JP4110611B2 - Single crystal manufacturing equipment - Google Patents

Single crystal manufacturing equipment Download PDF

Info

Publication number
JP4110611B2
JP4110611B2 JP08036098A JP8036098A JP4110611B2 JP 4110611 B2 JP4110611 B2 JP 4110611B2 JP 08036098 A JP08036098 A JP 08036098A JP 8036098 A JP8036098 A JP 8036098A JP 4110611 B2 JP4110611 B2 JP 4110611B2
Authority
JP
Japan
Prior art keywords
single crystal
shielding plate
growth substrate
raw material
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08036098A
Other languages
Japanese (ja)
Other versions
JPH11255597A (en
Inventor
宏行 近藤
富佐雄 廣瀬
泰男 木藤
春宣 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP08036098A priority Critical patent/JP4110611B2/en
Publication of JPH11255597A publication Critical patent/JPH11255597A/en
Application granted granted Critical
Publication of JP4110611B2 publication Critical patent/JP4110611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化珪素等の単結晶を成長させるために使用される単結晶製造装置に関するものである。
【0002】
【従来の技術】
炭化珪素単結晶は、パワー素子等の半導体装置に用いられる半導体基板として有用であり、従来より、昇華法によって製造されている。昇華法は、黒鉛るつぼ内で原料粉末と単結晶成長基板とを対向して配置し、原料粉末を加熱、昇華させて、単結晶成長基板上に導入し、再結晶させるものである。この際、るつぼ内は、単結晶成長基板が他の部分より低温となるように温度制御され、単結晶成長基板上に単結晶が成長しやすくしている。
【0003】
また、特開平8−295595号公報に記載されるように、原料粉末と単結晶成長基板の間に遮蔽板を設けたものがある。図4はその一例を示すもので、図中、単結晶製造装置1のるつぼ2内には、底部に原料粉末4として炭化珪素粉末が充填され、これに対向する蓋体3の下面に、炭化珪素単結晶よりなる単結晶成長基板6が接着剤5にて接合してある。原料粉末4と単結晶成長基板6の間には、円板状の遮蔽板7が配設されて、原料粉末4の輻射熱から単結晶成長基板6を保護している。
【0004】
【発明が解決しようとする課題】
ところが、上記従来の装置を用いて単結晶8を成長させた場合、図のように、成長した単結晶8の中央部が熱エッチングされ、窪みが生じるという問題があった。これは、遮蔽板7自体の温度が上昇すると、この遮蔽板からの熱輻射によって単結晶8の中心部の温度が上昇し熱エッチングを誘発するためで、成長結晶の長尺化を妨げている。
【0005】
しかして、本発明の目的は、成長結晶の中央部が熱エッチングされることを防止し、長尺の成長結晶を得ることが可能な単結晶製造装置を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明の単結晶製造装置は、るつぼ内に原料粉末と単結晶成長基板とを対向して配置し、上記原料粉末と上記単結晶成長基板の間に遮蔽板を設けて、上記原料粉末が加熱昇華する際の輻射熱から上記単結晶成長基板を保護しつつ、上記単結晶成長基板上に単結晶を成長させる構成となしてある。上記遮蔽板は中央部が凹陥する形状で、上記単結晶成長基板と上記遮蔽板の中央部との距離が、上記単結晶成長基板と上記遮蔽板の周辺部との距離より大きくなるようにしてある(請求項1)。
【0007】
遮蔽板を設置した場合、上記単結晶成長基板が原料粉末の輻射熱に直接さらされることはないが、上記遮蔽板自体が高温となると、その輻射熱によって成長結晶が熱エッチングされる不具合があった。本発明では、特に成長結晶の中央部が熱エッチングされやすく、長尺化の妨げになっている点に着目し、上記遮蔽板の構造を変更して、成長結晶の温度上昇を抑制する。具体的には、上記遮蔽板の中央部で周辺部より上記単結晶成長基板との距離が大きくなるようにし、中央部からの熱輻射を低減して、成長結晶の中央部の温度を低くする。かくして、熱エッチングが防止され、長尺の単結晶を得ることができる。
