WO2013031923A1 - Method for producing semiconductor ingot - Google Patents

Method for producing semiconductor ingot Download PDF

Info

Publication number
WO2013031923A1
WO2013031923A1 PCT/JP2012/072067 JP2012072067W WO2013031923A1 WO 2013031923 A1 WO2013031923 A1 WO 2013031923A1 JP 2012072067 W JP2012072067 W JP 2012072067W WO 2013031923 A1 WO2013031923 A1 WO 2013031923A1
Authority
WO
WIPO (PCT)
Prior art keywords
seed crystal
mold
semiconductor
main surface
manufacturing
Prior art date
Application number
PCT/JP2012/072067
Other languages
French (fr)
Japanese (ja)
Inventor
跡部 淳一
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2013515445A priority Critical patent/JP5312713B1/en
Publication of WO2013031923A1 publication Critical patent/WO2013031923A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/14Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a method for manufacturing a semiconductor ingot.
  • Solar cell elements are elements that convert light energy into electrical energy, and those using a silicon substrate as a semiconductor substrate for solar cell elements are widely used.
  • the silicon substrate is obtained by slicing a monocrystalline or polycrystalline silicon ingot to a predetermined thickness using a wire saw device or the like.
  • CZ Czochralski
  • FZ floating zone
  • a polycrystalline silicon ingot can be easily manufactured as compared with a single crystal silicon ingot.
  • the photoelectric conversion efficiency of a solar cell element using a polycrystalline silicon substrate as a semiconductor substrate is reduced due to crystal defects such as grain boundaries. This is generally inferior to a solar cell element using a single crystal silicon substrate.
  • the silicon melt when the silicon melt is injected into the mold, the silicon melt keeps in contact with a part of the seed crystal arranged on the bottom surface of the mold, so the seed crystal melts locally. It's easy to do.
  • the seed crystal melts to the bottom surface of the mold a part of the bottom surface of the silicon ingot starts crystal growth without starting from the seed crystal. For this reason, a silicon ingot with low crystal quality may be formed. This problem is particularly noticeable in the production of large ingots using a large amount of melt.
  • the heat removal from the melt is performed from the bottom surface and the inner peripheral surface of the mold, so the solid-liquid interface during crystal growth has a convex shape. Prone. Therefore, the crystal growth is in the direction from the outer periphery to the center of the ingot, so that the high-quality crystal region becomes smaller as the ingot grows, and crystal defects and impurity defects caused by the mold or the release material are reduced. It will increase.
  • one object of the present invention is to manufacture a high-quality and large-sized semiconductor ingot such as a silicon ingot, and using a substrate cut out from the semiconductor ingot, particularly a solar cell element excellent in characteristics such as photoelectric conversion efficiency It is an object of the present invention to provide a method for manufacturing a semiconductor ingot capable of obtaining the above.
  • a method for manufacturing a semiconductor ingot according to the present invention has a first main surface into which a semiconductor melt is poured and a second main surface located on the opposite side of the first main surface, and the second main surface.
  • the melt when the melt is injected into the mold, the melt continues to contact a part of the seed crystal disposed on the bottom surface of the mold so that the seed crystal is locally Even if it is melted, the seed crystal does not reach the bottom surface due to the presence of the protrusions, so that an ingot with few crystal defects is formed.
  • the contact area between the seed crystal and the bottom of the mold is narrower than that of the conventional seed crystal, the diffusion of impurities from the mold and the release material can be reduced.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of a method for manufacturing a semiconductor ingot according to the present invention.
  • Fig.2 (a) is a top view which shows typically an example of the seed crystal used for one Embodiment of the manufacturing method of the semiconductor ingot based on this invention
  • FIG.2 (b) is the side view.
  • Fig.3 (a) is a top view which shows typically an example of the seed crystal used for one Embodiment of the manufacturing method of the semiconductor ingot based on this invention
  • FIG.3 (b) is the side view.
  • FIG. 4A is a plan view schematically showing an example of a seed crystal used in one embodiment of a method for producing a semiconductor ingot according to the present invention, and FIG.
  • FIG. 4B is a side view thereof.
  • Fig.5 (a) is a top view which shows typically an example of the seed crystal used for one Embodiment of the manufacturing method of the semiconductor ingot based on this invention
  • FIG.5 (b) is the side view.
  • FIG. 6 is a cross-sectional view schematically showing an example of a manufacturing apparatus used in an embodiment of a method for manufacturing a semiconductor ingot according to the present invention.
  • FIG. 7 is a cross-sectional view schematically showing an example of a manufacturing apparatus used in an embodiment of a method for manufacturing a semiconductor ingot according to the present invention.
  • FIG. 8 is a cross-sectional view schematically showing an example of a manufacturing apparatus used in an embodiment of a method for manufacturing a semiconductor ingot according to the present invention.
  • FIG. 6 is a cross-sectional view schematically showing an example of a manufacturing apparatus used in an embodiment of a method for manufacturing a semiconductor ingot according to the present invention.
  • FIG. 7 is a cross-
  • FIG. 9 is a cross-sectional view schematically showing an example of a manufacturing apparatus used in an embodiment of a method for manufacturing a semiconductor ingot according to the present invention.
  • FIG. 10 is a diagram schematically showing an example of the solar cell element, and is a plan view seen from the light receiving surface side.
  • FIG. 11 is a diagram schematically showing an example of the solar cell element, and is a plan view seen from the non-light-receiving surface side.
  • FIG. 12 is a diagram schematically showing an example of the solar cell element, and is a cross-sectional view showing a state cut along the line KK in FIG.
  • a manufacturing apparatus for manufacturing a semiconductor ingot will be described.
  • a seed crystal 4 made of single crystal or polycrystalline silicon or germanium for manufacturing a semiconductor ingot is arranged in a mold 2, and a semiconductor made of the same material as the seed crystal 4 in an opening 2 a of the mold 2. It shows how the melt is poured.
  • the mold 2 has a cylindrical shape with a bottom as a whole, and is located, for example, between an opening 2a into which a semiconductor melt is poured from the crucible 1, a bottom surface 2b, and the opening 2a and the bottom surface 2b. And an inner peripheral side surface portion 2c.
  • the outer shape of the opening 2a is a square shape or a circular shape.
  • the semiconductor melt may be poured from an opening provided above the crucible 1 as shown in the figure.
  • a nozzle is provided on the lower surface of the crucible 1.
  • the semiconductor melt may be poured from the nozzle into the mold 2.
  • Both the crucible 1 and the mold 2 are not easily melted, deformed and decomposed at a temperature equal to or higher than the melting point of the semiconductor material such as silicon, and are less likely to react with the semiconductor material. It is made of a material in which impurities that reduce the characteristics of the solar cell element using the material are reduced as much as possible. For example, when producing a silicon ingot, both the crucible 1 and the mold 2 can use quartz or graphite.
  • a holder 5 that supports the mold 2 is disposed on the lower surface of the mold 2.
  • the holder 5 is made of, for example, quartz, graphite, or a carbon fiber reinforced carbon composite material, and has a function and a shape that removes heat from the bottom surface portion 2b while keeping it in close contact with the bottom surface portion 2b of the mold 2. ing.
  • the holder 5 is preferably supported by a cooling mechanism 6 as shown.
  • the cooling mechanism 6 is made of, for example, a metal such as stainless steel, and is a cooling plate or a water cooling jacket into which a cooling liquid such as water is introduced.
  • the seed crystal 4 has a first main surface 4a into which the semiconductor melt 3 is poured and a second main surface 4b located on the opposite side of the first main surface 4a. It is a plate-like body.
  • the seed crystal 4 has, for example, a square shape or a circular shape when viewed in plan, and each corner may be chamfered in an arc shape in the case of the square shape.
  • the seed crystal 4 has at least one protrusion 4c on the second main surface 4b side.
  • the protrusion 4c is disposed at least at the center of the second main surface 4b.
  • the projecting portion 4 c is further arranged, for example, in a ring shape at a portion along the peripheral edge of the second main surface 4 b, so that the seed crystal 4 can be stabilized in the mold 2.
  • the seed crystal 4 may be constituted by combining a plurality of small seed crystals.
  • the seed crystal 4 is a semiconductor crystal with few crystal defects such as impurities and crystal grain boundaries, and is preferably a single crystal, but may be a polycrystal. When using a polycrystal, it is preferable to use the one containing a single crystal region having a large grain size.
  • the size and shape of the projecting portion 4 c of the seed crystal 4 and the thickness of the plate-like body are set so as not to melt to the bottom when the semiconductor melt 3 is injected.
  • the protrusion 4c may be a columnar shape with a diameter of about 50 to 200 mm or a prismatic shape with a cross-sectional area of the same, the thickness is about 5 to 50 mm, and the thickness of the plate portion is about 5 to 50 mm. Preferably there is.
  • the seed crystal 4 may be integrated including the protruding portion 4c, or a plurality of small seed crystals may be combined.
  • a small seed crystal When a small seed crystal is combined, it can be easily applied to the mold 2 having various shapes, and the manufacturing costs of the seed crystal and the ingot can be reduced.
  • FIGS. 2 to 5 An example in which the seed crystal 4 is composed of a plurality of small seed crystals is shown in FIGS. 2 to 5, the region divided by the broken line 9 in the drawing is a small seed crystal.
  • the seed crystal 4 may be a small seed crystal that is equally divided into nine parts on a plane, and only the small seed crystal disposed in the lower center portion may be thickened.
  • the seed crystal 4 in order to stably dispose the seed crystal 4 in the mold 2, is also interposed between the small seed crystal located around the seed crystal 4 and the inner peripheral side surface of the mold 2 via the release material 8.
  • the crystal 4 is preferably fixed.
  • the seed crystal 4 is located under the center part of these small seed crystals, as shown in FIG. 5 (b).
  • the seed crystal 4 shown in FIG. 5 if the seed crystal 4 having a projecting portion along the peripheral edge on the second main surface 4 b side is prepared, the seed crystal 4 can be further stabilized in the mold 2. It can be arranged.
  • the seed crystal 4 can be reliably fixed to the mold 2 by drying the slurry-like release material 8 applied to the bottom surface portion 2b and the inner peripheral side surface portion 2c in the mold 2. At this time, only the projecting portion 4 c of the seed crystal 4 comes into contact with the bottom surface portion 2 b of the mold 2. Therefore, the diffusion of impurities contained in the mold 2 and the release material 8 into the semiconductor ingot is reduced, and a high-quality semiconductor ingot with few impurities can be manufactured.
  • a slurry-like release material is applied onto a pre-formed release material, and a seed crystal 4 is disposed thereon and dried.
  • the mold release property can be improved while fixing the seed crystal 4 in the mold 2.
  • the mold release material 8 applied in the mold 2 is originally used for the purpose of reducing the adhesion of the ingot to the mold 2 and the diffusion of impurities from the mold 2 to the semiconductor ingot, but when the semiconductor melt 3 is injected. In addition, it also has an effect of suppressing that the seed crystal 4 moves and normal seed casting is not performed.
  • the release material 8 is composed of a powder of silicon oxide, silicon nitride, silicon carbide, or the like, or a mixture thereof including a binder such as PVA (polyvinyl alcohol) and a solvent such as water or alcohol.
  • PVA polyvinyl alcohol
  • the resulting mixture is stirred to form a slurry, which is coated on the inner wall of the mold by means such as coating or spraying.
  • the mold release material 8 can be used repeatedly by suppressing the fusion of the inner wall of the mold 2 and the silicon ingot after the silicon melt is solidified. Moreover, since the joint part in the bottom face part and inner peripheral side face part of the mold 2 is reliably sealed by the applied release material 8, leakage of the silicon melt is reduced.
  • the peripheral edge 4d of the seed crystal 4 and the inner peripheral side face 2c of the mold 2 may be sealed with a release material 8 or the like, or a gap may be left.
  • the release material 8 or the like When sealed with the release material 8 or the like, the semiconductor melt 3 cannot reach the lower part of the seed crystal 4, so that the diffusion of impurities from the bottom surface 2 b of the mold 2 and the release material 8 to the semiconductor ingot.
  • the semiconductor melt 3 reaches the bottom surface portion 2b of the mold 2 and solidifies. Since a gap is formed between the seed crystal 4 and the seed crystal 4, the diffusion of impurities contained in the mold 2 and the release material 8 into the semiconductor ingot is reduced, and a high-quality semiconductor ingot with few impurities can be manufactured.
  • the semiconductor ingot is cooled from the center of the bottom surface. Furthermore, since the crystal growth direction is from the central part of the ingot to the peripheral part, crystal defects such as crystal grain boundaries and dislocations can be reduced.
  • the plate-like body 7 disposed between the projecting portion 4c of the seed crystal 4 and the bottom surface portion 2b of the mold 2 there is no melting, deformation, or decomposition at a temperature higher than the melting point of a semiconductor material such as silicon. It is possible to use ceramics or metal, etc., which are less likely to react with a semiconductor material such as silicon, and reduce impurities as much as possible to reduce the characteristics of the finished solar cell element in the semiconductor ingot. Silicon dioxide, silicon carbide Silicon nitride or the like is preferably used.
  • the basic manufacturing method will be described. First, it has the 1st main surface 4a into which a semiconductor melt is poured, and the 2nd main surface 4b located in the other side of the 1st main surface 4a, and the center part by the side of the 2nd main surface 4b protrudes.
  • a seed crystal preparation step for preparing the seed crystal 4 is performed.
  • a mold 2 having an opening 2a into which the semiconductor melt is poured, a bottom surface 2b, and an inner peripheral side surface 2c located between the opening 2a and the bottom 2b is prepared.
  • a mold preparation process is performed.
  • a seed crystal disposing step is performed in which the seed crystal 4 is disposed on the bottom surface 2b of the mold 2 with the second main surface 4a of the seed crystal 4 facing down.
  • an injection step of injecting the semiconductor melt 3 toward the central portion 4g of the first main surface 4a of the seed crystal 4 is performed.
