JP3843615B2 - Single crystal growth equipment - Google Patents

Single crystal growth equipment Download PDF

Info

Publication number
JP3843615B2
JP3843615B2 JP22933398A JP22933398A JP3843615B2 JP 3843615 B2 JP3843615 B2 JP 3843615B2 JP 22933398 A JP22933398 A JP 22933398A JP 22933398 A JP22933398 A JP 22933398A JP 3843615 B2 JP3843615 B2 JP 3843615B2
Authority
JP
Japan
Prior art keywords
single crystal
shielding member
heat shielding
raw material
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22933398A
Other languages
Japanese (ja)
Other versions
JP2000044383A (en
Inventor
泰男 木藤
富佐雄 廣瀬
英二 北岡
尚宏 杉山
篤人 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP22933398A priority Critical patent/JP3843615B2/en
Publication of JP2000044383A publication Critical patent/JP2000044383A/en
Application granted granted Critical
Publication of JP3843615B2 publication Critical patent/JP3843615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化珪素等の単結晶を成長させるために使用される単結晶成長装置に関するものである。
【0002】
【従来の技術】
炭化珪素単結晶は、優れた電気的・機械的特性を有し、半導体装置用の基板材料として有用である。炭化珪素単結晶を製造する方法としては、昇華法が一般的で、黒鉛るつぼ内に種結晶と原料粉末とを対向して配置し、原料粉末を加熱、昇華させたガスを種結晶上に導入する。るつぼ内は、種結晶が原料粉末より低温となるように温度差が設けてあり、より低温の種結晶上で昇華ガスを再結晶化させて単結晶を成長させている。
【0003】
昇華法による単結晶成長を効率よく行うには、るつぼ内の温度や、雰囲気圧力、昇華ガスの流れ等を制御することが有効で、従来より種々の装置が提案されている。例えば、特開平8−295595号公報には、種結晶の温度を低く保持するために、原料粉末と種結晶の間に、熱遮蔽部材を設けた装置が開示されている。この構成を図8に示すと、単結晶成長装置1のるつぼ2内には、底部に炭化珪素原料粉末4が充填され、これに対向する台座3aに、種結晶となる炭化珪素単結晶基板5が接合されている。原料粉末4と炭化珪素単結晶基板5の間には、炭化珪素単結晶基板5の下方を取り囲むように、有底円筒状の熱遮蔽部材9が配設されて、原料粉末4の輻射熱から炭化珪素単結晶基板5を保護している。このように、熱遮蔽部材9を設けることで、炭化珪素単結晶基板5の温度上昇を抑制し、温度差を大きくして、効率よく炭化珪素単結晶7を成長させることが可能である。
【0004】
また、特開平8−325099号公報には、原料粉末が収容される容器体と、種結晶が配置される蓋体の間に、内径が上方へ向けて徐々に小さくなる集中管を介設した装置が開示され、昇華ガスを絞って種結晶上に集中して導くことで、効率よい単結晶の成長を可能にしている。
【0005】
【発明が解決しようとする課題】
ところで、炭化珪素基板を用いた半導体装置の量産効果を高めるために、より口径の大きい炭化珪素単結晶基板が必要とされている。しかしながら、上記従来の方法では、種結晶の表面と垂直な方向の成長速度を大きくして、長尺の炭化珪素単結晶を得ることはできるが、口径を拡大する効果は小さい。このため、大口径の単結晶を得るには、成長させた単結晶から切り出した種結晶上にさらに単結晶を成長させることを繰り返し、徐々に大口径化していく必要があった。
【0006】
本発明の目的は、成長する単結晶の径方向の成長速度を大きくして、長尺かつ大口径の単結晶を得ることが可能な単結晶成長装置を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明の単結晶成長装置は、容器内に、種結晶と原料粉末とを対向させて配置し、上記種結晶と上記原料粉末との間に熱遮蔽部材を設けて、上記原料粉末が加熱昇華する際の輻射熱から上記種結晶を保護しつつ、該種結晶上に単結晶を成長させるようになしてある。上記熱遮蔽部材は、上記種結晶をガス流通可能に取り囲んでその内部に単結晶が成長する空間を形成しており、該単結晶成長空間の径が上記種結晶側から上記原料粉末側へ向かうにつれて大きくなる形状を有し、その広がりを持つ側壁部分と上記種結晶表面と平行である部分とが一体となるように設けられる(請求項1)。
【0008】
上記熱遮蔽部材を、上記単結晶成長空間を取り囲むように設置し、上記熱遮蔽部材と上記種結晶との間に温度差を設けると、相対的に低温となる上記種結晶上に単結晶が成長する。この時、上記種結晶表面と垂直な方向のみならず、径方向にも温度差が生じるので、径方向へも単結晶が成長する。しかも、本発明の上記熱遮蔽部材は、上記単結晶成長空間の径が上記種結晶側から上記原料粉末側へ向かうにつれて大きくなるような形状であるので、単結晶が径方向に成長しても、上記熱遮蔽部材と単結晶との間に十分な距離が保たれ、径方向の成長速度が小さくなることがない。よって、垂直方向および径方向の成長速度を大きくすることができ、長尺で、しかも口径の大きい単結晶を得ることができる。
