JP2000044383A - Growth unit for single crystal - Google Patents

Growth unit for single crystal

Info

Publication number
JP2000044383A
JP2000044383A JP10229333A JP22933398A JP2000044383A JP 2000044383 A JP2000044383 A JP 2000044383A JP 10229333 A JP10229333 A JP 10229333A JP 22933398 A JP22933398 A JP 22933398A JP 2000044383 A JP2000044383 A JP 2000044383A
Authority
JP
Japan
Prior art keywords
single crystal
shielding member
silicon carbide
heat shielding
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10229333A
Other languages
Japanese (ja)
Other versions
JP3843615B2 (en
Inventor
Yasuo Kito
泰男 木藤
Fusao Hirose
富佐雄 廣瀬
Eiji Kitaoka
英二 北岡
Naohiro Sugiyama
尚宏 杉山
Atsuhito Okamoto
篤人 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP22933398A priority Critical patent/JP3843615B2/en
Publication of JP2000044383A publication Critical patent/JP2000044383A/en
Application granted granted Critical
Publication of JP3843615B2 publication Critical patent/JP3843615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a growth unit designed to afford a continuous and large- diameter single crystal through raising the radial growth rate of the single crystal. SOLUTION: This growth unit has such a scheme that, a silicon carbide single crystal substrate 5 serving as a seed crystal is placed opposite to silicon carbide powder 4 as feedstock in a crucible 2; between the substrate 5 and the silicon carbide powder 4, a heat-shielding member 6 enclosing the substrate 5 so that a gas is passable under the substrate 5 and defining a space inside where a single crystal grows is set up to ensure a silicon carbide single crystal 7 to be grown while shielding the substrate 5 from the radiant heat emitted from the silicon carbide powder 4; wherein the heat-shielding member 6 is tapered so that its diameter becomes larger downward, that is, the diameter of the above-mentioned space becomes larger toward the side of the silicon carbide powder 4, thereby ensuring the radial growth of the single crystal to be greater through suppressing the change in the temperature gradient in the vicinity of the side face of the silicon carbide single crystal 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化珪素等の単結
晶を成長させるために使用される単結晶成長装置に関す
るものである。
The present invention relates to a single crystal growing apparatus used for growing a single crystal such as silicon carbide.

【0002】[0002]

【従来の技術】炭化珪素単結晶は、優れた電気的・機械
的特性を有し、半導体装置用の基板材料として有用であ
る。炭化珪素単結晶を製造する方法としては、昇華法が
一般的で、黒鉛るつぼ内に種結晶と原料粉末とを対向し
て配置し、原料粉末を加熱、昇華させたガスを種結晶上
に導入する。るつぼ内は、種結晶が原料粉末より低温と
なるように温度差が設けてあり、より低温の種結晶上で
昇華ガスを再結晶化させて単結晶を成長させている。
2. Description of the Related Art Silicon carbide single crystals have excellent electrical and mechanical properties and are useful as substrate materials for semiconductor devices. As a method for producing a silicon carbide single crystal, a sublimation method is generally used. A seed crystal and a raw material powder are arranged opposite to each other in a graphite crucible, and the raw material powder is heated and a sublimated gas is introduced onto the seed crystal. I do. A temperature difference is provided in the crucible so that the seed crystal is lower in temperature than the raw material powder, and the sublimation gas is recrystallized on the lower temperature seed crystal to grow a single crystal.

【0003】昇華法による単結晶成長を効率よく行うに
は、るつぼ内の温度や、雰囲気圧力、昇華ガスの流れ等
を制御することが有効で、従来より種々の装置が提案さ
れている。例えば、特開平8−295595号公報に
は、種結晶の温度を低く保持するために、原料粉末と種
結晶の間に、熱遮蔽部材を設けた装置が開示されてい
る。この構成を図8に示すと、単結晶成長装置1のるつ
ぼ2内には、底部に炭化珪素原料粉末4が充填され、こ
れに対向する台座3aに、種結晶となる炭化珪素単結晶
基板5が接合されている。原料粉末4と炭化珪素単結晶
基板5の間には、炭化珪素単結晶基板5の下方を取り囲
むように、有底円筒状の熱遮蔽部材9が配設されて、原
料粉末4の輻射熱から炭化珪素単結晶基板5を保護して
いる。このように、熱遮蔽部材9を設けることで、炭化
珪素単結晶基板5の温度上昇を抑制し、温度差を大きく
して、効率よく炭化珪素単結晶7を成長させることが可
能である。
In order to efficiently grow a single crystal by the sublimation method, it is effective to control the temperature, the atmospheric pressure, the flow of the sublimation gas, and the like in the crucible, and various apparatuses have been conventionally proposed. For example, JP-A-8-295595 discloses an apparatus in which a heat shielding member is provided between a raw material powder and a seed crystal in order to keep the temperature of the seed crystal low. Referring to FIG. 8, the crucible 2 of the single crystal growing apparatus 1 is filled with a silicon carbide raw material powder 4 at the bottom, and a silicon carbide single crystal substrate 5 serving as a seed crystal is placed on a pedestal 3a opposed thereto. Are joined. Between the raw material powder 4 and the silicon carbide single crystal substrate 5, a bottomed cylindrical heat shielding member 9 is arranged so as to surround the lower part of the silicon carbide single crystal substrate 5, and carbonized by radiant heat of the raw material powder 4. The silicon single crystal substrate 5 is protected. By providing heat shielding member 9 in this manner, it is possible to suppress a rise in temperature of silicon carbide single crystal substrate 5, increase the temperature difference, and grow silicon carbide single crystal 7 efficiently.

