JP4288792B2 - Single crystal manufacturing method and single crystal manufacturing apparatus - Google Patents

Single crystal manufacturing method and single crystal manufacturing apparatus Download PDF

Info

Publication number
JP4288792B2
JP4288792B2 JP29447199A JP29447199A JP4288792B2 JP 4288792 B2 JP4288792 B2 JP 4288792B2 JP 29447199 A JP29447199 A JP 29447199A JP 29447199 A JP29447199 A JP 29447199A JP 4288792 B2 JP4288792 B2 JP 4288792B2
Authority
JP
Japan
Prior art keywords
seed crystal
crystal
single crystal
container
sticking member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29447199A
Other languages
Japanese (ja)
Other versions
JP2001114599A (en
Inventor
富佐雄 廣瀬
一都 原
篤人 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP29447199A priority Critical patent/JP4288792B2/en
Priority to US09/686,232 priority patent/US6451112B1/en
Priority to DE10050767A priority patent/DE10050767B4/en
Publication of JP2001114599A publication Critical patent/JP2001114599A/en
Application granted granted Critical
Publication of JP4288792B2 publication Critical patent/JP4288792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、種結晶貼付部材に装着した種結晶上に単結晶を製造するにおいて、欠陥の少ない高品質な単結晶を製造する単結晶製造方法及びこれに適した単結晶製造装置に関し、特に高品質な炭化珪素単結晶を製造する炭化珪素単結晶製造方法及び炭化珪素半結晶製造装置に用いて好適である。
【0002】
【従来の技術】
炭化珪素単結晶は、高耐圧、高電子移動度という特徴を有するため、パワーデバイス用半導体基板として期待されている。炭化珪素単結晶成長には、一般に、昇華法(改良レーリー法)と呼ばれる単結晶成長方法が用いられる。
【0003】
改良レーリー法は、黒鉛製るつぼ内に炭化珪素原料を挿入すると共にこの原料部と対向するように種結晶を黒鉛製るつぼの内壁に装着し、原料部を2200〜2400℃に加熱して昇華ガスを発生させ、原料部より数十〜数百℃低温にした種結晶に再結晶化させることで炭化珪素単結晶を成長させるものである。
【0004】
ここで、従来では、黒鉛製るつぼの内壁に直接、または、図5(a)に示すような黒鉛製るつぼ1の蓋材12の内壁に設けた突起部に、種結晶5を貼り付けた状態で結晶成長を行っていた。このため、図5(b)に示すように、種結晶5上においての炭化珪素単結晶7の成長に伴って、結晶成長空間に露出した黒鉛製るつぼ1の内壁表面に多結晶8が成長し、その多結晶8が所望の炭化珪素単結晶7の周囲に付着・融合して炭化珪素単結晶7の周囲7aが多結晶化するなどの悪影響を及ぼして炭化珪素単結晶7に欠陥が生じるという問題があった。
【0005】
このため、上記問題を解決するべく、特開平6−48898公報において、周囲の多結晶が所望の単結晶より大きくなる前に単結晶成長を一旦停止し、黒鉛製るつぼから単結晶の周囲の多結晶を除去した後、単結晶成長を再開するという工程を何度も繰り返すことが提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、この方法においては、一個の単結晶インゴットを作製するにあたって上記工程を複数回繰り返さなければならず煩雑である。しかも、炭化珪素単結晶の製造のように、2000℃以上という高温下で単結晶を成長させなければならない場合には、昇温・降温に時間がかかるため、単結晶製造工程時間が多大となる。さらに、周囲の多結晶が所望の単結晶を超えないタイミング、つまり多結晶が単結晶に付着する直前のタイミングを見いだし、かつ、安定して再現することは非常に難しい。
【0007】
本発明は上記問題に鑑みて成され、種結晶表面に成長させる単結晶と、この単結晶の周囲に形成される多結晶とが付着することを防止し、高品質な単結晶を製造できるようにすることを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、種結晶貼付部材(12b)と容器(11、12a)によってるつぼ(1)が構成され、種結晶貼付部材が容器に囲まれていると共に、種結晶貼付部材(12b)を囲む容器(11、12a)の端面と種結晶貼付部材との間に所定間隔の隙間(d)が形成されるように配置されており、種結晶貼付部材のうち種結晶が取付けられる表面は、該種結晶貼付部材が配設された容器の一面よりも凹むように位置しており、種結晶貼付部材のうち容器に囲まれる面が、種結晶を取付けたときに、種結晶と容器とによって覆われるようになっていることを特徴としている。
【0009】
このような構成によると、種結晶貼付部材のうち容器に囲まれる面が、種結晶と容器によって覆われるため、つまり種結晶貼付部材の表面が成長空間において露出しないようになるため、種結晶貼付部材の表面から多結晶が成長しないようにできる。このため、種結晶貼付部材から成長した多結晶が種結晶上に成長した単結晶に付着することを防止でき、高品質な単結晶を成長させることができる。
【0010】
さらに、請求項に記載の発明においては、種結晶貼付部材(12b)を囲む容器(11、12a)の端面と種結晶貼付部材との間に所定間隔の隙間(d)が形成されるように配置し、該隙間を通じて成長空間内の原料ガスの引き抜きが行えるように構成することを特徴としている。
【0011】
このように種結晶貼付部材と容器の端面との間に所定間隔の隙間を設け、この隙間から原料ガスの引き抜きが行えるようにすれば、原料ガスの流動によって種結晶貼付部材のうち容器に囲まれる面上に多結晶が形成されないため、単結晶と容器の一面に形成される多結晶が付着しないようにすることができる。これにより、高品質な単結晶を成長させることができる。
【0012】
例えば、請求項に示すように、種結晶貼付部材と、該種結晶貼付部材を囲む容器の端面との間の間隔は、種結晶貼付部材の形状に沿って、0.1mmより大きく、1mmよりも小さくなっていることが好ましい。すなわち、この間隔が短すぎると種結晶貼付部材と容器の端面とを離間させた効果がなくなり、長すぎると離間させてできる間隙が実質的に成長空間と同等になるため、上記範囲とするのが好ましい。例えば、請求項2のように原料ガスの引き抜きを行う場合、間隔が長すぎると原料ガスの流動が緩やかになるため、ガスの流動によって単結晶に多結晶が付着することを防止するという効果が薄れる。
【0013】
また、請求項に示すように、種結晶貼付部材と容器との間に、容器から種結晶貼付部材への熱伝達を抑制する断熱部材が備えられるようにしてもよい。
【0014】
このように構成すれば、容器から種結晶貼付部材への熱伝達が抑制されるため、種結晶貼付部材が配設された容器の一面と種結晶貼付部材とに温度差を設けることができる。
【0015】
この場合、請求項に示すように、断熱部材として、原料ガスが通過できる材料を用いれば、請求項に示す効果が得られる。このような断熱部材として、例えば、請求項に示す多孔質黒鉛が挙げられる。
【0016】
請求項に記載の発明においては、種結晶表面は、種結晶貼付部材が配設された容器の一面に対して面一となっているか、若しくは若干量突出していることを特徴としている。
【0017】
種結晶表面が容器の一面に対して窪んだ状態になっていると、種結晶の周縁に位置する容器の影響(例えば、容器の昇華ガスの影響)を大きく受けて、成長した単結晶の周縁に欠陥が形成される場合がある。このため、上記構成とすることにより、単結晶の周縁に欠陥が形成されることを防止でき、高品質な単結晶とすることができる。特に、容器の一面を炭化珪素材料や高融点金属炭化物で予め被覆しておくと、その効果が大きくなる。
【0018】
請求項に記載の発明においては、種結晶貼付部材及び容器の形状は、種結晶の成長表面温度が、種結晶貼付部材が配設された容器の一面の表面温度よりも低くなるように構成されていることを特徴としている。
【0019】
これにより、種結晶の成長表面に優先的に結晶成長が行われるようにできる。具体的には、請求項に示すように、種結晶貼付部材のうち、種結晶が取付けられる面の反対側にザグリを設けることによって、種結晶貼付部材及び容器の形状を、種結晶の成長表面温度と容器の一面の表面温度とに温度差を付けられる形状とすることができる。