【0009】
上記熱遮蔽部材は、その広がりを持つ側壁部分と上記種結晶表面と平行である底壁部分とを分離して、上記種結晶表面と平行である部分にガス流通孔を形成された構成とすることもできる(請求項2)。この時、上記ガス流通孔の位置は、上記熱遮蔽部材の側壁部分が上記ガス流通孔を通して上記原料粉末表面に対向可能な位置とする。上記熱遮蔽部材が側壁部分と底壁部分とに分割されていることで、構造が簡便化され製作コストを低くできる。
好ましくは、上記熱遮蔽部材の広がり角度を5°から80°の範囲とする(請求項3)。熱遮蔽部材の広がり角度が5°に満たないと成長結晶の広がり角度が小さく、大口径化の効果が少ない。また、80°を越えると広がり角度が増加せず、それ以上の大口径化の効果がない。
【0010】
上記熱遮蔽部材の広がり角度を、2段階に変化させることもできる(請求項)。最終的に得たい成長結晶の口径を制御したい場合など、成長結晶の広がり角度を成長の途中で変えたいときには、上記熱遮蔽部材の広がり角度を変えればよい。この上記熱遮蔽部材の広がり角度は、連続的に変化させてもよい(請求項)。
【0011】
上記熱遮蔽部材の上記原料側の端部外周に、上記容器の側壁との間の開口を閉鎖する部材を配置した構成とすることもできる(請求項)。これにより、上記熱遮蔽部材と上記容器の側壁との間に上記原料粉末が昇華したガスが到達し、上記熱遮蔽部材または上記容器の側壁に多結晶が付着するのを防止できる。これら部位への多結晶付着を防止することで、単結晶成長に寄与する昇華ガスが増加し、単結晶成長速度が増加して成長効率が上がる。
【0012】
上記熱遮蔽部材と上記容器の側壁との間の空間を埋めることもできる(請求項)。このようにしても、上記請求項5と同様に、上記熱遮蔽部材または上記容器の側壁に上記原料粉末の昇華ガスが到達して多結晶が付着するのを防止でき、単結晶成長速度を増加して成長効率を上げることができる。
【0013】
上記請求項の構成において、上記熱遮蔽部材と上記容器とを一体構造としてもよい(請求項)。上記熱遮蔽部材と上記容器とを一体化することにより、部品点数を減らし、コストを低減できる。
【0015】
上記熱遮蔽部材は、例えば、黒鉛で構成され(請求項9)、断熱性、耐熱性に優れるので好ましい。また、本発明の単結晶成長装置で製造する上記単結晶としては、具体的には、炭化珪素単結晶が挙げられ(請求項10)、大口径化による利点が大きい。
【0016】
【発明の実施の形態】
図1に本発明の第1の実施の形態を示す。図において、単結晶成長装置1は、単結晶成長用の容器となる有底円筒状の黒鉛製るつぼ2と、その上端開口を閉鎖する黒鉛製蓋体3を有している。るつぼ2の底部には、原料粉末としての炭化珪素粉末4が充填してあり、蓋体3の下面中央部を突出して形成した台座3aには、種結晶となる炭化珪素単結晶基板5が接合してある。この炭化珪素単結晶基板5は、例えば、アチソン法、昇華法等により成長させた炭化珪素単結晶を、口径10mm〜100mm程度のウエハー状に加工したもので、台座3aに接着剤を用いて貼付けられる。
【0017】
炭化珪素単結晶基板5と炭化珪素粉末4の間には、炭化珪素単結晶基板5の外周囲、および炭化珪素単結晶基板5の下方の空間を取り囲むように、熱遮蔽部材6が配設してある。熱遮蔽部材6は、下方に向けてテーパ状に拡径する中空の容器体よりなり、内部に単結晶が成長するための十分な空間を形成するとともに、下方ほど径が大きくなるようにして、単結晶の径方向の成長を妨げないようにしている。熱遮蔽部材6は、断熱性に優れ、またるつぼ2内が高温となることから、耐熱性を有する材料、例えば、黒鉛で構成される。熱遮蔽部材6の上端面には、炭化珪素単結晶基板5の外径よりやや大径の開口61が形成されて、該開口61の内周が、炭化珪素単結晶基板5の外周と所定間隔をおいて対向するように配置されている。熱遮蔽部材6の下端面には、複数のガス流通孔62が形成され、このガス流通孔62を通って、炭化珪素粉末4の昇華ガスが炭化珪素単結晶基板5に到達できるようにしてある。なお、熱遮蔽部材6は、上端面外周に設けたフランジ部61にて、るつぼ2の内壁に固定されている。
【0018】
上記装置を用いて単結晶を成長させる場合には、るつぼ2内に炭化珪素粉末4を充填するとともに、台座3aに炭化珪素単結晶基板5を接合して、蓋体3をるつぼ2に装着する。次いで、るつぼ2内を排気して、アルゴンガス等の不活性ガスを導入し、雰囲気圧力が0.1〜数Torr程度となるように調整する。さらに、るつぼ2を図略の加熱装置により所定温度に加熱して、炭化珪素粉末4を昇華させ、昇華ガスを発生させる。この時、加熱装置に導入する電力を調整して、原料粉末4の温度を約2000〜2500℃の範囲とし、炭化珪素単結晶基板5が炭化珪素粉末4より低い温度になるように、るつぼ2内に温度勾配を設ける。発生する原料の昇華ガスは、熱遮蔽部材6のガス流通孔62を通って、熱遮蔽部材6内の単結晶成長空間内に入り、炭化珪素単結晶基板5に到達する。
【0019】
ここで、るつぼ2内には、図の上下方向に温度勾配が設けられており、相対的に低温となる炭化珪素単結晶基板5上に炭化珪素単結晶7が成長する。一般に、単結晶の成長量、成長方向は、成長面近傍の温度、温度勾配、昇華ガスの量および流れに依存するが、主となるのは、成長面近傍の温度勾配で、温度勾配が大きいほど昇華ガスの過飽和度が大きくなり、単位時間当たりの成長量が大きくなる。熱遮蔽部材6がない場合、温度勾配は上下方向のみで径方向にはないため、炭化珪素単結晶7の成長方向は、種結晶である炭化珪素単結晶基板5の表面と垂直な方向のみで径方向には成長しない。これに対し、熱遮蔽部材6を設けると、熱遮蔽部材6が炭化珪素粉末4からの熱輻射で温度上昇し、高温となった熱遮蔽部材6の上面および側面と炭化珪素単結晶7との温度差により、径方向にも温度勾配が生じるため、炭化珪素単結晶7は、垂直方向のみならず径方向にも成長することができる。
【0020】