【0004】また、特開平8−325099号公報に
は、原料粉末が収容される容器体と、種結晶が配置され
る蓋体の間に、内径が上方へ向けて徐々に小さくなる集
中管を介設した装置が開示され、昇華ガスを絞って種結
晶上に集中して導くことで、効率よい単結晶の成長を可
能にしている。
Japanese Patent Laid-Open Publication No. Hei 8-325099 discloses a concentrated pipe having an inner diameter gradually decreasing upward between a container in which raw material powder is stored and a lid in which seed crystals are arranged. An interposed device is disclosed, and a sublimation gas is concentrated and guided on a seed crystal, thereby enabling efficient growth of a single crystal.

【0005】[0005]

【発明が解決しようとする課題】ところで、炭化珪素基
板を用いた半導体装置の量産効果を高めるために、より
口径の大きい炭化珪素単結晶基板が必要とされている。
しかしながら、上記従来の方法では、種結晶の表面と垂
直な方向の成長速度を大きくして、長尺の炭化珪素単結
晶を得ることはできるが、口径を拡大する効果は小さ
い。このため、大口径の単結晶を得るには、成長させた
単結晶から切り出した種結晶上にさらに単結晶を成長さ
せることを繰り返し、徐々に大口径化していく必要があ
った。
By the way, in order to enhance the effect of mass production of semiconductor devices using a silicon carbide substrate, a silicon carbide single crystal substrate having a larger diameter is required.
However, in the above-described conventional method, a long silicon carbide single crystal can be obtained by increasing the growth rate in the direction perpendicular to the surface of the seed crystal, but the effect of increasing the diameter is small. For this reason, in order to obtain a single crystal having a large diameter, it was necessary to repeatedly grow a single crystal on a seed crystal cut out from the grown single crystal and gradually increase the diameter.

【0006】本発明の目的は、成長する単結晶の径方向
の成長速度を大きくして、長尺かつ大口径の単結晶を得
ることが可能な単結晶成長装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a single crystal growth apparatus capable of increasing the radial growth rate of a growing single crystal to obtain a long single crystal having a large diameter.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の単結晶成長装置は、容器内に、種結晶と原
料粉末とを対向させて配置し、上記種結晶と上記原料粉
末との間に熱遮蔽部材を設けて、上記原料粉末が加熱昇
華する際の輻射熱から上記種結晶を保護しつつ、該種結
晶上に単結晶を成長させるようになしてある。上記熱遮
蔽部材は、上記種結晶をガス流通可能に取り囲んでその
内部に単結晶が成長する空間を形成しており、該単結晶
成長空間の径が上記種結晶側から上記原料粉末側へ向か
うにつれて大きくなる形状としてある(請求項1)。
In order to solve the above-mentioned problems, a single crystal growing apparatus of the present invention comprises a seed crystal and a raw material powder arranged in a vessel so as to face each other. And a heat shielding member is provided between the raw material powder and the single crystal to grow on the seed crystal while protecting the seed crystal from radiant heat when the raw material powder is heated and sublimated. The heat shielding member surrounds the seed crystal in a gas-flowable manner to form a space in which a single crystal grows, and the diameter of the single crystal growth space is from the seed crystal side toward the raw material powder side. (Claim 1).

【0008】上記熱遮蔽部材を、上記単結晶成長空間を
取り囲むように設置し、上記熱遮蔽部材と上記種結晶と
の間に温度差を設けると、相対的に低温となる上記種結
晶上に単結晶が成長する。この時、上記種結晶表面と垂
直な方向のみならず、径方向にも温度差が生じるので、
径方向へも単結晶が成長する。しかも、本発明の上記熱
遮蔽部材は、上記単結晶成長空間の径が上記種結晶側か
ら上記原料粉末側へ向かうにつれて大きくなるような形
状であるので、単結晶が径方向に成長しても、上記熱遮
蔽部材と単結晶との間に十分な距離が保たれ、径方向の
成長速度が小さくなることがない。よって、垂直方向お
よび径方向の成長速度を大きくすることができ、長尺
で、しかも口径の大きい単結晶を得ることができる。
When the heat shielding member is installed so as to surround the single crystal growth space, and a temperature difference is provided between the heat shielding member and the seed crystal, the temperature of the seed crystal becomes relatively low. A single crystal grows. At this time, a temperature difference occurs not only in the direction perpendicular to the seed crystal surface but also in the radial direction,
Single crystals also grow in the radial direction. Moreover, since the heat shielding member of the present invention has a shape in which the diameter of the single crystal growth space increases from the seed crystal side toward the raw material powder side, even if the single crystal grows in the radial direction. A sufficient distance is maintained between the heat shielding member and the single crystal, and the radial growth rate does not decrease. Therefore, the growth rate in the vertical and radial directions can be increased, and a long single crystal having a large diameter can be obtained.

【0009】好ましくは、上記熱遮蔽部材の広がり角度
を5°から80°の範囲とする(請求項2)。熱遮蔽部
材の広がり角度が5°に満たないと成長結晶の広がり角
度が小さく、大口径化の効果が少ない。また、80°を
越えると広がり角度が増加せず、それ以上の大口径化の
効果がない。
Preferably, the spread angle of the heat shielding member is in a range of 5 ° to 80 °. If the spread angle of the heat shielding member is less than 5 °, the spread angle of the grown crystal is small and the effect of increasing the diameter is small. On the other hand, if it exceeds 80 °, the spread angle does not increase, and there is no further effect of increasing the aperture.

【0010】上記熱遮蔽部材の広がり角度を、2段階に
変化させることもできる(請求項3)。最終的に得たい
成長結晶の口径を制御したい場合など、成長結晶の広が
り角度を成長の途中で変えたいときには、上記熱遮蔽部
材の広がり角度を変えればよい。この上記熱遮蔽部材の
広がり角度は、連続的に変化させてもよい(請求項
4)。
The spread angle of the heat shielding member can be changed in two stages (claim 3). When it is desired to change the spread angle of the grown crystal during the growth, for example, when controlling the diameter of the grown crystal finally obtained, the spread angle of the heat shielding member may be changed. The spread angle of the heat shielding member may be changed continuously (claim 4).