【0020】
なお、請求項に示すように、請求項1乃至に記載の単結晶製造装置において、るつぼをカーボン材料で構成し、炭化珪素で構成された種結晶上に炭化珪素単結晶を結晶成長させる炭化珪素単結晶製造装置として適用する場合には、高温度下で結晶成長を行うことになるため、特に好適である。
【0021】
この場合、請求項10に示すように、種結晶貼付部材が配設された容器の一面を高融点金属炭化物で被覆するようにすると、さらに成長させる単結晶に不純物や欠陥が入りにくいようにできる。なお、高融点金属として、請求項11に示すように、炭化ハフニウム(HfC)、炭化タンタル(TaC)、炭化ジルコニウム(ZrC)、炭化チタン(TiC)のうちの少なくとも1つを用いることができる。
【0025】
請求項12に記載の発明においては、種結晶貼付部材(12b)と、該種結晶貼付部材を囲む容器(11、12a)の端面との間に所定間隔の隙間(d)をもって配置させ、該隙間を通じて成長空間内の原料ガスの引き抜きを行いつつ、種結晶の成長表面に単結晶を成長させることにより、単結晶の周囲を多結晶にて所定間隔隔てた状態で囲むようにしつつ、単結晶と多結晶を共に成長させていく埋込成長を行うことを特徴としている。
【0026】
このように、種結晶貼付部材と容器の端面との間に所定間隔の隙間が設けられるようにすることにより、この隙間から原料ガスの引き抜きを行うことができる。このようにガスの流動が行われる部位においては、結晶成長を抑制することができるため、種結晶の成長表面上に形成される単結晶に容器の一面の表面に形成される多結晶が付着することを防止することができる。これにより、高品質な単結晶を成長させることができる。
【0027】
請求項13に示すように、種結晶の成長表面温度を、種結晶貼付部材が配設された容器の一面の表面温度より低くすれば、種結晶の成長表面上において優先的に結晶成長が行われるようにできる。
【0028】
例えば、請求項14に示すように、種結晶貼付部材のうち、種結晶が取るつけられた面の反対側に低温ガスを吹き付けることによって、種結晶の成長表面温度が容器の一面の表面温度よりも低くなるようにできる。
【0029】
この場合、請求項15に示すように、低温ガスとして、るつぼの成長空間内に導入させる不活性ガスと同じ不活性ガスを用いることができる。また、請求項16に示すように、低温ガスとして、るつぼの成長空間内に導入させる不活性ガスと同じ不活性ガスに単結晶の不純物となる元素を混入させれば、単結晶に所望の不純物をドーピングすることも可能である。例えば、不純物となる元素して、請求項17に示すように、N(窒素)、B(ボロン)、Al(アルミニウム)、P(リン)、As(砒素)のうち少なくとも1つを用いることができる。
【0030】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0031】
【発明の実施の形態】
以下、図に示す実施形態について説明する。
【0032】
図1に本実施形態において用いられる結晶成長装置としての黒鉛製るつぼ1を示す。この図は、黒鉛製るつぼ1内に備えられた炭化珪素原料2を熱処理によって昇華させ、炭化珪素単結晶層で構成された種結晶5上に炭化珪素単結晶7を結晶成長させたときにおける黒鉛製るつぼ1の断面図である。
【0033】
この黒鉛製るつぼ1は、上面が開口しているるつぼ本体11と、るつぼ本体11の開口部を塞ぐ蓋部材12とから構成されている。この黒鉛製るつぼ1のうち、蓋材12は種結晶5を支持する台座となる。
【0034】
この蓋材12は、蓋部12aと種結晶貼付部材12bとによって構成されている。蓋部12aは、蓋材12の外形を構成していると共に、中央部が円形状に開口した形状を成している。種結晶貼付部材12bは、蓋部12aの開口部において取り外し可能に構成され、種結晶5を取り付けるため表面を有して構成されている。この種結晶貼付部材12bは、略円筒形状で構成されていると共に、種結晶5が貼り付けられる側とは反対側の端部がフランジ形状で構成されている。そして、蓋材12aの中央の開口部分に種結晶貼付部材12bを配置した時に、フランジ部分が引っ掛かりとなって種結晶貼付部材12bが蓋材12aの所定位置に固定されるようになっている。
【0035】
また、蓋部12aの中央の開口部分の内径は、ほぼ種結晶貼付部12bの外径と同等になっており、蓋部12aに種結晶貼付部12bを取り付けた時に蓋部12aの開口部分の内周壁(端面)と種結晶貼付部材12bの外周壁との間が間隔dとなるようにしている。このとき、間隔dが0.1mmよりも大きく、1.0mmよりも小さくなるようにしている。これは、間隔dが小さくなり過ぎると実質的に間隔が空けられていないのと同様になってしまうためと、大きくなり過ぎると成長空間と同様に作用するためである。
【0036】
さらに、種結晶貼付部材12bの厚み(軸方向の長さ)は、蓋部12aの厚みよりもほぼ種結晶5の厚み分と同等乃至若干少な目な程度薄くなっている。つまり、蓋材12を全体的に見た時に、単結晶5が取り付けていない時には、その種結晶5が取り付けられる部分が凹みとなるように構成され、種結晶5を取り付けた時に、種結晶5の成長表面が蓋部12aの表面に対して面一となっているか、若しくは若干量突出するように構成されている。
【0037】
このように、蓋部12aの中央の開口部分の内径は、ほぼ種結晶貼付部12bの外径と同等にしているため、種結晶貼付部材12bのうち種結晶5が配置される面(蓋材12の凹みの底面)は、種結晶5を配置した時に、種結晶5によってほぼ完全に覆われ、外部に露出しないようになっている。
【0038】
また、種結晶5の成長表面が、隣接する蓋部12aより窪んだ位置にならないようになっているため、種結晶5に隣接する蓋部12aの端部から昇華した炭素ガスが種結晶5の成長表面に影響しないようにできる。
【0039】
また、炭化珪素貼付部材12bを蓋部12aから切り離すと共に、蓋部12aよりも薄く構成しているため、熱伝導の関係により、種結晶5の成長表面温度を蓋部12aの表面温度よりも若干低温にすることができる。このため、種結晶5の成長表面に優先的に結晶成長が生じるようにできる。
【0040】
なお、黒鉛製るつぼ1は、アルゴンガスが導入できる真空容器(加熱炉)の中でヒータにより加熱できるようになっており、このヒータのパワーを調節することによって種結晶5の温度が炭化珪素原料粉末2の温度よりも10〜100℃程度低温に保つことができる。
【0041】
このように構成された黒鉛製るつぼ1を用いて炭化珪素単結晶7を種結晶5の成長表面に成長させると、図1に示すように、炭化珪素単結晶7は、成長に伴い径方向に拡張されながら成長が進み、ある程度まで径が拡大したのちその後はほぼ同一径で成長が進む。このとき、蓋部12aの表面から多結晶8が炭化珪素単結晶7の成長に沿って同様に成長するが、この多結晶8は、炭化珪素単結晶7から所定間隔隔てた状態で炭化珪素単結晶7を囲むように成長することが判った。つまり炭化珪素単結晶7が多結晶8に埋め込まれたような状態で成長するという埋め込み成長をするのである。
【0042】
このように、単結晶及び多結晶を、略同等の高さの隣接する異なる成長面(本実施形態の場合には、種結晶5の表面と蓋部12aの表面)に成長させると、単結晶と多結晶が所定間隔隔てた状態で融合しないように成長させることができる。
【0043】
これにより、単結晶に多結晶が付着することに起因する結晶欠陥の発生を防止でき、高品質で大口径な炭化珪素単結晶7を製造することができる。
【0044】
次に、上記構成の黒鉛製るつぼ1を用いて、実際に種結晶5の表面に炭化珪素単結晶7をさせた実験結果について説明する。
【0045】
炭化珪素単結晶7の成長は、以下に示すように行った。
【0046】
まず、種結晶5として、アチソン法にて作製された炭化珪素単結晶から直径10mm、厚さ1mmに切り出し、表面を鏡面仕上げしたものを用いた。また、このとき、種結晶5の成長面が(000−1)ジャスト面となるように結晶方位を決めた。
【0047】
そして、この種結晶5を種結晶貼付部材12aに貼付けたのち、蓋部12aに取付けた。このとき、種結晶貼付部材12bと単結晶製造装置の蓋部12aとの間の隙間dは、0.5mmとした。
【0048】
これら蓋部12a及び種結晶貼付部材12bを、あらかじめ炭化珪素原料粉末2を入れたるつぼ本体11に装着した。そして、黒鉛製るつぼ1を加熱炉の中に設置し、炭化珪素原料粉末2の温度を2290℃、種結晶5の成長表面温度を2230℃、雰囲気圧力が1Torrとなる条件下で、24時間、昇華法により炭化珪素単結晶7を成長させた。
【0049】
これにより得られた炭化珪素単結晶7は、成長高さ約12mm、最大直径約15mmであった。また、種結晶貼付部材12bからの多結晶発生はほとんどなく、種結晶5周囲の単結晶製造装置表面から発生した多結晶8と成長した炭化珪素単結晶6とも完全に分離できていた。この炭化珪素単結晶7から切り出した炭化珪素単結晶基板の周縁部には、多結晶との融合によって生じる多結晶や亀裂もしくはサブグレイン状の欠陥はほとんどなかった。
【0050】
(第2実施形態)
本実施形態における黒鉛製るつぼ1は、第1実施形態に対して蓋材12の構成が異なるのみであるため、第1実施形態と異なる部分についてのみ説明する。
【0051】