【0008】
上記遮蔽板を固定式とするとともに熱伝導率の異なる2種類の材料で構成し、上記遮蔽板の中央部を構成する第1の材料を、周辺部を構成する第2の材料より熱伝導率の小さい材料で構成することもできる(請求項2)。具体的には、上記遮蔽板の中央部を構成する第1の材料を多孔質黒鉛とし、周辺部を構成する第2の材料を黒鉛とする(請求項3)。上記遮蔽板の中央部を、多孔質黒鉛等、熱伝導率の低い材料で構成することで、中央部からの熱輻射を低減し、熱エッチングを防止する同様の効果が得られる。
【0009】
上記遮蔽板を中央部が上記原料粉末側に突出する形状とし、中央部の板厚を周辺部の板厚より厚く形成することもできる(請求項4)。板厚を厚くすることで、上記遮蔽板中央部の温度上昇を抑制し、中央部からの熱輻射を低減して熱エッチングを防止する同様の効果が得られる。
【0010】
上記遮蔽板の中央部と周辺部の面積比は、具体的には、1:3〜1:10の範囲とするのがよい(請求項5)。従来の装置構成において熱エッチングが生じる中心部面積は、通常、結晶全面積の1/10〜1/3程度であり、従って、上記範囲で上記遮蔽板の中央部と周辺部の面積比を設定すれば、効果的に熱エッチングを防止できる。
【0011】
また、本発明の単結晶製造装置で製造する上記単結晶としては、具体的には炭化珪素単結晶が挙げられ(請求項6)、長尺化による利点が大きい。
【0012】
【発明の実施の形態】
図1に本発明の第1の実施の形態を示す。図において、単結晶製造装置1は、上端開口の黒鉛製るつぼ2と、その開口を閉鎖するように配置される黒鉛製蓋体3とを有しており、るつぼ2の底部には、原料粉末4としての炭化珪素粉末が充填してある。蓋体3は、下面中央部が下方に突出して基板貼付用の台座3aを形成している。台座3aには、接着剤5を介して単結晶成長基板6となる種結晶が接合してある。種結晶としては、例えば、アチソン法、昇華法等により成長させた炭化珪素単結晶を使用することができ、これを口径φ10mm〜φ100mm程度のウエハー状に加工したものを用いる。
【0013】
単結晶成長基板6の下方には、黒鉛製の遮蔽板7が所定間隔をおいて対向配設してある。遮蔽板7は円板状で、るつぼ2底面に固定される棒状の支持部材7aにて下方より支持され、単結晶成長基板6が原料粉末4の輻射熱に直接さらされないように、これを保護している。遮蔽板7の高さは、単結晶成長基板6の下方に単結晶8が成長するための十分な空間が形成されるように設定され、ここでは、単結晶成長基板6と原料粉末4の間のほぼ中間位置に配置している。遮蔽板7の大きさは、通常、単結晶成長基板6の口径の0.9〜9倍程度の範囲で適宜設定される。一般に、単結晶成長基板6の口径が小さい時は倍率を大きくし、口径が大きい時は倍率を小さくする。また、遮蔽板7の外周とるつぼ2との間に所定の間隔を設けて、原料粉末4の昇華ガスが遮蔽板7の周囲から単結晶成長基板3に到達可能となしてある。
【0014】
本実施の形態では、遮蔽板7を中央部71が周辺部72に対して凹陥する形状とし、単結晶成長基板6からの距離が、遮蔽板7の中央部71で周辺部72より大きくなるようにする。このように、遮蔽板7の中央部71と単結晶8との距離を大きくすることで、単結晶8中央部の熱エッチングを抑制する効果がある。ここで、中央部71と周辺部72との面積比は、通常、1:3〜1:10程度の範囲とする。従来の装置構成において熱エッチングが生じる中心部面積は、通常、結晶全面積の1/10〜1/3程度であり、従って、中央部71と周辺部72の面積比を上記範囲とすれば上記効果が得られる。また、中央部71と周辺部72の単結晶成長基板6との距離の差(中央部71上面と周辺部72上面との段差)は、通常、2〜10mm程度とし、この範囲で適宜選択することができる。
【0015】
上記装置を用いて単結晶を成長させる場合には、るつぼ2内に原料粉末4と単結晶成長基板6を対向して配し、図略の加熱装置によりるつぼ2を所定温度に加熱して、原料粉末4を昇華させる。るつぼ2内は、アルゴンガス等の不活性ガス雰囲気とし、圧力は0.1〜数Torr程度とする。また、原料粉末4の温度は約2000〜2500℃程度とし、単結晶成長基板6は原料粉末4より温度が低くなるようにしてるつぼ2内に温度勾配を設ける。原料粉末4の昇華ガスは、遮蔽板7の周囲から単結晶成長基板6に到達し、相対的に低温となる単結晶成長基板6上に単結晶8が成長する。
【0016】
本実施の形態では、遮蔽板7を中央部71が凹陥する形状としたので、遮蔽板7の中央部71からの輻射熱が低減する。よって、これに対向する単結晶8の中央部の温度上昇を抑制することができ、熱エッチングが防止できるので、成長する単結晶8を長尺とすることができる。
【0017】
図2に本発明の第2の実施の形態を示す。本実施の形態では、遮蔽板7を平板状とし、その中央部71を第1の材料であるポーラスカーボン(多孔質黒鉛)で構成している。周辺部72は、第2の材料である黒鉛製とする。このように、中央部71を熱伝導率の低いポーラスカーボンで構成することで、遮蔽板7の中央部71から単結晶成長基板6への熱輻射を低減することができる。よって、単結晶8の中央部の熱エッチングを防止し、単結晶8を長尺化する同様の効果が得られる。なお、中央部71と周辺部72との面積比は、上記第1の実施の形態と同様で、通常、1:3〜1:10の範囲で適宜設定すればよい。