ただし、図8の従来の装置のように、内径が一定の熱遮蔽部材9の場合には、径方向に成長するにつれて、炭化珪素単結晶7と熱遮蔽部材9との距離が小さくなり、温度勾配が変化する。つまり、距離が小さくなると、熱遮蔽部材9からの熱輻射をより大きく受けることになるため、炭化珪素単結晶7の側面の温度が高くなる。その結果、炭化珪素単結晶7の側面近傍の温度勾配が小さくなって、径方向の成長量が小さくなる。これに対して、本発明の熱遮蔽部材6は、下方に向けてテーパ状に拡径する形状を有しており、内部の単結晶成長空間が下方ほど径方向に広がりを有するように構成されている。従って、径方向に成長しても、炭化珪素単結晶7と熱遮蔽部材9との距離をほぼ一定に保つことが可能で、温度勾配も変化しないので、径方向に成長を続けることができる。
【0021】
ここで、熱遮蔽部材6の形状は、上記図1の形状に限るものではなく、内径が下方に向けて大きくなり、熱遮蔽部材6内に形成される単結晶成長空間が下方ほど径方向に広がりを有するように構成されていればよい。また、図2に本発明の第2の実施の形態として示すように、好ましくは、熱遮蔽部材6の広がり角度θを5°から80°の範囲とするのがよい。熱遮蔽部材6の広がり角度が5°に満たないと成長結晶の広がり角度が小さく、大口径化の効果が少ない。また、80°を越えると広がり角度が増加せず、それ以上の大口径化の効果がない。
【0022】
図3に本発明の第3の実施の形態として示すように、熱遮蔽部材6の広がり角度を、2段階に変化させることもできる。ここでは、熱遮蔽部材6の上部の広がり角度をθ1 、下部の広がり角度をθ2 とし、θ1 <θ2 として、成長する炭化珪素単結晶7が下方ほど径方向の成長量が大きくなるようにする。このように、最終的に得たい成長結晶の口径を制御したい場合などには、熱遮蔽部材6の広がり角度を段階的に変化させることで、成長結晶の広がり角度を成長の途中で変えることができる。なお、この上記熱遮蔽部材の広がり角度を、連続的に変化させることももちろんできる。下に熱遮蔽部材6の形状の他の例について示す。
【0023】
図4に本発明の第4の実施の形態として示すように、熱遮蔽部材6の炭化珪素粉末4側の端面(図の下端面)外周に、るつぼ2の側壁との間に形成される環状の開口を閉鎖するように、ガス遮蔽部材8を配置した構成とすることもできる(請求項5)。ガス遮蔽部材8は、例えば、黒鉛で構成され、熱遮蔽部材6とるつぼ2との間の開口を閉鎖して、これより上方に炭化珪素粉末4の昇華ガスが到達するのを防止する。これにより、熱遮蔽部材6の外側壁およびるつぼ2の内側壁に多結晶が付着するのを防止することができ、単結晶成長に寄与する昇華ガスを増加させるので、単結晶成長速度が増加し、効率よい単結晶成長が可能である。
【0024】
図5に本発明の第5の実施の形態として示すように、熱遮蔽部材6を、内部に下方に向けてテーパ状に拡径する単結晶成長空間を有し、外径がるつぼ2の内径と一致する厚肉円筒状に形成して、熱遮蔽部材6によりるつぼ2の側壁との間の空間が埋まるようにすることもできる(請求項6)。このようにしても、上記第4の実施の形態同様、熱遮蔽部材6とるつぼ2との間の空間に炭化珪素粉末4の昇華ガスが到達して多結晶が付着するのを防止することができる。よって、単結晶成長に寄与する昇華ガスが増加して、単結晶成長速度が増加し、効率よい単結晶成長が可能である。
【0025】
図6に本発明の第6の実施の形態として示すように、熱遮蔽部材6とるつぼ2とを一体構造としてもよい。本実施の形態では、熱遮蔽部材6を、内部に下方に向けてテーパ状に拡径する単結晶成長空間を有し、外径がるつぼ2の外径と一致する厚肉円筒状に形成して、るつぼ2の上部にこれと一体に設ける。このように、熱遮蔽部材6とるつぼ2を一体化することにより、るつぼ2との間を埋めることによる単結晶成長効率の向上に加えて、部品点数の削減によるコストの低減が可能である。
【0026】
図7に本発明の第7の実施の形態として示すように、熱遮蔽部材6を、広がりを持つ側壁部分6aと種結晶である炭化珪素単結晶基板5の表面と平行である底壁部分たる下端面部分6bとに分割された構成とすることもできる。これら側壁部分6aと下端面部分6bは、それぞれるつぼ2の内壁に固定される。このように、側壁部分6aと下端面部分6bを分割することにより、熱遮蔽部材6の構造が簡便化し、製作コストを低くすることができる。
【0027】
以上のように、本発明の単結晶成長装置によれば、種結晶表面と垂直な方向および径方向の成長速度を大きくすることができ、長尺で、しかも、口径の大きい炭化珪素単結晶を得ることができる。なお、本発明の単結晶製造装置は、炭化珪素単結晶の成長に限らず、硫化カドミウム等、昇華法によって成長可能な単結晶であればいずれにも適用することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す単結晶成長装置の全体断面図である。
【図2】本発明の第2の実施の形態を示す単結晶成長装置の全体断面図である。
【図3】本発明の第3の実施の形態を示す単結晶成長装置の全体断面図である。
【図4】本発明の第4の実施の形態を示す単結晶成長装置の全体断面図である。
【図5】本発明の第5の実施の形態を示す単結晶成長装置の全体断面図である。
【図6】本発明の第6の実施の形態を示す単結晶成長装置の全体断面図である。
【図7】本発明の第7の実施の形態を示す単結晶成長装置の全体断面図である。
【図8】従来の単結晶製造装置の全体断面図である。
【符号の説明】
1 単結晶成長装置
2 るつぼ(容器)
3 蓋体
3a 台座
4 炭化珪素粉末(原料粉末)
5 炭化珪素単結晶基板(種結晶)
6 熱遮蔽部材
7 炭化珪素単結晶(単結晶)
8 ガス遮蔽部材(開口を閉鎖する部材)
9 熱遮蔽部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single crystal growth apparatus used for growing a single crystal such as silicon carbide.