図2に、本実施形態における結晶成長装置としての黒鉛製るつぼ1の蓋材12の断面図を示す。また、図2に示す蓋材12の正面図及び裏面図をそれぞれ図3(a)、(b)に示す。
【0052】
本実施形態では、蓋材12を一部材で構成し、蓋材12の中央部に略円形状の凹み13を形成し、この凹み13によって第1実施形態における種結晶貼付部材12bを構成して、凹み13内に種結晶5が配置されるようにしている。
【0053】
また、蓋材12の凹み13の外周には蓋材12の所定深さの位置まで切欠き14が形成されていると共に、蓋材12の裏面側(種結晶5が配置される面の反対面側)には、切欠き14と連通するガス抜き孔15が複数箇所(図3では6箇所)に形成されている。
【0054】
これら切欠き14及びガス抜き孔15を通じて黒鉛製るつぼ1の中のガスが抜けるようになっている。なお、凹み13の深さは、種結晶5の厚みと同等乃至若干浅めに形成されており、また切欠き14の幅は第1実施形態における蓋部12aと種結晶貼付部材12bとの間と同様に間隔dとされている。
【0055】
次に、上記構成の黒鉛製るつぼ1を用いて、実際に種結晶5の表面に炭化珪素単結晶7をさせた実験結果について説明する。
【0056】
まず、第1実施形態の実験で用いたものと同様の種結晶5を用意し、この種結晶5を凹み13内に貼付け、あらかじめ炭化珪素原料粉末2を入れたるつぼ本体11に蓋材12を装着した。
【0057】
そして、黒鉛製るつぼ1を加熱炉の中に設置し、炭化珪素原料粉末2の温度を2300℃、種結晶15の成長表面温度を2230℃、雰囲気圧力が1Torrとなる条件下で、24時間、昇華法により炭化珪素単結晶7を成長させた。
【0058】
これにより得られた炭化珪素単結晶7は、成長高さ約15mm、最大直径約15mmであった。ガス抜き孔15を通過した昇華ガスの一部は、黒鉛製るつぼ1の他の部分に付着し多結晶化していた。
【0059】
また、種結晶貼付部材2からの多結晶発生はほとんどなく、種結晶5の周囲の蓋材12の表面から発生した多結晶8と成長した炭化珪素単結晶6とも完全に分離できていた。
【0060】
この炭化珪素単結晶7から切り出した炭化珪素単結晶基板の周縁部には、多結晶との融合によって生じる多結晶や亀裂もしくはサブグレイン状の欠陥はほとんどなかった。
【0061】
(第3実施形態)
本実施形態における黒鉛製るつぼ1は、第1実施形態に対して蓋材12の構成が異なるのみであるため、第1実施形態と異なる部分についてのみ説明する。
【0062】
図4に、本実施形態における結晶成長装置としての黒鉛製るつぼ1の蓋材12の断面図を示す。
【0063】
本実施形態は、第1実施形態と同様に蓋材12を蓋部12aと種結晶貼付部材12bとで構成しているが、種結晶貼付部材12bのフランジ部の張り出し量を大きくすると共に、蓋部12aと種結晶貼付部12bとの間の間隔を広げ、この間に多孔質黒鉛を充填させた構成としている。この多孔質黒鉛は、断熱性を有していて蓋部12aから種結晶貼付部材12bへの熱伝導を抑制できると共に、黒鉛製るつぼ1内の原料ガスが通過できる程度の空孔を有している材料である。
【0064】
なお、その他、種結晶貼付部材12bの厚みなどの構成については、第1実施形態と同様である。
【0065】
次に、上記構成の黒鉛製るつぼ1を用いて、実際に種結晶5の表面に炭化珪素単結晶7をさせた実験結果について説明する。
【0066】
まず、第1実施形態の実験で用いたものと同様の種結晶5を用意する。続いて、多孔質黒鉛を挟んだ状態で蓋部12aの中央の開口部分に種結晶貼付部材12bを組付け、その後、種結晶15を種結晶貼付部材12bに取り付ける。
【0067】
そして、あらかじめ炭化珪素原料粉末2を入れたるつぼ本体1に蓋材12を装着した。
【0068】
そして、黒鉛製るつぼ1を加熱炉の中に設置し、炭化珪素原料粉末2の温度を2290℃、種結晶5の成長表面温度を2230℃、雰囲気圧力が1Torrとなる条件下で、24時間、昇華法により炭化珪素単結晶7を成長した。
【0069】
このようにして得られた炭化珪素単結晶7は、成長高さ約13mm、最大直径約18mmであった。第1実施形態での実験結果に比べて炭化珪素単結晶7の直径は大きくなった。また、第1実施形態と同様に、炭化珪素単結晶7から切り出した炭化珪素単結晶基板の周縁部には、多結晶との融合によって生じる多結晶や亀裂もしくはサブグレイン状の欠陥はほとんどなかった。
【0070】
(比較例)
参考として、図5に示す従来構造の黒鉛製るつぼ1を用いて炭化珪素単結晶を成長させた場合の実験結果を示す。
【0071】
まず、第1実施形態ど同様の構成の種結晶5を準備した。そして、この種結晶5を、図5に示すような黒鉛製るつぼ1の蓋部12の突起部に貼付け、あらかじめ炭化珪素原料粉末2を入れたるつぼ本体1に装着した。
【0072】
そして、黒鉛製るつぼ1を加熱炉の中に設置し、炭化珪素原料粉末2の温度を2290℃、種結晶5の成長表面温度を2230℃、雰囲気圧力が1Torrとなる条件下で、24時間、昇華法により炭化珪素単結晶7を成長させた。
【0073】
これにより得られた炭化珪素単結晶7は、成長高さ約12mm、最大直径約15mmであった。
【0074】
しかしながら、突起部周辺には多結晶8が発生しており、そこから炭化珪素単結晶7の周囲に沿った状態で多結晶8が成長していた。この炭化珪素単結晶7から切り出した炭化珪素単結晶基板の周縁部7aには、多結晶との融合によって生じる多結晶や亀裂もしくはサブグレイン状の欠陥が観察された。
【0075】
(他の実施形態)
上記各実施形態では、本発明を炭化珪素単結晶の結晶成長に用いた場合について説明したが、その他の結晶成長に用いることも可能である。
【0076】
また、上記実施形態では、黒鉛製るつぼ1そのものを単結晶成長装置に用いたが、黒鉛製るつぼ1の内壁を高融点金属及びその炭化物で被覆してもい。このように高融点金属で黒鉛製るつぼ1の内壁を被覆することにより、Si/C比が均一になり、より結晶欠陥のない炭化珪素単結晶7を形成することが可能である。なお、高融点金属炭化物としては、例えば、炭化ハフニウム(HfC)、炭化タンタル(TaC)、炭化ジルコニウム(ZrC)、炭化チタン(TiC)のいずれかを用いることができる。
【0077】
また、第3実施形態において、多孔質黒鉛を用いたがガスの通過が行えるものであれば、他のものであってもよい。
【0078】
さらに、上記実施形態では種結晶貼付部材12bへの熱伝達が行われにくくするために、多孔質黒鉛を蓋部12aと種結晶貼付部材12bとの間に配置したりしたが、種結晶5の成長表面温度が隣接する蓋部12aの表面温度よりも低くなるように、種結晶貼付部12bのうち種結晶5が配置される方と反対側(以下、裏面という)にザグリを設けたりしてもよい。また、種結晶貼付部材12bの裏面に低温ガスを吹き付け、種結晶5の成長表面が蓋部12aの表面よりも低温にすることもできる。このとき、低温のガスとしては、結晶成長時に黒鉛製るつぼ1内に導入される不活性ガスと同様のものを用いればよい。そして、炭化珪素単結晶7として所望のドープ単結晶を形成したい場合には、種結晶貼付部材12bに吹き付ける不活性ガスに、ドープするのに必要な元素を含ませるようにしてもよい。例えば、ドープする元素としてはN(窒素)、B(ボロン)、Al(アルミニウム)、P(リン)、As(砒素)等のいずれかを不活性ガスに含ませる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における黒鉛製るつぼ1の断面構成を示す図である。
【図2】本発明の第2実施形態における蓋材12の断面構成を示す図である。
【図3】(a)は、図2に示す蓋材12の正面図、(b)は、図2に示す蓋材12の裏面図である。
【図4】本発明の第3実施形態における蓋材12の断面構成を示す図である。
【図5】(a)は従来における黒鉛製るつぼ1の断面構成を示す図であり、(b)は(a)に示す黒鉛製るつぼ1の蓋材12の近傍を拡大した図である。
【符号の説明】
1…黒鉛製るつぼ、2…炭化珪素原料、5…種結晶、7…炭化珪素単結晶、
8…多結晶、12…蓋材、12a…蓋部、12b…種結晶貼付部材、
13…凹み、14…切欠き、15…ガス抜き孔。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single crystal manufacturing method and a single crystal manufacturing apparatus suitable for the single crystal manufacturing method for manufacturing a high quality single crystal with few defects in manufacturing a single crystal on a seed crystal mounted on a seed crystal sticking member. It is suitable for use in a silicon carbide single crystal manufacturing method and a silicon carbide semi-crystal manufacturing apparatus for manufacturing a quality silicon carbide single crystal.