【0018】
図3に本発明の第3の実施の形態を示す。本実施の形態では、遮蔽板7を、中央部71が下方に突出する形状とし、中央部71の板厚が周辺部72の板厚より厚くなるようにしている。このような構成によっても、中央部71の熱伝導が周辺部72より低くなるため、遮蔽板7の中央部71からの輻射熱を低減することができる。よって、単結晶8の中央部の熱エッチングを防止し、単結晶8を長尺化する同様の効果が得られる。なお、中央部71と周辺部72との面積比は、上記第1、2の実施の形態と同様で、通常、1:3〜1:10の範囲で適宜設定すればよい。また、板厚は、周辺部72で7〜10mm程度、中央部71では、その1.5〜5倍程度とするのがよい。
【0019】
【実施例】
(実施例1)
上記図1に示した装置を用いて実際に単結晶を成長させる実験を行った。直径25mm、厚さ1mmのウエハ状の炭化珪素単結晶を単結晶成長基板6として用い、蓋体3下面に設けた台座3aに貼り付けた。遮蔽板7は、口径80mm、板厚10mmとし、中心部71の口径を30mm、中心部71と周辺部72の段差は5mmとした。また、単結晶成長基板6と遮蔽板7の中心部71との距離は40mm、単結晶成長基板6と遮蔽板7の周辺部72との距離は35mmとした。
【0020】
るつぼ2の底部に、原料粉末4として成長に十分な量の炭化珪素粉末を充填し、その上端開口に単結晶成長基板6を貼り付けた蓋体3を固定した。これを図略の加熱装置内に配し、図略の真空排気系にて排気してアルゴンガス雰囲気に置換した。次いで、原料粉末4が約2300℃、単結晶成長基板6が約2230℃となるように加熱し、約1Torrに減圧して、原料粉末4を昇華させ、単結晶成長基板6上に単結晶8を成長させた。その後、加熱を停止し、アルゴンガスを導入した。
【0021】
この時、成長速度0.5〜0.6mm/時間で単結晶8が成長し、時間経過に伴う成長速度低下は観察されなかった。また、成長した単結晶8は、中心部で成長速度が速く、略凸型に成長しており、中心部が熱エッチングされるといった現象は見られなかった。以上より、遮蔽板7形状を変更することで、熱エッチングを防止し、長尺化が可能であることが確認された。
【0022】
(実施例2)
上記図2に示した装置を用いて実際に単結晶を成長させる実験を行った。遮蔽板7(口径80mm、板厚を10mm)の、中心部71を口径30mmのポーラスカーボン製とし、周辺部72を黒鉛製とした以外は、実施例1と同様の方法で、単結晶を成長させた。その結果、成長した単結晶8は、略凸型で、熱エッチングは観察されず、長尺化が可能であることが確認された。
【0023】
(実施例3)
上記図3に示した装置を用いて実際に単結晶を成長させる実験を行った。遮蔽板7は口径を80mmとし、板厚を、中心部71(口径30mm)で20mm、周辺部72で10mmとした。それ以外は、実施例1と同様の方法で、単結晶を成長させた。その結果、成長した単結晶8は、略凸型で、熱エッチングは観察されず、長尺化が可能であることが確認された。
【0024】
(比較例1)
比較のため、上記図4に示した装置を用いて実際に単結晶を成長させる実験を行った。遮蔽板7は、口径80mmとし、板厚10mmの平板状とし、遮蔽板7と単結晶成長基板6との距離は35mmとした。それ以外は、実施例1と同様の方法で、単結晶を成長させた。
【0025】
この時、成長速度0.4〜0.5mm/時間で単結晶8が成長し、時間経過に伴う成長速度低下は観察されなかったものの、成長速度が上記実施例1〜3と比較するとやや小さい。また、成長した単結晶8は、中心部で成長速度が遅く、略凹型に成長しており、中心部に熱エッチング現象が見られた。
【0026】
以上のように、本発明の単結晶製造装置により単結晶の長尺化が可能である。なお、本発明の単結晶製造装置は、炭化珪素単結晶の成長に限らず、硫化カドミウム等、昇華法によって成長可能な単結晶であればいずれにも適用することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す単結晶製造装置の全体断面図である。
【図2】本発明の第2の実施の形態を示す単結晶製造装置の全体断面図である。
【図3】本発明の第3の実施の形態を示す単結晶製造装置の全体断面図である。
【図4】従来の単結晶製造装置の全体断面図である。
【符号の説明】
1 単結晶製造装置
2 るつぼ
3 蓋体
3a 台座
4 原料粉末
5 接着剤
6 単結晶成長基板
7 遮蔽板
71 中央部
72 周辺部
8 単結晶
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single crystal manufacturing apparatus used for growing a single crystal such as silicon carbide.