【0011】上記熱遮蔽部材の上記原料側の端部外周
に、上記容器の側壁との間の開口を閉鎖する部材を配置
した構成とすることもできる(請求項5)。これによ
り、上記熱遮蔽部材と上記容器の側壁との間に上記原料
粉末が昇華したガスが到達し、上記熱遮蔽部材または上
記容器の側壁に多結晶が付着するのを防止できる。これ
ら部位への多結晶付着を防止することで、単結晶成長に
寄与する昇華ガスが増加し、単結晶成長速度が増加して
成長効率が上がる。
[0011] It is also possible to adopt a structure in which a member for closing an opening between the heat shielding member and the side wall of the container is arranged on the outer periphery of the raw material side end (claim 5). Thereby, the gas in which the raw material powder has sublimated reaches between the heat shielding member and the side wall of the container, and it is possible to prevent the polycrystal from adhering to the heat shielding member or the side wall of the container. By preventing the polycrystal from adhering to these sites, the amount of sublimation gas contributing to single crystal growth increases, the single crystal growth rate increases, and the growth efficiency increases.

【0012】上記熱遮蔽部材と上記容器の側壁との間の
空間を埋めることもできる(請求項6)。このようにし
ても、上記請求項5と同様に、上記熱遮蔽部材または上
記容器の側壁に上記原料粉末の昇華ガスが到達して多結
晶が付着するのを防止でき、単結晶成長速度を増加して
成長効率を上げることができる。
The space between the heat shielding member and the side wall of the container can be filled. Also in this case, the sublimation gas of the raw material powder can be prevented from reaching the heat shielding member or the side wall of the container and the polycrystal can be prevented from adhering to the side wall of the container, thereby increasing the single crystal growth rate. Growth efficiency.

【0013】上記請求項6の構成において、上記熱遮蔽
部材と上記容器とを一体構造としてもよい(請求項
7)。上記熱遮蔽部材と上記容器とを一体化することに
より、部品点数を減らし、コストを低減できる。
[0013] In the structure of the sixth aspect, the heat shielding member and the container may have an integral structure. By integrating the heat shielding member and the container, the number of parts can be reduced, and the cost can be reduced.

【0014】上記熱遮蔽部材は、広がりを持つ側壁部分
と上記種結晶表面と平行である底壁部分とが分離されて
いる構成とすることもできる(請求項8)。上記熱遮蔽
部材が側壁部分と底壁部分とに分割されていることで、
構造が簡便化され製作コストを低くできる。
[0014] The heat shielding member may have a configuration in which a widened side wall portion and a bottom wall portion parallel to the seed crystal surface are separated. The heat shielding member is divided into a side wall portion and a bottom wall portion,
The structure is simplified and the manufacturing cost can be reduced.

【0015】上記熱遮蔽部材は、例えば、黒鉛で構成さ
れ(請求項9)、断熱性、耐熱性に優れるので好まし
い。また、本発明の単結晶成長装置で製造する上記単結
晶としては、具体的には、炭化珪素単結晶が挙げられ
(請求項10)、大口径化による利点が大きい。
The heat shielding member is preferably made of, for example, graphite (claim 9) and is excellent in heat insulation and heat resistance. The single crystal produced by the single crystal growth apparatus of the present invention is specifically a silicon carbide single crystal (Claim 10), which has a large advantage due to a large diameter.

【0016】[0016]

【発明の実施の形態】図1に本発明の第1の実施の形態
を示す。図において、単結晶成長装置1は、単結晶成長
用の容器となる有底円筒状の黒鉛製るつぼ2と、その上
端開口を閉鎖する黒鉛製蓋体3を有している。るつぼ2
の底部には、原料粉末としての炭化珪素粉末4が充填し
てあり、蓋体3の下面中央部を突出して形成した台座3
aには、種結晶となる炭化珪素単結晶基板5が接合して
ある。この炭化珪素単結晶基板5は、例えば、アチソン
法、昇華法等により成長させた炭化珪素単結晶を、口径
10mm〜100mm程度のウエハー状に加工したもの
で、台座3aに接着剤を用いて貼付けられる。
FIG. 1 shows a first embodiment of the present invention. In the figure, a single crystal growth apparatus 1 has a bottomed cylindrical graphite crucible 2 serving as a container for single crystal growth, and a graphite lid 3 closing an upper end opening. Crucible 2
Is filled with silicon carbide powder 4 as a raw material powder, and pedestal 3 is formed by projecting a lower surface center portion of lid 3.
The silicon carbide single crystal substrate 5 serving as a seed crystal is joined to a. The silicon carbide single crystal substrate 5 is formed, for example, by processing a silicon carbide single crystal grown by Acheson method, sublimation method or the like into a wafer having a diameter of about 10 mm to 100 mm, and affixing the base 3a with an adhesive. Can be