[0002]
[Prior art]
Silicon carbide single crystal has excellent electrical and mechanical properties and is useful as a substrate material for semiconductor devices. As a method for producing a silicon carbide single crystal, a sublimation method is generally used. In a graphite crucible, a seed crystal and a raw material powder are arranged to face each other, and a gas obtained by heating and sublimating the raw material powder is introduced onto the seed crystal. To do. A temperature difference is provided in the crucible so that the seed crystal is at a lower temperature than the raw material powder, and a single crystal is grown by recrystallizing the sublimation gas on the lower temperature seed crystal.
[0003]
In order to efficiently perform single crystal growth by the sublimation method, it is effective to control the temperature in the crucible, the atmospheric pressure, the flow of sublimation gas, and the like, and various apparatuses have been proposed. For example, Japanese Patent Laid-Open No. 8-295595 discloses an apparatus in which a heat shielding member is provided between a raw material powder and a seed crystal in order to keep the temperature of the seed crystal low. When this structure is shown in FIG. 8, a crucible 2 of single crystal growth apparatus 1 is filled with silicon carbide raw material powder 4 at the bottom, and silicon carbide single crystal substrate 5 serving as a seed crystal is placed on pedestal 3a facing this. Are joined. Between the raw material powder 4 and the silicon carbide single crystal substrate 5, a bottomed cylindrical heat shielding member 9 is disposed so as to surround the lower side of the silicon carbide single crystal substrate 5, and carbonized from the radiant heat of the raw material powder 4. The silicon single crystal substrate 5 is protected. Thus, by providing the heat shielding member 9, it is possible to suppress the temperature rise of the silicon carbide single crystal substrate 5, increase the temperature difference, and grow the silicon carbide single crystal 7 efficiently.
[0004]
In JP-A-8-325099, a concentrating tube whose inner diameter is gradually reduced upward is interposed between a container body containing raw material powder and a lid body on which seed crystals are arranged. An apparatus is disclosed, and a sublimation gas is squeezed and concentrated on a seed crystal to enable efficient single crystal growth.
[0005]
[Problems to be solved by the invention]
By the way, in order to enhance the mass production effect of a semiconductor device using a silicon carbide substrate, a silicon carbide single crystal substrate having a larger diameter is required. However, in the conventional method, a long silicon carbide single crystal can be obtained by increasing the growth rate in the direction perpendicular to the surface of the seed crystal, but the effect of expanding the diameter is small. For this reason, in order to obtain a large-diameter single crystal, it was necessary to repeatedly grow the single crystal on the seed crystal cut out from the grown single crystal and gradually increase the diameter.
[0006]
An object of the present invention is to provide a single crystal growth apparatus that can increase the growth rate in the radial direction of a growing single crystal and obtain a long and large-diameter single crystal.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a single crystal growth apparatus of the present invention has a seed crystal and a raw material powder arranged in a container facing each other, and a heat shielding member is provided between the seed crystal and the raw material powder. Thus, a single crystal is grown on the seed crystal while protecting the seed crystal from radiant heat generated when the raw material powder is heated and sublimated. The heat shielding member surrounds the seed crystal in a gas flowable manner to form a space in which a single crystal grows, and a diameter of the single crystal growth space is directed from the seed crystal side to the raw material powder side. The side wall portion having a shape that increases as the portion extends and the portion that is parallel to the seed crystal surface are integrally provided (claim 1).
[0008]
When the heat shielding member is installed so as to surround the single crystal growth space and a temperature difference is provided between the heat shielding member and the seed crystal, the single crystal is formed on the seed crystal that is relatively low in temperature. grow up. At this time, a temperature difference occurs not only in the direction perpendicular to the surface of the seed crystal but also in the radial direction, so that a single crystal grows in the radial direction. Moreover, since the heat shielding member of the present invention has such a shape that the diameter of the single crystal growth space increases from the seed crystal side toward the raw material powder side, even if the single crystal grows in the radial direction. A sufficient distance is maintained between the heat shielding member and the single crystal, and the radial growth rate does not decrease. Therefore, the growth rate in the vertical direction and the radial direction can be increased, and a long and large single crystal can be obtained.