  • the semiconductor melt 3 is injected from the crucible 1 into the mold 2 by tilting the crucible 1 containing the semiconductor melt into the mold 2 from the opening at the top of the crucible 1.
  • a liquid injection port may be provided at the bottom of the crucible 1 and the semiconductor melt 3 may be injected into the mold 2 from the liquid injection port.
  • the seed crystal preparation step it is preferable to prepare a seed crystal 4 in which a portion along the peripheral edge on the second main surface 4a side also protrudes.
  • a seed crystal 4 in which a plurality of small seed crystals are combined may be prepared.
  • the seed crystal 4 may be arranged on the bottom surface portion 2b of the mold 2 via the release material 8.
  • a plate-like body 7 having a thermal conductivity different from that of the seed crystal 4 is arranged on the bottom surface portion 2 b of the mold 2, and on the plate-like body 7.
  • a seed crystal 4 may be disposed.
  • the plate-shaped body 7 As the plate-shaped body 7, the 1st plate-shaped body 7a and several 2nd plate-shaped body with smaller heat conductivity than this 1st plate-shaped body 7a. 7b and before placing the seed crystal 4, the central portion of the bottom surface portion 2b of the mold 2 so that the first plate 7a is in contact with the central portion 4g of the second main surface 4b of the seed crystal 4
  • the plurality of second plate-like bodies 7b may be arranged around the first plate-like body 7a so as to come into contact with the peripheral edge of the seed crystal 4 on the second main surface 4b side.
  • the material of the first plate-like body 7a and the second plate-like body 7b may be the same or different from each other as long as the thermal conductivity is different.
  • two types of silicon dioxide plates 7a and 7b having different thermal conductivities may be used, or a combination of a first plate 7a made of silicon carbide and a second plate 7b made of silicon nitride. May be used.
  • the center portion of the bottom surface portion 2b of the mold 2 may be cooled so that the temperature is lower than the peripheral portion of the center portion.
  • the center part of the holder 5 or the cooling mechanism 6 may be cooled so that the temperature is lower than the peripheral part.
  • the outer surface portion corresponding to the center portion of the bottom surface portion 2b of the mold 2 is defined as the outer surface portion. It is good to cool so that temperature may become lower than the circumference
  • the cooling mechanism 6 is divided into a central portion 6 a and a peripheral edge portion 6 b, and a separate coolant whose temperature is controlled is supplied to each of the cooling mechanism 6 and the cooling mechanism 6. What is necessary is just to set the temperature of the cooling liquid supplied to the center part 6a of this to be lower than the temperature of the cooling liquid supplied to the peripheral part 6b of the cooling mechanism 6.
  • the holder 5 may be made of a material whose portion facing the outer surface portion of the mold 2 is made of a material having a higher thermal conductivity than the periphery of the portion. Specifically, for example, as shown in FIG. 9, the holder 5 is divided into a central portion 5a and a peripheral portion 5b, and the central portion 5a is made of carbon graphite, and the peripheral portion 5b is heated more than that. What is necessary is just to make it the holder 5 by producing with a carbon fiber reinforced carbon composite material with small conductivity, combining both, and integrating.
  • the semiconductor melt when the semiconductor melt is poured into the mold 2, the semiconductor melt continues to contact a part of the seed crystal 4 disposed on the bottom surface of the mold 2, Even if the seed crystal 4 is locally melted, the presence of the protrusion 4c prevents the seed crystal 4 from melting to the bottom surface, so that an ingot with few crystal defects is formed.
  • the contact area with the bottom surface of the mold 2 is narrower than that of the conventional seed crystal, the diffusion of impurities from the mold 2 and the release material 8 can be reduced. Thereby, since a high quality semiconductor ingot can be manufactured, the silicon ingot which can produce the solar cell element excellent in photoelectric conversion efficiency can be provided.
  • a semiconductor substrate can be cut out from the semiconductor ingot produced as described above and used as a semiconductor substrate of a solar cell element.
  • the solar cell element 30 includes a light receiving surface (upper surface in FIG. 12) 29a on which light is incident and a non-light receiving surface (lower surface in FIG. 12) that is the surface opposite to the light receiving surface 29a. 29b.
  • the solar cell element 30 includes a semiconductor substrate 21, and the semiconductor substrate 21 is provided on the first semiconductor layer 22, which is a semiconductor layer of one conductivity type, and on the light receiving surface 29 a side in the first semiconductor layer 22. And a second semiconductor layer 23 which is a semiconductor layer of a reverse conductivity type. An antireflection layer 24 is provided on the light receiving surface 29 a of the semiconductor substrate 21.
  • the solar cell element 30 includes a first electrode 25 provided on the light receiving surface 29 a of the semiconductor substrate 21 and a second electrode 26 provided on the non-light receiving surface 29 b of the semiconductor substrate 21.
  • the semiconductor substrate 21 including the first semiconductor layer 22 having one conductivity type (for example, p-type)
  • a silicon substrate is preferably used as the semiconductor substrate 21 including the first semiconductor layer 22 having one conductivity type (for example, p-type).
  • a p-type silicon substrate is prepared as a semiconductor substrate.
  • a polycrystalline silicon ingot produced by the method for producing an ingot according to the present invention is cut into a block having a desired shape, and then sliced using a multi-wire saw device or the like to form a substrate. be able to.
  • Boron (B) is preferably used as the p-type doping element, and the concentration is about 1 ⁇ 10 16 to 1 ⁇ 10 17 [atoms / cm 3 ]. At this time, the specific resistance value of the silicon substrate is 0.2. It is about 2 ⁇ ⁇ cm.
  • a method for doping boron into the silicon substrate an appropriate amount of boron element alone may be included at the time of manufacturing the silicon ingot, or an appropriate amount of boron-containing silicon lump whose doping concentration is already known may be included.
  • the thickness of the semiconductor substrate 21 is, for example, preferably 300 ⁇ m or less, and more preferably 200 ⁇ m or less.
  • the second semiconductor layer 23 that forms a pn junction with the first semiconductor layer 22 is a layer having a conductivity type opposite to that of the first semiconductor layer 22, and is provided on the light receiving surface 29 a side of the semiconductor substrate 21.
  • the second semiconductor layer 23 can be formed by diffusing impurities such as phosphorus (P) on the light receiving surface 29 a side of the semiconductor substrate 21.
  • the antireflection layer 24 plays a role of reducing the reflectance of light in a desired wavelength region and increasing the amount of photogenerated carriers.
  • the antireflection layer 24 is made of, for example, a silicon nitride film, a titanium oxide film, or a silicon oxide film.
  • the thickness of the antireflective layer 24 is appropriately selected depending on the constituent material, and is set so as to realize a nonreflective condition with respect to appropriate incident light.
  • the semiconductor substrate 21 made of silicon preferably has a refractive index of about 1.8 to 2.3 and a thickness of about 500 to 1200 mm.
  • a BSF (Back-Surface-Field) region 7 provided on the non-light-receiving surface 29b side of the semiconductor substrate 21 has a role of reducing a decrease in efficiency due to carrier recombination in the vicinity of the non-light-receiving surface 29b.
  • An internal electric field is formed on the light receiving surface 29b side.
  • the BSF region 27 has the same conductivity type as that of the first semiconductor layer 22, but has a majority carrier having a concentration higher than that of the majority carrier contained in the first semiconductor layer 22.
  • the BSF region 6 has a concentration of these dopant elements of 1 ⁇ 10 18 to 5 by diffusing a dopant element such as boron or aluminum on the non-light-receiving surface 29b side. It is preferably formed so as to be about ⁇ 10 21 atoms / cm 3 .
  • the first electrode 25 has a first output extraction electrode 25a and a plurality of linear first current collecting electrodes 25b. At least a part of the first output extraction electrode 25a intersects the first current collection electrode 25b.
  • the first output extraction electrode 25a has a width of about 1.3 to 2.5 mm, for example.
  • the first collector electrode 25b has a line width of about 50 to 200 ⁇ m and is thinner than the first output extraction electrode 25a.
  • a plurality of first current collecting electrodes 25b are provided with an interval of about 1.5 to 3 mm.
  • the thickness of the first electrode 25 is about 10 to 40 ⁇ m.
  • the first electrode 25 can be formed by applying a paste for forming an electrode made of, for example, silver powder, glass frit, an organic vehicle or the like into a desired shape by screen printing or the like, and then baking the paste.
  • the second electrode 26 has a second output extraction electrode 26a and a second current collecting electrode 26b.
  • the second output extraction electrode 26a has a thickness of about 10 to 30 ⁇ m and a width of about 1.3 to 7 mm.
  • the second output extraction electrode 26a can be formed of the same material and manufacturing method as the first electrode 25 described above. For example, you may form by apply
  • the second collector electrode 26b has a thickness of about 15 to 50 ⁇ m, and is formed on substantially the entire surface of the non-light-receiving surface 29b of the semiconductor substrate 21 excluding a part of the second output extraction electrode 26a.
  • the second current collecting electrode 26b can be formed, for example, by applying an aluminum paste in a desired shape and baking it.
  • a silicon ingot was produced using a seed crystal and a mold for producing a semiconductor ingot shown in FIGS.
  • a quartz crucible 1 shown in FIG. 1 a graphite mold 2 and a seed crystal 4 composed of five small seed crystals as shown in FIG. 2 were prepared.
  • Example 1 as the seed crystal 4, five pieces of single crystal silicon having a Miller index having a (100) plane crystal orientation and a 150 mm square and a height of 10 mm were used.
  • the seed crystal 4 used was a seed crystal 4 of Example 1 provided with a small seed crystal of 20 mm ⁇ 150 mm and a height of 10 mm at the periphery.
  • Example 3 in the case of Example 2, a carbon fiber having a thermal conductivity of 100 W / m ⁇ K or more at the center portion of the holder and a thermal conductivity smaller than this at the holder peripheral portion. Reinforced carbon composite was used.
  • the cooling mechanism 6 is divided into the central portion 6a and the peripheral portion 6b, and the cooling water is allowed to flow through two systems of the central portion and the peripheral portion.
  • the ingot was manufactured by setting the set temperature of the cooling water supplied to the central portion 6a to 15 ° C and the set temperature of the cooling water supplied to the peripheral portion 6b to 20 ° C.
  • a powder made of silicon nitride having an average particle size of about 0.5 ⁇ m, a powder made of silicon oxide having an average particle size of about 20 ⁇ m, and a PVA aqueous solution as a binder solution are mixed on the inner peripheral side surface portion 2 c of the mold 2.
  • the release material 8 in the form of a slurry was applied so that the coating weight per unit area was about 0.1 g / cm 2 .
  • the projecting portion 4 c of the seed crystal 4 was fixed in the mold 2 via a release material 8. Further, a location located in the vicinity of the inner peripheral side surface portion 2 c of the small-crystal crystal mold 2 was also fixed through the release material 8.
  • a large number of silicon chunks of a total amount of 100 kg are put into the crucible 1, and the silicon in the crucible 1 is heated and melted by heating means (not shown) arranged around the crucible 1 to obtain a silicon melt 3 of about 1420 ° C.
  • Heating means not shown
  • a silicon melt 3 of about 1420 ° C. was injected toward the central portion 4 g of the seed crystal 4 to produce a silicon ingot in the mold 2.
  • a silicon ingot was produced under the same conditions as in the example using a seed crystal having no protrusion.
  • the seed crystal 4 melts until reaching the bottom surface part 2b of the mold 2, and a fine polycrystal grows from the central part of the silicon ingot. This was observed by visual observation of the cross section of the ingot and by observation of etch pits using a mixed acid composed of a mixture of hydrofluoric acid, nitric acid and acetic acid.
  • a silicon substrate was sliced from the center of the obtained silicon ingot, and then a solar cell element using this as a semiconductor substrate was produced as follows (refer to FIGS. 10 to 12 for the solar cell element). .
  • the polycrystalline silicon ingot produced in this example was sliced into a polycrystalline silicon substrate (semiconductor substrate 21) having a thickness of 200 ⁇ m, an outer shape of 150 mm ⁇ 150 mm, and a specific resistance of 1 to 1.2 ⁇ ⁇ cm.
  • the damaged layer on the surface was cleaned by etching with a NaOH solution.
  • the second semiconductor layer 23 was formed by a vapor phase thermal diffusion method using POCl 3 as a diffusion source. At this time, the sheet resistance of the second semiconductor layer 23 was 70 ⁇ / ⁇ . Further, after removing the phosphor glass by etching with a hydrofluoric acid solution and performing pn separation using a laser beam, a silicon nitride film to be the antireflection layer 24 was formed on the light receiving surface 29a by PECVD.
  • the BSF region 27 and the second current collecting electrode 26b were formed by applying and baking an aluminum paste on substantially the entire surface of the non-light-receiving surface 29b of the semiconductor substrate 21.
  • a silver paste was applied and fired on the light receiving surface 29a and the non-light receiving surface 29b to form the first electrode 25 and the second output extraction electrode 26a to obtain the solar cell element 30.
  • the solar cell using the semiconductor substrate of the comparative example was measured.
  • the battery element was 16.2%
  • the solar cell element using the semiconductor substrate of Example 1 was 16.8%
  • the solar cell element using the semiconductor substrate of Example 2 was 16.5%.
  • %, 16.6% for the solar cell element using the semiconductor substrate of Example 3 was 16.7% for the solar cell element using the semiconductor substrate of Example 4. From these results, it was also confirmed that the characteristics could be improved as the solar cell element using a semiconductor substrate with good crystallinity.
  • crucible 2 mold 2a: opening 2b: bottom surface 2c: inner peripheral side surface 3: semiconductor melt 4: seed crystal 4a: first main surface 4b: second main surface 4c: protrusion 5: holder 6: Cooling mechanism 7: plate-like body 7a: first plate-like body 7b: second plate-like body 8: release material 21: semiconductor substrate (silicon substrate) 22: 1st semiconductor layer 23: 2nd semiconductor layer 24: Antireflection layer 25: 1st electrode 25a: 1st output extraction electrode 25b: 1st current collection electrode 25c: Auxiliary electrode 26: 2nd electrode 6a: 2nd output Extraction electrode 6b: second current collecting electrode 27: BSF region 29a: light receiving surface 29b: non-light receiving surface 30: solar cell element