【0017】炭化珪素単結晶基板5と炭化珪素粉末4の
間には、炭化珪素単結晶基板5の外周囲、および炭化珪
素単結晶基板5の下方の空間を取り囲むように、熱遮蔽
部材6が配設してある。熱遮蔽部材6は、下方に向けて
テーパ状に拡径する中空の容器体よりなり、内部に単結
晶が成長するための十分な空間を形成するとともに、下
方ほど径が大きくなるようにして、単結晶の径方向の成
長を妨げないようにしている。熱遮蔽部材6は、断熱性
に優れ、またるつぼ2内が高温となることから、耐熱性
を有する材料、例えば、黒鉛で構成される。熱遮蔽部材
6の上端面には、炭化珪素単結晶基板5の外径よりやや
大径の開口61が形成されて、該開口61の内周が、炭
化珪素単結晶基板5の外周と所定間隔をおいて対向する
ように配置されている。熱遮蔽部材6の下端面には、複
数のガス流通孔62が形成され、このガス流通孔62を
通って、炭化珪素粉末4の昇華ガスが炭化珪素単結晶基
板5に到達できるようにしてある。なお、熱遮蔽部材6
は、上端面外周に設けたフランジ部61にて、るつぼ2
の内壁に固定されている。
A heat shielding member 6 is provided between silicon carbide single crystal substrate 5 and silicon carbide powder 4 so as to surround the outer periphery of silicon carbide single crystal substrate 5 and the space below silicon carbide single crystal substrate 5. It is arranged. The heat shielding member 6 is formed of a hollow container that expands in a tapered shape downward, and forms a sufficient space for growing a single crystal therein, and has a larger diameter toward the lower side. The growth of the single crystal in the radial direction is not hindered. The heat shielding member 6 is made of a material having excellent heat insulation properties, for example, graphite since the inside of the crucible 2 has a high temperature because of its high heat insulation. An opening 61 having a diameter slightly larger than the outer diameter of silicon carbide single crystal substrate 5 is formed on the upper end surface of heat shielding member 6, and the inner periphery of opening 61 is spaced apart from the outer periphery of silicon carbide single crystal substrate 5 by a predetermined distance. Are arranged to face each other. A plurality of gas flow holes 62 are formed in the lower end surface of heat shield member 6, and the sublimation gas of silicon carbide powder 4 can reach silicon carbide single crystal substrate 5 through gas flow holes 62. . The heat shielding member 6
The crucible 2 is formed by a flange 61 provided on the outer periphery of the upper end surface.
Is fixed to the inner wall.

【0018】上記装置を用いて単結晶を成長させる場合
には、るつぼ2内に炭化珪素粉末4を充填するととも
に、台座3aに炭化珪素単結晶基板5を接合して、蓋体
3をるつぼ2に装着する。次いで、るつぼ2内を排気し
て、アルゴンガス等の不活性ガスを導入し、雰囲気圧力
が0.1〜数Torr程度となるように調整する。さら
に、るつぼ2を図略の加熱装置により所定温度に加熱し
て、炭化珪素粉末4を昇華させ、昇華ガスを発生させ
る。この時、加熱装置に導入する電力を調整して、原料
粉末4の温度を約2000〜2500℃の範囲とし、炭
化珪素単結晶基板5が炭化珪素粉末4より低い温度にな
るように、るつぼ2内に温度勾配を設ける。発生する原
料の昇華ガスは、熱遮蔽部材6のガス流通孔62を通っ
て、熱遮蔽部材6内の単結晶成長空間内に入り、炭化珪
素単結晶基板5に到達する。
When a single crystal is grown using the above apparatus, the crucible 2 is filled with the silicon carbide powder 4 and the silicon carbide single crystal substrate 5 is joined to the pedestal 3a. Attach to Next, the inside of the crucible 2 is evacuated, an inert gas such as an argon gas is introduced, and the atmosphere pressure is adjusted to be about 0.1 to several Torr. Further, crucible 2 is heated to a predetermined temperature by a heating device (not shown) to sublime silicon carbide powder 4 and generate a sublimation gas. At this time, the power introduced into the heating device is adjusted so that the temperature of raw material powder 4 is in the range of about 2000 to 2500 ° C., and crucible 2 is set so that silicon carbide single crystal substrate 5 has a lower temperature than silicon carbide powder 4. A temperature gradient is provided inside. The generated sublimation gas as a raw material passes through gas flow holes 62 of heat shield member 6, enters the single crystal growth space in heat shield member 6, and reaches silicon carbide single crystal substrate 5.

【0019】ここで、るつぼ2内には、図の上下方向に
温度勾配が設けられており、相対的に低温となる炭化珪
素単結晶基板5上に炭化珪素単結晶7が成長する。一般
に、単結晶の成長量、成長方向は、成長面近傍の温度、
温度勾配、昇華ガスの量および流れに依存するが、主と
なるのは、成長面近傍の温度勾配で、温度勾配が大きい
ほど昇華ガスの過飽和度が大きくなり、単位時間当たり
の成長量が大きくなる。熱遮蔽部材6がない場合、温度
勾配は上下方向のみで径方向にはないため、炭化珪素単
結晶7の成長方向は、種結晶である炭化珪素単結晶基板
5の表面と垂直な方向のみで径方向には成長しない。こ
れに対し、熱遮蔽部材6を設けると、熱遮蔽部材6が炭
化珪素粉末4からの熱輻射で温度上昇し、高温となった
熱遮蔽部材6の上面および側面と炭化珪素単結晶7との
温度差により、径方向にも温度勾配が生じるため、炭化
珪素単結晶7は、垂直方向のみならず径方向にも成長す
ることができる。
Here, a temperature gradient is provided in crucible 2 in the vertical direction in the figure, and silicon carbide single crystal 7 grows on silicon carbide single crystal substrate 5 at a relatively low temperature. In general, the growth amount and growth direction of a single crystal depend on the temperature near the growth surface,
Although it depends on the temperature gradient and the amount and flow of the sublimation gas, the main one is the temperature gradient near the growth surface.The greater the temperature gradient, the higher the degree of supersaturation of the sublimation gas, and the larger the growth amount per unit time. Become. When the heat shielding member 6 is not provided, the temperature gradient is only in the vertical direction and not in the radial direction. Therefore, the growth direction of the silicon carbide single crystal 7 is only in the direction perpendicular to the surface of the silicon carbide single crystal substrate 5 as a seed crystal. Does not grow in the radial direction. On the other hand, when heat shielding member 6 is provided, temperature of heat shielding member 6 rises due to heat radiation from silicon carbide powder 4, and the upper surface and side surfaces of heat shielding member 6 and the silicon carbide single crystal 7 at a high temperature become higher. Since a temperature gradient occurs in the radial direction due to the temperature difference, silicon carbide single crystal 7 can grow not only in the vertical direction but also in the radial direction.