[0002]
[Prior art]
Since silicon carbide single crystal has characteristics of high breakdown voltage and high electron mobility, it is expected as a semiconductor substrate for power devices. A single crystal growth method called a sublimation method (improved Rayleigh method) is generally used for silicon carbide single crystal growth.
[0003]
In the modified Rayleigh method, a silicon carbide raw material is inserted into a graphite crucible and a seed crystal is mounted on the inner wall of the graphite crucible so as to face the raw material portion, and the raw material portion is heated to 2200 to 2400 ° C. to sublimate gas. A silicon carbide single crystal is grown by recrystallizing a seed crystal having a temperature lower by several tens to several hundreds of degrees Celsius than the raw material portion.
[0004]
Here, conventionally, a state in which the seed crystal 5 is pasted directly on the inner wall of the graphite crucible or on the protrusion provided on the inner wall of the lid 12 of the graphite crucible 1 as shown in FIG. The crystal was growing. For this reason, as shown in FIG. 5B, with the growth of the silicon carbide single crystal 7 on the seed crystal 5, the polycrystal 8 grows on the inner wall surface of the graphite crucible 1 exposed in the crystal growth space. The polycrystalline carbide 8 adheres to and fuses around the desired silicon carbide single crystal 7, and the peripheral 7 a of the silicon carbide single crystal 7 is polycrystallized, resulting in defects in the silicon carbide single crystal 7. There was a problem.
[0005]
Therefore, in order to solve the above problem, in Japanese Patent Laid-Open No. 6-48898, the single crystal growth is temporarily stopped before the surrounding polycrystal becomes larger than the desired single crystal, and the polycrystal around the single crystal is separated from the graphite crucible. It has been proposed to repeat the process of resuming single crystal growth after removing the crystal many times.
[0006]
[Problems to be solved by the invention]
However, in this method, the above process must be repeated a plurality of times in order to produce one single crystal ingot. In addition, when a single crystal must be grown at a high temperature of 2000 ° C. or more as in the case of manufacturing a silicon carbide single crystal, it takes time to raise and lower the temperature, and thus the single crystal production process takes a long time. . Furthermore, it is very difficult to find the timing when the surrounding polycrystal does not exceed the desired single crystal, that is, the timing immediately before the polycrystal adheres to the single crystal, and to reproduce it stably.
[0007]
The present invention has been made in view of the above problems, and prevents the single crystal grown on the surface of the seed crystal and the polycrystal formed around the single crystal from adhering, so that a high-quality single crystal can be produced. The purpose is to.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the invention described in claim 1, the crucible (1) is constituted by the seed crystal sticking member (12b) and the container (11, 12a), and the seed crystal sticking member is surrounded by the container. In addition, the seed crystal sticking member is disposed such that a gap (d) having a predetermined interval is formed between the end face of the container (11, 12a) surrounding the seed crystal sticking member (12b) and the seed crystal sticking member. The surface to which the seed crystal is attached is positioned so as to be recessed from one surface of the container in which the seed crystal attaching member is disposed, and the surface surrounded by the container of the seed crystal attaching member is attached to the seed crystal. It is characterized by being covered with a seed crystal and a container.
[0009]
According to such a configuration, the surface of the seed crystal sticking member surrounded by the container is covered with the seed crystal and the container, that is, the surface of the seed crystal sticking member is not exposed in the growth space. Polycrystals can be prevented from growing from the surface of the member. For this reason, the polycrystal grown from the seed crystal sticking member can be prevented from adhering to the single crystal grown on the seed crystal, and a high-quality single crystal can be grown.
[0010]
Furthermore, in the first aspect of the invention, a gap (d) having a predetermined interval is formed between the end face of the container (11, 12a) surrounding the seed crystal sticking member (12b) and the seed crystal sticking member. And the material gas in the growth space can be extracted through the gap.
[0011]
In this way, if a gap of a predetermined interval is provided between the seed crystal sticking member and the end face of the container, and the source gas can be extracted from this gap, the seed crystal sticking member is surrounded by the container by the flow of the source gas. Since the polycrystal is not formed on the surface to be bonded, the single crystal and the polycrystal formed on the one surface of the container can be prevented from adhering. Thereby, a high quality single crystal can be grown.
[0012]
For example, as shown in claim 2 , the distance between the seed crystal sticking member and the end face of the container surrounding the seed crystal sticking member is greater than 0.1 mm and 1 mm along the shape of the seed crystal sticking member. It is preferable to be smaller. That is, if this interval is too short, the effect of separating the seed crystal sticking member and the end face of the container is lost, and if it is too long, the gap formed by separation is substantially equivalent to the growth space. Is preferred. For example, when extracting the source gas as in claim 2, since the flow of the source gas becomes slow if the interval is too long, there is an effect of preventing the polycrystal from adhering to the single crystal due to the gas flow. Fade.
[0013]
Further, as shown in claim 3 , a heat insulating member that suppresses heat transfer from the container to the seed crystal sticking member may be provided between the seed crystal sticking member and the container.
[0014]
If comprised in this way, since the heat transfer from a container to a seed crystal sticking member is suppressed, a temperature difference can be provided in the one surface and the seed crystal sticking member in which the seed crystal sticking member was arrange | positioned.
[0015]
In this case, as shown in claim 4 , if a material through which the source gas can pass is used as the heat insulating member, the effect shown in claim 1 can be obtained. Examples of such a heat insulating member include porous graphite shown in claim 5 .
[0016]
The invention according to claim 6 is characterized in that the surface of the seed crystal is flush with or slightly protrudes from one surface of the container in which the seed crystal sticking member is disposed.
[0017]
If the seed crystal surface is recessed with respect to one surface of the container, the periphery of the grown single crystal is greatly affected by the influence of the container located at the periphery of the seed crystal (for example, the influence of the sublimation gas of the container). In some cases, defects may be formed. For this reason, by setting it as the said structure, it can prevent that a defect is formed in the periphery of a single crystal, and can be set as a high quality single crystal. In particular, when one surface of the container is previously coated with a silicon carbide material or a refractory metal carbide, the effect is increased.
[0018]
In the invention according to claim 7 , the shape of the seed crystal sticking member and the container is configured such that the growth surface temperature of the seed crystal is lower than the surface temperature of one surface of the container in which the seed crystal sticking member is disposed. It is characterized by being.
[0019]
Thereby, crystal growth can be performed preferentially on the growth surface of the seed crystal. Specifically, as shown in claim 8 , by providing a counterbore on the opposite side of the surface to which the seed crystal is attached among the seed crystal sticking member, the shape of the seed crystal sticking member and the container can be grown. It can be set as the shape which can give a temperature difference to surface temperature and the surface temperature of the one surface of a container.
[0020]
In addition, as shown in claim 9 , in the single crystal manufacturing apparatus according to claims 1 to 8 , the crucible is made of a carbon material, and a silicon carbide single crystal is grown on a seed crystal made of silicon carbide. When applied as a silicon carbide single crystal manufacturing apparatus, crystal growth is performed at a high temperature, which is particularly preferable.
[0021]
In this case, as shown in claim 10 , if one surface of the container in which the seed crystal sticking member is disposed is coated with a refractory metal carbide, impurities and defects can be prevented from entering the single crystal to be further grown. . As the refractory metal, as shown in claim 11 , at least one of hafnium carbide (HfC), tantalum carbide (TaC), zirconium carbide (ZrC), and titanium carbide (TiC) can be used.
[0025]
In the invention described in claim 12 , the seed crystal sticking member (12b) is disposed with a gap (d) at a predetermined interval between the seed crystal sticking member and the end surface of the container (11, 12a) surrounding the seed crystal sticking member, While pulling the source gas in the growth space through the gap, the single crystal is grown on the growth surface of the seed crystal, so that the single crystal is surrounded by a polycrystal at a predetermined interval. And embedded growth in which a polycrystal is grown together .