Abstract

This method for producing a semiconductor ingot comprises: a seed crystal preparation step for preparing a seed crystal that has a first main surface on which a semiconductor melt is poured and a second main surface which is on the reverse side of the first main surface, with the central part being protruded toward the second main surface side; a mold preparation step for preparing a mold that has an opening through which the semiconductor melt is poured, a bottom surface, and an inner lateral surface that is positioned between the opening and the bottom surface; a seed crystal arrangement step for arranging the seed crystal on the bottom surface of the mold with the second main surface down; a pouring step for pouring the semiconductor melt toward the central part of the first main surface of the seed crystal; and a solidification step for solidifying the semiconductor melt in the mold.

Description

半導体インゴットの製造方法Manufacturing method of semiconductor ingot
 本発明は半導体インゴットの製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor ingot.
 太陽電池素子は光エネルギーを電気エネルギーに変換する素子であり、太陽電池素子の半導体基板としてシリコン基板を用いたものが普及している。シリコン基板は、単結晶または多結晶のシリコンインゴットをワイヤーソー装置などを用いて所定の厚みにスライスすることによって得られる。 Solar cell elements are elements that convert light energy into electrical energy, and those using a silicon substrate as a semiconductor substrate for solar cell elements are widely used. The silicon substrate is obtained by slicing a monocrystalline or polycrystalline silicon ingot to a predetermined thickness using a wire saw device or the like.
 例えば、単結晶のシリコンインゴットの製造方法としては、チョクラルスキー(CZ)法またはフローティングゾーン(FZ)法などが知られている。また、多結晶のシリコンインゴットの製造方法としてはキャスト法などが知られている。 For example, a Czochralski (CZ) method or a floating zone (FZ) method is known as a method for producing a single crystal silicon ingot. A casting method or the like is known as a method for producing a polycrystalline silicon ingot.
 一般に多結晶のシリコンインゴットは、単結晶のシリコンインゴットと比較すれば簡便に製造できるが、半導体基板として多結晶シリコン基板を用いた太陽電池素子の光電変換効率は、結晶粒界などの結晶欠陥に起因して、単結晶シリコン基板を用いた太陽電池素子よりも劣ることが一般的である。 In general, a polycrystalline silicon ingot can be easily manufactured as compared with a single crystal silicon ingot. However, the photoelectric conversion efficiency of a solar cell element using a polycrystalline silicon substrate as a semiconductor substrate is reduced due to crystal defects such as grain boundaries. This is generally inferior to a solar cell element using a single crystal silicon substrate.
 そこで、キャスト法を用いて、結晶粒界および不純物などの結晶欠陥の少ない、高品質な結晶のシリコンインゴットを製造する方法として、鋳型の底面に不純物および欠陥の少ない種結晶を配置した後に、シリコン融液を鋳型内に注入して、種結晶を起点として一方向に凝固させる方法(シードキャスト法)が提案されている(例えば、特開平10-194718号公報および特表2009-523693号公報等を参照)。 Therefore, as a method of manufacturing a high-quality crystal silicon ingot with few crystal defects such as crystal grain boundaries and impurities by using a casting method, after placing a seed crystal with few impurities and defects on the bottom surface of the mold, There has been proposed a method (seed casting method) in which a melt is injected into a mold and solidified in one direction starting from a seed crystal (for example, Japanese Patent Laid-Open No. 10-194718 and Japanese Translation of PCT International Publication No. 2009-523893). See).
 しかしながら、シードキャスト法ではシリコン融液を鋳型内に注入する際に、鋳型の底面に配置された種結晶の一部に集中的にシリコン融液が接触し続けるため、種結晶が局所的に溶融しやすい。そして、種結晶の溶融が鋳型の底面にまで及ぶと、シリコンインゴットの底面の一部は種結晶を起点とせずに結晶成長を開始する。このため、結晶品質の低いシリコンインゴットが形成されるおそれがある。特に大量の融液を使用する大型インゴットの製造において、この問題が顕著になる。 However, in the seed casting method, when the silicon melt is injected into the mold, the silicon melt keeps in contact with a part of the seed crystal arranged on the bottom surface of the mold, so the seed crystal melts locally. It's easy to do. When the seed crystal melts to the bottom surface of the mold, a part of the bottom surface of the silicon ingot starts crystal growth without starting from the seed crystal. For this reason, a silicon ingot with low crystal quality may be formed. This problem is particularly noticeable in the production of large ingots using a large amount of melt.
 また、上記の問題を避けるために、種結晶が鋳型の底部にまで溶解しないように全体的に厚い種結晶を用意することは、種結晶およびインゴットの製造コストの増加につながるので望ましくない。 Also, in order to avoid the above problem, it is not desirable to prepare a seed crystal that is entirely thick so that the seed crystal does not dissolve to the bottom of the mold because this leads to an increase in the manufacturing costs of the seed crystal and ingot.
 さらに、従来のシードキャスト法に用いる一定厚みの種結晶では、融液からの抜熱が鋳型の底面および内周側面から行われるので、結晶成長の際の固液界面が下に凸の形状になりやすい。そのため、結晶成長がインゴットの外周部から中央部へ向かう方向になることで、インゴットの成長に伴って高品質な結晶領域が小さくなったり、鋳型または離型材を起因とする結晶欠陥および不純物欠陥が多くなったりする。 Furthermore, in a seed crystal of a certain thickness used in the conventional seed casting method, the heat removal from the melt is performed from the bottom surface and the inner peripheral surface of the mold, so the solid-liquid interface during crystal growth has a convex shape. Prone. Therefore, the crystal growth is in the direction from the outer periphery to the center of the ingot, so that the high-quality crystal region becomes smaller as the ingot grows, and crystal defects and impurity defects caused by the mold or the release material are reduced. It will increase.
 そこで、本発明の一つの目的は、高品質で大型のシリコンインゴット等の半導体インゴットが製造できて、この半導体インゴットから切り出した基板を用いて、特に光電変換効率等の特性に優れた太陽電池素子を得ることが可能な半導体インゴットの製造方法を提供することにある。 Accordingly, one object of the present invention is to manufacture a high-quality and large-sized semiconductor ingot such as a silicon ingot, and using a substrate cut out from the semiconductor ingot, particularly a solar cell element excellent in characteristics such as photoelectric conversion efficiency It is an object of the present invention to provide a method for manufacturing a semiconductor ingot capable of obtaining the above.
 本発明に係る半導体インゴットの製造方法は、半導体融液が注がれる第1主面と該第1主面の反対側に位置する第2主面とを有しているとともに、該第2主面側の中央部が突出している種結晶を準備する種結晶準備工程と、前記半導体融液が注がれる開口部と、底面部と、前記開口部と前記底面部との間に位置している内周側面部とを有している鋳型を準備する鋳型準備工程と、該鋳型の前記底面部に前記種結晶の前記第2主面を下にして前記種結晶を配置する種結晶配置工程と、前記種結晶の前記第1主面の中央部に向けて前記半導体融液を注入する注入工程と、前記鋳型内の前記半導体融液を凝固させる凝固工程とを含む。 A method for manufacturing a semiconductor ingot according to the present invention has a first main surface into which a semiconductor melt is poured and a second main surface located on the opposite side of the first main surface, and the second main surface. A seed crystal preparation step for preparing a seed crystal in which a central portion on the surface side protrudes; an opening portion into which the semiconductor melt is poured; a bottom surface portion; and a position between the opening portion and the bottom surface portion. A mold preparing step of preparing a mold having an inner peripheral side surface portion, and a seed crystal arranging step of arranging the seed crystal on the bottom surface portion of the mold with the second main surface of the seed crystal facing down And an injection step of injecting the semiconductor melt toward the center of the first main surface of the seed crystal, and a solidification step of solidifying the semiconductor melt in the mold.
 上記の半導体インゴットの製造方法によれば、融液を鋳型に注入する際、鋳型の底面に配置された種結晶の一部に集中的に融液が接触し続けて、種結晶が局所的に溶融しても突出部の存在によって、種結晶の溶融がその底面にまで及ばないので、結晶欠陥の少ないインゴットが形成される。 According to the above method for manufacturing a semiconductor ingot, when the melt is injected into the mold, the melt continues to contact a part of the seed crystal disposed on the bottom surface of the mold so that the seed crystal is locally Even if it is melted, the seed crystal does not reach the bottom surface due to the presence of the protrusions, so that an ingot with few crystal defects is formed.
 また、従来の種結晶に比べて、種結晶と鋳型底面との接触面積が狭いので、鋳型および離型材からの不純物の拡散を少なくすることができる。 Also, since the contact area between the seed crystal and the bottom of the mold is narrower than that of the conventional seed crystal, the diffusion of impurities from the mold and the release material can be reduced.
 これにより、高品質な半導体インゴットを製造することができるので、光電変換効率に優れた太陽電池素子を作製可能なシリコンインゴットを提供することができる。 Thereby, since a high-quality semiconductor ingot can be manufactured, a silicon ingot capable of producing a solar cell element having excellent photoelectric conversion efficiency can be provided.
図1は、本発明に係る半導体インゴットの製造方法の一実施形態を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing one embodiment of a method for manufacturing a semiconductor ingot according to the present invention. 図2(a)は、本発明に係る半導体インゴットの製造方法の一実施形態に用いる種結晶の一例を模式的に示す平面図であり、図2(b)はその側面図である。Fig.2 (a) is a top view which shows typically an example of the seed crystal used for one Embodiment of the manufacturing method of the semiconductor ingot based on this invention, FIG.2 (b) is the side view. 図3(a)は、本発明に係る半導体インゴットの製造方法の一実施形態に用いる種結晶の一例を模式的に示す平面図であり、図3(b)はその側面図である。Fig.3 (a) is a top view which shows typically an example of the seed crystal used for one Embodiment of the manufacturing method of the semiconductor ingot based on this invention, FIG.3 (b) is the side view. 図4(a)は、本発明に係る半導体インゴットの製造方法の一実施形態に用いる種結晶の一例を模式的に示す平面図であり、図4(b)はその側面図である。FIG. 4A is a plan view schematically showing an example of a seed crystal used in one embodiment of a method for producing a semiconductor ingot according to the present invention, and FIG. 4B is a side view thereof. 図5(a)は、本発明に係る半導体インゴットの製造方法の一実施形態に用いる種結晶の一例を模式的に示す平面図であり、図5(b)はその側面図である。Fig.5 (a) is a top view which shows typically an example of the seed crystal used for one Embodiment of the manufacturing method of the semiconductor ingot based on this invention, FIG.5 (b) is the side view. 図6は、本発明に係る半導体インゴットの製造方法の一実施形態に用いる製造装置の一例を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing an example of a manufacturing apparatus used in an embodiment of a method for manufacturing a semiconductor ingot according to the present invention. 図7は、本発明に係る半導体インゴットの製造方法の一実施形態に用いる製造装置の一例を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing an example of a manufacturing apparatus used in an embodiment of a method for manufacturing a semiconductor ingot according to the present invention. 図8は、本発明に係る半導体インゴットの製造方法の一実施形態に用いる製造装置の一例を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing an example of a manufacturing apparatus used in an embodiment of a method for manufacturing a semiconductor ingot according to the present invention. 図9は、本発明に係る半導体インゴットの製造方法の一実施形態に用いる製造装置の一例を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing an example of a manufacturing apparatus used in an embodiment of a method for manufacturing a semiconductor ingot according to the present invention. 図10は、太陽電池素子の一例を模式的に示す図であり、受光面側からみた平面図である。FIG. 10 is a diagram schematically showing an example of the solar cell element, and is a plan view seen from the light receiving surface side. 図11は、太陽電池素子の一例を模式的に示す図であり、非受光面側からみた平面図である。FIG. 11 is a diagram schematically showing an example of the solar cell element, and is a plan view seen from the non-light-receiving surface side. 図12は、太陽電池素子の一例を模式的に示す図であり、図10のK-K線で切断した様子を示す断面図である。FIG. 12 is a diagram schematically showing an example of the solar cell element, and is a cross-sectional view showing a state cut along the line KK in FIG.
 以下、本発明に係る一実施形態について図面を参照しつつ説明する。なお、図面は模式的に示したものであり、図面において同様な構成および機能を有する部分については同一符号を付す。また、各図における各種構成のサイズおよび位置関係等は正確に図示したものではない。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, drawing is shown typically, and the same code | symbol is attached | subjected about the part which has the same structure and function in drawing. In addition, the sizes and positional relationships of the various components in each drawing are not accurately illustrated.
 <製造装置>
 まず、半導体インゴットを製造する製造装置について説明する。図1に、鋳型2内に半導体インゴット製造用の単結晶または多結晶のシリコンまたはゲルマニウム等からなる種結晶4が配置されて、鋳型2の開口部2aに種結晶4と同様な材料からなる半導体融液が注がれる様子を示す。
<Manufacturing equipment>
First, a manufacturing apparatus for manufacturing a semiconductor ingot will be described. In FIG. 1, a seed crystal 4 made of single crystal or polycrystalline silicon or germanium for manufacturing a semiconductor ingot is arranged in a mold 2, and a semiconductor made of the same material as the seed crystal 4 in an opening 2 a of the mold 2. It shows how the melt is poured.
 鋳型2は、全体が有底の筒形状であり、例えば坩堝1から半導体融液が注がれる開口部2aと、底面部2bと、開口部2aと底面部2bとの間に位置している内周側面部2cとを有している。なお、開口部2aの外形は四角状または円形状である。なお、半導体融液を鋳型2内に注ぐ方法は、図示されているように坩堝1の上方に設けた開口部から半導体融液を注いでもよいし、例えば、坩堝1の下面にノズルを設けて、このノズルから半導体融液を鋳型2内へ注ぐ方法であってもよい。 The mold 2 has a cylindrical shape with a bottom as a whole, and is located, for example, between an opening 2a into which a semiconductor melt is poured from the crucible 1, a bottom surface 2b, and the opening 2a and the bottom surface 2b. And an inner peripheral side surface portion 2c. The outer shape of the opening 2a is a square shape or a circular shape. In addition, as for the method of pouring the semiconductor melt into the mold 2, the semiconductor melt may be poured from an opening provided above the crucible 1 as shown in the figure. For example, a nozzle is provided on the lower surface of the crucible 1. The semiconductor melt may be poured from the nozzle into the mold 2.
