JP4569957B2 - Crucible for producing polycrystalline semiconductor and method for producing polycrystalline semiconductor - Google Patents

Crucible for producing polycrystalline semiconductor and method for producing polycrystalline semiconductor Download PDF

Info

Publication number
JP4569957B2
JP4569957B2 JP2005033748A JP2005033748A JP4569957B2 JP 4569957 B2 JP4569957 B2 JP 4569957B2 JP 2005033748 A JP2005033748 A JP 2005033748A JP 2005033748 A JP2005033748 A JP 2005033748A JP 4569957 B2 JP4569957 B2 JP 4569957B2
Authority
JP
Japan
Prior art keywords
crucible
seed crystal
polycrystalline semiconductor
crystal
semiconductor material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005033748A
Other languages
Japanese (ja)
Other versions
JP2006219336A (en
Inventor
秀夫 中西
顯道 北條
武史 宮澤
栄造 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PV CRYSTALOX SOLAR K.K.
Coorstek KK
Original Assignee
PV CRYSTALOX SOLAR K.K.
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PV CRYSTALOX SOLAR K.K., Covalent Materials Corp filed Critical PV CRYSTALOX SOLAR K.K.
Priority to JP2005033748A priority Critical patent/JP4569957B2/en
Publication of JP2006219336A publication Critical patent/JP2006219336A/en
Application granted granted Critical
Publication of JP4569957B2 publication Critical patent/JP4569957B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、単結晶に限りなく近い結晶方向性が揃った多結晶半導体を、好適に製造することができる多結晶半導体製造用ルツボ及び多結晶半導体製造方法に関する。   The present invention relates to a crucible for producing a polycrystalline semiconductor and a method for producing a polycrystalline semiconductor, which can suitably produce a polycrystalline semiconductor having a crystal orientation close to that of a single crystal.

集積回路等に用いられる半導体の材料として、また太陽電池の材料として、シリコンが広く用いられている。このシリコンは工業生産の面からも資源の面からも優れた材料であり、特に太陽電池の材料として、実用化されているもののほとんどがシリコンである。
現在、電力供給用太陽電池としては、単結晶シリコンを用いたものが主流であるが、安価な太陽電池を実現するためには、高品位の多結晶シリコンの太陽電池が必要である。
Silicon is widely used as a material for semiconductors used in integrated circuits and the like, and as a material for solar cells. This silicon is an excellent material from the viewpoint of industrial production and resources, and most of the silicon that has been put into practical use as a solar cell material is silicon.
Currently, solar cells using single crystal silicon are the mainstream as power supply solar cells, but high-quality polycrystalline silicon solar cells are required to realize inexpensive solar cells.

この多結晶シリコンの製造方法として、例えば、特開平9−71497号公報には、錐状底部にシリコンの単結晶を種結晶として配置し、その近傍のルツボ底部を冷却することにより、原料の固体シリコンの溶融時に種結晶を融解させずに高品位の多結晶シリコンを得る方法が開示されている。
また、特開平10−7493号公報には、平らなルツボ内側底面に単結晶シリコンを種結晶として隙間なく配置させ、ルツボ底部の温度を精密に制御することにより種結晶の融解を阻止し、結晶方向性が揃った高品位の多結晶シリコンを得る方法が開示されている。
As a method for producing this polycrystalline silicon, for example, in Japanese Patent Application Laid-Open No. 9-71497, a single crystal of silicon is arranged as a seed crystal at a cone-shaped bottom portion, and a crucible bottom portion in the vicinity thereof is cooled to thereby form a solid material. A method of obtaining high-quality polycrystalline silicon without melting the seed crystal when silicon is melted is disclosed.
Japanese Patent Laid-Open No. 10-7493 discloses that a single crystal silicon is placed as a seed crystal on the inner bottom surface of a flat crucible without gaps, and the temperature at the bottom of the crucible is precisely controlled to prevent melting of the seed crystal. A method for obtaining high-quality polycrystalline silicon with uniform orientation is disclosed.

特開平9−71497号公報JP-A-9-71497 特開平10−7493号公報Japanese Patent Laid-Open No. 10-7493

ところで、前記提案の製造方法にあっては、ルツボ底部に配置する種結晶は半導体材料と同一材料のシリコンであるため、種結晶を常に融点以下に保持する必要があり、そのため種結晶が配置されたルツボ底部を冷却する必要があった。
即ち、前記提案の製造方法にあっては、半導体材料を加熱溶融しながら、その一部を冷却するといった不都合が生じ、エネルギー効率を著しく低下せしめるという課題があった。
By the way, in the proposed manufacturing method, since the seed crystal arranged at the bottom of the crucible is silicon of the same material as the semiconductor material, it is necessary to always keep the seed crystal below the melting point. It was necessary to cool the bottom of the crucible.
That is, in the proposed manufacturing method, there is a problem that a part of the semiconductor material is cooled while being heated and melted, and the energy efficiency is remarkably lowered.

また、ルツボ内の半導体材料と種結晶の界面は半導体材料の融解中に溶け出すため、種結晶の厚みが20mm以上必要であるなど、製造コストが高くなり、太陽電池などの製造コストを上昇させるという課題があった。
さらに、シリコンの単結晶は、シリコン融液より密度が低いため、そのままではルツボ底に配置しておくことが困難であり、何らかの固定手段を講じなければならず、ルツボの製作費が嵩むという課題があった。
In addition, since the interface between the semiconductor material and the seed crystal in the crucible melts during the melting of the semiconductor material, the seed crystal needs to have a thickness of 20 mm or more, which increases the manufacturing cost and increases the manufacturing cost of solar cells and the like. There was a problem.
Furthermore, since the single crystal of silicon is lower in density than the silicon melt, it is difficult to place it on the bottom of the crucible as it is, and there is a problem that some fixing means must be taken and the crucible manufacturing cost increases. was there.

本発明は上記課題を解決するためになされたものであり、エネルギー効率が良く、しかも安価に、単結晶に限りなく近い結晶方向性が揃った多結晶半導体を製造することができる多結晶半導体製造用ルツボ及び多結晶半導体製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and is capable of producing a polycrystalline semiconductor that can produce a polycrystalline semiconductor that has good energy efficiency, low cost, and uniform crystal orientation close to that of a single crystal. An object of the present invention is to provide a crucible for use and a method for producing a polycrystalline semiconductor.