【0020】ただし、図8の従来の装置のように、内径
が一定の熱遮蔽部材9の場合には、径方向に成長するに
つれて、炭化珪素単結晶7と熱遮蔽部材9との距離が小
さくなり、温度勾配が変化する。つまり、距離が小さく
なると、熱遮蔽部材9からの熱輻射をより大きく受ける
ことになるため、炭化珪素単結晶7の側面の温度が高く
なる。その結果、炭化珪素単結晶7の側面近傍の温度勾
配が小さくなって、径方向の成長量が小さくなる。これ
に対して、本発明の熱遮蔽部材6は、下方に向けてテー
パ状に拡径する形状を有しており、内部の単結晶成長空
間が下方ほど径方向に広がりを有するように構成されて
いる。従って、径方向に成長しても、炭化珪素単結晶7
と熱遮蔽部材9との距離をほぼ一定に保つことが可能
で、温度勾配も変化しないので、径方向に成長を続ける
ことができる。
However, in the case of the heat shield member 9 having a constant inner diameter as in the conventional apparatus shown in FIG. 8, the distance between the silicon carbide single crystal 7 and the heat shield member 9 becomes smaller as it grows in the radial direction. And the temperature gradient changes. In other words, when the distance is reduced, heat radiation from heat shielding member 9 is more greatly received, so that the temperature of the side surface of silicon carbide single crystal 7 increases. As a result, the temperature gradient near the side surface of silicon carbide single crystal 7 is reduced, and the growth amount in the radial direction is reduced. On the other hand, the heat shielding member 6 of the present invention has a shape that expands in a tapered shape downward, and is configured such that the inner single crystal growth space expands radially downward. ing. Therefore, even if grown in the radial direction, silicon carbide single crystal 7
The distance between the heat shield member 9 and the heat shield member 9 can be kept substantially constant, and the temperature gradient does not change, so that the growth can be continued in the radial direction.

【0021】ここで、熱遮蔽部材6の形状は、上記図1
の形状に限るものではなく、内径が下方に向けて大きく
なり、熱遮蔽部材6内に形成される単結晶成長空間が下
方ほど径方向に広がりを有するように構成されていれば
よい。また、図2に本発明の第2の実施の形態として示
すように、好ましくは、熱遮蔽部材6の広がり角度θを
5°から80°の範囲とするのがよい。熱遮蔽部材6の
広がり角度が5°に満たないと成長結晶の広がり角度が
小さく、大口径化の効果が少ない。また、80°を越え
ると広がり角度が増加せず、それ以上の大口径化の効果
がない。
Here, the shape of the heat shielding member 6 is the same as that shown in FIG.
The shape is not limited to this, and it is sufficient that the inner diameter increases downward, and the single crystal growth space formed in the heat shielding member 6 expands radially downward. Further, as shown in FIG. 2 as a second embodiment of the present invention, the spread angle θ of the heat shielding member 6 is preferably set in a range of 5 ° to 80 °. If the spread angle of the heat shielding member 6 is less than 5 °, the spread angle of the grown crystal is small and the effect of increasing the diameter is small. On the other hand, if it exceeds 80 °, the spread angle does not increase, and there is no further effect of increasing the aperture.

【0022】図3に本発明の第3の実施の形態として示
すように、熱遮蔽部材6の広がり角度を、2段階に変化
させることもできる。ここでは、熱遮蔽部材6の上部の
広がり角度をθ1 、下部の広がり角度をθ2 とし、θ1
<θ2 として、成長する炭化珪素単結晶7が下方ほど径
方向の成長量が大きくなるようにする。このように、最
終的に得たい成長結晶の口径を制御したい場合などに
は、熱遮蔽部材6の広がり角度を段階的に変化させるこ
とで、成長結晶の広がり角度を成長の途中で変えること
ができる。なお、この上記熱遮蔽部材の広がり角度を、
連続的に変化させることももちろんできる。下に熱遮蔽
部材6の形状の他の例について示す。
As shown in FIG. 3 as a third embodiment of the present invention, the spread angle of the heat shielding member 6 can be changed in two stages. Here, the spread angle of the upper portion of the heat shielding member 6 is θ1, and the spread angle of the lower portion is θ2.
<Θ2 is set so that the growth amount in the radial direction increases as the silicon carbide single crystal 7 grows downward. As described above, when it is desired to control the diameter of the finally grown crystal, for example, by changing the spread angle of the heat shielding member 6 stepwise, the spread angle of the grown crystal can be changed during the growth. it can. The spread angle of the heat shielding member is
Of course, it can be changed continuously. Another example of the shape of the heat shielding member 6 is shown below.

【0023】図4に本発明の第4の実施の形態として示
すように、熱遮蔽部材6の炭化珪素粉末4側の端面(図
の下端面)外周に、るつぼ2の側壁との間に形成される
環状の開口を閉鎖するように、ガス遮蔽部材8を配置し
た構成とすることもできる(請求項5)。ガス遮蔽部材
8は、例えば、黒鉛で構成され、熱遮蔽部材6とるつぼ
2との間の開口を閉鎖して、これより上方に炭化珪素粉
末4の昇華ガスが到達するのを防止する。これにより、
熱遮蔽部材6の外側壁およびるつぼ2の内側壁に多結晶
が付着するのを防止することができ、単結晶成長に寄与
する昇華ガスを増加させるので、単結晶成長速度が増加
し、効率よい単結晶成長が可能である。
As shown in FIG. 4 as a fourth embodiment of the present invention, the heat shielding member 6 is formed between the side wall of the crucible 2 and the outer periphery of the end face (lower end face in the figure) on the silicon carbide powder 4 side. A configuration in which the gas shielding member 8 is arranged so as to close the formed annular opening may be adopted (claim 5). Gas shielding member 8 is made of, for example, graphite, and closes an opening between heat shielding member 6 and crucible 2 to prevent the sublimation gas of silicon carbide powder 4 from reaching above. This allows
Polycrystal can be prevented from adhering to the outer wall of the heat shielding member 6 and the inner wall of the crucible 2 and the sublimation gas contributing to the growth of the single crystal is increased, so that the single crystal growth rate is increased and the efficiency is improved. Single crystal growth is possible.