 坩堝1および鋳型2は、いずれもシリコン等の半導体材料の融点以上の温度において、溶融、変形および分解等がしにくく、さらに半導体材料との反応が生じにくく、半導体インゴット中において、例えばこの半導体材料を用いた太陽電池素子の特性を低下させるような不純物を極力低減した材料からなる。例えばシリコンインゴットを作製する場合は、坩堝1および鋳型2は、いずれも石英またはグラファイト等を用いることができる。 Both the crucible 1 and the mold 2 are not easily melted, deformed and decomposed at a temperature equal to or higher than the melting point of the semiconductor material such as silicon, and are less likely to react with the semiconductor material. It is made of a material in which impurities that reduce the characteristics of the solar cell element using the material are reduced as much as possible. For example, when producing a silicon ingot, both the crucible 1 and the mold 2 can use quartz or graphite.
 図1に示すように、鋳型2の下面には、鋳型2を支持するホルダ5を配置している。ホルダ5は、例えば石英、グラファイト、または炭素繊維強化炭素複合材等からなり、鋳型2の底面部2bと密着して保持するとともに、底面部2bの熱量を抜熱する機能と形状とを有している。 As shown in FIG. 1, a holder 5 that supports the mold 2 is disposed on the lower surface of the mold 2. The holder 5 is made of, for example, quartz, graphite, or a carbon fiber reinforced carbon composite material, and has a function and a shape that removes heat from the bottom surface portion 2b while keeping it in close contact with the bottom surface portion 2b of the mold 2. ing.
 さらに、ホルダ5は図示されているように冷却機構6で支持されるとよい。冷却機構6は例えばステンレス等の金属からなり、内部に水等の冷却液が導入される冷却板または水冷ジャケット等である。 Furthermore, the holder 5 is preferably supported by a cooling mechanism 6 as shown. The cooling mechanism 6 is made of, for example, a metal such as stainless steel, and is a cooling plate or a water cooling jacket into which a cooling liquid such as water is introduced.
 種結晶4は、例えば図2に示すように、半導体融液3が注がれる第1主面4aとこの第1主面4aの反対側に位置する第2主面4bとを有している板状体である。種結晶4は、平面視した際に、例えば角形状または円形状等であり、角形状の場合に各角部が円弧状に面取りされていてもよい。 For example, as shown in FIG. 2, the seed crystal 4 has a first main surface 4a into which the semiconductor melt 3 is poured and a second main surface 4b located on the opposite side of the first main surface 4a. It is a plate-like body. The seed crystal 4 has, for example, a square shape or a circular shape when viewed in plan, and each corner may be chamfered in an arc shape in the case of the square shape.
 種結晶4は第2主面4b側に少なくとも1つの突出部4cを有している。この突出部4cは、第2主面4bの少なくとも中央部に配置されている。また、突出部4cは、さらに第2主面4bの周縁部に沿った部位にも、例えば環状に配置されていて、種結晶4を鋳型2内に安定させることができる。また、種結晶4は後記するように、複数の小種結晶同士が組み合わされていて種結晶4を構成するようにしてもよい。 The seed crystal 4 has at least one protrusion 4c on the second main surface 4b side. The protrusion 4c is disposed at least at the center of the second main surface 4b. Further, the projecting portion 4 c is further arranged, for example, in a ring shape at a portion along the peripheral edge of the second main surface 4 b, so that the seed crystal 4 can be stabilized in the mold 2. Further, as will be described later, the seed crystal 4 may be constituted by combining a plurality of small seed crystals.
 種結晶4は不純物および結晶粒界などの結晶欠陥の少ない半導体結晶であって、単結晶であることが好ましいが、多結晶であっても構わない。多結晶を用いる場合は、粒径が大きい単結晶領域を含むものを使用することが好ましい。種結晶4の突出部4cのサイズおよび形状、さらに板状体の厚みは、半導体融液3の注入の際に底部まで溶けてしまわないように設定する。例えば、突出部4cは直径50~200mm程度の円柱状またはこれと同程度の断面積の角柱状であるとよく、また厚みは5~50mm程度として、板状部の厚みも5~50mm程度であることが好ましい。 The seed crystal 4 is a semiconductor crystal with few crystal defects such as impurities and crystal grain boundaries, and is preferably a single crystal, but may be a polycrystal. When using a polycrystal, it is preferable to use the one containing a single crystal region having a large grain size. The size and shape of the projecting portion 4 c of the seed crystal 4 and the thickness of the plate-like body are set so as not to melt to the bottom when the semiconductor melt 3 is injected. For example, the protrusion 4c may be a columnar shape with a diameter of about 50 to 200 mm or a prismatic shape with a cross-sectional area of the same, the thickness is about 5 to 50 mm, and the thickness of the plate portion is about 5 to 50 mm. Preferably there is.
 また、種結晶4は突出部4cも含めて一体であってもよいが、複数の小種結晶を組み合わせてもよい。小種結晶を組み合わせると、種々の形状の鋳型2に容易に対応できるとともに、種結晶およびインゴットの製造コストを低減することができる。 In addition, the seed crystal 4 may be integrated including the protruding portion 4c, or a plurality of small seed crystals may be combined. When a small seed crystal is combined, it can be easily applied to the mold 2 having various shapes, and the manufacturing costs of the seed crystal and the ingot can be reduced.
 種結晶4を複数の小種結晶から構成する例を図2~5のそれぞれに示す。図2~5において、図中の破線9で区分された領域が小種結晶である。例えば図2(a),(b)に示すように、4個に等分割された小種結晶4個の下に、これらの小種結晶よりも小さな種結晶を配置した合計5個の小種結晶から構成されてもよい。 An example in which the seed crystal 4 is composed of a plurality of small seed crystals is shown in FIGS. 2 to 5, the region divided by the broken line 9 in the drawing is a small seed crystal. For example, as shown in FIGS. 2 (a) and 2 (b), a total of five small seeds in which seed crystals smaller than these small seed crystals are arranged under four small seed crystals equally divided into four. It may be composed of crystals.
 また、例えば図3(a),(b)に示すように、9個に等分割された小種結晶の下に、これらの小種結晶よりも大きな種結晶を配置した合計10個の小種結晶から構成されてもよい。 Further, for example, as shown in FIGS. 3A and 3B, a total of 10 small seeds in which seed crystals larger than these small seed crystals are arranged under the small seed crystals equally divided into nine. It may be composed of crystals.
 また、図4(a),(b)に示すように、種結晶4は平面では9個に等分割された小種結晶として、中央下部に配置する小種結晶のみを厚くしてもよい。この場合は、種結晶4を鋳型2内に安定して配置するために、種結晶4の周囲に位置する小種結晶と鋳型2の内周側面との間にも離型材8を介して種結晶4を固定するとよい。 Further, as shown in FIGS. 4A and 4B, the seed crystal 4 may be a small seed crystal that is equally divided into nine parts on a plane, and only the small seed crystal disposed in the lower center portion may be thickened. In this case, in order to stably dispose the seed crystal 4 in the mold 2, the seed crystal 4 is also interposed between the small seed crystal located around the seed crystal 4 and the inner peripheral side surface of the mold 2 via the release material 8. The crystal 4 is preferably fixed.
 また、図5(a)に示すように、種結晶4は9個に等分割された小種結晶と、図5(b)に示すように、これら小種結晶の中央部の下に位置する第1突出部4c1に相当する小種結晶1個と、図5(b)に示すように、図示の左端および右端に種結晶4の一辺と同一長さの長尺の小種結晶2個との合計12個の小種結晶で構成されていてもよい。また、長尺の小種結晶2個の代わりに環状の小種結晶を配置してもよい。 Further, as shown in FIG. 5 (a), the seed crystal 4 is located under the center part of these small seed crystals, as shown in FIG. 5 (b). One small seed crystal corresponding to the first protrusion 4c1 and two small seed crystals having the same length as one side of the seed crystal 4 at the left end and the right end as shown in FIG. 5B, A total of 12 small seed crystals may be included. Further, instead of the two long small seed crystals, an annular small seed crystal may be arranged.
 図5に示す種結晶4のように、種結晶4として、第2主面4b側の周縁部に沿った部位も突出しているものを準備すれば、鋳型2内に種結晶4をさらに安定に配置させることができるのでよい。 As the seed crystal 4 shown in FIG. 5, if the seed crystal 4 having a projecting portion along the peripheral edge on the second main surface 4 b side is prepared, the seed crystal 4 can be further stabilized in the mold 2. It can be arranged.
 また、種結晶4は鋳型2内の底面部2bおよび内周側面部2cに塗布されたスラリー状の離型材8を乾燥させることで鋳型2に確実に固定できる。このとき、種結晶4の突出部4cのみが鋳型2の底面部2bに接触する。そのため、鋳型2および離型材8に含まれる不純物の、半導体インゴットへの拡散が低減されて、不純物の少ない良質な半導体インゴットが製造できる。 Further, the seed crystal 4 can be reliably fixed to the mold 2 by drying the slurry-like release material 8 applied to the bottom surface portion 2b and the inner peripheral side surface portion 2c in the mold 2. At this time, only the projecting portion 4 c of the seed crystal 4 comes into contact with the bottom surface portion 2 b of the mold 2. Therefore, the diffusion of impurities contained in the mold 2 and the release material 8 into the semiconductor ingot is reduced, and a high-quality semiconductor ingot with few impurities can be manufactured.
 また、鋳型2内に乾燥済みの離型材を薄く設けた後、スラリー状の離型材を予め形成した離型材の上に塗布して、その上に種結晶4を配置して乾燥させることによって、種結晶4を鋳型2内に固定しつつ離型性を改善することができる。 In addition, after a dry release material is thinly provided in the mold 2, a slurry-like release material is applied onto a pre-formed release material, and a seed crystal 4 is disposed thereon and dried. The mold release property can be improved while fixing the seed crystal 4 in the mold 2.
 鋳型2内に塗布されている離型材8は、本来、インゴットの鋳型2への固着および鋳型2から半導体インゴットへの不純物拡散を低減する目的で使用されるが、半導体融液3を注入する際に、種結晶4が動いて正常なシードキャストが実施されなくなることを抑制する効果も有する。 The mold release material 8 applied in the mold 2 is originally used for the purpose of reducing the adhesion of the ingot to the mold 2 and the diffusion of impurities from the mold 2 to the semiconductor ingot, but when the semiconductor melt 3 is injected. In addition, it also has an effect of suppressing that the seed crystal 4 moves and normal seed casting is not performed.
 離型材8は例えばシリコンインゴットを作製する場合には、酸化シリコン、窒化シリコン、炭化シリコン等、またはこれらの混合物の粉末をPVA(ポリビニルアルコール)等のバインダーと水またはアルコールなどの溶剤とから構成される溶液中に混合して、この混合物を攪拌してスラリーとし、これを鋳型内壁に塗布もしくはスプレー等の手段でコーティングする。なお、スラリー状の離型材8に流動性を高めるための添加材等を適宜、混合してもよい。 For example, in the case of producing a silicon ingot, the release material 8 is composed of a powder of silicon oxide, silicon nitride, silicon carbide, or the like, or a mixture thereof including a binder such as PVA (polyvinyl alcohol) and a solvent such as water or alcohol. The resulting mixture is stirred to form a slurry, which is coated on the inner wall of the mold by means such as coating or spraying. In addition, you may mix suitably the additive material etc. for improving fluidity | liquidity with the slurry-like mold release material 8, for example.
 離型材8は、シリコン融液が凝固した後に、鋳型2の内壁とシリコンインゴットとが融着することを抑え、これらの部材を繰り返して使用することができる。また、鋳型2の底面部および内周側面部における接合部分が、塗布された離型材8によって確実に封止されるため、シリコン融液の漏洩が少なくなる。 The mold release material 8 can be used repeatedly by suppressing the fusion of the inner wall of the mold 2 and the silicon ingot after the silicon melt is solidified. Moreover, since the joint part in the bottom face part and inner peripheral side face part of the mold 2 is reliably sealed by the applied release material 8, leakage of the silicon melt is reduced.
 種結晶4の周縁部4dと鋳型2の内周側面部2cとは離型材8などで封止されていてもよいし、隙間が空いていてもよい。離型材8などで封止されている場合は、半導体融液3は種結晶4の下部には到達し得えないので、鋳型2の底面部2bおよび離型材8から半導体インゴットへの不純物の拡散を低減できるとともに、結晶の育成の際に上に凸な形状の固液界面を形成しやすくなるので、良好な品質の半導体インゴットを製造することができる。 The peripheral edge 4d of the seed crystal 4 and the inner peripheral side face 2c of the mold 2 may be sealed with a release material 8 or the like, or a gap may be left. When sealed with the release material 8 or the like, the semiconductor melt 3 cannot reach the lower part of the seed crystal 4, so that the diffusion of impurities from the bottom surface 2 b of the mold 2 and the release material 8 to the semiconductor ingot. In addition, it is easy to form a solid-liquid interface having an upwardly convex shape during crystal growth, so that a semiconductor ingot with good quality can be manufactured.
 一方、種結晶4の周縁部4dと鋳型2の内周側面部2cとの間が空いている場合は、半導体融液3が鋳型2の底面部2bに到達して凝固するが、この凝固部と種結晶4との間に空隙が形成されているので、鋳型2および離型材8に含まれる不純物の、半導体インゴットへの拡散は低減されて、不純物の少ない良質な半導体インゴットが製造できる。 On the other hand, when the gap between the peripheral edge portion 4d of the seed crystal 4 and the inner peripheral side surface portion 2c of the mold 2 is vacant, the semiconductor melt 3 reaches the bottom surface portion 2b of the mold 2 and solidifies. Since a gap is formed between the seed crystal 4 and the seed crystal 4, the diffusion of impurities contained in the mold 2 and the release material 8 into the semiconductor ingot is reduced, and a high-quality semiconductor ingot with few impurities can be manufactured.
 種結晶4の突起部4cを種結晶の第2主面4b側の中央部に配置することによって、半導体インゴットはその底面中央部から冷却されることとなる。さらに、結晶成長方向がインゴット中央部から周縁部へと向かうため、結晶粒界および転位などの結晶欠陥が低減できる。 By disposing the protrusion 4c of the seed crystal 4 at the center of the seed crystal on the second main surface 4b side, the semiconductor ingot is cooled from the center of the bottom surface. Furthermore, since the crystal growth direction is from the central part of the ingot to the peripheral part, crystal defects such as crystal grain boundaries and dislocations can be reduced.
 種結晶4の突出部4cと鋳型2の底面部2bとの間に、種結晶4とは熱伝導率が異なる材質からなる板状体7を設置することによって、鋳型2底面からの熱伝導の制御が可能となる。これにより、結晶成長速度や凝固時の固液界面の制御が可能となって、半導体インゴット中の結晶欠陥を低減することができる。さらに、鋳型2および離型材8から半導体インゴットへの不純物の拡散を低減することができる。 By installing a plate-like body 7 made of a material having a different thermal conductivity from that of the seed crystal 4 between the projecting portion 4c of the seed crystal 4 and the bottom surface portion 2b of the mold 2, heat conduction from the bottom surface of the mold 2 can be achieved. Control becomes possible. As a result, the crystal growth rate and the solid-liquid interface during solidification can be controlled, and crystal defects in the semiconductor ingot can be reduced. Furthermore, the diffusion of impurities from the mold 2 and the release material 8 to the semiconductor ingot can be reduced.
 種結晶4の突出部4cと鋳型2の底面部2bとの間に配置させる板状体7の材質としては、シリコン等の半導体材料の融点以上の温度において、溶融、変形および分解がなくて、シリコン等の半導体材料との反応を生じにくく、半導体インゴット中で完成品となる太陽電池素子の特性を低下させるような不純物を極力低減したセラミックスまたは金属等を用いることができ、二酸化シリコン、炭化シリコン、窒化シリコンなどが好適に用いられる。 As a material of the plate-like body 7 disposed between the projecting portion 4c of the seed crystal 4 and the bottom surface portion 2b of the mold 2, there is no melting, deformation, or decomposition at a temperature higher than the melting point of a semiconductor material such as silicon. It is possible to use ceramics or metal, etc., which are less likely to react with a semiconductor material such as silicon, and reduce impurities as much as possible to reduce the characteristics of the finished solar cell element in the semiconductor ingot. Silicon dioxide, silicon carbide Silicon nitride or the like is preferably used.
 <製造方法>
 以下、半導体インゴットの製造方法の一例について説明する。
<Manufacturing method>