[0009]
The heat shielding member has a structure in which a gas flow hole is formed in a portion parallel to the seed crystal surface by separating a wide side wall portion and a bottom wall portion parallel to the seed crystal surface. (Claim 2). At this time, the position of the gas circulation hole is set such that the side wall portion of the heat shielding member can face the raw material powder surface through the gas circulation hole. Since the heat shielding member is divided into the side wall portion and the bottom wall portion, the structure is simplified and the manufacturing cost can be reduced.
Preferably, the spread angle of the heat shielding member is in the range of 5 ° to 80 °. If the spread angle of the heat shielding member is less than 5 °, the spread angle of the grown crystal is small and the effect of increasing the diameter is small. On the other hand, if the angle exceeds 80 °, the spread angle does not increase and there is no further effect of increasing the diameter.
[0010]
The spreading angle of the heat shielding member can be changed in two stages (claim 4 ). When it is desired to change the spread angle of the growth crystal during the growth, for example, when it is desired to control the diameter of the growth crystal to be finally obtained, the spread angle of the heat shielding member may be changed. The spread angle of the heat shielding member may be continuously changed (Claim 5 ).
[0011]
A member that closes the opening between the heat shielding member and the side wall of the container may be disposed on the outer periphery of the raw material side end (claim 6 ). Thereby, the gas which the said raw material powder sublimated reaches | attains between the said heat shielding member and the side wall of the said container, and it can prevent that a polycrystal adheres to the said heat shielding member or the side wall of the said container. By preventing the polycrystal from adhering to these parts, the sublimation gas contributing to the single crystal growth is increased, the single crystal growth rate is increased, and the growth efficiency is increased.
[0012]
A space between the heat shielding member and the side wall of the container can also be filled (claim 7 ). Even in this case, similarly to the fifth aspect, it is possible to prevent the sublimation gas of the raw material powder from reaching the heat shielding member or the side wall of the container and to adhere polycrystals, thereby increasing the single crystal growth rate. And increase the growth efficiency.
[0013]
In the above configuration according to claim 7, optionally as a unitary structure and the heat shield member and the container (claim 8). By integrating the heat shielding member and the container, the number of parts can be reduced and the cost can be reduced.
[0015]
The heat shielding member is preferably made of, for example, graphite (Claim 9) and excellent in heat insulation and heat resistance. In addition, as the single crystal produced by the single crystal growth apparatus of the present invention, specifically, a silicon carbide single crystal can be cited (Claim 10), and the advantage of increasing the diameter is great.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a first embodiment of the present invention. In the figure, a single crystal growth apparatus 1 has a bottomed cylindrical graphite crucible 2 serving as a container for single crystal growth, and a graphite lid 3 that closes its upper end opening. The bottom portion of the crucible 2 is filled with silicon carbide powder 4 as a raw material powder, and a silicon carbide single crystal substrate 5 serving as a seed crystal is joined to a pedestal 3a formed by projecting the bottom center portion of the lid 3 It is. This silicon carbide single crystal substrate 5 is obtained by processing a silicon carbide single crystal grown by, for example, the Atchison method, the sublimation method or the like into a wafer shape having a diameter of about 10 mm to 100 mm, and is attached to the base 3a with an adhesive. It is done.
[0017]
Between the silicon carbide single crystal substrate 5 and the silicon carbide powder 4, a heat shielding member 6 is disposed so as to surround the outer periphery of the silicon carbide single crystal substrate 5 and the space below the silicon carbide single crystal substrate 5. It is. The heat shielding member 6 is formed of a hollow container body that expands in a tapered shape toward the lower side, forms a sufficient space for a single crystal to grow inside, and increases in diameter toward the lower side, The growth of the single crystal in the radial direction is not disturbed. Since the heat shielding member 6 is excellent in heat insulation and the inside of the crucible 2 becomes high temperature, it is made of a heat resistant material, for example, graphite. Opening 61 having a diameter slightly larger than the outer diameter of silicon carbide single crystal substrate 5 is formed on the upper end surface of heat shielding member 6, and the inner periphery of opening 61 is spaced apart from the outer periphery of silicon carbide single crystal substrate 5 by a predetermined distance. It is arranged so as to face each other. A plurality of gas flow holes 62 are formed in the lower end surface of the heat shielding member 6, and the sublimation gas of the silicon carbide powder 4 can reach the silicon carbide single crystal substrate 5 through the gas flow holes 62. . The heat shielding member 6 is fixed to the inner wall of the crucible 2 by a flange portion 61 provided on the outer periphery of the upper end surface.
[0018]
When a single crystal is grown using the above apparatus, the silicon carbide powder 4 is filled in the crucible 2, the silicon carbide single crystal substrate 5 is bonded to the pedestal 3 a, and the lid 3 is attached to the crucible 2. . Next, the crucible 2 is evacuated, an inert gas such as argon gas is introduced, and the atmospheric pressure is adjusted to be about 0.1 to several Torr. Further, the crucible 2 is heated to a predetermined temperature by a heating device (not shown) to sublimate the silicon carbide powder 4 and generate sublimation gas. At this time, the electric power introduced into the heating device is adjusted so that the temperature of the raw material powder 4 is in the range of about 2000 to 2500 ° C. and the temperature of the silicon carbide single crystal substrate 5 is lower than that of the silicon carbide powder 4. A temperature gradient is provided inside. The generated raw material sublimation gas passes through the gas flow holes 62 of the heat shielding member 6, enters the single crystal growth space in the heat shielding member 6, and reaches the silicon carbide single crystal substrate 5.