本発明は上記目的を達成するためになされたものであり、本発明にかかる多結晶半導体製造用ルツボは、ルツボ内部底面に種結晶を配置すると共に、その内部に半導体材料を装入し、不活性な雰囲気下で、ルツボ内の半導体材料を加熱手段によって加熱融解し、前記種結晶を配置した底部から熱を奪いながら徐々に上方に向かって、融解した半導体材料を凝固させる多結晶半導体製造用ルツボにおいて、前記ルツボ内の底面に、所定の間隔をもって複数の溝が形成され、あるいは所定の間隔をもって複数の円錐若しくは角錐の窪み部が形成され、前記溝の側面と垂直な面とのなす角、あるいは前記円錐若しくは角錐の窪み部の側面と中心線とのなす角が、54.7〜70度に形成され、前記溝の谷底部、あるいは前記窪み部の谷底部に種結晶を配置する際、前記溝の側面、あるいは前記窪み部の側面の少なくとも一部が露出するように配置されることを特徴としている。 The present invention has been made to achieve the above object, and a crucible for manufacturing a polycrystalline semiconductor according to the present invention has a seed crystal disposed on the inner bottom surface of the crucible, and a semiconductor material is inserted into the crucible. In an active atmosphere, for melting a semiconductor material in a crucible by a heating means, and removing the heat from the bottom where the seed crystal is disposed, and gradually solidifying the molten semiconductor material for manufacturing a polycrystalline semiconductor In the crucible, a plurality of grooves are formed on the bottom surface in the crucible with a predetermined interval, or a plurality of cones or pyramid depressions are formed with a predetermined interval, and an angle formed between a side surface and a surface perpendicular to the groove , or the angle between the side surface and the center line of the recessed portion of the conical or pyramid, formed on the 54.7 to 70 degrees, Taneyui valley bottom of the groove, or the valley bottom of the recess When placing, it is characterized in that the side surface of the groove or at least a portion of the side surface of the recess, is arranged so as to be exposed.

上記本発明にかかる多結晶半導体製造用ルツボによれば、ルツボ内の底面に、所定の間隔をもって複数の溝が形成され、あるいは所定の間隔をもって円錐若しくは角錐の窪み部が形成されているため、半導体材料の冷却時に溝あるいは窪み部の谷底部が冷却されされ易く、種結晶を基点として[100]方向に沿って結晶が成長しやすくなり、結晶方位の揃った半導体結晶を作成することができる。
尚、前記不活性な雰囲気下とは、真空あるいは、半導体材料が加熱時に酸化されない不活性ガス等が存在する雰囲気下をいう。
According to the crucible for manufacturing a polycrystalline semiconductor according to the present invention, a plurality of grooves are formed at a predetermined interval on the bottom surface in the crucible, or a conical or pyramidal depression is formed at a predetermined interval. When the semiconductor material is cooled, the bottom of the valley of the groove or the depression is easily cooled, and the crystal is likely to grow along the [100] direction with the seed crystal as a base point, so that a semiconductor crystal having a uniform crystal orientation can be formed. .
The inert atmosphere means a vacuum or an atmosphere in which an inert gas that does not oxidize the semiconductor material when heated is present.

この場合、前記溝の側面と垂直な面とのなす角、あるいは円錐若しくは角錐の窪み部の側面と中心線とのなす角が、54.7〜70度に形成されているため、種結晶を基点として[100]方向に沿って結晶がより成長しやすくなり、より結晶方位の揃った半導体結晶を作成することができ、単結晶に限りなく近い多結晶半導体を製造することができる。
ここで、前記溝の側面と垂直な面とのなす角、あるいは円錐若しくは角錐の窪み部の側面と中心線とのなす角が、54.7〜70度に設定されるのは、[100]方向を生成面とすると(111)面の安定面が54.7度となり、即ち、54.7度より大きな角度にすれば、ルツボ壁からランダムに発生した単結晶が(111)安定面により抑制され、多結晶化が妨げられ、グレイン(粒子)が大きくなるためである。
したがって、前記溝の側面と垂直な面とのなす角、あるいは円錐若しくは角錐の窪み部の側面と中心線とのなす角が54.7〜56度であることが好ましく、最適値は54.7度以上である。
In this case, the angle formed between the side surface of the groove and the surface perpendicular to the groove, or the angle formed between the side surface of the conical or pyramidal depression and the center line is formed at 54.7 to 70 degrees. A crystal can easily grow along the [100] direction as a base point, a semiconductor crystal with a more uniform crystal orientation can be produced, and a polycrystalline semiconductor close to a single crystal can be manufactured.
Here, the angle formed between the side surface of the groove and the surface perpendicular to the surface, or the angle formed between the side surface of the conical or pyramidal depression and the center line is set to 54.7 to 70 degrees [100]. If the direction is the generation plane, the stable plane of the (111) plane is 54.7 degrees, that is, if the angle is larger than 54.7 degrees, single crystals randomly generated from the crucible wall are suppressed by the (111) stable plane. This is because polycrystallization is hindered and grains (particles) become large.
Accordingly, it is preferable that the angle formed between the side surface of the groove and the surface perpendicular to the groove, or the angle formed between the side surface of the concave portion of the cone or the pyramid and the center line is 54.7 to 56 degrees, and the optimum value is 54.7. More than degrees.

また、本発明は上記目的を達成するためになされたものであり、本発明にかかる多結晶半導体製造方法は、上記した多結晶半導体製造用ルツボを用いて、前記ルツボ内部底面に形成された溝の谷底部、あるいは窪み部の谷底部に種結晶を配置すると共に、その内部に半導体材料を装入し、不活性な雰囲気下で、ルツボ内の半導体材料を加熱手段によって加熱融解し、前記種結晶を配置した底部から熱を奪いながら徐々に上方に向かって、融解した半導体材料を凝固させる多結晶半導体製造方法において、前記半導体材料がSiであり、種結晶が3C−SiCであることを特徴としている。 In addition, the present invention has been made to achieve the above object, and a polycrystalline semiconductor manufacturing method according to the present invention includes a groove formed on the inner bottom surface of the crucible using the above-described crucible for manufacturing a polycrystalline semiconductor. A seed crystal is arranged at the bottom of the valley or at the bottom of the depression , and a semiconductor material is inserted into the inside, and the semiconductor material in the crucible is heated and melted by a heating means in an inert atmosphere. In the polycrystalline semiconductor manufacturing method of solidifying the molten semiconductor material while gradually removing heat from the bottom where the crystals are arranged, the semiconductor material is Si and the seed crystal is 3C-SiC. It is said.

前記種結晶の3C−SiCの昇華温度は、半導体材料のSi(シリコン)の融点よりはるかに高く化学的に安定かつ強度が高いことから、従来のシリコン単結晶を種結晶として用いる場合のように、半導体材料のSiを融解中に種結晶の融解を防ぐための冷却を行う必要がない。
従って、従来のようにエネルギー損失は少なく、エネルギーの効率を高め、製造コストを低減することができる。更に、3C−SiC単結晶は、嵩密度3.16とシリコンの融液密度2.56より重く、特別な固定方法を用いなくとも、ルツボの底面に配置することができる。
Since the sublimation temperature of 3C-SiC of the seed crystal is much higher than the melting point of Si (silicon) of the semiconductor material and is chemically stable and high in strength, the conventional silicon single crystal is used as a seed crystal. It is not necessary to perform cooling to prevent melting of the seed crystal while melting Si of the semiconductor material.
Therefore, the energy loss is small as in the prior art, the energy efficiency can be increased, and the manufacturing cost can be reduced. Furthermore, the 3C—SiC single crystal is heavier than the bulk density of 3.16 and the silicon melt density of 2.56, and can be placed on the bottom of the crucible without using a special fixing method.