Hereinafter, an example of a method for manufacturing a semiconductor ingot will be described.
 基本的な製造方法について説明する。まず、半導体融液が注がれる第1主面4aと第1主面4aの反対側に位置する第2主面4bとを有しているとともに、第2主面4b側の中央部が突出している種結晶4を準備する種結晶準備工程を行なう。 The basic manufacturing method will be described. First, it has the 1st main surface 4a into which a semiconductor melt is poured, and the 2nd main surface 4b located in the other side of the 1st main surface 4a, and the center part by the side of the 2nd main surface 4b protrudes. A seed crystal preparation step for preparing the seed crystal 4 is performed.
 次に、半導体融液が注がれる開口部2aと、底面部2bと、開口部2aと底面部2bとの間に位置している内周側面部2cとを有している鋳型2を準備する鋳型準備工程を行なう。 Next, a mold 2 having an opening 2a into which the semiconductor melt is poured, a bottom surface 2b, and an inner peripheral side surface 2c located between the opening 2a and the bottom 2b is prepared. A mold preparation process is performed.
 次に、鋳型2の底面部2bに種結晶4の第2主面4aを下にして種結晶4を配置する種結晶配置工程を行なう。 Next, a seed crystal disposing step is performed in which the seed crystal 4 is disposed on the bottom surface 2b of the mold 2 with the second main surface 4a of the seed crystal 4 facing down.
 次に、種結晶4の第1主面4aの中央部4gに向けて半導体融液3を注入する注入工程を行なう。坩堝1から鋳型2への半導体融液3の注入は、図1に示すように、半導体融液が入った坩堝1を傾けることで、坩堝1の上部の開口部から鋳型2内へ半導体融液を注入してもよいし、坩堝1の底部に注液口を設けて、この注液口から鋳型2内へ半導体融液3の注入を行なってもよい。 Next, an injection step of injecting the semiconductor melt 3 toward the central portion 4g of the first main surface 4a of the seed crystal 4 is performed. As shown in FIG. 1, the semiconductor melt 3 is injected from the crucible 1 into the mold 2 by tilting the crucible 1 containing the semiconductor melt into the mold 2 from the opening at the top of the crucible 1. Alternatively, a liquid injection port may be provided at the bottom of the crucible 1 and the semiconductor melt 3 may be injected into the mold 2 from the liquid injection port.
 そして、鋳型2内の半導体融液を凝固させる凝固工程を行なう。この際、突出部4cが種結晶4の中央部に存在することによって、最初の結晶成長方向がインゴット中央部から周縁部へと向かうため、結晶粒界や転位などの結晶欠陥が低減できる。 Then, a solidification process for solidifying the semiconductor melt in the mold 2 is performed. At this time, since the projecting portion 4c exists in the central portion of the seed crystal 4, the initial crystal growth direction is directed from the central portion of the ingot to the peripheral portion, so that crystal defects such as crystal grain boundaries and dislocations can be reduced.
 上述したように、上記種結晶準備工程において、種結晶4として、第2主面4a側の周縁部に沿った部位も突出しているものを準備するとよい。 As described above, in the seed crystal preparation step, it is preferable to prepare a seed crystal 4 in which a portion along the peripheral edge on the second main surface 4a side also protrudes.
 また、上述したように、上記種結晶準備工程において、種結晶4として、複数の小種結晶同士が組み合わされているものを準備するとよい。 Also, as described above, in the seed crystal preparation step, a seed crystal 4 in which a plurality of small seed crystals are combined may be prepared.
 また、上記種結晶配置工程において、種結晶4を鋳型2の底面部2bに離型材8を介して配置するとよい。 Further, in the seed crystal arranging step, the seed crystal 4 may be arranged on the bottom surface portion 2b of the mold 2 via the release material 8.
 また、図6に示すように、上記種結晶配置工程において、鋳型2の底面部2bに種結晶4とは熱伝導率の異なる板状体7を配置して、この板状体7の上に種結晶4を配置するとよい。このような配置によって、上記凝固工程において、結晶の育成の際に上に凸な形状の固液界面を形成しやすくなるので、良好な品質の半導体インゴットを製造することができる。さらに、成長した結晶中に、結晶粒界および不純物などの偏析による結晶欠陥を少なくすることができる。 Further, as shown in FIG. 6, in the seed crystal arranging step, a plate-like body 7 having a thermal conductivity different from that of the seed crystal 4 is arranged on the bottom surface portion 2 b of the mold 2, and on the plate-like body 7. A seed crystal 4 may be disposed. Such an arrangement makes it easy to form a solid-liquid interface having an upwardly convex shape during crystal growth in the solidification step, so that a semiconductor ingot of good quality can be manufactured. Furthermore, crystal defects due to segregation of crystal grain boundaries and impurities can be reduced in the grown crystal.
 また、図7に示すように、上記結晶配置工程において、板状体7として、第1板状体7aと、この第1板状体7aよりも熱伝導率が小さい複数の第2板状体7bとを用意して、種結晶4を配置する前に、第1板状体7aを種結晶4の第2主面4bの中央部4gに接触するように鋳型2の底面部2bの中央部に配置するとともに、複数の第2板状体7bを種結晶4の第2主面4b側の周縁部に接触するように第1板状体7aの周囲に配置するとよい。 Moreover, as shown in FIG. 7, in the said crystal | crystallization arrangement | positioning process, as the plate-shaped body 7, the 1st plate-shaped body 7a and several 2nd plate-shaped body with smaller heat conductivity than this 1st plate-shaped body 7a. 7b and before placing the seed crystal 4, the central portion of the bottom surface portion 2b of the mold 2 so that the first plate 7a is in contact with the central portion 4g of the second main surface 4b of the seed crystal 4 The plurality of second plate-like bodies 7b may be arranged around the first plate-like body 7a so as to come into contact with the peripheral edge of the seed crystal 4 on the second main surface 4b side.
 第1板状体7a、第2板状体7bの材質は、熱伝導率が異なっていれば互いに同じ材質でもよいし、互いに異なる材質でもよい。例えば熱伝導率の異なる2種類の二酸化シリコンの板状体7a、7bを用いてもよいし、炭化シリコンからなる第1板状体7aと、窒化シリコンからなる第2板状体7bとを組み合わせて用いてもよい。 The material of the first plate-like body 7a and the second plate-like body 7b may be the same or different from each other as long as the thermal conductivity is different. For example, two types of silicon dioxide plates 7a and 7b having different thermal conductivities may be used, or a combination of a first plate 7a made of silicon carbide and a second plate 7b made of silicon nitride. May be used.
 また、上記凝固工程において、鋳型2の底面部2bの中央部を該中央部の周辺部よりも温度が低くなるように冷却するとよい。具体的には、ホルダ5または冷却機構6の中央部をその周辺部よりも温度が低くなるように冷却するとよい。 In the solidification step, the center portion of the bottom surface portion 2b of the mold 2 may be cooled so that the temperature is lower than the peripheral portion of the center portion. Specifically, the center part of the holder 5 or the cooling mechanism 6 may be cooled so that the temperature is lower than the peripheral part.
 また、上記凝固工程において、鋳型2の底面部2b側から鋳型2を支持するホルダ5を配置した状態で、鋳型2のうち底面部2bの中央部に対応する外表面部位を該外表面部位の周囲よりも温度が低くなるように冷却するとよい。具体的には、例えば、図8に示すように、冷却機構6を中央部6aとその周縁部6bとに分割し、それぞれに温度制御された別系統の冷却液を供給するとともに、冷却機構6の中央部6aに供給する冷却液の温度を、冷却機構6の周縁部6bに供給する冷却液の温度よりも低く設定すればよい。 Further, in the solidification step, with the holder 5 supporting the mold 2 from the bottom surface 2b side of the mold 2, the outer surface portion corresponding to the center portion of the bottom surface portion 2b of the mold 2 is defined as the outer surface portion. It is good to cool so that temperature may become lower than the circumference | surroundings. Specifically, for example, as shown in FIG. 8, the cooling mechanism 6 is divided into a central portion 6 a and a peripheral edge portion 6 b, and a separate coolant whose temperature is controlled is supplied to each of the cooling mechanism 6 and the cooling mechanism 6. What is necessary is just to set the temperature of the cooling liquid supplied to the center part 6a of this to be lower than the temperature of the cooling liquid supplied to the peripheral part 6b of the cooling mechanism 6.
 また、上記凝固工程において、ホルダ5として、鋳型2の外表面部位に対面する部位が該部位の周囲よりも熱伝導率が大きい材料で構成されているものを用いるとよい。具体的には、例えば、図9に示すように、ホルダ5を中央部5aとその周縁部5bとに分割して、中央部5aをカーボングラファイトで作製するとともに、周縁部5bをそれよりも熱伝導率の小さい炭素繊維強化炭素複合材で作製して、両者を組み合わせて一体化することでホルダ5を構成するようにすればよい。 In the solidification step, the holder 5 may be made of a material whose portion facing the outer surface portion of the mold 2 is made of a material having a higher thermal conductivity than the periphery of the portion. Specifically, for example, as shown in FIG. 9, the holder 5 is divided into a central portion 5a and a peripheral portion 5b, and the central portion 5a is made of carbon graphite, and the peripheral portion 5b is heated more than that. What is necessary is just to make it the holder 5 by producing with a carbon fiber reinforced carbon composite material with small conductivity, combining both, and integrating.
 上記の半導体インゴットの製造方法によれば、半導体融液を鋳型2に注入する際に、鋳型2の底面に配置された種結晶4の一部に集中的に半導体融液が接触し続けて、種結晶4が局所的に溶融しても突出部4cの存在によって、種結晶4の溶融がその底面にまで及ばないので、結晶欠陥の少ないインゴットが形成される。 According to the semiconductor ingot manufacturing method described above, when the semiconductor melt is poured into the mold 2, the semiconductor melt continues to contact a part of the seed crystal 4 disposed on the bottom surface of the mold 2, Even if the seed crystal 4 is locally melted, the presence of the protrusion 4c prevents the seed crystal 4 from melting to the bottom surface, so that an ingot with few crystal defects is formed.
 また、従来の種結晶に比べて鋳型2の底面との接触面積が狭いので、鋳型2および離型材8からの不純物の拡散を少なくすることができる。これにより、高品質な半導体インゴットを製造することができるので、光電変換効率に優れた太陽電池素子を作製可能なシリコンインゴットを提供することができる。 Further, since the contact area with the bottom surface of the mold 2 is narrower than that of the conventional seed crystal, the diffusion of impurities from the mold 2 and the release material 8 can be reduced. Thereby, since a high quality semiconductor ingot can be manufactured, the silicon ingot which can produce the solar cell element excellent in photoelectric conversion efficiency can be provided.
 <太陽電池素子>
 次に、上記ようにして作製した半導体インゴットから半導体基板を切り出して、これを太陽電池素子の半導体基板として用いることができる。
<Solar cell element>
Next, a semiconductor substrate can be cut out from the semiconductor ingot produced as described above and used as a semiconductor substrate of a solar cell element.
 まず、太陽電池素子の基本構成について説明する。図10~12に示すように、太陽電池素子30は、光が入射する受光面(図12における上面)29aと、この受光面29aの反対側の面である非受光面(図12における下面)29bとを有する。 First, the basic configuration of the solar cell element will be described. As shown in FIGS. 10 to 12, the solar cell element 30 includes a light receiving surface (upper surface in FIG. 12) 29a on which light is incident and a non-light receiving surface (lower surface in FIG. 12) that is the surface opposite to the light receiving surface 29a. 29b.
 この太陽電池素子30は、半導体基板21を有しており、この半導体基板21は一導電型の半導体層である第1半導体層22と、この第1半導体層22における受光面29a側に設けられた逆導電型の半導体層である第2半導体層23とを有する。また、半導体基板21の受光面29aには反射防止層24が設けられている。また、太陽電池素子30は半導体基板21の受光面29a上に設けられた第1電極25と、半導体基板21の非受光面29b上に設けられた第2電極26とを有する。 The solar cell element 30 includes a semiconductor substrate 21, and the semiconductor substrate 21 is provided on the first semiconductor layer 22, which is a semiconductor layer of one conductivity type, and on the light receiving surface 29 a side in the first semiconductor layer 22. And a second semiconductor layer 23 which is a semiconductor layer of a reverse conductivity type. An antireflection layer 24 is provided on the light receiving surface 29 a of the semiconductor substrate 21. The solar cell element 30 includes a first electrode 25 provided on the light receiving surface 29 a of the semiconductor substrate 21 and a second electrode 26 provided on the non-light receiving surface 29 b of the semiconductor substrate 21.
 次に、太陽電池素子30のより具体的な構成例について説明する。一導電型(例えば、p型)を有する第1半導体層22を備えた半導体基板21として、シリコン基板が好適に用いられる。 Next, a more specific configuration example of the solar cell element 30 will be described. As the semiconductor substrate 21 including the first semiconductor layer 22 having one conductivity type (for example, p-type), a silicon substrate is preferably used.
 まず、半導体基板としてp型シリコン基板を用意する。シリコン基板としては、本発明に係るインゴットの製造方法で作製された多結晶シリコンインゴットを所望の形状のブロックに切り出した後、マルチワイヤーソー装置などを用いてスライスして基板状にしたものを用いることができる。 First, a p-type silicon substrate is prepared as a semiconductor substrate. As the silicon substrate, a polycrystalline silicon ingot produced by the method for producing an ingot according to the present invention is cut into a block having a desired shape, and then sliced using a multi-wire saw device or the like to form a substrate. be able to.
 p型化のドーピング元素としてはボロン(B)を用いることが望ましく、濃度は1×1016~1×1017[atoms/cm]程度として、このときシリコン基板の比抵抗値は0.2~2Ω・cm程度となる。シリコン基板に対するボロンのドーピング方法としては、ボロン元素単体を適量、シリコンインゴット製造時に含ませてもよいし、既にドープ濃度の分かっているボロン含有シリコン塊を適量含ませてもよい。 Boron (B) is preferably used as the p-type doping element, and the concentration is about 1 × 10 16 to 1 × 10 17 [atoms / cm 3 ]. At this time, the specific resistance value of the silicon substrate is 0.2. It is about 2Ω · cm. As a method for doping boron into the silicon substrate, an appropriate amount of boron element alone may be included at the time of manufacturing the silicon ingot, or an appropriate amount of boron-containing silicon lump whose doping concentration is already known may be included.
 半導体基板21の厚みは、例えば、300μm以下であるのが好ましく、200μm以下とするのがさらに好ましい。 The thickness of the semiconductor substrate 21 is, for example, preferably 300 μm or less, and more preferably 200 μm or less.
 第1半導体層22とpn接合を形成する第2半導体層23は、第1半導体層22と逆の導電型を呈する層であり、半導体基板21における受光面29a側に設けられている。半導体基板21がp型の導電型を呈するシリコン基板においては、第2半導体層23は半導体基板21における受光面29a側にリン(P)等の不純物を拡散させることによって形成できる。 The second semiconductor layer 23 that forms a pn junction with the first semiconductor layer 22 is a layer having a conductivity type opposite to that of the first semiconductor layer 22, and is provided on the light receiving surface 29 a side of the semiconductor substrate 21. In a silicon substrate in which the semiconductor substrate 21 exhibits p-type conductivity, the second semiconductor layer 23 can be formed by diffusing impurities such as phosphorus (P) on the light receiving surface 29 a side of the semiconductor substrate 21.