【0024】図5に本発明の第5の実施の形態として示
すように、熱遮蔽部材6を、内部に下方に向けてテーパ
状に拡径する単結晶成長空間を有し、外径がるつぼ2の
内径と一致する厚肉円筒状に形成して、熱遮蔽部材6に
よりるつぼ2の側壁との間の空間が埋まるようにするこ
ともできる(請求項6)。このようにしても、上記第4
の実施の形態同様、熱遮蔽部材6とるつぼ2との間の空
間に炭化珪素粉末4の昇華ガスが到達して多結晶が付着
するのを防止することができる。よって、単結晶成長に
寄与する昇華ガスが増加して、単結晶成長速度が増加
し、効率よい単結晶成長が可能である。
As shown in FIG. 5 as a fifth embodiment of the present invention, the heat shielding member 6 has a crucible having a single crystal growth space in which the diameter of the single crystal growth is tapered downward. The heat shield member 6 may be formed in a thick cylindrical shape that matches the inner diameter of the crucible 2 so as to fill the space between the crucible 2 and the side wall. Even in this case, the fourth
As in the first embodiment, it is possible to prevent the sublimation gas of silicon carbide powder 4 from reaching the space between heat shielding member 6 and crucible 2 and adhering the polycrystal. Therefore, the amount of sublimation gas contributing to single crystal growth is increased, the single crystal growth rate is increased, and efficient single crystal growth is possible.

【0025】図6に本発明の第6の実施の形態として示
すように、熱遮蔽部材6とるつぼ2とを一体構造として
もよい。本実施の形態では、熱遮蔽部材6を、内部に下
方に向けてテーパ状に拡径する単結晶成長空間を有し、
外径がるつぼ2の外径と一致する厚肉円筒状に形成し
て、るつぼ2の上部にこれと一体に設ける。このよう
に、熱遮蔽部材6とるつぼ2を一体化することにより、
るつぼ2との間を埋めることによる単結晶成長効率の向
上に加えて、部品点数の削減によるコストの低減が可能
である。
As shown in FIG. 6 as a sixth embodiment of the present invention, the heat shielding member 6 and the crucible 2 may be integrated. In the present embodiment, the heat shield member 6 has a single crystal growth space in which the diameter is increased in a tapered shape downward,
It is formed in a thick cylindrical shape whose outer diameter matches the outer diameter of the crucible 2 and is provided integrally with the upper part of the crucible 2. Thus, by integrating the heat shielding member 6 and the crucible 2,
In addition to improving the single crystal growth efficiency by filling the space between the crucibles 2, the cost can be reduced by reducing the number of parts.

【0026】図7に本発明の第7の実施の形態として示
すように、熱遮蔽部材6を、広がりを持つ側壁部分6a
と種結晶である炭化珪素単結晶基板5の表面と平行であ
る底壁部分たる下端面部分6bとに分割された構成とす
ることもできる。これら側壁部分6aと下端面部分6b
は、それぞれるつぼ2の内壁に固定される。このよう
に、側壁部分6aと下端面部分6bを分割することによ
り、熱遮蔽部材6の構造が簡便化し、製作コストを低く
することができる。
As shown in FIG. 7 as a seventh embodiment of the present invention, the heat shielding member 6 is formed by expanding the side wall portion 6a.
And a lower end surface portion 6b as a bottom wall portion parallel to the surface of silicon carbide single crystal substrate 5 as a seed crystal. These side wall portions 6a and lower end surface portions 6b
Are fixed to the inner wall of the crucible 2 respectively. By dividing the side wall portion 6a and the lower end surface portion 6b in this manner, the structure of the heat shielding member 6 can be simplified, and the manufacturing cost can be reduced.

【0027】以上のように、本発明の単結晶成長装置に
よれば、種結晶表面と垂直な方向および径方向の成長速
度を大きくすることができ、長尺で、しかも、口径の大
きい炭化珪素単結晶を得ることができる。なお、本発明
の単結晶製造装置は、炭化珪素単結晶の成長に限らず、
硫化カドミウム等、昇華法によって成長可能な単結晶で
あればいずれにも適用することができる。
As described above, according to the single crystal growth apparatus of the present invention, the growth rate in the direction perpendicular to the seed crystal surface and in the radial direction can be increased, and the silicon carbide is long and has a large diameter. A single crystal can be obtained. In addition, the single crystal manufacturing apparatus of the present invention is not limited to the growth of silicon carbide single crystal,
Any single crystal, such as cadmium sulfide, which can be grown by the sublimation method can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す単結晶成長装
置の全体断面図である。
FIG. 1 is an overall sectional view of a single crystal growth apparatus showing a first embodiment of the present invention.

【図2】本発明の第2の実施の形態を示す単結晶成長装
置の全体断面図である。
FIG. 2 is an overall sectional view of a single crystal growth apparatus showing a second embodiment of the present invention.

【図3】本発明の第3の実施の形態を示す単結晶成長装
置の全体断面図である。
FIG. 3 is an overall sectional view of a single crystal growth apparatus showing a third embodiment of the present invention.

【図4】本発明の第4の実施の形態を示す単結晶成長装
置の全体断面図である。
FIG. 4 is an overall sectional view of a single crystal growing apparatus showing a fourth embodiment of the present invention.

【図5】本発明の第5の実施の形態を示す単結晶成長装
置の全体断面図である。
FIG. 5 is an overall sectional view of a single crystal growing apparatus showing a fifth embodiment of the present invention.