のように、上記多結晶半導体製造用ルツボの内部底面に形成された溝の谷底部、あるいは窪み部の谷底部に3C−SiCの種結晶が配置されると、前記したエネルギーの効率の向上、製造コストを低減、更に種結晶の固定手段が不要となるほか、半導体材料の冷却時に溝あるいは窪み部の谷底部が効率よく冷却されることによって、種結晶を基点として[100]方向に沿って結晶が成長しやすくなり、結晶方位の揃った半導体結晶を作成することができ、単結晶に限りなく近い多結晶半導体を製造することができる。 As this, when the valley portion of the groove formed on the inner bottom surface of the polycrystalline semiconductor manufacture crucibles, or recess 3C-SiC seed crystal valley portion of the are arranged to improve the efficiency of the above-described energy In addition to reducing the manufacturing cost and further eliminating the need for fixing the seed crystal, the bottom of the groove or the recess is efficiently cooled when the semiconductor material is cooled, so that the seed crystal is used as a starting point along the [100] direction. As a result, the crystal grows easily, a semiconductor crystal having a uniform crystal orientation can be produced, and a polycrystalline semiconductor almost as close to a single crystal can be produced.

なお、前記種結晶として、Si基板上に気相成長した3C−SiC/Siへテロ成長基板を用いることができる。   As the seed crystal, a 3C-SiC / Si hetero-growth substrate grown on a Si substrate by vapor phase can be used.

以上のように本発明にかかる多結晶半導体製造用ルツボによれば、単結晶に限りなく近い結晶方向性が揃った多結晶半導体を得ることができる。
また、本発明にかかる多結晶半導体製造方法によれば、エネルギー効率が良く、しかも安価に多結晶半導体を得ることができる。また、前記多結晶半導体製造用ルツボを用いて、前記製造方法を実施すれば、単結晶に限りなく近い結晶方向性が揃った多結晶半導体を得ることができる。
As described above, according to the crucible for manufacturing a polycrystalline semiconductor according to the present invention, it is possible to obtain a polycrystalline semiconductor having a crystal orientation close to that of a single crystal.
Moreover, according to the method for producing a polycrystalline semiconductor according to the present invention, a polycrystalline semiconductor can be obtained with good energy efficiency and at a low cost. Moreover, if the said manufacturing method is implemented using the said crucible for polycrystalline semiconductor manufacture, the polycrystalline semiconductor with which the crystal orientation close | similar to a single crystal was arrange | equalized can be obtained.

以下に、本発明にかかる多結晶半導体製造方法を図1及び図2に基づいて説明する。
なお、図1は本発明の実施形態に基づく多結晶半導体の製造装置の概略的な構成を示す断面図である。また、図2は図1に示した製造装置に用いられているルツボの斜視図である。この置は、密閉容器1を備え、その内部は大気から遮断され、不活性な雰囲気下に保たれている。この不活性な雰囲気下とは、例えば、真空ポンプによって、密閉容器1の内部が真空に保たれるように構成されていても良いし、あるいはまたアルゴンガスのような不活性ガスを容器内に供給し、不活性ガス雰囲気に保たれるように構成されていても良い。
即ち、密閉容器1の内部雰囲気が非酸化的環境に保たれ、半導体を密閉容器1内で加熱融解しても酸化による影響を受けないように構成されていれば良い。
Hereinafter, a polycrystalline semiconductor manufacturing method according to the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view showing a schematic configuration of a polycrystalline semiconductor manufacturing apparatus according to an embodiment of the present invention. FIG. 2 is a perspective view of a crucible used in the manufacturing apparatus shown in FIG. This device includes a sealed container 1, the inside of which is cut off from the atmosphere and kept in an inert atmosphere. The inert atmosphere may be configured such that the inside of the sealed container 1 is kept in a vacuum by, for example, a vacuum pump, or an inert gas such as argon gas is put in the container. It may be configured to be supplied and maintained in an inert gas atmosphere.
That is, the internal atmosphere of the sealed container 1 may be maintained in a non-oxidizing environment, and the semiconductor may be configured not to be affected by oxidation even if the semiconductor is heated and melted in the sealed container 1.

また、密閉容器内1には、加熱体2及び熱絶縁体3からなる円筒状の加熱炉4が設けられている。またこの熱絶縁体3の外側には、誘導加熱コイル5が巻付けられ、誘導加熱コイル5に通電することにより、加熱体2を加熱するように構成されている。
また、図示しないが、前記加熱体2を所定の温度に制御するため、熱電対、制御回路等(図示せず)が設けられ、誘導加熱コイル5に与える電力を制御するように構成されている。
A cylindrical heating furnace 4 including a heating body 2 and a thermal insulator 3 is provided in the sealed container 1. In addition, an induction heating coil 5 is wound around the outside of the thermal insulator 3, and the heating body 2 is heated by energizing the induction heating coil 5.
Although not shown, a thermocouple, a control circuit, etc. (not shown) are provided to control the heating body 2 to a predetermined temperature, and the power applied to the induction heating coil 5 is controlled. .

また、図1に示すように、密閉容器1内の加熱炉4が形成する内部空間に、Siからなる半導体材料7および3C−SiCからなる種結晶8が装入されるルツボ6が配置される。このルツボ6は、たとえばシリカガラスで升形状に形成され、支持台9上に載置されている。   As shown in FIG. 1, a crucible 6 in which a semiconductor material 7 made of Si and a seed crystal 8 made of 3C—SiC are inserted is disposed in an internal space formed by the heating furnace 4 in the sealed container 1. . This crucible 6 is formed, for example, in a bowl shape with silica glass, and is placed on a support base 9.

前記支持台9は、たとえば表層、底層がグラファイト、中間層がカーボンファイバから形成され、回転軸11に取付けられた台座10上に載置されている。
したがって、前記回転軸11によって台座10上が回転すると、支持台9、ルツボ6も回転軸11のまわりに回転し、この回転によってルツボ6内の半導体材料7は均一の加熱される。
The support base 9 is formed of, for example, a surface layer, a bottom layer made of graphite, and an intermediate layer made of carbon fiber, and is placed on a pedestal 10 attached to the rotary shaft 11.
Accordingly, when the pedestal 10 is rotated by the rotating shaft 11, the support base 9 and the crucible 6 are also rotated around the rotating shaft 11, and the semiconductor material 7 in the crucible 6 is uniformly heated by this rotation.