 反射防止層24は、所望の波長領域の光の反射率を低減させて、光生成キャリア量を増大させる役割を果たす。反射防止層24は、例えば、窒化シリコン膜、酸化チタン膜または酸化シリコン膜などからなる。反射防止層24の厚みは、構成する材料によって適宜選択されて、適当な入射光に対して無反射条件を実現できるように設定される。例えばシリコンからなる半導体基板21においては、屈折率は1.8~2.3程度、厚み500~1200Å程度が好ましい。 The antireflection layer 24 plays a role of reducing the reflectance of light in a desired wavelength region and increasing the amount of photogenerated carriers. The antireflection layer 24 is made of, for example, a silicon nitride film, a titanium oxide film, or a silicon oxide film. The thickness of the antireflective layer 24 is appropriately selected depending on the constituent material, and is set so as to realize a nonreflective condition with respect to appropriate incident light. For example, the semiconductor substrate 21 made of silicon preferably has a refractive index of about 1.8 to 2.3 and a thickness of about 500 to 1200 mm.
 半導体基板21の非受光面29b側に設けられるBSF(Back-Surface-Field)領域7は、非受光面29bの近傍でキャリアの再結合による効率の低下を低減させる役割を有しており、非受光面29b側に内部電界を形成するものである。BSF領域27は第1半導体層22と同一の導電型を呈しているが、第1半導体層22が含有する多数キャリアの濃度よりも高い濃度の多数キャリアを有している。BSF領域6は、半導体基板21がp型を呈するのであれば、例えば、非受光面29b側にボロンまたはアルミニウムなどのドーパント元素を拡散させることによって、これらドーパント元素の濃度が1×1018~5×1021atoms/cm程度となるように形成されるのが好適である。 A BSF (Back-Surface-Field) region 7 provided on the non-light-receiving surface 29b side of the semiconductor substrate 21 has a role of reducing a decrease in efficiency due to carrier recombination in the vicinity of the non-light-receiving surface 29b. An internal electric field is formed on the light receiving surface 29b side. The BSF region 27 has the same conductivity type as that of the first semiconductor layer 22, but has a majority carrier having a concentration higher than that of the majority carrier contained in the first semiconductor layer 22. If the semiconductor substrate 21 is p-type, the BSF region 6 has a concentration of these dopant elements of 1 × 10 18 to 5 by diffusing a dopant element such as boron or aluminum on the non-light-receiving surface 29b side. It is preferably formed so as to be about × 10 21 atoms / cm 3 .
 図10に示すように、第1電極25は、第1出力取出電極25aと、複数の線状の第1集電電極25bとを有する。第1出力取出電極25aの少なくとも一部は、第1集電電極25bと交差している。この第1出力取出電極25aは、例えば、1.3~2.5mm程度の幅を有している。 As shown in FIG. 10, the first electrode 25 has a first output extraction electrode 25a and a plurality of linear first current collecting electrodes 25b. At least a part of the first output extraction electrode 25a intersects the first current collection electrode 25b. The first output extraction electrode 25a has a width of about 1.3 to 2.5 mm, for example.
 一方、第1集電電極25bはその線幅が50~200μm程度であり、第1出力取出電極25aよりも細い。また、第1集電電極25bは、互いに1.5~3mm程度の間隔を空けて複数設けられている。 On the other hand, the first collector electrode 25b has a line width of about 50 to 200 μm and is thinner than the first output extraction electrode 25a. A plurality of first current collecting electrodes 25b are provided with an interval of about 1.5 to 3 mm.
 また、このような第1電極25の厚みは、10~40μm程度である。第1電極25は、例えば銀粉末、ガラスフリットおよび有機ビヒクル等からなる電極形成用ペーストをスクリーン印刷等によって所望の形状に塗布した後、これを焼成することによって形成することができる。 The thickness of the first electrode 25 is about 10 to 40 μm. The first electrode 25 can be formed by applying a paste for forming an electrode made of, for example, silver powder, glass frit, an organic vehicle or the like into a desired shape by screen printing or the like, and then baking the paste.
 また、図11に示すように、第2電極26は第2出力取出電極26aと第2集電電極26bとを有する。本実施形態の第2出力取出電極26aの厚みは10~30μm程度、幅は1.3~7mm程度である。第2出力取出電極26aは、上述の第1電極25と同等の材質および製法で形成することができる。例えば銀ペーストを所望の形状に塗布した後、焼成することによって形成してもよい。また、第2集電電極26bは、厚みが15~50μm程度であり、半導体基板21の非受光面29bの第2出力取出電極26aの一部を除いた略全面に形成される。この第2集電電極26bは、例えばアルミニウムペーストを所望の形状に塗布した後、焼成することによって形成することができる。 As shown in FIG. 11, the second electrode 26 has a second output extraction electrode 26a and a second current collecting electrode 26b. In the present embodiment, the second output extraction electrode 26a has a thickness of about 10 to 30 μm and a width of about 1.3 to 7 mm. The second output extraction electrode 26a can be formed of the same material and manufacturing method as the first electrode 25 described above. For example, you may form by apply | coating a silver paste to a desired shape, and baking. The second collector electrode 26b has a thickness of about 15 to 50 μm, and is formed on substantially the entire surface of the non-light-receiving surface 29b of the semiconductor substrate 21 excluding a part of the second output extraction electrode 26a. The second current collecting electrode 26b can be formed, for example, by applying an aluminum paste in a desired shape and baking it.
 以下に、上述した実施形態をさらに具体化した実施例について説明する。 Hereinafter, examples that further embody the above-described embodiment will be described.
 図1および図2に示す半導体インゴット製造用の種結晶と鋳型とを用いてシリコンインゴットの作製を行なった。 A silicon ingot was produced using a seed crystal and a mold for producing a semiconductor ingot shown in FIGS.
 まず、図1に示す石英製の坩堝1と、グラファイト製の鋳型2と、図2に示すような小種結晶5個で構成された種結晶4とをそれぞれ用意した。 First, a quartz crucible 1 shown in FIG. 1, a graphite mold 2 and a seed crystal 4 composed of five small seed crystals as shown in FIG. 2 were prepared.
 実施例1では、種結晶4としては、ミラー指数で(100)面の結晶方位を有しており、150mm角、高さ10mmの単結晶シリコンを5個用いた。 In Example 1, as the seed crystal 4, five pieces of single crystal silicon having a Miller index having a (100) plane crystal orientation and a 150 mm square and a height of 10 mm were used.
 また、実施例2では、種結晶4としては、実施例1の種結晶4に対して、周縁部にも20mm×150mm、高さ10mmの小種結晶を設けたものを用いた。 Further, in Example 2, the seed crystal 4 used was a seed crystal 4 of Example 1 provided with a small seed crystal of 20 mm × 150 mm and a height of 10 mm at the periphery.
 また、実施例3では、実施例2の場合に、ホルダ中央部に熱伝導率が100W/m・K以上の高熱伝導率グラファイトを用い、ホルダ周縁部にこれよりも熱伝導率が小さい炭素繊維強化炭素複合材を用いた。 Further, in Example 3, in the case of Example 2, a carbon fiber having a thermal conductivity of 100 W / m · K or more at the center portion of the holder and a thermal conductivity smaller than this at the holder peripheral portion. Reinforced carbon composite was used.
 また、実施例4では、実施例2の場合において、冷却機構6を中央部6aとその周縁部6bとに分割し、冷却水を中央部とその周辺部との2つの系統に流すようにして、中央部6aに供給する冷却水の設定温度を15℃、周縁部6bに供給する冷却水の設定温度を20℃としてインゴット製造を行なった。 Further, in the fourth embodiment, in the case of the second embodiment, the cooling mechanism 6 is divided into the central portion 6a and the peripheral portion 6b, and the cooling water is allowed to flow through two systems of the central portion and the peripheral portion. The ingot was manufactured by setting the set temperature of the cooling water supplied to the central portion 6a to 15 ° C and the set temperature of the cooling water supplied to the peripheral portion 6b to 20 ° C.
 そして、鋳型2の内周側面部2cに、平均粒径約0.5μmの窒化シリコンからなる粉末と、平均粒径約20μmの酸化シリコンからなる粉末と、バインダー溶液としてPVA水溶液とを混合してスラリー状とした離型材8を単位面積当りの塗布重量が約0.1g/cmとなるように塗布した。その後、種結晶4の突出部4cを鋳型2内に離型材8を介して固定した。また、小種結晶の鋳型2の内周側面部2cの近傍に位置する箇所も離型材8を介して固定した。 Then, a powder made of silicon nitride having an average particle size of about 0.5 μm, a powder made of silicon oxide having an average particle size of about 20 μm, and a PVA aqueous solution as a binder solution are mixed on the inner peripheral side surface portion 2 c of the mold 2. The release material 8 in the form of a slurry was applied so that the coating weight per unit area was about 0.1 g / cm 2 . Thereafter, the projecting portion 4 c of the seed crystal 4 was fixed in the mold 2 via a release material 8. Further, a location located in the vicinity of the inner peripheral side surface portion 2 c of the small-crystal crystal mold 2 was also fixed through the release material 8.
 坩堝1内に総量100kgの多数のシリコン塊を投入し、坩堝1の周囲に配置した加熱手段(不図示)によって、坩堝1内のシリコンを加熱・溶融して、約1420℃のシリコン融液3を種結晶4の中央部4gへ向けて注入し、鋳型2内でシリコンインゴットを作製した。 A large number of silicon chunks of a total amount of 100 kg are put into the crucible 1, and the silicon in the crucible 1 is heated and melted by heating means (not shown) arranged around the crucible 1 to obtain a silicon melt 3 of about 1420 ° C. Was injected toward the central portion 4 g of the seed crystal 4 to produce a silicon ingot in the mold 2.
 また、比較例として、突出部のない種結晶を用いて実施例と同一条件でシリコンインゴットを作製した。 Further, as a comparative example, a silicon ingot was produced under the same conditions as in the example using a seed crystal having no protrusion.
 その結果、比較例ではシリコン融液3が集中して接触する種結晶4の中央部において、鋳型2の底面部2bに達するまで溶解して、シリコンインゴットの中央部から細かい多結晶が成長していることが、インゴット断面の目視による観察およびフッ酸と硝酸と酢酸との混合液からなる混酸によるエッチピット観察によって観察できた。 As a result, in the comparative example, in the central part of the seed crystal 4 where the silicon melt 3 is concentrated and in contact, the seed crystal 4 melts until reaching the bottom surface part 2b of the mold 2, and a fine polycrystal grows from the central part of the silicon ingot. This was observed by visual observation of the cross section of the ingot and by observation of etch pits using a mixed acid composed of a mixture of hydrofluoric acid, nitric acid and acetic acid.
 これに対して実施例1~4では、いずれもシリコンインゴットの中央部は種結晶4を起点として単結晶成長していることが、インゴット断面の目視による観察および混酸によるエッチピット観察によって確認できた。 On the other hand, in each of Examples 1 to 4, it was confirmed by visual observation of the ingot cross section and etch pit observation by the mixed acid that the central part of the silicon ingot was grown from the seed crystal 4 as a starting point. .
 次に、得られたシリコンインゴットの中央部からシリコン基板をスライスして、その後、これを半導体基板とする太陽電池素子を以下のように作製した(太陽電池素子については図10~12を参照)。 Next, a silicon substrate was sliced from the center of the obtained silicon ingot, and then a solar cell element using this as a semiconductor substrate was produced as follows (refer to FIGS. 10 to 12 for the solar cell element). .
 まず、本実施例で作製された多結晶シリコンインゴットを厚さ200μm、外形150mm×150mm、比抵抗1~1.2Ω・cmの多結晶シリコン基板(半導体基板21)にスライスして、シリコン基板の表面のダメージ層をNaOH溶液でエッチングして洗浄した。 First, the polycrystalline silicon ingot produced in this example was sliced into a polycrystalline silicon substrate (semiconductor substrate 21) having a thickness of 200 μm, an outer shape of 150 mm × 150 mm, and a specific resistance of 1 to 1.2 Ω · cm. The damaged layer on the surface was cleaned by etching with a NaOH solution.
 次に、ドライエッチング法で受光面29aにテクスチャを形成した。そして、POClを拡散源とした気相熱拡散法で第2半導体層23を形成した。このとき、第2半導体層23のシート抵抗は70Ω/□であった。さらに、フッ酸溶液による燐ガラスのエッチング除去とレーザービームによるpn分離を行なった後、受光面29aにPECVD法によって反射防止層24となる窒化シリコン膜を形成した。 Next, a texture was formed on the light receiving surface 29a by dry etching. Then, the second semiconductor layer 23 was formed by a vapor phase thermal diffusion method using POCl 3 as a diffusion source. At this time, the sheet resistance of the second semiconductor layer 23 was 70Ω / □. Further, after removing the phosphor glass by etching with a hydrofluoric acid solution and performing pn separation using a laser beam, a silicon nitride film to be the antireflection layer 24 was formed on the light receiving surface 29a by PECVD.
 そして、半導体基板21の非受光面29bにアルミニウムペーストを略全面に塗布・焼成して、BSF領域27と第2集電電極26bとを形成した。また、受光面29aと非受光面29bに銀ペーストを塗布・焼成して、第1電極25と第2出力取出電極26aとを形成して太陽電池素子30を得た。 Then, the BSF region 27 and the second current collecting electrode 26b were formed by applying and baking an aluminum paste on substantially the entire surface of the non-light-receiving surface 29b of the semiconductor substrate 21. In addition, a silver paste was applied and fired on the light receiving surface 29a and the non-light receiving surface 29b to form the first electrode 25 and the second output extraction electrode 26a to obtain the solar cell element 30.
 さらに、各実施例によって得られた半導体基板を用いた太陽電池素子に対して、光電変換効率の測定をJIS C 8913(1998)に準拠して行なったところ、比較例の半導体基板を用いた太陽電池素子においては16.2%であったのに対して、実施例1の半導体基板を用いた太陽電池素子では16.8%、実施例2の半導体基板を用いた太陽電池素子では16.5%、実施例3の半導体基板を用いた太陽電池素子では16.6%、実施例4の半導体基板を用いた太陽電池素子では16.7%であった。これらの結果によって、結晶性の良好な半導体基板を用いた太陽電池素子ほど特性が改善できることも確認できた。 Furthermore, when the photoelectric conversion efficiency was measured in accordance with JIS C 8913 (1998) for the solar cell element using the semiconductor substrate obtained in each example, the solar cell using the semiconductor substrate of the comparative example was measured. The battery element was 16.2%, whereas the solar cell element using the semiconductor substrate of Example 1 was 16.8%, and the solar cell element using the semiconductor substrate of Example 2 was 16.5%. %, 16.6% for the solar cell element using the semiconductor substrate of Example 3, and 16.7% for the solar cell element using the semiconductor substrate of Example 4. From these results, it was also confirmed that the characteristics could be improved as the solar cell element using a semiconductor substrate with good crystallinity.
1  :坩堝
2  :鋳型
 2a:開口部
 2b:底面部
 2c:内周側面部
3  :半導体融液
4  :種結晶
 4a:第1主面
 4b:第2主面
 4c:突出部
5  :ホルダ
6  :冷却機構
7  :板状体
 7a:第1板状体
 7b:第2板状体
8:離型材
21  :半導体基板(シリコン基板)
22  :第1半導体層
23  :第2半導体層
24  :反射防止層
25  :第1電極
 25a :第1出力取出電極
 25b :第1集電電極
 25c :補助電極
26  :第2電極
 6a :第2出力取出電極
 6b :第2集電電極
27  :BSF領域
29a :受光面
29b :非受光面
30 :太陽電池素子
1: crucible 2: mold 2a: opening 2b: bottom surface 2c: inner peripheral side surface 3: semiconductor melt 4: seed crystal 4a: first main surface 4b: second main surface 4c: protrusion 5: holder 6: Cooling mechanism 7: plate-like body 7a: first plate-like body 7b: second plate-like body 8: release material 21: semiconductor substrate (silicon substrate)
22: 1st semiconductor layer 23: 2nd semiconductor layer 24: Antireflection layer 25: 1st electrode 25a: 1st output extraction electrode 25b: 1st current collection electrode 25c: Auxiliary electrode 26: 2nd electrode 6a: 2nd output Extraction electrode 6b: second current collecting electrode 27: BSF region 29a: light receiving surface 29b: non-light receiving surface 30: solar cell element