【図6】本発明の第6の実施の形態を示す単結晶成長装
置の全体断面図である。
FIG. 6 is an overall sectional view of a single crystal growing apparatus showing a sixth embodiment of the present invention.

【図7】本発明の第7の実施の形態を示す単結晶成長装
置の全体断面図である。
FIG. 7 is an overall sectional view of a single crystal growing apparatus showing a seventh embodiment of the present invention.

【図8】従来の単結晶製造装置の全体断面図である。FIG. 8 is an overall sectional view of a conventional single crystal manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 単結晶成長装置 2 るつぼ(容器) 3 蓋体 3a 台座 4 炭化珪素粉末(原料粉末) 5 炭化珪素単結晶基板(種結晶) 6 熱遮蔽部材 7 炭化珪素単結晶(単結晶) 8 ガス遮蔽部材(開口を閉鎖する部材) 9 熱遮蔽部材 DESCRIPTION OF SYMBOLS 1 Single crystal growth apparatus 2 Crucible (vessel) 3 Lid 3a Pedestal 4 Silicon carbide powder (raw material powder) 5 Silicon carbide single crystal substrate (seed crystal) 6 Heat shielding member 7 Silicon carbide single crystal (single crystal) 8 Gas shielding member (Member for closing the opening) 9 Heat shielding member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣瀬 富佐雄 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 北岡 英二 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 杉山 尚宏 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 岡本 篤人 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 4G051 AA01 AA11 4G077 AA02 BE08 DA18  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroo Tosao 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside Denso Corporation (72) Inventor Eiji Kitaoka 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Co., Ltd. Inside DENSO (72) Inventor Naohiro Sugiyama 41-Cho, Yokomichi, Nagakute-machi, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Institute, Inc. F-term in Toyota Central Research Laboratory, Inc. (reference) 4G051 AA01 AA11 4G077 AA02 BE08 DA18

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 容器内に、種結晶と原料粉末とを対向さ
せて配置し、上記種結晶と上記原料粉末との間に熱遮蔽
部材を設けて、上記原料粉末が加熱昇華する際の輻射熱
から上記種結晶を保護しつつ、該種結晶上に単結晶を成
長させる単結晶成長装置において、上記熱遮蔽部材を、
上記種結晶をガス流通可能に取り囲んでその内部に単結
晶が成長する空間を形成するとともに、該単結晶成長空
間の径が上記種結晶側から上記原料粉末側へ向かうにつ
れて大きくなる形状としたことを特徴とする単結晶成長
装置。
1. A seed crystal and a raw material powder are arranged in a container so as to face each other, a heat shielding member is provided between the seed crystal and the raw material powder, and radiant heat generated when the raw material powder is heated and sublimated. In a single crystal growing apparatus for growing a single crystal on the seed crystal while protecting the seed crystal from, the heat shielding member,
A space in which a single crystal grows is formed by surrounding the seed crystal so as to allow gas to flow therethrough, and the diameter of the single crystal growth space increases in shape from the seed crystal side toward the raw material powder side. A single crystal growth apparatus characterized by the above-mentioned.
【請求項2】 上記熱遮蔽部材の広がり角度が、5°か
ら80°である請求項1に記載の単結晶成長装置。
2. The single crystal growing apparatus according to claim 1, wherein the spread angle of the heat shielding member is 5 ° to 80 °.
【請求項3】 上記熱遮蔽部材の広がり角度が、2段階
に変化している請求項1に記載の単結晶成長装置。
3. The single crystal growth apparatus according to claim 1, wherein the spread angle of the heat shielding member changes in two stages.
【請求項4】 上記熱遮蔽部材の広がり角度が、連続的
に変化している請求項1に記載の単結晶成長装置。
4. The single crystal growth apparatus according to claim 1, wherein the spread angle of the heat shielding member changes continuously.
【請求項5】 上記熱遮蔽部材の上記原料側の端部外周
に、上記容器の側壁との間の開口を閉鎖する部材を配置
した請求項1に記載の単結晶成長装置。
5. The single crystal growth apparatus according to claim 1, wherein a member that closes an opening between a side wall of the container and an outer periphery of an end of the heat shielding member on the raw material side is arranged.
【請求項6】 上記熱遮蔽部材と上記容器の側壁との間
の空間が埋まっている請求項1に記載の単結晶成長装
置。
6. The single crystal growing apparatus according to claim 1, wherein a space between the heat shielding member and a side wall of the container is filled.
【請求項7】 上記熱遮蔽部材と上記容器とが一体構造
である請求項6に記載の単結晶成長装置。
7. The single crystal growing apparatus according to claim 6, wherein the heat shielding member and the container have an integral structure.
【請求項8】 上記熱遮蔽部材は、広がりを持つ側壁部
分と上記種結晶表面と平行である部分とが分離されてい
る請求項1に記載の単結晶成長装置。
8. The single crystal growth apparatus according to claim 1, wherein the heat shielding member has a widened side wall portion and a portion parallel to the seed crystal surface.
【請求項9】 上記熱遮蔽部材を黒鉛で構成する請求項
1ないし8に記載の単結晶成長装置。
9. The single crystal growth apparatus according to claim 1, wherein said heat shielding member is made of graphite.
【請求項10】 上記単結晶が炭化珪素単結晶である請
求項1ないし9に記載の単結晶成長装置。
10. The single crystal growth apparatus according to claim 1, wherein said single crystal is a silicon carbide single crystal.
JP22933398A 1998-07-30 1998-07-30 Single crystal growth equipment Expired - Lifetime JP3843615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22933398A JP3843615B2 (en) 1998-07-30 1998-07-30 Single crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22933398A JP3843615B2 (en) 1998-07-30 1998-07-30 Single crystal growth equipment

Publications (2)

