着剤である
請求項4または請求項5記載の単結晶の製造装置。
The single crystal manufacturing apparatus according to claim 4, wherein the adhesive is a carbon adhesive.
JP2009247219A 2009-10-28 2009-10-28 Single crystal manufacturing method and manufacturing apparatus Active JP5094811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247219A JP5094811B2 (en) 2009-10-28 2009-10-28 Single crystal manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247219A JP5094811B2 (en) 2009-10-28 2009-10-28 Single crystal manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2011093724A JP2011093724A (en) 2011-05-12
JP5094811B2 true JP5094811B2 (en) 2012-12-12

Family

ID=44111093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247219A Active JP5094811B2 (en) 2009-10-28 2009-10-28 Single crystal manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5094811B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699963B2 (en) * 2012-02-16 2015-04-15 三菱電機株式会社 Single crystal manufacturing method and manufacturing apparatus
JP2013189355A (en) * 2012-03-15 2013-09-26 Sumitomo Electric Ind Ltd Method and device for manufacturing silicon carbide single crystal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224755B2 (en) * 2001-10-16 2009-02-18 株式会社デンソー Seed crystal fixation method
JP4367173B2 (en) * 2004-02-25 2009-11-18 パナソニック株式会社 Single crystal manufacturing equipment using crucible
JP4833780B2 (en) * 2006-09-21 2011-12-07 新日本製鐵株式会社 Lid graphite crucible and silicon carbide single crystal growth apparatus

Also Published As

Publication number Publication date
JP2011093724A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP4499698B2 (en) Method for producing silicon carbide single crystal
JP5186733B2 (en) AlN crystal growth method
JP6813779B2 (en) Single crystal manufacturing equipment and single crystal manufacturing method
JP2013103848A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
WO2019171901A1 (en) Production method for silicon carbide single crystal
EP2400528B1 (en) Method for manufacturing silicon carbide semiconductor device
JP2021138597A (en) Wafer, epitaxial wafer and method for manufacturing the same
JP6450086B2 (en) Method for manufacturing compound semiconductor substrate
JP2015182948A (en) Production method of silicon carbide single crystal
JP2011241096A (en) Method for producing silicon carbide single crystal
JP5094811B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP3508519B2 (en) Epitaxial growth apparatus and epitaxial growth method
KR102195325B1 (en) Silicon carbide ingot, wafer and manufacturing method of the same
JP4374986B2 (en) Method for manufacturing silicon carbide substrate
KR101724291B1 (en) Apparatus for growing silicon carbide single crystal using the method of reversal of Physical Vapor Transport
JP4850807B2 (en) Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP2012254892A (en) Manufacturing method and manufacturing device for single crystal
JP4110611B2 (en) Single crystal manufacturing equipment
JP5252495B2 (en) Method for producing aluminum nitride single crystal
JP2005093519A (en) Silicon carbide substrate and method of manufacturing the same
CN114232095A (en) Method for optimizing initial nucleation on surface of silicon carbide seed crystal
JP6881365B2 (en) Silicon Carbide Single Crystal Manufacturing Method and Equipment
JP2010275166A (en) Method for producing silicon carbide single crystal
WO2020087724A1 (en) Method for preparing high quality silicon carbide and device therefor
JP2013071855A (en) Method for fixing aluminum nitride seed crystal, pedestal-seed crystal fixed body, method for producing aluminum nitride single crystal, and aluminum nitride single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5094811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250