[0026]
In this manner, by providing a gap with a predetermined interval between the seed crystal sticking member and the end face of the container, the source gas can be extracted from this gap. Since the crystal growth can be suppressed at the portion where the gas flows in this way, the polycrystal formed on the surface of one surface of the container adheres to the single crystal formed on the growth surface of the seed crystal. This can be prevented. Thereby, a high quality single crystal can be grown.
[0027]
According to a thirteenth aspect of the present invention, if the growth surface temperature of the seed crystal is lower than the surface temperature of one surface of the container in which the seed crystal sticking member is disposed, the crystal growth is preferentially performed on the growth surface of the seed crystal. Can be
[0028]
For example, as shown in claim 14 , by spraying a low temperature gas on the opposite side of the surface to which the seed crystal is attached of the seed crystal sticking member, the growth surface temperature of the seed crystal is higher than the surface temperature of one surface of the container. Can also be lowered.
[0029]
In this case, as shown in claim 15 , the same inert gas as the inert gas introduced into the growth space of the crucible can be used as the low temperature gas. In addition, as described in claim 16 , if an element that becomes an impurity of a single crystal is mixed in the same inert gas as that introduced into the growth space of the crucible as a low-temperature gas, a desired impurity is added to the single crystal. It is also possible to dope. For example, at least one of N (nitrogen), B (boron), Al (aluminum), P (phosphorus), and As (arsenic) is used as an impurity element as shown in claim 17. it can.
[0030]
In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments shown in the drawings will be described.
[0032]
FIG. 1 shows a graphite crucible 1 as a crystal growth apparatus used in this embodiment. This figure shows graphite obtained when a silicon carbide raw material 2 provided in a graphite crucible 1 is sublimated by heat treatment to grow a silicon carbide single crystal 7 on a seed crystal 5 composed of a silicon carbide single crystal layer. 2 is a cross-sectional view of the crucible 1 made.
[0033]
The graphite crucible 1 is composed of a crucible body 11 having an open top surface and a lid member 12 that closes the opening of the crucible body 11. In the graphite crucible 1, the lid 12 serves as a pedestal that supports the seed crystal 5.
[0034]
The lid member 12 is composed of a lid portion 12a and a seed crystal sticking member 12b. The lid portion 12a constitutes the outer shape of the lid member 12 and has a shape in which the central portion is opened in a circular shape. The seed crystal sticking member 12 b is configured to be removable at the opening of the lid portion 12 a and has a surface for attaching the seed crystal 5. The seed crystal sticking member 12b is formed in a substantially cylindrical shape, and the end on the opposite side to the side on which the seed crystal 5 is attached is formed in a flange shape. And when the seed crystal sticking member 12b is arrange | positioned in the opening part of the center of the cover material 12a, a flange part becomes a hook and the seed crystal sticking member 12b is fixed to the predetermined position of the cover material 12a.
[0035]
Further, the inner diameter of the central opening portion of the lid portion 12a is substantially equal to the outer diameter of the seed crystal pasting portion 12b, and when the seed crystal pasting portion 12b is attached to the lid portion 12a, the opening portion of the lid portion 12a. The distance d is set between the inner peripheral wall (end face) and the outer peripheral wall of the seed crystal pasting member 12b. At this time, the distance d is larger than 0.1 mm and smaller than 1.0 mm. This is because if the distance d is too small, it will be substantially the same as if the distance is not spaced, and if it is too large, it will act in the same way as the growth space.
[0036]
Furthermore, the thickness (axial length) of the seed crystal sticking member 12b is substantially equal to or slightly smaller than the thickness of the seed crystal 5 than the thickness of the lid portion 12a. That is, when the lid 12 is viewed as a whole, when the single crystal 5 is not attached, the portion to which the seed crystal 5 is attached is configured to be recessed, and when the seed crystal 5 is attached, the seed crystal 5 is attached. This growth surface is flush with the surface of the lid portion 12a, or is slightly protruded.
[0037]
Thus, since the inner diameter of the central opening of the lid 12a is substantially equal to the outer diameter of the seed crystal pasting portion 12b, the surface on which the seed crystal 5 is disposed (the lid material) of the seed crystal pasting member 12b. The bottom surface of the dent 12) is almost completely covered by the seed crystal 5 when the seed crystal 5 is disposed, and is not exposed to the outside.
[0038]
In addition, since the growth surface of the seed crystal 5 does not become a position recessed from the adjacent lid portion 12a, the carbon gas sublimated from the end of the lid portion 12a adjacent to the seed crystal 5 is absorbed by the seed crystal 5. It is possible not to affect the growth surface.
[0039]
Moreover, since the silicon carbide sticking member 12b is separated from the lid portion 12a and is made thinner than the lid portion 12a, the growth surface temperature of the seed crystal 5 is slightly higher than the surface temperature of the lid portion 12a due to heat conduction. Can be low temperature. For this reason, it is possible to preferentially cause crystal growth on the growth surface of the seed crystal 5.
[0040]
The graphite crucible 1 can be heated by a heater in a vacuum vessel (heating furnace) into which argon gas can be introduced. By adjusting the power of the heater, the temperature of the seed crystal 5 can be adjusted to a silicon carbide raw material. It can be kept at a temperature lower by about 10 to 100 ° C. than the temperature of the powder 2.
[0041]
When the silicon carbide single crystal 7 is grown on the growth surface of the seed crystal 5 using the graphite crucible 1 configured in this way, as shown in FIG. The growth progresses while being expanded, and after the diameter has expanded to a certain extent, the growth proceeds with substantially the same diameter thereafter. At this time, polycrystal 8 is similarly grown along the growth of silicon carbide single crystal 7 from the surface of lid portion 12a. Polycrystal 8 is separated from silicon carbide single crystal 7 by a predetermined distance. It was found that the crystal grew so as to surround the crystal 7. That is, the silicon carbide single crystal 7 grows in a state where it grows in a state where it is buried in the polycrystal 8.
[0042]
As described above, when the single crystal and the polycrystal are grown on the adjacent different growth surfaces (in the case of the present embodiment, the surface of the seed crystal 5 and the surface of the lid portion 12a) having substantially the same height, And the polycrystals can be grown so as not to be fused at a predetermined interval.
[0043]
Thereby, generation | occurrence | production of the crystal defect resulting from a polycrystal adhering to a single crystal can be prevented, and the high quality and large diameter silicon carbide single crystal 7 can be manufactured.
[0044]
Next, experimental results in which the silicon carbide single crystal 7 is actually formed on the surface of the seed crystal 5 using the graphite crucible 1 having the above-described configuration will be described.
[0045]
The growth of the silicon carbide single crystal 7 was performed as follows.
[0046]
First, as the seed crystal 5, a silicon carbide single crystal produced by the Atchison method was cut into a diameter of 10 mm and a thickness of 1 mm, and the surface was mirror finished. At this time, the crystal orientation was determined so that the growth surface of the seed crystal 5 was a (000-1) just surface.
[0047]
And after attaching this seed crystal 5 to the seed crystal sticking member 12a, it attached to the cover part 12a. At this time, the gap d between the seed crystal sticking member 12b and the lid portion 12a of the single crystal manufacturing apparatus was set to 0.5 mm.
[0048]
The lid portion 12a and the seed crystal pasting member 12b were mounted on the crucible body 11 in which the silicon carbide raw material powder 2 was previously placed. Then, the graphite crucible 1 is placed in a heating furnace, the temperature of the silicon carbide raw material powder 2 is 2290 ° C., the growth surface temperature of the seed crystal 5 is 2230 ° C., and the atmospheric pressure is 1 Torr for 24 hours. Silicon carbide single crystal 7 was grown by the sublimation method.
[0049]
Silicon carbide single crystal 7 thus obtained had a growth height of about 12 mm and a maximum diameter of about 15 mm. Moreover, there was almost no polycrystal generation from the seed crystal sticking member 12b, and the polycrystal 8 generated from the surface of the single crystal manufacturing apparatus around the seed crystal 5 and the grown silicon carbide single crystal 6 could be completely separated. The peripheral portion of the silicon carbide single crystal substrate cut out from the silicon carbide single crystal 7 had almost no polycrystals, cracks or subgrain-like defects caused by fusion with the polycrystals.
[0050]
(Second Embodiment)
The graphite crucible 1 in the present embodiment is different from the first embodiment only in the configuration of the lid member 12, and therefore only the parts different from the first embodiment will be described.
[0051]
FIG. 2 shows a cross-sectional view of the lid member 12 of the graphite crucible 1 as a crystal growth apparatus in the present embodiment. Moreover, the front view and back view of the lid | cover material 12 shown in FIG. 2 are respectively shown to Fig.3 (a) and (b).
[0052]
In the present embodiment, the lid member 12 is composed of a single member, and a substantially circular recess 13 is formed in the center of the lid member 12, and the seed crystal pasting member 12 b in the first embodiment is configured by the recess 13. The seed crystal 5 is arranged in the recess 13.