Publication Number Publication Date
JP2000044383A true JP2000044383A (en) 2000-02-15
JP3843615B2 JP3843615B2 (en) 2006-11-08

Family

ID=16890522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22933398A Expired - Lifetime JP3843615B2 (en) 1998-07-30 1998-07-30 Single crystal growth equipment

Country Status (1)

Country Link
JP (1) JP3843615B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012500A (en) * 2000-06-21 2002-01-15 Showa Denko Kk Method of and device for producing silicon carbide single crystal, and silicon carbide single crystal
KR100766720B1 (en) 2006-06-07 2007-10-11 구갑렬 Focusing tube of saw type
JP2008222549A (en) * 2008-05-26 2008-09-25 Denso Corp Method and apparatus for growing single crystal
JP2009023879A (en) * 2007-07-20 2009-02-05 Denso Corp Method and apparatus for producing silicon carbide single crystal
JP2009269776A (en) * 2008-05-01 2009-11-19 Bridgestone Corp Apparatus and method for growing single crystal
WO2010119749A1 (en) * 2009-04-16 2010-10-21 株式会社ブリヂストン Apparatus for producing silicon carbide single crystal and method for producing silicon carbide single crystal
KR20150066015A (en) * 2013-12-05 2015-06-16 재단법인 포항산업과학연구원 Growth device for single crystal
CN110468454A (en) * 2018-05-11 2019-11-19 昭和电工株式会社 Shading member and the single-crystal growing apparatus for having the shading member
CN110820042A (en) * 2018-08-08 2020-02-21 昭和电工株式会社 Shielding member and single crystal growth apparatus
CN113622030A (en) * 2021-08-18 2021-11-09 福建北电新材料科技有限公司 Method for preparing silicon carbide single crystal

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012500A (en) * 2000-06-21 2002-01-15 Showa Denko Kk Method of and device for producing silicon carbide single crystal, and silicon carbide single crystal
KR100766720B1 (en) 2006-06-07 2007-10-11 구갑렬 Focusing tube of saw type
JP2009023879A (en) * 2007-07-20 2009-02-05 Denso Corp Method and apparatus for producing silicon carbide single crystal
JP2009269776A (en) * 2008-05-01 2009-11-19 Bridgestone Corp Apparatus and method for growing single crystal
JP2008222549A (en) * 2008-05-26 2008-09-25 Denso Corp Method and apparatus for growing single crystal
WO2010119749A1 (en) * 2009-04-16 2010-10-21 株式会社ブリヂストン Apparatus for producing silicon carbide single crystal and method for producing silicon carbide single crystal
JP2010248039A (en) * 2009-04-16 2010-11-04 Bridgestone Corp Apparatus and method for producing silicon carbide single crystal
KR102163489B1 (en) 2013-12-05 2020-10-07 재단법인 포항산업과학연구원 Growth device for single crystal
KR20150066015A (en) * 2013-12-05 2015-06-16 재단법인 포항산업과학연구원 Growth device for single crystal
CN110468454A (en) * 2018-05-11 2019-11-19 昭和电工株式会社 Shading member and the single-crystal growing apparatus for having the shading member
US10995418B2 (en) 2018-05-11 2021-05-04 Showa Denko K.K. Shielding member and single crystal growth device having the same
CN110468454B (en) * 2018-05-11 2021-06-22 昭和电工株式会社 Shielding member and single crystal growth apparatus having the same
CN110820042A (en) * 2018-08-08 2020-02-21 昭和电工株式会社 Shielding member and single crystal growth apparatus
CN110820042B (en) * 2018-08-08 2021-11-12 昭和电工株式会社 Shielding member and single crystal growth apparatus
US11261541B2 (en) 2018-08-08 2022-03-01 Showa Denko K.K. Shielding member and apparatus for single crystal growth
CN113622030A (en) * 2021-08-18 2021-11-09 福建北电新材料科技有限公司 Method for preparing silicon carbide single crystal

Also Published As

Publication number Publication date
JP3843615B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
JP3961750B2 (en) Single crystal growth apparatus and growth method
US6786969B2 (en) Method and apparatus for producing single crystal, substrate for growing single crystal and method for heating single crystal
US9068277B2 (en) Apparatus for manufacturing single-crystal silicon carbide
JP5271601B2 (en) Single crystal manufacturing apparatus and manufacturing method
US6110279A (en) Method of producing single-crystal silicon carbide
EP2664695B1 (en) Physical vapor transport growth system for simultaneously growing more than one SiC single crystal, and method of growing
JP3419144B2 (en) Single crystal growth equipment
JP5240100B2 (en) Silicon carbide single crystal manufacturing equipment
JP5012655B2 (en) Single crystal growth equipment
JP2000044383A (en) Growth unit for single crystal
JPH0558774A (en) Vessel for silicone carbide single crystal growing device
JPH11268990A (en) Production of single crystal and production device
JP2000264795A (en) Apparatus and method for producing silicon carbide single crystal
JP2007077017A (en) Growth apparatus and growth method for single crystal
JP2012254892A (en) Manufacturing method and manufacturing device for single crystal
JP4833780B2 (en) Lid graphite crucible and silicon carbide single crystal growth apparatus
JP2017065969A (en) Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot
JP5516167B2 (en) Silicon carbide single crystal manufacturing equipment
JP2001114598A (en) Method of and device for producing silicon carbide single crystal
JP4110611B2 (en) Single crystal manufacturing equipment
JP2012158520A (en) Apparatus for growing single crystal
JP4509258B2 (en) Single crystal growth apparatus and manufacturing method
EP4206366A1 (en) Sic polycrystal manufacturing method
JP2002012500A (en) Method of and device for producing silicon carbide single crystal, and silicon carbide single crystal
WO2022004703A1 (en) METHOD FOR PRODUCING SiC CRYSTALS

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051019

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term