なお、回転軸11を上下方向に移動可能に構成することにより、加熱炉4とルツボ6の距離を制御でき、温度調節を行なうことができる。また、この製造装置にあっては、従来の装置において設けられていたルツボ6の底面を冷却する冷却手段を設ける必要はない。   Note that by configuring the rotary shaft 11 to be movable in the vertical direction, the distance between the heating furnace 4 and the crucible 6 can be controlled, and the temperature can be adjusted. Further, in this manufacturing apparatus, it is not necessary to provide a cooling means for cooling the bottom surface of the crucible 6 provided in the conventional apparatus.

また、図2に示すように、前記升形状のルツボ6の平底面部には、種結晶8である3C−SiCが配置されている。この種結晶8はSiウエーハの表面に3C−SiC膜を気相成長させた3C−SiC/Siへテロ成長基板である。
この3C−SiC/Siへテロ成長基板は、Si半導体材料の加熱溶融中にシリコン基板は溶融し、3C−SiC単結晶膜だけがルツボ6の底部に残留する。
しかも、3C−SiCの嵩密度3.16は、シリコンの融液密度2.56密度より大きいため、特別な固定手段を講じなくても結晶膜は、ルツボ6の底部に配置された状態が維持される。
As shown in FIG. 2, 3C—SiC, which is the seed crystal 8, is disposed on the flat bottom surface portion of the bowl-shaped crucible 6. This seed crystal 8 is a 3C-SiC / Si hetero-growth substrate in which a 3C-SiC film is vapor-phase grown on the surface of the Si wafer.
In the 3C-SiC / Si hetero-growth substrate, the silicon substrate is melted during the heating and melting of the Si semiconductor material, and only the 3C-SiC single crystal film remains at the bottom of the crucible 6.
Moreover, since the bulk density 3.16 of 3C-SiC is larger than the melt density 2.56 of silicon, the crystal film is maintained at the bottom of the crucible 6 without special fixing means. Is done.

このように構成された多結晶半導体製造装置において、まずルツボ6の底面全域に種結晶8である3C−SiC/Siへテロ成長基板を敷き詰め、ルツボ6の内部に半導体材料7であるSiを装入する。
そして、前記Siを溶解させる際には、ルツボ6の底部の下面温度を、Siの融点以上であって、種結晶の融点以下に温度制御する。このとき、Siの融点は1420度、3C−SiCの融点が2830度であるため、容易に制御することができる。
特に、従来のように、種結晶8に半導体材料7と同一の単結晶Siが用いられていないため、ルツボ6の底部を冷却する必要がなく、エネルギー効率を向上させることができる。
In the polycrystalline semiconductor manufacturing apparatus thus configured, first, a 3C—SiC / Si hetero-growth substrate as the seed crystal 8 is spread over the entire bottom surface of the crucible 6, and Si as the semiconductor material 7 is loaded inside the crucible 6. Enter.
When the Si is dissolved, the temperature of the bottom surface of the bottom of the crucible 6 is controlled to be not less than the melting point of Si and not more than the melting point of the seed crystal. At this time, since the melting point of Si is 1420 degrees, and the melting point of 3C—SiC is 2830 degrees, it can be easily controlled.
In particular, since the single crystal Si that is the same as the semiconductor material 7 is not used for the seed crystal 8 as in the prior art, it is not necessary to cool the bottom of the crucible 6 and energy efficiency can be improved.

Si半導体材料7を融解後、ルツボ6の冷却を開始し、種結晶8の表面の方向である[100]方向に沿って半導体の結晶を成長させる。このとき、ルツボ6の底面に配置された種結晶8の表面の方向に沿って、結晶が成長することとなり、単結晶に限りなく近い結晶方向性が揃った多結晶半導体が得られる。
半導体材料7が凝固した後、結晶をルツボ6から取り出し、予め定める厚さに切断してSi半導体基板を形成する。
After melting the Si semiconductor material 7, cooling of the crucible 6 is started, and a semiconductor crystal is grown along the [100] direction, which is the direction of the surface of the seed crystal 8. At this time, the crystal grows along the direction of the surface of the seed crystal 8 disposed on the bottom surface of the crucible 6, and a polycrystalline semiconductor having a crystal orientation close to that of a single crystal is obtained.
After the semiconductor material 7 is solidified, the crystal is taken out from the crucible 6 and cut into a predetermined thickness to form a Si semiconductor substrate.

以上説明したように、本発明にかかる多結晶半導体製造方法は、半導体の種結晶8を底面に配置したルツボ6内に半導体材料7を装入し、不活性な雰囲気下、ルツボ6内で半導体材料7を加熱手段によって加熱融解し、ルツボ6底部から冷却を開始し、徐々にルツボ全体を冷却して融解材料を凝固させる多結晶半導体製造方法であって、特に半導体材料7としてSiを用い、種結晶8として3C−SiCを用いた点に特徴を有している。   As described above, in the polycrystalline semiconductor manufacturing method according to the present invention, the semiconductor material 7 is placed in the crucible 6 in which the semiconductor seed crystal 8 is arranged on the bottom surface, and the semiconductor is formed in the crucible 6 in an inert atmosphere. It is a polycrystalline semiconductor manufacturing method in which the material 7 is heated and melted by heating means, cooling is started from the bottom of the crucible 6, and the entire crucible is gradually cooled to solidify the molten material. In particular, Si is used as the semiconductor material 7, The seed crystal 8 is characterized in that 3C-SiC is used.

更に、単結晶に限りなく近い結晶方向性が揃った多結晶半導体を製造することができる多結晶半導体製造用ルツボについて、図3乃至図6に基づいて説明する。
図3に本発明に係わるルツボ20はその底部に、所定の間隔をもって形成された複数の溝21(溝状凹凸形状)を有するシリカガラスルツボの一部断面としたものを示す。底部の溝21の谷底部22に種結晶8となる3C−SiC基板若しくは3C−SiC/Si
へテロ成長基板が配置される。
このように、ルツボ20の底面に溝22が形成されているため冷却効率が高められ、配置された種結晶から結晶凝固が始まる。従って、これが基点となり、ルツボ内全域に結晶方位を伝搬することが可能となる。
Further, a crucible for manufacturing a polycrystalline semiconductor capable of manufacturing a polycrystalline semiconductor having a crystal orientation close to that of a single crystal will be described with reference to FIGS.
FIG. 3 shows a crucible 20 according to the present invention having a partial cross-section of a silica glass crucible having a plurality of grooves 21 (grooved irregularities) formed at predetermined intervals on the bottom thereof. A 3C-SiC substrate or 3C-SiC / Si that becomes the seed crystal 8 at the bottom 22 of the bottom groove 21
A hetero growth substrate is placed.
Thus, since the groove | channel 22 is formed in the bottom face of the crucible 20, cooling efficiency is improved and crystal solidification starts from the arrange | positioned seed crystal. Therefore, this becomes the base point, and the crystal orientation can be propagated throughout the crucible.