[0053]
In addition, a notch 14 is formed on the outer periphery of the recess 13 of the lid member 12 up to a predetermined depth of the lid member 12, and the back side of the lid member 12 (opposite surface on which the seed crystal 5 is disposed). The gas vent holes 15 communicating with the notches 14 are formed at a plurality of locations (six locations in FIG. 3).
[0054]
The gas in the graphite crucible 1 is allowed to escape through the notches 14 and the vent holes 15. In addition, the depth of the recess 13 is formed to be equal to or slightly shallower than the thickness of the seed crystal 5, and the width of the notch 14 is between the lid portion 12a and the seed crystal sticking member 12b in the first embodiment. Similarly, the distance d is set.
[0055]
Next, experimental results in which the silicon carbide single crystal 7 is actually formed on the surface of the seed crystal 5 using the graphite crucible 1 having the above-described configuration will be described.
[0056]
First, a seed crystal 5 similar to that used in the experiment of the first embodiment is prepared, this seed crystal 5 is pasted in a recess 13, and a lid 12 is attached to a crucible body 11 in which silicon carbide raw material powder 2 is previously placed. Installed.
[0057]
Then, the graphite crucible 1 is placed in a heating furnace, the temperature of the silicon carbide raw material powder 2 is 2300 ° C., the growth surface temperature of the seed crystal 15 is 2230 ° C., and the atmospheric pressure is 1 Torr for 24 hours. Silicon carbide single crystal 7 was grown by the sublimation method.
[0058]
Silicon carbide single crystal 7 thus obtained had a growth height of about 15 mm and a maximum diameter of about 15 mm. Part of the sublimation gas that passed through the vent hole 15 adhered to the other part of the graphite crucible 1 and was polycrystallized.
[0059]
Moreover, there was almost no polycrystal generation from the seed crystal sticking member 2, and the polycrystal 8 generated from the surface of the lid 12 around the seed crystal 5 and the grown silicon carbide single crystal 6 could be completely separated.
[0060]
The peripheral portion of the silicon carbide single crystal substrate cut out from the silicon carbide single crystal 7 had almost no polycrystals, cracks or subgrain-like defects caused by fusion with the polycrystals.
[0061]
(Third embodiment)
The graphite crucible 1 in the present embodiment is different from the first embodiment only in the configuration of the lid member 12, and therefore only the parts different from the first embodiment will be described.
[0062]
FIG. 4 shows a cross-sectional view of the lid member 12 of the graphite crucible 1 as a crystal growth apparatus in the present embodiment.
[0063]
In the present embodiment, the lid member 12 is composed of the lid portion 12a and the seed crystal sticking member 12b as in the first embodiment, but the amount of overhang of the flange portion of the seed crystal sticking member 12b is increased and the lid is covered. The space between the portion 12a and the seed crystal pasting portion 12b is widened, and the porous graphite is filled in the space. The porous graphite has heat insulation properties and can suppress heat conduction from the lid portion 12a to the seed crystal pasting member 12b, and has pores that allow the raw material gas in the graphite crucible 1 to pass therethrough. Material.
[0064]
Other configurations such as the thickness of the seed crystal sticking member 12b are the same as those in the first embodiment.
[0065]
Next, experimental results in which the silicon carbide single crystal 7 is actually formed on the surface of the seed crystal 5 using the graphite crucible 1 having the above-described configuration will be described.
[0066]
First, a seed crystal 5 similar to that used in the experiment of the first embodiment is prepared. Subsequently, the seed crystal sticking member 12b is attached to the central opening of the lid 12a with the porous graphite sandwiched therebetween, and then the seed crystal 15 is attached to the seed crystal sticking member 12b.
[0067]
And the lid | cover material 12 was mounted | worn to the crucible main body 1 which put the silicon carbide raw material powder 2 beforehand.
[0068]
Then, the graphite crucible 1 is placed in a heating furnace, the temperature of the silicon carbide raw material powder 2 is 2290 ° C., the growth surface temperature of the seed crystal 5 is 2230 ° C., and the atmospheric pressure is 1 Torr for 24 hours. Silicon carbide single crystal 7 was grown by the sublimation method.
[0069]
The thus obtained silicon carbide single crystal 7 had a growth height of about 13 mm and a maximum diameter of about 18 mm. The diameter of the silicon carbide single crystal 7 is larger than the experimental result in the first embodiment. Similarly to the first embodiment, the peripheral portion of the silicon carbide single crystal substrate cut out from the silicon carbide single crystal 7 had almost no polycrystals, cracks or subgrain-like defects caused by fusion with the polycrystals. .
[0070]
(Comparative example)
As a reference, experimental results when a silicon carbide single crystal is grown using the graphite crucible 1 having the conventional structure shown in FIG. 5 are shown.
[0071]
First, a seed crystal 5 having the same configuration as in the first embodiment was prepared. And this seed crystal 5 was affixed on the projection part of the cover part 12 of the graphite crucible 1 as shown in FIG. 5, and was mounted | worn with the crucible main body 1 into which the silicon carbide raw material powder 2 was put beforehand.
[0072]
Then, the graphite crucible 1 is placed in a heating furnace, the temperature of the silicon carbide raw material powder 2 is 2290 ° C., the growth surface temperature of the seed crystal 5 is 2230 ° C., and the atmospheric pressure is 1 Torr for 24 hours. Silicon carbide single crystal 7 was grown by the sublimation method.
[0073]
Silicon carbide single crystal 7 thus obtained had a growth height of about 12 mm and a maximum diameter of about 15 mm.
[0074]
However, the polycrystal 8 is generated around the protrusion, and the polycrystal 8 grows from the polycrystal 8 along the periphery of the silicon carbide single crystal 7. Polycrystalline, cracks, or subgrain-like defects caused by fusion with the polycrystal were observed at the peripheral portion 7a of the silicon carbide single crystal substrate cut out from the silicon carbide single crystal 7.
[0075]
(Other embodiments)
In each of the above embodiments, the case where the present invention is used for crystal growth of a silicon carbide single crystal has been described. However, the present invention can also be used for other crystal growth.
[0076]
In the above embodiment, the graphite crucible 1 itself is used in the single crystal growth apparatus. However, the inner wall of the graphite crucible 1 may be covered with a refractory metal and its carbide. By covering the inner wall of the graphite crucible 1 with a refractory metal in this manner, the silicon carbide single crystal 7 having a uniform Si / C ratio and having no crystal defects can be formed. As the refractory metal carbide, for example, any of hafnium carbide (HfC), tantalum carbide (TaC), zirconium carbide (ZrC), and titanium carbide (TiC) can be used.
[0077]
In the third embodiment, porous graphite is used, but other materials may be used as long as gas can pass therethrough.
[0078]
Furthermore, in the above embodiment, in order to make it difficult for heat transfer to the seed crystal sticking member 12b, porous graphite is disposed between the lid portion 12a and the seed crystal sticking member 12b. A counterbore is provided on the opposite side (hereinafter referred to as the back surface) of the seed crystal pasting portion 12b to the side where the seed crystal 5 is disposed so that the growth surface temperature is lower than the surface temperature of the adjacent lid portion 12a. Also good. Moreover, low temperature gas can be sprayed on the back surface of the seed crystal sticking member 12b, and the growth surface of the seed crystal 5 can also be made lower temperature than the surface of the cover part 12a. At this time, the low temperature gas may be the same as the inert gas introduced into the graphite crucible 1 during crystal growth. And when forming a desired dope single crystal as the silicon carbide single crystal 7, you may make it contain the element required for dope in the inert gas sprayed on the seed crystal sticking member 12b. For example, N (nitrogen), B (boron), Al (aluminum), P (phosphorus), As (arsenic), or the like is included in the inert gas as an element to be doped.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross-sectional configuration of a graphite crucible 1 in a first embodiment of the present invention.
FIG. 2 is a diagram showing a cross-sectional configuration of a lid member 12 in a second embodiment of the present invention.
3A is a front view of the lid member 12 shown in FIG. 2, and FIG. 3B is a rear view of the lid member 12 shown in FIG.
FIG. 4 is a diagram showing a cross-sectional configuration of a lid member 12 according to a third embodiment of the present invention.
5A is a diagram showing a cross-sectional configuration of a conventional graphite crucible 1, and FIG. 5B is an enlarged view of the vicinity of the lid 12 of the graphite crucible 1 shown in FIG. 5A.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Graphite crucible, 2 ... Silicon carbide raw material, 5 ... Seed crystal, 7 ... Silicon carbide single crystal,
8 ... Polycrystal, 12 ... Lid, 12a ... Lid, 12b ... Seed crystal sticking member,
13 ... dent, 14 ... notch, 15 ... gas vent.