Claims (9)

  1.  半導体融液が注がれる第1主面と該第1主面の反対側に位置する第2主面とを有しているとともに、該第2主面側の中央部が突出している種結晶を準備する種結晶準備工程と、
    前記半導体融液が注がれる開口部と、底面部と、前記開口部と前記底面部との間に位置している内周側面部とを有している鋳型を準備する鋳型準備工程と、
    該鋳型の前記底面部に前記種結晶の前記第2主面を下にして前記種結晶を配置する種結晶配置工程と、
    前記種結晶の前記第1主面の中央部に向けて前記半導体融液を注入する注入工程と、
    前記鋳型内の前記半導体融液を凝固させる凝固工程とを含む、
    半導体インゴットの製造方法。
    A seed crystal having a first main surface into which a semiconductor melt is poured and a second main surface located on the opposite side of the first main surface, and a central portion protruding from the second main surface side A seed crystal preparation process for preparing
    A mold preparation step of preparing a mold having an opening into which the semiconductor melt is poured, a bottom surface, and an inner peripheral side surface positioned between the opening and the bottom;
    A seed crystal disposing step of disposing the seed crystal on the bottom surface of the template with the second main surface of the seed crystal facing down;
    An injection step of injecting the semiconductor melt toward a central portion of the first main surface of the seed crystal;
    A solidification step of solidifying the semiconductor melt in the mold.
    Manufacturing method of semiconductor ingot.
  2.  前記種結晶準備工程において、前記種結晶として、前記第2主面側の周縁部に沿った部位も突出しているものを準備する請求項1に記載の半導体インゴットの製造方法。 The method for manufacturing a semiconductor ingot according to claim 1, wherein, in the seed crystal preparation step, a seed crystal that also projects from a peripheral portion on the second main surface side is prepared as the seed crystal.
  3.  前記種結晶準備工程において、前記種結晶として、複数の小種結晶同士が組み合わされているものを準備する請求項1または2に記載の半導体インゴットの製造方法。 The method for manufacturing a semiconductor ingot according to claim 1 or 2, wherein, in the seed crystal preparation step, a seed crystal in which a plurality of small seed crystals are combined is prepared.
  4.  前記種結晶配置工程において、前記種結晶を前記鋳型の前記底面部に離型材を介して配置する請求項1乃至3のいずれかに記載の半導体インゴットの製造方法。 The method for manufacturing a semiconductor ingot according to any one of claims 1 to 3, wherein, in the seed crystal arranging step, the seed crystal is arranged on the bottom surface of the mold via a release material.
  5.  前記種結晶配置工程において、前記鋳型の前記底面部に前記種結晶とは熱伝導率の異なる板状体を配置して、該板状体の上に前記種結晶を配置する請求項1乃至4のいずれかに記載の半導体インゴットの製造方法。 The said seed crystal arrangement | positioning process WHEREIN: The plate-like body from which the said seed crystal differs in thermal conductivity is arrange | positioned in the said bottom face part of the said casting_mold | template, and the said seed crystal is arrange | positioned on this plate-like body. The manufacturing method of the semiconductor ingot in any one of.
  6.  前記結晶配置工程において、前記板状体として、第1板状体と、該第1板状体よりも熱伝導率が小さい複数の第2板状体とを用意して、前記種結晶を配置する前に、前記第1板状体を前記種結晶の前記第2主面の中央部に接触するように前記鋳型の前記底面部の中央部に配置するとともに、複数の前記第2板状体を前記種結晶の前記第2主面側の周縁部に接触するように前記第1板状体の周囲に配置する請求項5に記載の半導体インゴットの製造方法。 In the crystal arranging step, a first plate and a plurality of second plates having a lower thermal conductivity than the first plate are prepared as the plate, and the seed crystal is arranged. Before the first plate-like body is disposed at the center portion of the bottom surface portion of the mold so as to contact the center portion of the second main surface of the seed crystal, a plurality of the second plate-like bodies are arranged. 6. The method for manufacturing a semiconductor ingot according to claim 5, wherein the first ingot is disposed around the first plate-like body so as to be in contact with a peripheral portion of the seed crystal on the second main surface side.
  7.  前記凝固工程において、前記鋳型の前記底面部の中央部を該中央部の周辺部よりも温度が低くなるように冷却する請求項1乃至6のいずれかに記載の半導体インゴットの製造方法。 The method for manufacturing a semiconductor ingot according to any one of claims 1 to 6, wherein, in the solidification step, a central portion of the bottom surface portion of the mold is cooled so that a temperature is lower than a peripheral portion of the central portion.
  8.  前記凝固工程において、前記鋳型の前記底面部側から前記鋳型を支持するホルダを配置した状態で、前記鋳型のうち前記底面部の中央部に対応する外表面部位を該外表面部位の周囲よりも温度が低くなるように冷却する請求項1乃至7のいずれかに記載の半導体インゴットの製造方法。 In the solidification step, the outer surface portion corresponding to the central portion of the bottom surface portion of the mold is positioned more than the periphery of the outer surface portion in a state where the holder for supporting the mold is disposed from the bottom surface portion side of the mold. The method of manufacturing a semiconductor ingot according to claim 1, wherein the cooling is performed so that the temperature is lowered.
  9.  前記凝固工程において、前記ホルダとして、前記鋳型の前記外表面部位に対面する部位が該部位の周囲よりも熱伝導率が大きい材料で構成されているものを用いる請求項8に記載の半導体インゴットの製造方法。 9. The semiconductor ingot according to claim 8, wherein in the solidification step, the holder is made of a material that has a portion of the mold facing the outer surface portion that has a higher thermal conductivity than the periphery of the portion. Production method.
PCT/JP2012/072067 2011-08-30 2012-08-30 Method for producing semiconductor ingot WO2013031923A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013515445A JP5312713B1 (en) 2011-08-30 2012-08-30 Manufacturing method of semiconductor ingot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-187047 2011-08-30
JP2011187047 2011-08-30