なお、より好ましくは、ルツボ20の底部外側23には、ルツボ肉厚が薄くなるように溝22に対峙して溝24を形成するのが良い。これにより、さらに冷却効率が高められ、配置された種結晶8から結晶凝固が始まり、これが基点となりルツボ内全域に結晶方位を伝搬することが可能となる。   More preferably, a groove 24 is formed on the bottom outer side 23 of the crucible 20 so as to face the groove 22 so that the thickness of the crucible becomes thin. As a result, the cooling efficiency is further improved, and crystal solidification starts from the arranged seed crystal 8, which becomes the base point and can propagate the crystal orientation throughout the crucible.

また、面方位が(100)の種結晶が用いられるルツボにあっては、前記溝22を形成する側面25,26と垂直な面とのなす角αは、50〜70度に設定されている。より好ましくは54〜56度、最適には54.7度以上に形成されていることが好ましい。
一方、面方位が(111)の種結晶が用いられるルツボにあっても、面方位が(100)の種結晶が用いられるルツボと同様に、前記溝22を形成する側面25,26と垂直な面とのなす角αは、50〜70度に設定されている。より好ましくは54〜56度、最適には54.7度以上に形成されていることが好ましい。
Further, in a crucible in which a seed crystal having a plane orientation of (100) is used, the angle α formed between the side surfaces 25 and 26 forming the groove 22 and the plane perpendicular to the crucible is set to 50 to 70 degrees. . More preferably, it is formed at 54 to 56 degrees, and optimally at 54.7 degrees or more.
On the other hand, even in a crucible in which a seed crystal with a (111) plane orientation is used, similarly to the crucible in which a seed crystal with a (100) plane orientation is used, it is perpendicular to the side surfaces 25 and 26 forming the groove 22. The angle α formed with the surface is set to 50 to 70 degrees. More preferably, it is formed at 54 to 56 degrees, and optimally at 54.7 degrees or more.

このように前記溝21が形成されているため、種結晶8を基点として[100]方向に沿って結晶が成長しやすくなり、結晶方位の揃った半導体結晶を作成することができ、単結晶に限りなく近い多結晶半導体を製造することができる。   Since the groove 21 is formed in this way, it becomes easy to grow a crystal along the [100] direction with the seed crystal 8 as a base point, and a semiconductor crystal having a uniform crystal orientation can be formed. An infinitely close polycrystalline semiconductor can be manufactured.

また、溝22は延設された凹部のみを意味するものではなく、図4に示すようなアレイ状に窪み部27が配置されたものも含むものである。そして、この窪み部27の底部に3C−SiCの種結晶8を配置することにより、同様に3C−SiCの種結晶8が基点となり、ルツボ28全体に方位の揃った凝固結晶が得られる。   Moreover, the groove | channel 22 does not mean only the recessed part extended, but the thing by which the recessed part 27 is arrange | positioned at the array form as shown in FIG. 4 is also included. Then, by disposing the 3C—SiC seed crystal 8 at the bottom of the recess 27, the 3C—SiC seed crystal 8 is similarly used as a base point, and a solidified crystal having a uniform orientation in the entire crucible 28 is obtained.

更に、図5に示すように、ルツボ30はその底部に、所定の間隔をもって形成された複数の、円錐若しくは角錐の窪み部31であっても良い。図5では円錐の窪み部31を示している。なお、角錐の窪み部31としては、図6に示すような四角錐に限られるものではなく、多角錐であっても良い。   Further, as shown in FIG. 5, the crucible 30 may be a plurality of conical or pyramidal depressions 31 formed at a predetermined interval at the bottom thereof. FIG. 5 shows a conical depression 31. In addition, as the hollow part 31 of a pyramid, it is not restricted to a square pyramid as shown in FIG. 6, A polygonal pyramid may be sufficient.

また、この窪み部31の谷底部32に種結晶8となる3C−SiC基板若しくは3C−SiC/Siへテロ成長基板が配置される。この谷底部32の深さは、ルツボの底部厚さHの0.4〜0.8Hに形成されている。効率よく冷却するためである。
このように、ルツボ30の底面に窪み部31が形成されているため、溝の場合と同様に、冷却効率が高められ、配置された種結晶8から結晶凝固が始まる。従って、これが基点となり、ルツボ内全域に結晶方位を伝搬することが可能となる。
In addition, a 3C—SiC substrate or a 3C—SiC / Si hetero-growth substrate serving as the seed crystal 8 is disposed on the valley bottom 32 of the recess 31. The depth of the valley bottom 32 is formed to be 0.4 to 0.8H of the bottom thickness H of the crucible. This is for efficient cooling.
Thus, since the hollow part 31 is formed in the bottom face of the crucible 30, the cooling efficiency is improved and crystal solidification starts from the arranged seed crystal 8 as in the case of the groove. Therefore, this becomes the base point, and the crystal orientation can be propagated throughout the crucible.

また、面方位が(100)の種結晶が用いられるルツボにあっては、前記円錐若しくは角錐の窪み部31を形成する周面(側面)と中心線とのなす角αは、50〜70度に設定されている。より好ましくは54〜56度、最適には54.7度以上に形成されていることが好ましい。
一方、面方位が(111)の種結晶が用いられるルツボにあっても、面方位が(100)の種結晶が用いられるルツボと同様、前記円錐若しくは角錐の窪み部31を形成する側面と中心線とのなす角αは、50〜70度に設定されている。より好ましくは54〜56度、最適には54.7度以上に形成されていることが好ましい。
なお、前記角錐の窪み部31としては、例えば、正三角錐、正四角錐等に形成するのが好ましい。また面方位が(100)の種結晶が用いられるルツボにあっては、ルツボ内の底面に、所定の間隔をもって複数の正四角錐の窪み部が形成されるのが好ましく、面方位が(111)の種結晶が用いられるルツボにあっては、ルツボ内の底面に、所定の間隔をもって複数の正三角錐の窪み部が形成されるのが好ましい。
In addition, in a crucible in which a seed crystal having a plane orientation of (100) is used, the angle α formed between the peripheral surface (side surface) forming the conical or pyramidal depression 31 and the center line is 50 to 70 degrees. Is set to More preferably, it is formed at 54 to 56 degrees, and optimally at 54.7 degrees or more.
On the other hand, even in a crucible in which a seed crystal having a (111) plane orientation is used, the side surface and the center forming the conical or pyramidal depression 31 are the same as in the crucible in which a seed crystal having a (100) plane orientation is used. The angle α formed with the line is set to 50 to 70 degrees. More preferably, it is formed at 54 to 56 degrees, and optimally at 54.7 degrees or more.
The pyramid depression 31 is preferably formed in, for example, a regular triangular pyramid or a regular quadrangular pyramid. Further, in a crucible in which a seed crystal having a plane orientation of (100) is used, it is preferable that a plurality of regular quadrangular pyramid depressions are formed at predetermined intervals on the bottom surface of the crucible, and the plane orientation is (111). In the crucible in which the seed crystal is used, it is preferable that a plurality of equilateral triangular pyramid depressions are formed at predetermined intervals on the bottom surface in the crucible.