[0019]
Here, a temperature gradient is provided in the crucible 2 in the vertical direction of the figure, and the silicon carbide single crystal 7 grows on the silicon carbide single crystal substrate 5 that is relatively low in temperature. Generally, the growth amount and growth direction of a single crystal depend on the temperature near the growth surface, the temperature gradient, the amount of sublimation gas and the flow, but the main is the temperature gradient near the growth surface, with a large temperature gradient. As the degree of supersaturation of the sublimation gas increases, the amount of growth per unit time increases. Without the heat shielding member 6, the temperature gradient is only in the vertical direction and not in the radial direction. Therefore, the growth direction of the silicon carbide single crystal 7 is only in the direction perpendicular to the surface of the silicon carbide single crystal substrate 5 that is the seed crystal. It does not grow in the radial direction. On the other hand, when the heat shielding member 6 is provided, the temperature of the heat shielding member 6 rises due to heat radiation from the silicon carbide powder 4, and the upper surface and side surfaces of the heat shielding member 6 and the silicon carbide single crystal 7 that are at a high temperature. Since the temperature difference causes a temperature gradient in the radial direction, the silicon carbide single crystal 7 can grow not only in the vertical direction but also in the radial direction.
[0020]
However, in the case of the heat shielding member 9 having a constant inner diameter as in the conventional apparatus of FIG. 8, the distance between the silicon carbide single crystal 7 and the heat shielding member 9 decreases as the diameter grows in the radial direction. The slope changes. That is, when the distance is reduced, the thermal radiation from the heat shielding member 9 is more greatly received, so that the temperature of the side surface of the silicon carbide single crystal 7 is increased. As a result, the temperature gradient in the vicinity of the side surface of silicon carbide single crystal 7 is reduced, and the growth amount in the radial direction is reduced. On the other hand, the heat shielding member 6 of the present invention has a shape that expands in a tapered shape downward, and is configured such that the internal single crystal growth space expands in the radial direction as it goes downward. ing. Therefore, even if grown in the radial direction, the distance between the silicon carbide single crystal 7 and the heat shielding member 9 can be kept substantially constant, and the temperature gradient does not change, so that the growth can be continued in the radial direction.
[0021]
Here, the shape of the heat shielding member 6 is not limited to the shape of FIG. 1 described above, and the inner diameter increases downward, and the single crystal growth space formed in the heat shielding member 6 decreases in the radial direction toward the lower side. What is necessary is just to be comprised so that it may spread. In addition, as shown in FIG. 2 as a second embodiment of the present invention, the spreading angle θ of the heat shielding member 6 is preferably in the range of 5 ° to 80 °. If the spread angle of the heat shielding member 6 is less than 5 °, the spread angle of the grown crystal is small and the effect of increasing the diameter is small. On the other hand, if the angle exceeds 80 °, the spread angle does not increase and there is no further effect of increasing the diameter.
[0022]
As shown in FIG. 3 as the third embodiment of the present invention, the spread angle of the heat shielding member 6 can be changed in two stages. Here, the upper spread angle of the heat shield member 6 is θ1, the lower spread angle is θ2, and θ1 <θ2, so that the growth amount of the growing silicon carbide single crystal 7 increases in the radial direction downward. As described above, when it is desired to control the diameter of the growth crystal to be finally obtained, the spread angle of the growth crystal can be changed during the growth by changing the spread angle of the heat shielding member 6 stepwise. it can. Of course, the spread angle of the heat shielding member can be continuously changed. Another example of the shape of the heat shielding member 6 is shown below.
[0023]
As shown in FIG. 4 as the fourth embodiment of the present invention, the annular shape formed between the outer periphery of the end surface (lower end surface in the figure) of the heat shielding member 6 on the silicon carbide powder 4 side and the side wall of the crucible 2. The gas shielding member 8 may be arranged so as to close the opening. The gas shielding member 8 is made of, for example, graphite, and closes the opening between the heat shielding member 6 and the crucible 2 to prevent the sublimation gas of the silicon carbide powder 4 from reaching above. As a result, it is possible to prevent polycrystals from adhering to the outer wall of the heat shielding member 6 and the inner wall of the crucible 2 and increase the sublimation gas contributing to the single crystal growth, thereby increasing the single crystal growth rate. Efficient single crystal growth is possible.
[0024]
As shown in FIG. 5 as a fifth embodiment of the present invention, the heat shielding member 6 has a single crystal growth space in which the diameter is increased in a tapered shape downward and the outer diameter is the inner diameter of the crucible 2. A space between the crucible 2 and the side wall of the crucible 2 can be filled with the heat shielding member 6 (Claim 6). Even in this case, as in the fourth embodiment, it is possible to prevent the sublimation gas of the silicon carbide powder 4 from reaching the space between the heat shielding member 6 and the crucible 2 and attaching polycrystals. it can. Therefore, the sublimation gas contributing to the single crystal growth is increased, the single crystal growth rate is increased, and efficient single crystal growth is possible.
[0025]
As shown in FIG. 6 as a sixth embodiment of the present invention, the heat shielding member 6 and the crucible 2 may be integrated. In the present embodiment, the heat shielding member 6 is formed in a thick cylindrical shape having a single crystal growth space that expands downward in a tapered shape inside, and the outer diameter of which matches the outer diameter of the crucible 2. The crucible 2 is provided integrally with the crucible 2. Thus, by integrating the crucible 2 with the heat shielding member 6, it is possible to reduce the cost by reducing the number of parts, in addition to improving the single crystal growth efficiency by filling the space between the crucible 2.