Publications (1)

Publication Number Publication Date
WO2013031923A1 true WO2013031923A1 (en) 2013-03-07

Family

ID=47756401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072067 WO2013031923A1 (en) 2011-08-30 2012-08-30 Method for producing semiconductor ingot

Country Status (2)

Country Link
JP (1) JP5312713B1 (en)
WO (1) WO2013031923A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726933A (en) * 2013-12-20 2015-06-24 昆山中辰矽晶有限公司 Cooling device for crystal casting furnace and crystal casting method
JP2015163575A (en) * 2014-01-29 2015-09-10 京セラ株式会社 Casting device and production method of ingot
JP2015189588A (en) * 2014-03-27 2015-11-02 京セラ株式会社 Apparatus for manufacturing ingot, and method for manufacturing silicon ingot
JP2015189589A (en) * 2014-03-27 2015-11-02 京セラ株式会社 Apparatus for manufacturing ingot, and method for manufacturing silicon ingot
JP2015214473A (en) * 2014-04-24 2015-12-03 京セラ株式会社 Method for manufacturing ingot of polycrystal silicon
WO2021010468A1 (en) * 2019-07-18 2021-01-21 京セラ株式会社 Silicon ingot, silicon block, silicon substrate, silicon ingot production method, and solar cell
CN112941628A (en) * 2019-12-11 2021-06-11 苏州阿特斯阳光电力科技有限公司 Preparation method of crystalline silicon ingot
CN113564695A (en) * 2020-04-29 2021-10-29 江西赛维Ldk太阳能高科技有限公司 Seed crystal laying method for casting monocrystalline silicon, monocrystalline silicon ingot and casting method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107493A (en) * 1996-06-20 1998-01-13 Sharp Corp Production of silicon semiconductor substrate and substrate for solar cell
JPH11116386A (en) * 1997-10-13 1999-04-27 Mitsubishi Materials Corp Production of silicon ingot having polycrystal structure coagulated in one direction
JP2006219336A (en) * 2005-02-10 2006-08-24 Toshiba Ceramics Co Ltd Crucible and method for producing polycrystal semiconductor
JP2007063049A (en) * 2005-08-30 2007-03-15 Kyocera Corp Method for manufacturing semiconductor ingot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107493A (en) * 1996-06-20 1998-01-13 Sharp Corp Production of silicon semiconductor substrate and substrate for solar cell
JPH11116386A (en) * 1997-10-13 1999-04-27 Mitsubishi Materials Corp Production of silicon ingot having polycrystal structure coagulated in one direction
JP2006219336A (en) * 2005-02-10 2006-08-24 Toshiba Ceramics Co Ltd Crucible and method for producing polycrystal semiconductor
JP2007063049A (en) * 2005-08-30 2007-03-15 Kyocera Corp Method for manufacturing semiconductor ingot

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726933A (en) * 2013-12-20 2015-06-24 昆山中辰矽晶有限公司 Cooling device for crystal casting furnace and crystal casting method
JP2015163575A (en) * 2014-01-29 2015-09-10 京セラ株式会社 Casting device and production method of ingot
JP2015189588A (en) * 2014-03-27 2015-11-02 京セラ株式会社 Apparatus for manufacturing ingot, and method for manufacturing silicon ingot
JP2015189589A (en) * 2014-03-27 2015-11-02 京セラ株式会社 Apparatus for manufacturing ingot, and method for manufacturing silicon ingot
JP2015214473A (en) * 2014-04-24 2015-12-03 京セラ株式会社 Method for manufacturing ingot of polycrystal silicon
WO2021010468A1 (en) * 2019-07-18 2021-01-21 京セラ株式会社 Silicon ingot, silicon block, silicon substrate, silicon ingot production method, and solar cell
JPWO2021010468A1 (en) * 2019-07-18 2021-01-21
JP7201815B2 (en) 2019-07-18 2023-01-10 京セラ株式会社 Silicon ingot, silicon block, silicon substrate, method for manufacturing silicon ingot and solar cell
CN112941628A (en) * 2019-12-11 2021-06-11 苏州阿特斯阳光电力科技有限公司 Preparation method of crystalline silicon ingot
CN113564695A (en) * 2020-04-29 2021-10-29 江西赛维Ldk太阳能高科技有限公司 Seed crystal laying method for casting monocrystalline silicon, monocrystalline silicon ingot and casting method thereof
CN113564695B (en) * 2020-04-29 2023-05-05 江西赛维Ldk太阳能高科技有限公司 Seed crystal laying method for casting monocrystalline silicon, monocrystalline silicon ingot and casting method thereof

Also Published As

Publication number Publication date
JP5312713B1 (en) 2013-10-09
JPWO2013031923A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5312713B1 (en) Manufacturing method of semiconductor ingot
CN102268724B (en) Polycrystalline silicon ingot and manufacturing method thereof as well as solar cell
TWI445851B (en) Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics
US8871169B2 (en) Methods and apparatuses for manufacturing cast silicon from seed crystals
JP2001223172A (en) Sheet manufacturing method, sheet, sheet manufacturing apparatus, and solar cell
WO2006104107A1 (en) Polycrystalline silicon substrate, method for producing same, polycrystalline silicon ingot, photoelectric converter and photoelectric conversion module
JPH1098205A (en) Manufacture of solar cell
US20240026568A1 (en) Silicon ingot, silicon block, silicon substrate, method for manufacturing silicon ingot, and solar cell
JP2004140120A (en) Polycrystalline silicon substrate
JP2006335582A (en) Crystalline silicon manufacturing unit and its manufacturing method
JP6047424B2 (en) Method for producing silicon ingot
CN102797036B (en) Polycrystal silicon ingot and manufacture method, solaode
JP2007015905A (en) Polycrystalline silicon ingot, polycrystalline silicon substrate and solar battery element and casting process for polycrystalline silicon ingot
US20220259757A1 (en) Silicon ingot, silicon block, silicon substrate, manufacturing method for silicon ingot, and solar cell
JP2001064007A (en) Ga-ADDED POLYCRYSTALLINE SILICON, Ga-ADDED POLYCRYSTALLINE SILICON WAFER AND ITS PRODUCTION
JP2004140087A (en) Polycrystalline silicon substrate for solar cell and method for manufacturing the same, and method for manufacturing solar cell using the substrate
JP2012171821A (en) Polycrystal wafer, method for producing the same, and method for casting polycrystalline material
JP2007063048A (en) Semiconductor ingot and method for producing solar cell element
JP2003095630A (en) Silicon sheet and solar battery including the same
JP5213037B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
WO2006126371A1 (en) Polycrystalline silicon substrate, polycrystalline silicon ingot, photoelectric transduction element and photoelectric transduction module
JP2006062928A (en) Semiconductor substrate and manufacturing method therefor, and photoelectric conversion element using the semiconductor substrate
JP2004035340A (en) Substrate, manufacturing method of sheet-like body using the substrate, sheet-like body, and solar battery manufactured from the sheet-like body
JP4618944B2 (en) Crystal sheet manufacturing apparatus and crystal sheet manufacturing method
JP2007095972A (en) Solar cell silicon substrate and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013515445

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828471

Country of ref document: EP

Kind code of ref document: A1