このように、所定の間隔をもって形成された、複数の円錐若しくは角錐の窪み部31が形成されているため、種結晶を基点として[100]方向に沿って結晶が成長しやすくなり、結晶方位の揃った半導体結晶を作成することができ、単結晶に限りなく近い多結晶半導体を製造することができる。   As described above, since a plurality of conical or pyramidal depressions 31 formed at a predetermined interval are formed, the crystal is likely to grow along the [100] direction from the seed crystal as a base point, and the crystal orientation A uniform semiconductor crystal can be produced, and a polycrystalline semiconductor close to a single crystal can be manufactured.

以上説明したように、本発明にかかる多結晶半導体製造用ルツボは、前記ルツボ内の底面に、所定の間隔をもって複数の溝が形成され、あるいは所定の間隔をもって複数の円錐若しくは角錐の窪み部が形成され、種結晶の面方位に対応して、前記溝の側面と垂直な面とのなす角、あるいは円錐若しくは角錐の窪み部の側面と中心線とのなす角が、所定の角度に設定されている点に特徴がある。   As described above, in the crucible for manufacturing a polycrystalline semiconductor according to the present invention, a plurality of grooves are formed at a predetermined interval on the bottom surface of the crucible, or a plurality of conical or pyramidal depressions are formed at a predetermined interval. Corresponding to the plane orientation of the seed crystal formed, the angle formed between the side surface of the groove and a surface perpendicular to the groove, or the angle formed between the side surface of the conical or pyramidal depression and the center line is set to a predetermined angle. There is a feature in that.

〔実施例1〕
四角錐の窪み(一辺20mm・20mm、深さ15mm)を、一列12個とし、12列を底部に配置したルツボ(一辺55cm、高さ40cmの升形状)を用いて、その谷底部に、面方位(100)の種結晶として、種結晶3C−SiC/Siを配置すると共に、ルツボ内に140kgのポリシリコンを充填し、これをポリシリコンの融点1420℃以上に加熱融解し、所定の冷却温度により冷却凝固させた。
凝固したシリコンを切断し、断面を観察したところ、窪みの頂点より上方に向けて半導体結晶が均一の方向を持って成長していた。上方に向かうに従って、ドメインは大きくなっていることが確認され、通常のルツボを使用した時に比較し、著しく多結晶半導体の品質は向上していた。
[Example 1]
Using a crucible (a bowl shape with a side of 55 cm and a height of 40 cm) with twelve square pyramid depressions (20 mm / 20 mm per side, 15 mm deep) and 12 rows arranged at the bottom, A seed crystal 3C-SiC / Si is arranged as a seed crystal of orientation (100), and 140 kg of polysilicon is filled in a crucible, and this is heated and melted to a melting point of polysilicon of 1420 ° C. or higher, and a predetermined cooling temperature is set. And solidified by cooling.
When the solidified silicon was cut and the cross section was observed, the semiconductor crystal grew in a uniform direction upward from the top of the depression. It was confirmed that the domain became larger toward the upper side, and the quality of the polycrystalline semiconductor was remarkably improved as compared with the case where a normal crucible was used.

〔実施例2〕
図1、図2に示すような平底ルツボ(一辺55cm、高さ40cmの升形状)の底面に、面方位(100)の種結晶として、3C−SiCの膜厚が1μmの3C−SiC/Si基板を全面に配置し、融解されるべきポリシリコン140kgを充填した。
これをポリシリコンの融点1420℃以上に加熱融解し、所定の冷却温度により冷却凝固させた。凝固したシリコンを切断し、断面を観察したところ、半導体結晶が均一の方向性を持って底面からルツボ上部に向けて成長していた。凝固したシリコンの底部には、熱膨張差により粉々に成ってはいるものの、3C−SiC膜が残存しており、多結晶半導体の品質は、Si単結晶を種結晶に用いたときよりも向上していた。
[Example 2]
As a seed crystal with a plane orientation (100) on the bottom of a flat bottom crucible (55 cm side and 40 cm height) as shown in FIGS. 1 and 2, 3C-SiC / Si having a thickness of 1 μm as a seed crystal of plane orientation (100) The substrate was placed over the entire surface and filled with 140 kg of polysilicon to be melted.
This was heated and melted to a melting point of polysilicon of 1420 ° C. or higher, and cooled and solidified at a predetermined cooling temperature. When the solidified silicon was cut and the cross section was observed, the semiconductor crystal had grown from the bottom to the top of the crucible with a uniform direction. Although the 3C-SiC film remains at the bottom of the solidified silicon due to the difference in thermal expansion, the quality of the polycrystalline semiconductor is improved compared to the case where a Si single crystal is used as a seed crystal. Was.

〔実施例3〕
図3に示すような溝付きルツボ(一辺55cm、高さ40cmの升形状、溝部幅1cm、深さ1cm)の溝底部に、面方位(100)の種結晶として、3C−SiCの膜厚が1μmの3C−SiC/Si基板を配置し、融解されるべきポリシリコン140kgを充填した。
これをポリシリコンの融点1420℃以上に加熱融解し、所定の冷却温度により冷却凝固させた。凝固したシリコンを切断し、断面を観察したところ、溝底部に配置した種結晶から半導体結晶が均一の方向性を持って、底面からルツボ上部に向けて成長していた。多結晶半導体の品質は、配向性の高いドメインが大きく、平底に種結晶を全面に配置したときよりも向上していた。
Example 3
As shown in FIG. 3, a 3C-SiC film thickness is formed as a seed crystal with a plane orientation (100) on the groove bottom of a grooved crucible (a saddle shape having a side of 55 cm, a height of 40 cm, a groove width of 1 cm, and a depth of 1 cm). A 1 μm 3C—SiC / Si substrate was placed and filled with 140 kg of polysilicon to be melted.
This was heated and melted to a melting point of polysilicon of 1420 ° C. or higher, and cooled and solidified at a predetermined cooling temperature. When the solidified silicon was cut and the cross-section was observed, the semiconductor crystal grew from the seed crystal arranged at the bottom of the groove with a uniform direction toward the top of the crucible from the bottom. The quality of the polycrystalline semiconductor is large with highly oriented domains, and is improved as compared with the case where the seed crystal is arranged on the entire surface of the flat bottom.