[0002]
[Prior art]
A silicon carbide single crystal is useful as a semiconductor substrate used in a semiconductor device such as a power element, and has been conventionally produced by a sublimation method. In the sublimation method, a raw material powder and a single crystal growth substrate are arranged facing each other in a graphite crucible, the raw material powder is heated and sublimated, introduced onto the single crystal growth substrate, and recrystallized. At this time, the temperature in the crucible is controlled so that the single crystal growth substrate has a lower temperature than the other portions, so that the single crystal can easily grow on the single crystal growth substrate.
[0003]
Also, as described in JP-A-8-295595, there is one in which a shielding plate is provided between the raw material powder and the single crystal growth substrate. FIG. 4 shows an example. In the figure, the crucible 2 of the single crystal manufacturing apparatus 1 is filled with silicon carbide powder as a raw material powder 4 at the bottom, and carbonized on the lower surface of the lid 3 facing this. A single crystal growth substrate 6 made of silicon single crystal is bonded with an adhesive 5. A disc-shaped shielding plate 7 is disposed between the raw material powder 4 and the single crystal growth substrate 6 to protect the single crystal growth substrate 6 from the radiant heat of the raw material powder 4.
[0004]
[Problems to be solved by the invention]
However, when the single crystal 8 is grown using the above-described conventional apparatus, there is a problem that the central portion of the grown single crystal 8 is thermally etched and a depression is generated as shown in the figure. This is because when the temperature of the shielding plate 7 itself rises, the temperature of the central portion of the single crystal 8 rises due to thermal radiation from the shielding plate 7 and induces thermal etching, which hinders the growth of the grown crystal. Yes.
[0005]
Accordingly, an object of the present invention is to provide a single crystal manufacturing apparatus capable of preventing the central portion of a growth crystal from being thermally etched and obtaining a long growth crystal.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the single crystal manufacturing apparatus of the present invention has a raw material powder and a single crystal growth substrate facing each other in a crucible, and a shielding plate is provided between the raw material powder and the single crystal growth substrate. And a single crystal is grown on the single crystal growth substrate while protecting the single crystal growth substrate from radiant heat generated when the raw material powder is heated and sublimated. The shielding plate has a shape in which the central portion is recessed, and the distance between the single crystal growth substrate and the central portion of the shielding plate is larger than the distance between the single crystal growth substrate and the peripheral portion of the shielding plate. (Claim 1).
[0007]
When the shielding plate is provided, the single crystal growth substrate is not directly exposed to the radiant heat of the raw material powder, but when the shielding plate itself is at a high temperature, the grown crystal is thermally etched by the radiant heat. In the present invention, focusing on the fact that the central portion of the grown crystal is easily thermally etched and hinders lengthening, the structure of the shielding plate is changed to suppress the temperature rise of the grown crystal. Specifically, the distance between the central portion of the shielding plate and the single crystal growth substrate is larger than the peripheral portion in the central portion, the thermal radiation from the central portion is reduced, and the temperature of the central portion of the grown crystal is lowered. . Thus, thermal etching is prevented and a long single crystal can be obtained.
[0008]
The shielding plate is made of a fixed type and is made of two kinds of materials having different thermal conductivities, and the first material constituting the central portion of the shielding plate is more thermally conductive than the second material constituting the peripheral portion. (Claim 2). Specifically, the first material constituting the central portion of the shielding plate and a porous graphite, a second material which constitutes the peripheral portion and the graphite (claim 3). By configuring the central portion of the shielding plate with a material having low thermal conductivity such as porous graphite, the same effect of reducing thermal radiation from the central portion and preventing thermal etching can be obtained.
[0009]
The shielding plate may have a shape in which the central portion protrudes toward the raw material powder, and the thickness of the central portion may be greater than the thickness of the peripheral portion. By increasing the plate thickness, it is possible to suppress the temperature rise at the central portion of the shielding plate, reduce the heat radiation from the central portion, and obtain the same effect of preventing thermal etching.
[0010]
Specifically, the area ratio between the central portion and the peripheral portion of the shielding plate is preferably in the range of 1: 3 to 1:10. The central area where thermal etching occurs in the conventional apparatus configuration is usually about 1/10 to 1/3 of the total area of the crystal. Therefore, the area ratio between the central part and the peripheral part of the shielding plate is set within the above range. Then, thermal etching can be effectively prevented.
[0011]
The single crystal produced by the single crystal production apparatus of the present invention is specifically a silicon carbide single crystal (Claim 6), and the advantage of lengthening is great.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a first embodiment of the present invention. In the figure, a single crystal production apparatus 1 has a graphite crucible 2 having an upper end opening and a graphite lid 3 disposed so as to close the opening, and a raw material powder is placed at the bottom of the crucible 2. 4 is filled with silicon carbide powder. The lid 3 has a lower surface center portion protruding downward to form a base 3a for attaching a substrate. A seed crystal serving as a single crystal growth substrate 6 is bonded to the pedestal 3 a via an adhesive 5. As the seed crystal, for example, a silicon carbide single crystal grown by the Atchison method, the sublimation method, or the like can be used, and this is processed into a wafer shape having a diameter of about φ10 mm to φ100 mm.
[0013]
Below the single crystal growth substrate 6, a graphite shielding plate 7 is disposed so as to face each other at a predetermined interval. The shielding plate 7 is disc-shaped and is supported from below by a rod-like support member 7 a fixed to the bottom of the crucible 2 to protect the single crystal growth substrate 6 from being directly exposed to the radiant heat of the raw material powder 4. ing. The height of the shielding plate 7 is set so that a sufficient space for the growth of the single crystal 8 is formed below the single crystal growth substrate 6. Here, the space between the single crystal growth substrate 6 and the raw material powder 4 is set. It is arranged at almost the middle position. The size of the shielding plate 7 is normally set as appropriate within a range of about 0.9 to 9 times the diameter of the single crystal growth substrate 6. Generally, the magnification is increased when the diameter of the single crystal growth substrate 6 is small, and the magnification is decreased when the diameter is large. A predetermined interval is provided between the outer periphery of the shielding plate 7 and the crucible 2 so that the sublimation gas of the raw material powder 4 can reach the single crystal growth substrate 3 from the periphery of the shielding plate 7.
[0014]
In the present embodiment, the shielding plate 7 has a shape in which the central portion 71 is recessed with respect to the peripheral portion 72 so that the distance from the single crystal growth substrate 6 is larger than the peripheral portion 72 at the central portion 71 of the shielding plate 7. To. Thus, by increasing the distance between the central portion 71 of the shielding plate 7 and the single crystal 8, there is an effect of suppressing thermal etching of the central portion of the single crystal 8. Here, the area ratio between the central portion 71 and the peripheral portion 72 is usually in the range of about 1: 3 to 1:10. The central area where thermal etching occurs in the conventional apparatus configuration is usually about 1/10 to 1/3 of the total crystal area. Therefore, if the area ratio of the central portion 71 and the peripheral portion 72 is within the above range, An effect is obtained. Further, the difference in distance between the central portion 71 and the single crystal growth substrate 6 in the peripheral portion 72 (step difference between the upper surface of the central portion 71 and the upper surface of the peripheral portion 72) is usually about 2 to 10 mm, and is appropriately selected within this range. be able to.
[0015]
In the case of growing a single crystal using the above apparatus, the raw material powder 4 and the single crystal growth substrate 6 are arranged facing each other in the crucible 2, and the crucible 2 is heated to a predetermined temperature by a heating device (not shown). The raw material powder 4 is sublimated. The inside of the crucible 2 is an inert gas atmosphere such as argon gas, and the pressure is about 0.1 to several Torr. The temperature of the raw material powder 4 is about 2000 to 2500 ° C., and the single crystal growth substrate 6 is provided with a temperature gradient in the crucible 2 so that the temperature is lower than that of the raw material powder 4. The sublimation gas of the raw material powder 4 reaches the single crystal growth substrate 6 from the periphery of the shielding plate 7, and the single crystal 8 grows on the single crystal growth substrate 6 having a relatively low temperature.
[0016]
In the present embodiment, since the shielding plate 7 has a shape in which the central portion 71 is recessed, the radiant heat from the central portion 71 of the shielding plate 7 is reduced. Therefore, since the temperature rise of the center part of the single crystal 8 facing this can be suppressed and thermal etching can be prevented, the growing single crystal 8 can be made long.
[0017]
FIG. 2 shows a second embodiment of the present invention. In this Embodiment, the shielding board 7 is made into flat form, and the center part 71 is comprised with the porous carbon (porous graphite) which is a 1st material . The peripheral part 72 is made of graphite which is the second material . In this way, by configuring the central portion 71 with porous carbon having a low thermal conductivity, heat radiation from the central portion 71 of the shielding plate 7 to the single crystal growth substrate 6 can be reduced. Therefore, the same effect of preventing the central portion of the single crystal 8 from thermal etching and lengthening the single crystal 8 can be obtained. Note that the area ratio between the central portion 71 and the peripheral portion 72 is the same as that in the first embodiment, and may be appropriately set in the range of 1: 3 to 1:10.
[0018]
FIG. 3 shows a third embodiment of the present invention. In the present embodiment, the shielding plate 7 has a shape in which the central portion 71 protrudes downward so that the thickness of the central portion 71 is larger than the thickness of the peripheral portion 72. With such a configuration, since the thermal conduction in the central portion 71 is lower than the peripheral portion 72, it is possible to reduce radiant heat from the central portion 71 of the shielding plate 7. Therefore, the same effect of preventing the central portion of the single crystal 8 from thermal etching and lengthening the single crystal 8 can be obtained. Note that the area ratio between the central portion 71 and the peripheral portion 72 is the same as that in the first and second embodiments, and is usually set as appropriate within a range of 1: 3 to 1:10. The plate thickness is preferably about 7 to 10 mm at the peripheral portion 72 and about 1.5 to 5 times that at the central portion 71.
[0019]
【Example】
(Example 1)
An experiment for actually growing a single crystal was performed using the apparatus shown in FIG. A wafer-like silicon carbide single crystal having a diameter of 25 mm and a thickness of 1 mm was used as the single crystal growth substrate 6 and attached to a pedestal 3 a provided on the lower surface of the lid 3. The shielding plate 7 has a diameter of 80 mm, a plate thickness of 10 mm, a diameter of the central portion 71 is 30 mm, and a step between the central portion 71 and the peripheral portion 72 is 5 mm. The distance between the single crystal growth substrate 6 and the central portion 71 of the shielding plate 7 was 40 mm, and the distance between the single crystal growth substrate 6 and the peripheral portion 72 of the shielding plate 7 was 35 mm.
[0020]
The bottom part of the crucible 2 was filled with a sufficient amount of silicon carbide powder as a raw material powder 4 for growth, and a lid 3 having a single crystal growth substrate 6 attached to the upper end opening was fixed. This was placed in a heating device (not shown), exhausted by a vacuum exhaust system (not shown), and replaced with an argon gas atmosphere. Next, the raw material powder 4 is heated to about 2300 ° C. and the single crystal growth substrate 6 is heated to about 2230 ° C., and the pressure is reduced to about 1 Torr to sublimate the raw material powder 4. Grew. Then, heating was stopped and argon gas was introduced.
[0021]
At this time, the single crystal 8 grew at a growth rate of 0.5 to 0.6 mm / hour, and no decrease in the growth rate over time was observed. Further, the grown single crystal 8 has a high growth rate at the central portion and is grown in a substantially convex shape, and a phenomenon that the central portion is thermally etched is not observed. From the above, it was confirmed that by changing the shape of the shielding plate 7, thermal etching can be prevented and the length can be increased.
[0022]
(Example 2)
An experiment for actually growing a single crystal was performed using the apparatus shown in FIG. A single crystal is grown in the same manner as in Example 1 except that the shielding plate 7 (diameter 80 mm, plate thickness 10 mm), the central portion 71 is made of porous carbon having a diameter of 30 mm, and the peripheral portion 72 is made of graphite. I let you. As a result, it was confirmed that the grown single crystal 8 has a substantially convex shape, no thermal etching is observed, and can be elongated.
[0023]
(Example 3)
An experiment for actually growing a single crystal was performed using the apparatus shown in FIG. The shield plate 7 has a diameter of 80 mm, and a plate thickness of 20 mm at the central portion 71 (diameter 30 mm) and 10 mm at the peripheral portion 72. Other than that, a single crystal was grown in the same manner as in Example 1. As a result, it was confirmed that the grown single crystal 8 has a substantially convex shape, no thermal etching is observed, and can be elongated.
[0024]
(Comparative Example 1)
For comparison, an experiment for actually growing a single crystal was performed using the apparatus shown in FIG. The shielding plate 7 had a diameter of 80 mm and a plate shape with a plate thickness of 10 mm, and the distance between the shielding plate 7 and the single crystal growth substrate 6 was 35 mm. Other than that, a single crystal was grown in the same manner as in Example 1.
[0025]
At this time, the single crystal 8 grew at a growth rate of 0.4 to 0.5 mm / hour, and a growth rate decrease with the passage of time was not observed, but the growth rate was slightly lower than those of Examples 1 to 3 above. . Further, the grown single crystal 8 had a slow growth rate at the center and was grown in a substantially concave shape, and a thermal etching phenomenon was observed at the center.
[0026]
As described above, the length of the single crystal can be increased by the single crystal manufacturing apparatus of the present invention. The single crystal manufacturing apparatus of the present invention is not limited to the growth of a silicon carbide single crystal, and can be applied to any single crystal that can be grown by a sublimation method, such as cadmium sulfide.
[Brief description of the drawings]
FIG. 1 is an overall cross-sectional view of a single crystal manufacturing apparatus showing a first embodiment of the present invention.
FIG. 2 is an overall cross-sectional view of a single crystal manufacturing apparatus showing a second embodiment of the present invention.
FIG. 3 is an overall cross-sectional view of a single crystal manufacturing apparatus showing a third embodiment of the present invention.
FIG. 4 is an overall cross-sectional view of a conventional single crystal manufacturing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Single crystal manufacturing apparatus 2 Crucible 3 Lid 3a Base 4 Raw material powder 5 Adhesive 6 Single crystal growth substrate 7 Shielding plate 71 Central part 72 Peripheral part 8 Single crystal

Claims (6)

るつぼ内に原料粉末と単結晶成長基板とを対向して配置し、上記原料粉末と上記単結晶成長基板の間に遮蔽板を設けて、上記原料粉末が加熱昇華する際の輻射熱から上記単結晶成長基板を保護しつつ、上記単結晶成長基板上に単結晶を成長させる単結晶製造装置において、上記遮蔽板を中央部が凹陥する形状とし、上記単結晶成長基板と上記遮蔽板の中央部との距離が、上記単結晶成長基板と上記遮蔽板の周辺部との距離より大きくなるようにしたことを特徴とする単結晶製造装置。A raw material powder and a single crystal growth substrate are arranged opposite to each other in a crucible, a shielding plate is provided between the raw material powder and the single crystal growth substrate, and the single crystal is taken from the radiant heat generated when the raw material powder is heated and sublimated. In a single crystal manufacturing apparatus for growing a single crystal on the single crystal growth substrate while protecting the growth substrate, the shielding plate is shaped so that a central portion is recessed, and the single crystal growth substrate and the central portion of the shielding plate are Is made larger than the distance between the single crystal growth substrate and the peripheral portion of the shielding plate. るつぼ内に原料粉末と単結晶成長基板とを対向して配置し、上記原料粉末と上記単結晶成長基板の間に固定式の遮蔽板を設けて、上記原料粉末が加熱昇華する際の輻射熱から上記単結晶成長基板を保護しつつ、上記単結晶成長基板上に単結晶を成長させる単結晶製造装置において、上記遮蔽板を熱伝導率の異なる2種類の材料で構成し、上記遮蔽板の中央部を構成する第1の材料を、周辺部を構成する第2の材料より熱伝導率の小さい材料で構成したことを特徴とする単結晶製造装置。The raw material powder and the single crystal growth substrate are placed facing each other in the crucible, and a fixed shielding plate is provided between the raw material powder and the single crystal growth substrate, so that radiation heat generated when the raw material powder is heated and sublimated. In the single crystal manufacturing apparatus for growing a single crystal on the single crystal growth substrate while protecting the single crystal growth substrate, the shielding plate is composed of two kinds of materials having different thermal conductivities, and the center of the shielding plate A single crystal manufacturing apparatus , wherein the first material constituting the portion is made of a material having a lower thermal conductivity than the second material constituting the peripheral portion . 上記遮蔽板の中央部を構成する第1の材料を多孔質黒鉛とし、上記遮蔽板の周辺部を構成する第2の材料を黒鉛とした請求項記載の単結晶製造装置。The first material constituting the central portion of the shielding plate is a porous graphite, a single crystal manufacturing apparatus of the second claim 2, wherein the material is graphite which constitutes the peripheral portion of the shielding plate. るつぼ内に原料粉末と単結晶成長基板とを対向して配置し、上記原料粉末と上記単結晶成長基板の間に遮蔽板を設けて、上記原料粉末が加熱昇華する際の輻射熱から上記単結晶成長基板を保護しつつ、上記単結晶成長基板上に単結晶を成長させる単結晶製造装置において、上記遮蔽板を中央部が上記原料粉末側に突出する形状とし、上記遮蔽板の中央部の板厚が周辺部の板厚より厚くなるようにしたことを特徴とする単結晶製造装置。A raw material powder and a single crystal growth substrate are arranged opposite to each other in a crucible, a shielding plate is provided between the raw material powder and the single crystal growth substrate, and the single crystal is taken from the radiant heat generated when the raw material powder is heated and sublimated. In the single crystal manufacturing apparatus for growing a single crystal on the single crystal growth substrate while protecting the growth substrate, the shielding plate is shaped so that the central portion protrudes toward the raw material powder side, and the central plate of the shielding plate An apparatus for producing a single crystal, characterized in that the thickness is larger than the thickness of the peripheral portion. 上記遮蔽板の中央部と周辺部の面積比が1:3〜1:10である請求項1ないし3のいずれか記載の単結晶製造装置。The single crystal manufacturing apparatus according to any one of claims 1 to 3, wherein an area ratio of a central portion and a peripheral portion of the shielding plate is 1: 3 to 1:10. 上記単結晶が炭化珪素単結晶である請求項1ないし5のいずれか記載の単結晶製造装置。The single crystal manufacturing apparatus according to any one of claims 1 to 5, wherein the single crystal is a silicon carbide single crystal.
JP08036098A 1998-03-12 1998-03-12 Single crystal manufacturing equipment Expired - Lifetime JP4110611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08036098A JP4110611B2 (en) 1998-03-12 1998-03-12 Single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08036098A JP4110611B2 (en) 1998-03-12 1998-03-12 Single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH11255597A JPH11255597A (en) 1999-09-21
JP4110611B2 true JP4110611B2 (en) 2008-07-02

Family

ID=13716099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08036098A Expired - Lifetime JP4110611B2 (en) 1998-03-12 1998-03-12 Single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4110611B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708746B2 (en) * 2004-09-02 2011-06-22 株式会社ブリヂストン Method and apparatus for producing silicon carbide single crystal
JP5263145B2 (en) * 2009-12-25 2013-08-14 株式会社デンソー Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method using the same
JP7068914B2 (en) 2018-04-26 2022-05-17 昭和電工株式会社 Insulation shielding member and single crystal manufacturing equipment equipped with it
JP7085886B2 (en) * 2018-05-01 2022-06-17 昭和電工株式会社 Shielding member and single crystal growth device
JP7268299B2 (en) 2018-08-08 2023-05-08 株式会社レゾナック Shielding member and single crystal growth apparatus
DE102020104226A1 (en) * 2020-02-18 2021-08-19 Friedrich-Alexander-Universität Erlangen-Nürnberg Method for producing a single crystal in a growth crucible
JPWO2023282000A1 (en) * 2021-07-08 2023-01-12

Also Published As

Publication number Publication date
JPH11255597A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
US6786969B2 (en) Method and apparatus for producing single crystal, substrate for growing single crystal and method for heating single crystal
EP2508655B1 (en) Method of producing silicon carbide monocrystals
JP4569957B2 (en) Crucible for producing polycrystalline semiconductor and method for producing polycrystalline semiconductor
JP4089073B2 (en) Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
EP2543753A1 (en) Method for producing silicon carbide crystal, silicon carbide crystal, and device for producing silicon carbide crystal
JP4108782B2 (en) Apparatus and method for forming single crystal silicon carbide on a nucleus
CN208308999U (en) A kind of SiC single crystal grower improving raw material service efficiency
JP3419144B2 (en) Single crystal growth equipment
US11830724B2 (en) Apparatus and method for manufacturing a wafer
JPH0558774A (en) Vessel for silicone carbide single crystal growing device
JP4048606B2 (en) Single crystal manufacturing method
KR20200010711A (en) Apparatus for growing silicon carbide single cryatal and method for growing silicon carbide single cryatal
JP4110611B2 (en) Single crystal manufacturing equipment
CN216274462U (en) Silicon carbide crystal growing device
JP4052678B2 (en) Large silicon carbide single crystal growth equipment
CN208618006U (en) A kind of silicon carbide monocrystal growth device
JP3843615B2 (en) Single crystal growth equipment
JP4450118B2 (en) Method for producing silicon carbide single crystal
JP6829767B2 (en) Manufacturing method and manufacturing equipment for SiC raw materials for SiC crystal growth
KR20130083653A (en) Growing apparatus for single crystal
US11708646B2 (en) Crucible having an improved crystal growth base for manufacturing silicon carbide single crystal and method of use
JP4509258B2 (en) Single crystal growth apparatus and manufacturing method
JP5094811B2 (en) Single crystal manufacturing method and manufacturing apparatus
CN207862478U (en) A kind of self sealss growing silicon carbice crystals crucible device
JP2002012500A (en) Method of and device for producing silicon carbide single crystal, and silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term