Claims (18)

一面に種結晶貼付部材(12b)が配設された容器(11、12a)を備えてなるるつぼ(1)を有し、前記種結晶貼付部材の表面に種結晶(5)を取付けると共に、前記るつぼ内の成長空間に成長させようとする単結晶の原料ガスを導入することにより、該種結晶の成長表面に単結晶を成長させる単結晶製造装置であって、
前記種結晶貼付部材は前記容器に囲まれていると共に、前記容器のうち該種結晶貼付部材を囲んでいる部分の端面との間に所定間隔の隙間をもって配置され、該隙間を通じて前記成長空間内の原料ガスの引き抜きが行えるように構成されており、
前記種結晶貼付部材のうち前記種結晶が取付けられる表面は、該種結晶貼付部材が配設された前記容器の一面よりも凹むように位置しており、前記種結晶を取付けたときに、前記種結晶と前記容器とによって、前記成長空間に露出しないようになっていることを特徴とする単結晶製造装置。
It has a crucible (1) provided with a container (11, 12a) in which a seed crystal sticking member (12b) is arranged on one surface, and attaches the seed crystal (5) to the surface of the seed crystal sticking member, A single crystal manufacturing apparatus for growing a single crystal on a growth surface of the seed crystal by introducing a single crystal source gas to be grown in a growth space in a crucible,
The seed crystal affixing member is surrounded by the container, and is disposed with a predetermined gap between the container and an end surface of the portion of the container surrounding the seed crystal affixing member. It is configured so that the source gas can be extracted,
The surface to which the seed crystal is attached of the seed crystal sticking member is positioned so as to be recessed from one surface of the container in which the seed crystal sticking member is disposed, and when the seed crystal is attached, The single crystal manufacturing apparatus, wherein the seed crystal and the container do not expose the growth space.
前記種結晶貼付部材と、該種結晶貼付部材を囲む前記容器の端面との間の間隔は、前記種結晶貼付部材の形状に沿って、0.1mmより大きく、1mmよりも小さくなっていることを特徴とする請求項1に記載の単結晶製造装置。The distance between the seed crystal sticking member and the end surface of the container surrounding the seed crystal sticking member is larger than 0.1 mm and smaller than 1 mm along the shape of the seed crystal sticking member. The single crystal manufacturing apparatus according to claim 1 . 前記種結晶貼付部材と前記容器との間には、前記容器から前記種結晶貼付部材への熱伝達を抑制する断熱部材が備えられていることを特徴とする請求項1または2に記載の単結晶製造装置。The single-piece | unit of Claim 1 or 2 provided with the heat insulation member which suppresses the heat transfer from the said container to the said seed crystal sticking member between the said seed crystal sticking member and the said container. Crystal manufacturing equipment. 前記断熱部材は前記原料ガスが通過できる材料であることを特徴とする請求項に記載の単結晶製造装置。The single-crystal manufacturing apparatus according to claim 3 , wherein the heat insulating member is a material through which the source gas can pass. 前記断熱部材は多孔質黒鉛であることを特徴とする請求項4に記載の単結晶製造装置。The single crystal manufacturing apparatus according to claim 4, wherein the heat insulating member is porous graphite. 上記種結晶の成長表面は、前記種結晶貼付部材が配設された前記容器の一面に対して面一となっているか、若しくは若干量突出していることを特徴とする請求項1乃至のいずれか1つに記載の単結晶製造装置。Growth surface of the seed crystal can be of any claims 1 to 5, characterized in that the seed crystal adhering member protrudes either flush with, or slightly weight to one side of the container which is arranged The single-crystal manufacturing apparatus as described in any one. 前記種結晶貼付部材及び前記容器の形状は、前記種結晶の成長表面温度が、前記種結晶貼付部材が配設された前記容器の一面の表面温度よりも低くなるように構成されていることを特徴とする請求項1乃至のいずれか1つに記載の単結晶製造装置。The shape of the seed crystal sticking member and the container is configured such that the growth surface temperature of the seed crystal is lower than the surface temperature of one surface of the container in which the seed crystal sticking member is disposed. single crystal manufacturing apparatus according to any one of claims 1 to 6, wherein. 前記種結晶貼付部材のうち、前記種結晶が取付られる面の反対側にザグリが設けてあることを特徴とする請求項に記載の単結晶製造装置。The single crystal manufacturing apparatus according to claim 7 , wherein a counterbore is provided on a side opposite to a surface on which the seed crystal is attached in the seed crystal sticking member. 請求項1乃至のいずれか1つに記載の単結晶製造装置において、
前記るつぼは、カーボン材料で構成されており、炭化珪素で構成された前記種結晶の成長表面に炭化珪素単結晶を結晶成長させることを特徴とする炭化珪素単結晶製造装置。
In the single crystal manufacturing apparatus according to any one of claims 1 to 8 ,
The crucible is made of a carbon material, and a silicon carbide single crystal is grown on a growth surface of the seed crystal made of silicon carbide.
前記種結晶貼付部材が配設された前記容器の一面は、高融点金属炭化物で被覆されていることを特徴とする請求項に記載の単結晶製造装置。The single crystal manufacturing apparatus according to claim 9 , wherein one surface of the container in which the seed crystal sticking member is disposed is coated with a refractory metal carbide. 前記高融点金属炭化物は、炭化ハフニウム(HfC)、炭化タンタル(TaC)、炭化ジルコニウム(ZrC)、炭化チタン(TiC)のうちの少なくとも1つで構成されていることを特徴とする請求項10に記載の炭化珪素単結晶製造装置。It said refractory metal carbide, hafnium carbide (HfC), tantalum carbide (TaC), zirconium carbide (ZrC), in claim 10, characterized in that it is composed of at least one of titanium carbide (TiC) The silicon carbide single crystal manufacturing apparatus as described. 一面に種結晶貼付部材(12b)が配設された容器(11、12a)を備えてなるるつぼ(1)の前記種結晶貼付部材の表面に種結晶(5)を取付けたのち、前記るつぼ内の成長空間に成長させようとする単結晶の原料ガス及び不活性ガスを導入して前記種結晶に該原料ガスを供給し、該種結晶の成長表面に単結晶を成長させる単結晶製造方法であって、
前記種結晶貼付部材を前記容器で囲むと共に、該種結晶貼付部材を囲む前記容器の端面との間に所定間隔の隙間をもって配置させ、該隙間を通じて前記成長空間内の原料ガスの引き抜きを行い、かつ、前記種結晶貼付部材のうち前記種結晶が取付けられる表面が、該種結晶貼付部材が配設された前記容器の一面よりも凹むように位置させると共に、前記種結晶を前記種結晶貼付部材に取付けたときに該種結晶と前記容器とによって全面覆われるようにさせて、前記種結晶上に前記単結晶を成長させることにより、前記単結晶の周囲を多結晶にて所定間隔隔てた状態で囲むようにしつつ、前記単結晶と前記多結晶を共に成長させていく埋込成長を行うことを特徴とする単結晶製造方法。
After attaching the seed crystal (5) to the surface of the seed crystal sticking member of the crucible (1) provided with the container (11, 12a) in which the seed crystal sticking member (12b) is disposed on one surface, the inside of the crucible A single crystal manufacturing method in which a single crystal source gas and an inert gas to be grown in a growth space are introduced, the source gas is supplied to the seed crystal, and a single crystal is grown on the growth surface of the seed crystal. There,
Surrounding the seed crystal affixing member with the container, and placing the seed crystal affixing member with a predetermined gap between the end surface of the container surrounding the seed crystal affixing member, and drawing the source gas in the growth space through the gap, And the surface to which the said seed crystal is attached among the said seed crystal sticking members is located so that it may dent rather than the one surface of the said container by which this seed crystal sticking member was arrange | positioned, and the said seed crystal is said seed crystal sticking member The single crystal is grown on the seed crystal by covering the entire surface with the seed crystal and the container when attached to the single crystal, so that the single crystal is surrounded by a polycrystal at a predetermined interval. A method of manufacturing a single crystal comprising performing embedded growth in which the single crystal and the polycrystal are grown together while being surrounded by a circle .
前記種結晶の成長表面温度を、前記種結晶貼付部材が配設された前記容器の一面の温度より低くすることを特徴とする請求項12に記載の単結晶製造方法。13. The method for producing a single crystal according to claim 12 , wherein a growth surface temperature of the seed crystal is set lower than a temperature of one surface of the container in which the seed crystal sticking member is disposed. 前記種結晶貼付部材のうち、種結晶が取りつけられた面の反対側に低温ガスを吹き付けることを特徴とする請求項13に記載の単結晶製造方法。The single crystal manufacturing method according to claim 13 , wherein a low-temperature gas is sprayed on the opposite side of the surface to which the seed crystal is attached, of the seed crystal sticking member. 前記低温ガスとして、前記るつぼの成長空間内に導入させる前記不活性ガスと同じ不活性ガスを用いることを特徴とする請求項14に記載の単結晶製造方法。15. The method for producing a single crystal according to claim 14 , wherein the same inert gas as the inert gas introduced into the growth space of the crucible is used as the low temperature gas. 前記低温ガスとして、前記るつぼの成長空間内に導入させる前記不活性ガスと同じ不活性ガスを用いると共に、該不活性ガス内に前記単結晶の不純物となる元素を混入させることを特徴とする請求項15に記載の単結晶製造方法。The inert gas that is the same as the inert gas introduced into the growth space of the crucible is used as the low-temperature gas, and an element that becomes the impurity of the single crystal is mixed in the inert gas. Item 16. A method for producing a single crystal according to Item 15 . 前記不純物となる元素として、N(窒素)、B(ボロン)、Al(アルミニウム)、P(リン)、As(砒素)のうち少なくとも1つを用いることを特徴とする請求項16に記載の単結晶製造方法。The single element according to claim 16 , wherein at least one of N (nitrogen), B (boron), Al (aluminum), P (phosphorus), and As (arsenic) is used as the impurity element. Crystal manufacturing method. 請求項12乃至17のいずれか1つに記載の単結晶製造方法において、
前記種結晶として炭化珪素を用い、前記原料ガスとして炭化珪素原料ガスを前記るつぼの成長空間内に導入させることにより、前記種結晶の成長表面に炭化珪単結晶を成長させることを特徴とする炭化珪素単結晶製造方法。
The method for producing a single crystal according to any one of claims 12 to 17 ,
Silicon carbide is used as the seed crystal, and a silicon carbide single crystal is grown on the growth surface of the seed crystal by introducing a silicon carbide source gas as the source gas into the growth space of the crucible. Silicon single crystal manufacturing method.
JP29447199A 1999-10-15 1999-10-15 Single crystal manufacturing method and single crystal manufacturing apparatus Expired - Lifetime JP4288792B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29447199A JP4288792B2 (en) 1999-10-15 1999-10-15 Single crystal manufacturing method and single crystal manufacturing apparatus
US09/686,232 US6451112B1 (en) 1999-10-15 2000-10-12 Method and apparatus for fabricating high quality single crystal
DE10050767A DE10050767B4 (en) 1999-10-15 2000-10-13 Device for producing single crystals of high quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29447199A JP4288792B2 (en) 1999-10-15 1999-10-15 Single crystal manufacturing method and single crystal manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2001114599A JP2001114599A (en) 2001-04-24
JP4288792B2 true JP4288792B2 (en) 2009-07-01

Family

ID=17808214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29447199A Expired - Lifetime JP4288792B2 (en) 1999-10-15 1999-10-15 Single crystal manufacturing method and single crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4288792B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926655B2 (en) * 2006-11-02 2012-05-09 新日本製鐵株式会社 Graphite crucible for silicon carbide single crystal growth and silicon carbide single crystal manufacturing apparatus
RU2495163C2 (en) * 2007-12-12 2013-10-10 Доу Корнинг Корпорейшн Method for obtaining large homogeneous crystals of silicon carbide using distillation and condensation processes
JP4831128B2 (en) * 2008-05-26 2011-12-07 パナソニック株式会社 Crystal growth crucible
JP4547031B2 (en) 2009-03-06 2010-09-22 新日本製鐵株式会社 Crucible for producing silicon carbide single crystal, and apparatus and method for producing silicon carbide single crystal
JP5402701B2 (en) 2010-02-12 2014-01-29 住友電気工業株式会社 Method for producing silicon carbide crystal
CN105518189B (en) 2013-09-06 2019-10-15 Gtat公司 The method and utensil of bulk silicon carbide are produced using silicon carbide crystal seed
JP5719957B1 (en) * 2014-06-06 2015-05-20 日新技研株式会社 Single crystal manufacturing apparatus and manufacturing method
KR102058870B1 (en) 2017-11-29 2019-12-24 에스케이씨 주식회사 Method for growing silicon carbide single crystal ingot with large diameter
CN110168147B (en) 2016-12-20 2022-01-28 赛尼克公司 Method for culturing large-diameter silicon carbide single crystal ingot
KR102058873B1 (en) 2017-11-29 2019-12-24 에스케이씨 주식회사 Method for growing silicon carbide single crystal ingot with large diameter
JP7030506B2 (en) 2017-12-22 2022-03-07 昭和電工株式会社 Method for manufacturing silicon carbide single crystal ingot
KR102102543B1 (en) 2018-10-22 2020-04-20 에스케이씨 주식회사 Preparing method of seed with protective layer method for growing silicon carbide ingot, and seed with protective layer
CN111074338B (en) 2018-10-22 2022-09-20 赛尼克公司 Seed crystal with protective film, method of manufacturing the same, method of attaching the same, and method of manufacturing ingot using the same
KR102122668B1 (en) 2018-12-12 2020-06-12 에스케이씨 주식회사 Apparatus for ingot and preparation method of silicon carbide ingot with the same
KR102192815B1 (en) 2019-03-21 2020-12-18 에스케이씨 주식회사 Method for Manufacturing Ingot, material for Ingot growing and preparation method of the same
KR102104751B1 (en) 2019-06-17 2020-04-24 에스케이씨 주식회사 SiC INGOT AND PREPERATION METHOD FOR THE SAME
KR102214314B1 (en) 2019-08-22 2021-02-09 에스케이씨 주식회사 Method for growing silicon carbide single crystal ingot with large diameter
KR102284879B1 (en) 2019-10-29 2021-07-30 에스케이씨 주식회사 SiC WAFER, PREPARATION METHOD OF SiC WAFER
KR102276450B1 (en) 2019-10-29 2021-07-12 에스케이씨 주식회사 PREPERATION METHOD FOR SiC INGOT, PREPERATION METHOD FOR SiC WAFER AND A SYSTEM THEREOF
JP7363412B2 (en) * 2019-11-26 2023-10-18 株式会社レゾナック Single crystal manufacturing equipment
KR102367710B1 (en) 2020-01-15 2022-02-25 주식회사 쎄닉 Extendable crucible for heat treating silicon carbide powder
KR102235858B1 (en) * 2020-04-09 2021-04-02 에스케이씨 주식회사 Manufacturing method for silicon carbide ingot and system for manufacturing silicon carbide ingot
JP2023529341A (en) 2020-06-02 2023-07-10 セニック・インコーポレイテッド Silicon carbide ingot manufacturing method, silicon carbide ingot and its growth system
KR102523343B1 (en) 2021-11-05 2023-04-19 주식회사 쎄닉 Manufacturing method of silicon carbide wafer and manufacturing method of silicon carbide ingot
KR102442732B1 (en) 2021-11-05 2022-09-13 주식회사 쎄닉 Silicon wafer and fabricating method of the same

Also Published As

Publication number Publication date
JP2001114599A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
JP4288792B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP4275308B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
JP3961750B2 (en) Single crystal growth apparatus and growth method
US5944890A (en) Method of producing single crystals and a seed crystal used in the method
JP5146418B2 (en) Crucible for producing silicon carbide single crystal and method for producing silicon carbide single crystal
JP4569957B2 (en) Crucible for producing polycrystalline semiconductor and method for producing polycrystalline semiconductor
JPH11116399A (en) Coating of tantalum carbide and single crystal production apparatus produced by the coating
US6451112B1 (en) Method and apparatus for fabricating high quality single crystal
JP6813779B2 (en) Single crystal manufacturing equipment and single crystal manufacturing method
JP4108782B2 (en) Apparatus and method for forming single crystal silicon carbide on a nucleus
JP3419144B2 (en) Single crystal growth equipment
KR102107626B1 (en) Apparatus for growing silicon carbide single cryatal and method for growing silicon carbide single cryatal
JP2000264795A (en) Apparatus and method for producing silicon carbide single crystal
KR20140110266A (en) An apparatus and method for growing silicon carbide single crystal
JP4450118B2 (en) Method for producing silicon carbide single crystal
JP4238450B2 (en) Method and apparatus for producing silicon carbide single crystal
JP4054197B2 (en) Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal ingot
JP4894717B2 (en) Method for manufacturing silicon carbide single crystal substrate
JP3843615B2 (en) Single crystal growth equipment
KR20130083653A (en) Growing apparatus for single crystal
JP4066528B2 (en) Method for producing silicon carbide single crystal
JPH10139589A (en) Production of single crystal
JP4509258B2 (en) Single crystal growth apparatus and manufacturing method
JPH1160391A (en) Production of silicon carbide single crystal
JP2001158695A (en) Method for producing silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Ref document number: 4288792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term