〔実施例4〕
図6に示すような複数の四角錐形状の窪みが形成されたルツボ(一辺55cm、高さ40cmの升形状、窪み:一辺1cmの四角錐、深さ0.8cm,この窪みを一列24個×24列配置)の窪みの谷底部に、面方位(100)の種結晶として、3C−SiCの膜厚が1μmの3C−SiC/Si基板を配置し、融解されるべきポリシリコン140kgを充填した。これをポリシリコンの融点1420℃以上に加熱融解し、所定の冷却温度により冷却凝固させた。
凝固したシリコンを切断し、断面を観察したところ、窪みの底部種結晶部より上方に向けて半導体結晶が均一の方向を持って成長していた。上方に向かうに従って、ドメインは大きくなっていることが確認され、通常のルツボを使用した時に比較し、著しく多結晶半導体の品質は向上していた。
Example 4
A crucible in which a plurality of quadrangular pyramid-shaped depressions as shown in FIG. 6 are formed (one side of 55 cm, a height of 40 cm in a bowl shape, a depression: a square pyramid with a side of 1 cm, a depth of 0.8 cm, and 24 depressions in a row × A 3C-SiC / Si substrate having a 3C-SiC film thickness of 1 μm was placed as a seed crystal with a plane orientation (100) at the bottom of the valleys of the 24 rows of depressions, and 140 kg of polysilicon to be melted was filled. . This was heated and melted to a melting point of polysilicon of 1420 ° C. or higher, and cooled and solidified at a predetermined cooling temperature.
When the solidified silicon was cut and the cross section was observed, the semiconductor crystal grew in a uniform direction upward from the bottom seed crystal part of the depression. It was confirmed that the domain became larger toward the upper side, and the quality of the polycrystalline semiconductor was remarkably improved as compared with the case where a normal crucible was used.

上記多結晶半導体製造用ルツボの実施形態の説明において、半導体材料としてSi、種結晶として3C−SiC/Si基板を用いた場合を例に説明したが、種結晶としてBP/Si、ZrSO4を用いた場合にも適用することができる。
一方、多結晶半導体製造方法は、半導体材料としてSi、種結晶として3C−SiCを用いた場合に適用されるものである。
In the above description of the embodiment of the crucible for manufacturing a polycrystalline semiconductor, the case where Si is used as the semiconductor material and the 3C-SiC / Si substrate is used as the seed crystal has been described as an example, but BP / Si and ZrSO 4 are used as the seed crystal. It is also possible to apply it.
On the other hand, the polycrystalline semiconductor manufacturing method is applied when Si is used as a semiconductor material and 3C-SiC is used as a seed crystal.

図1は本発明の実施形態に基づく多結晶半導体の製造装置の概略的な構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of a polycrystalline semiconductor manufacturing apparatus according to an embodiment of the present invention. 図2は図1に示した製造装置に用いられているルツボの斜視図である。FIG. 2 is a perspective view of a crucible used in the manufacturing apparatus shown in FIG. 図3は本発明の実施形態に基づく多結晶半導体製造用ルツボの概略的な構成を示す断面図である。FIG. 3 is a sectional view showing a schematic configuration of a crucible for manufacturing a polycrystalline semiconductor according to an embodiment of the present invention. 図3は本発明の実施形態に基づく多結晶半導体製造用ルツボの変形例を示す断面図である。FIG. 3 is a sectional view showing a modification of the crucible for manufacturing a polycrystalline semiconductor according to the embodiment of the present invention. 図5は本発明の実施形態に基づく多結晶半導体製造用ルツボの他の変形例を示す断面図である。FIG. 5 is a sectional view showing another modification of the crucible for manufacturing a polycrystalline semiconductor according to the embodiment of the present invention. 図6はルツボに形成される窪み部の他の変形例を示す平面図である。FIG. 6 is a plan view showing another modification of the recess formed in the crucible.

符号の説明Explanation of symbols

1 密閉容器
2 加熱体
3 熱絶縁体
4 加熱炉
5 誘導加熱コイル
6 ルツボ
7 半導体材料
8 種結晶
9 支持台
10 台座
11 回転軸
20 ルツボ
21 溝
22 谷底部
23 底部外側
24 溝
25 側面
26 側面
27 窪み部
28 ルツボ
30 ルツボ
31 窪み部
32 谷底部
33 側面(周面)
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Heating body 3 Thermal insulator 4 Heating furnace 5 Induction heating coil 6 Crucible 7 Semiconductor material 8 Seed crystal 9 Support base 10 Base 11 Rotating shaft 20 Crucible 21 Groove 22 Valley bottom 23 Bottom outside 24 Groove 25 Side 26 Side 26 Recessed portion 28 Crucible 30 Crucible 31 Recessed portion 32 Valley bottom 33 Side surface (circumferential surface)

Claims (3)

ルツボ内部底面に種結晶を配置すると共に、その内部に半導体材料を装入し、不活性な雰囲気下で、ルツボ内の半導体材料を加熱手段によって加熱融解し、前記種結晶を配置した底部から熱を奪いながら徐々に上方に向かって、融解した半導体材料を凝固させる多結晶半導体製造用ルツボにおいて、
前記ルツボ内の底面に、所定の間隔をもって複数の溝が形成され、あるいは所定の間隔をもって複数の円錐若しくは角錐の窪み部が形成され、
前記溝の側面と垂直な面とのなす角、あるいは前記円錐若しくは角錐の窪み部の側面と中心線とのなす角が、54.7〜70度に形成され、
前記溝の谷底部、あるいは前記窪み部の谷底部に種結晶を配置する際、前記溝の側面、あるいは前記窪み部の側面の少なくとも一部が露出するように配置されることを特徴とする多結晶半導体製造用ルツボ。
A seed crystal is arranged on the inner bottom surface of the crucible, and a semiconductor material is charged therein. Under an inert atmosphere, the semiconductor material in the crucible is heated and melted by heating means, and heat is applied from the bottom where the seed crystal is arranged. In a crucible for manufacturing a polycrystalline semiconductor, which solidifies molten semiconductor material gradually upward while taking
On the bottom surface in the crucible, a plurality of grooves are formed with a predetermined interval, or a plurality of cones or pyramid depressions are formed with a predetermined interval,
An angle formed between a side surface and a vertical surface of the groove, or an angle formed between a side surface of the conical or pyramidal depression and a center line is formed at 54.7 to 70 degrees ,
When the seed crystal is disposed at the bottom of the groove or at the bottom of the recess, the side surface of the groove or at least a part of the side of the recess is disposed. A crucible for manufacturing crystalline semiconductors.
前記請求項1に記載されたルツボを用いて、前記ルツボ内部底面に形成された溝の谷底部、あるいは窪み部の谷底部に種結晶を配置すると共に、ルツボの内部に半導体材料を装入し、不活性な雰囲気下で、ルツボ内の半導体材料を加熱手段によって加熱融解し、前記種結晶を配置した底部から熱を奪いながら徐々に上方に向かって、融解した半導体材料を凝固させる多結晶半導体製造方法において、
前記半導体材料がSiであり、種結晶が3C−SiCであることを特徴とする多結晶半導体製造方法。
Using a crucible as claimed in claim 1, wherein the valley portion of the formed grooves to crucible inside bottom surface, or together with placing the seed crystal on the valley portion of the recess, is charged with the semiconductor material inside the crucible In an inert atmosphere, a polycrystalline semiconductor in which a semiconductor material in a crucible is heated and melted by a heating means, and the molten semiconductor material is solidified gradually upward while removing heat from the bottom where the seed crystal is disposed. In the manufacturing method,
A method for producing a polycrystalline semiconductor, wherein the semiconductor material is Si and the seed crystal is 3C-SiC.
前記種結晶が、Si基板上に気相成長した3C−SiC/Siへテロ成長基板であることを特徴とする請求項2記載の多結晶半導体製造方法。 The seed crystal, Si polycrystalline semiconductor manufacturing method according to claim 2 Symbol mounting, characterized in that on a substrate a hetero growth substrate to 3C-SiC / Si was vapor-grown.
JP2005033748A 2005-02-10 2005-02-10 Crucible for producing polycrystalline semiconductor and method for producing polycrystalline semiconductor Expired - Fee Related JP4569957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033748A JP4569957B2 (en) 2005-02-10 2005-02-10 Crucible for producing polycrystalline semiconductor and method for producing polycrystalline semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033748A JP4569957B2 (en) 2005-02-10 2005-02-10 Crucible for producing polycrystalline semiconductor and method for producing polycrystalline semiconductor