[0026]
As shown in FIG. 7 as a seventh embodiment of the present invention, the heat shielding member 6 is a bottom wall portion that is parallel to the wide side wall portion 6a and the surface of the silicon carbide single crystal substrate 5 that is a seed crystal. It can also be set as the structure divided | segmented into the lower end surface part 6b. The side wall portion 6a and the lower end surface portion 6b are fixed to the inner wall of the crucible 2, respectively. Thus, by dividing the side wall portion 6a and the lower end surface portion 6b, the structure of the heat shielding member 6 can be simplified and the manufacturing cost can be reduced.
[0027]
As described above, according to the single crystal growth apparatus of the present invention, the growth rate in the direction perpendicular to the seed crystal surface and in the radial direction can be increased, and a long and large diameter silicon carbide single crystal is obtained. Obtainable. The single crystal manufacturing apparatus of the present invention is not limited to the growth of a silicon carbide single crystal, and can be applied to any single crystal that can be grown by a sublimation method, such as cadmium sulfide.
[Brief description of the drawings]
FIG. 1 is an overall cross-sectional view of a single crystal growth apparatus showing a first embodiment of the present invention.
FIG. 2 is an overall sectional view of a single crystal growth apparatus showing a second embodiment of the present invention.
FIG. 3 is an overall cross-sectional view of a single crystal growth apparatus showing a third embodiment of the present invention.
FIG. 4 is an overall cross-sectional view of a single crystal growth apparatus showing a fourth embodiment of the present invention.
FIG. 5 is an overall cross-sectional view of a single crystal growth apparatus showing a fifth embodiment of the present invention.
FIG. 6 is an overall cross-sectional view of a single crystal growth apparatus showing a sixth embodiment of the present invention.
FIG. 7 is an overall cross-sectional view of a single crystal growth apparatus showing a seventh embodiment of the present invention.
FIG. 8 is an overall sectional view of a conventional single crystal manufacturing apparatus.
[Explanation of symbols]
1 Single crystal growth equipment 2 Crucible (container)
3 Lid 3a Base 4 Silicon carbide powder (raw material powder)
5 Silicon carbide single crystal substrate (seed crystal)
6 Heat shielding member 7 Silicon carbide single crystal (single crystal)
8 Gas shielding member (member that closes the opening)
9 Heat shielding member

Claims (10)

容器内に、種結晶と原料粉末とを対向させて配置し、上記種結晶と上記原料粉末との間に熱遮蔽部材を設けて、上記原料粉末が加熱昇華する際の輻射熱から上記種結晶を保護しつつ、該種結晶上に単結晶を成長させる単結晶成長装置において、上記熱遮蔽部材を、上記種結晶をガス流通可能に取り囲んでその内部に単結晶が成長する空間を形成するとともに、該単結晶成長空間の径が上記種結晶側から上記原料粉末側へ向かうにつれて大きくなる形状とし、その広がりを持つ側壁部分と上記種結晶表面と平行である部分とを一体に設けたことを特徴とする単結晶成長装置。In the container, the seed crystal and the raw material powder are placed facing each other, a heat shielding member is provided between the seed crystal and the raw material powder, and the seed crystal is removed from the radiant heat generated when the raw material powder is heated and sublimated. In a single crystal growth apparatus that grows a single crystal on the seed crystal while protecting it, the heat shielding member surrounds the seed crystal in a gas flowable manner to form a space in which the single crystal grows, A shape in which the diameter of the single crystal growth space increases from the seed crystal side toward the raw material powder side, and a side wall portion having the spread and a portion parallel to the seed crystal surface are integrally provided. Single crystal growth equipment. 容器内に、種結晶と原料粉末とを対向させて配置し、上記種結晶と上記原料粉末との間に熱遮蔽部材を設けて、上記原料粉末が加熱昇華する際の輻射熱から上記種結晶を保護しつつ、該種結晶上に単結晶を成長させる単結晶成長装置において、上記熱遮蔽部材を、上記種結晶をガス流通可能に取り囲んでその内部に単結晶が成長する空間を形成するとともに、該単結晶成長空間の径が上記種結晶側から上記原料粉末側へ向かうにつれて大きくなる形状とし、その広がりを持つ側壁部分と上記種結晶表面と平行である部分とを分離して、上記種結晶表面と平行である部分にガス流通孔を設け、かつ上記ガス流通孔の位置を、上記熱遮蔽部材の側壁部分が上記ガス流通孔を通して上記原料粉末表面に対向可能な位置としたことを特徴とする単結晶成長装置。In the container, the seed crystal and the raw material powder are placed facing each other, a heat shielding member is provided between the seed crystal and the raw material powder, and the seed crystal is removed from the radiant heat generated when the raw material powder is heated and sublimated. In a single crystal growth apparatus that grows a single crystal on the seed crystal while protecting it, the heat shielding member surrounds the seed crystal in a gas flowable manner to form a space in which the single crystal grows, A shape in which the diameter of the single crystal growth space increases from the seed crystal side toward the raw material powder side, and a side wall portion having the spread and a portion parallel to the seed crystal surface are separated, and the seed crystal is separated. A gas flow hole is provided in a portion parallel to the surface, and the position of the gas flow hole is a position where a side wall portion of the heat shielding member can face the raw material powder surface through the gas flow hole. Single crystal Length devices. 上記熱遮蔽部材の広がり角度が、5°から80°である請求項1または2に記載の単結晶成長装置。 The single crystal growth apparatus according to claim 1 or 2 , wherein a spread angle of the heat shielding member is 5 ° to 80 ° . 上記熱遮蔽部材の広がり角度が、2段階に変化している請求項1または2に記載の単結晶成長装置。 The single crystal growth apparatus according to claim 1 or 2 , wherein a spread angle of the heat shielding member is changed in two stages . 上記熱遮蔽部材の広がり角度が、連続的に変化している請求項1または2に記載の単結晶成長装置。 The single crystal growth apparatus according to claim 1 or 2 , wherein a spread angle of the heat shielding member continuously changes . 上記熱遮蔽部材の上記原料側の端部外周に、上記容器の側壁との間の開口を閉鎖する部材を配置した請求項1または2に記載の単結晶成長装置。 The single-crystal growth apparatus of Claim 1 or 2 which has arrange | positioned the member which closes the opening between the side walls of the said container in the outer periphery of the edge part by the side of the said raw material of the said heat shielding member . 上記熱遮蔽部材と上記容器の側壁との間の空間が埋まっている請求項1または2に記載の単結晶成長装置。 The single crystal growth apparatus according to claim 1, wherein a space between the heat shielding member and the side wall of the container is filled . 上記熱遮蔽部材と上記容器とが一体構造である請求項7に記載の単結晶成長装置。 The single crystal growth apparatus according to claim 7 , wherein the heat shielding member and the container have an integral structure . 上記熱遮蔽部材を黒鉛で構成する請求項1ないし8に記載の単結晶成長装置。  9. The single crystal growth apparatus according to claim 1, wherein the heat shielding member is made of graphite. 上記単結晶が炭化珪素単結晶である請求項1ないし9に記載の単結晶成長装置。  10. The single crystal growth apparatus according to claim 1, wherein the single crystal is a silicon carbide single crystal.
JP22933398A 1998-07-30 1998-07-30 Single crystal growth equipment Expired - Lifetime JP3843615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22933398A JP3843615B2 (en) 1998-07-30 1998-07-30 Single crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22933398A JP3843615B2 (en) 1998-07-30 1998-07-30 Single crystal growth equipment

Publications (2)

Publication Number Publication Date
JP2000044383A JP2000044383A (en) 2000-02-15
JP3843615B2 true JP3843615B2 (en) 2006-11-08

Family

ID=16890522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22933398A Expired - Lifetime JP3843615B2 (en) 1998-07-30 1998-07-30 Single crystal growth equipment

Country Status (1)

Country Link
JP (1) JP3843615B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012500A (en) * 2000-06-21 2002-01-15 Showa Denko Kk Method of and device for producing silicon carbide single crystal, and silicon carbide single crystal
KR100766720B1 (en) 2006-06-07 2007-10-11 구갑렬 Focusing tube of saw type
JP4962186B2 (en) * 2007-07-20 2012-06-27 株式会社デンソー Method and apparatus for producing silicon carbide single crystal
JP5162318B2 (en) * 2008-05-01 2013-03-13 株式会社ブリヂストン Single crystal growth apparatus and single crystal growth method
JP4947383B2 (en) * 2008-05-26 2012-06-06 株式会社デンソー Single crystal growth method and growth apparatus
JP5432573B2 (en) * 2009-04-16 2014-03-05 株式会社ブリヂストン Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
KR102163489B1 (en) * 2013-12-05 2020-10-07 재단법인 포항산업과학연구원 Growth device for single crystal
JP7113658B2 (en) 2018-05-11 2022-08-05 昭和電工株式会社 Shielding member and single crystal growth apparatus provided with the same
JP7268299B2 (en) * 2018-08-08 2023-05-08 株式会社レゾナック Shielding member and single crystal growth apparatus
CN113622030B (en) * 2021-08-18 2022-08-26 福建北电新材料科技有限公司 Method for preparing silicon carbide single crystal

Also Published As

Publication number Publication date
JP2000044383A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
JP3961750B2 (en) Single crystal growth apparatus and growth method
US6786969B2 (en) Method and apparatus for producing single crystal, substrate for growing single crystal and method for heating single crystal
JP4288792B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
US6110279A (en) Method of producing single-crystal silicon carbide
JP3843615B2 (en) Single crystal growth equipment
JP3419144B2 (en) Single crystal growth equipment
JP5012655B2 (en) Single crystal growth equipment
US6451112B1 (en) Method and apparatus for fabricating high quality single crystal
JP2000264795A (en) Apparatus and method for producing silicon carbide single crystal
JPH11268990A (en) Production of single crystal and production device
JP4459211B2 (en) Single crystal growth apparatus and growth method
JP4052678B2 (en) Large silicon carbide single crystal growth equipment
CN110453285A (en) Crucible cover and crucible
JP4102876B2 (en) Single crystal growth equipment
JPH09263497A (en) Production of silicon carbide single crystal
JP4450118B2 (en) Method for producing silicon carbide single crystal
JP5397503B2 (en) Single crystal growth equipment
JP5516167B2 (en) Silicon carbide single crystal manufacturing equipment
JPH03295898A (en) Method and device for growing silicon carbide single crystal
JP4110611B2 (en) Single crystal manufacturing equipment
JP6829767B2 (en) Manufacturing method and manufacturing equipment for SiC raw materials for SiC crystal growth
JP4509258B2 (en) Single crystal growth apparatus and manufacturing method
JP3717562B2 (en) Single crystal manufacturing method
JP2002012500A (en) Method of and device for producing silicon carbide single crystal, and silicon carbide single crystal
RU2324019C2 (en) Crucible for silicon carbide epitaxy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051019

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term