Publications (2)

Publication Number Publication Date
JP2006219336A JP2006219336A (en) 2006-08-24
JP4569957B2 true JP4569957B2 (en) 2010-10-27

Family

ID=36981888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033748A Expired - Fee Related JP4569957B2 (en) 2005-02-10 2005-02-10 Crucible for producing polycrystalline semiconductor and method for producing polycrystalline semiconductor

Country Status (1)

Country Link
JP (1) JP4569957B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018222A (en) * 2014-06-20 2014-09-03 浙江师范大学 Crucible for preparing polycrystalline silicon ingot and growth method of polycrystalline silicon ingot

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010000687B4 (en) * 2010-01-05 2012-10-18 Solarworld Innovations Gmbh Crucible and method for producing silicon blocks
DE102011003578A1 (en) * 2010-02-25 2011-08-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Apparatus and method for producing silicon blocks
WO2011156976A1 (en) * 2010-06-19 2011-12-22 常州天合光能有限公司 Method for polycrystalline silicon ingot casting
JP5276060B2 (en) * 2010-07-01 2013-08-28 信越石英株式会社 Square silica container for producing polycrystalline silicon ingot and method for producing the same
JP5130337B2 (en) * 2010-09-17 2013-01-30 信越石英株式会社 Square silica container for producing polycrystalline silicon ingot, porous silica plate, and production method thereof
US20120167817A1 (en) * 2010-12-30 2012-07-05 Bernhard Freudenberg Method and device for producing silicon blocks
JP5312713B1 (en) * 2011-08-30 2013-10-09 京セラ株式会社 Manufacturing method of semiconductor ingot
US10087080B2 (en) * 2011-11-28 2018-10-02 Sino-American Silicon Products Inc. Methods of fabricating a poly-crystalline silcon ingot from a nucleation promotion layer comprised of chips and chunks of silicon-containing particles
TWI541393B (en) * 2012-12-28 2016-07-11 中美矽晶製品股份有限公司 Seed used for crystalline silicon ingot casting
CN103088417B (en) * 2013-01-22 2016-08-03 晶海洋半导体材料(东海)有限公司 A kind of polycrystalline cast ingot high efficient crucible and preparation method thereof
FR3026414B1 (en) * 2014-09-26 2019-04-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives CREUSET FOR CRYSTALLIZING MULTI-CRYSTALLINE SILICON OR QUASI-MONOCRYSTALLINE BY REPEATING ON GERM
JP6562415B2 (en) * 2015-10-01 2019-08-21 国立大学法人名古屋大学 Silicon ingot and manufacturing method thereof
JP7186534B2 (en) * 2018-07-25 2022-12-09 昭和電工株式会社 Crystal growth device
CN114808107B (en) * 2022-03-31 2024-01-12 威科赛乐微电子股份有限公司 Crystal growth single crystal furnace, crucible and crystal growth method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018222A (en) * 2014-06-20 2014-09-03 浙江师范大学 Crucible for preparing polycrystalline silicon ingot and growth method of polycrystalline silicon ingot

Also Published As

Publication number Publication date
JP2006219336A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4569957B2 (en) Crucible for producing polycrystalline semiconductor and method for producing polycrystalline semiconductor
JP4288792B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP2002201097A (en) Method and apparatus of manufacturing silicon carbide, substrate for silicon carbide single crystal growing and method of heat treatment of single crystal
JP2008105896A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
TWI493082B (en) Method of fabricating crystalline silicon ingot
US6743293B2 (en) Cruicible and growth method for polycrystal silicon using same
TWI620838B (en) Crystalline silicon ingot including nucleation promotion particles and method of fabricating the same
KR101336748B1 (en) Polycrystalline ingot growth equipment
KR100942185B1 (en) Growing method for silicon ingot
WO2014056157A1 (en) Polycrystalline silicon ingot, method for producing the same, and crucible
JP2006335582A (en) Crystalline silicon manufacturing unit and its manufacturing method
JP4450118B2 (en) Method for producing silicon carbide single crystal
JP2000327474A (en) Production of crystalline silicon and crucible for producing the crystalline silicon
JP6344401B2 (en) Method for producing SiC single crystal
JP6859800B2 (en) Silicon carbide single crystal manufacturing equipment and method for manufacturing silicon carbide single crystal using it
JP2011207691A (en) Apparatus and method for producing silicon carbide single crystal
JP4110611B2 (en) Single crystal manufacturing equipment
JP4509258B2 (en) Single crystal growth apparatus and manufacturing method
WO2017047536A1 (en) APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL, METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SINGLE CRYSTAL MATERIAL
JP3934868B2 (en) Crystal growth crucible and crystal growth method
JP4726454B2 (en) Method for casting polycrystalline silicon ingot, polycrystalline silicon ingot using the same, polycrystalline silicon substrate, and solar cell element
JPH0315550Y2 (en)
JP2010208868A (en) Apparatus and method for producing thin plate, thin plate, and solar cell
JP5019398B2 (en) Thin plate manufacturing apparatus and manufacturing method
JPH1160391A (en) Production of silicon carbide single crystal

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees