JP2009023879A - Method and apparatus for producing silicon carbide single crystal - Google Patents

Method and apparatus for producing silicon carbide single crystal Download PDF

Info

Publication number
JP2009023879A
JP2009023879A JP2007189329A JP2007189329A JP2009023879A JP 2009023879 A JP2009023879 A JP 2009023879A JP 2007189329 A JP2007189329 A JP 2007189329A JP 2007189329 A JP2007189329 A JP 2007189329A JP 2009023879 A JP2009023879 A JP 2009023879A
Authority
JP
Japan
Prior art keywords
side wall
silicon carbide
single crystal
space
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007189329A
Other languages
Japanese (ja)
Other versions
JP4962186B2 (en
Inventor
Masanori Yamada
正徳 山田
Yasushi Uragami
泰 浦上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007189329A priority Critical patent/JP4962186B2/en
Publication of JP2009023879A publication Critical patent/JP2009023879A/en
Application granted granted Critical
Publication of JP4962186B2 publication Critical patent/JP4962186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for producing the silicon carbide single crystal preventing a silicon carbide single crystal from cracking while keeping a growth space region in a uniformly heated state, in the growth of the silicon carbide single crystal. <P>SOLUTION: The apparatus for producing the silicon carbide single crystal comprises a partitioning plate 23c in an opening end of a cylindrical part 23b in a closing part 23 composing a lid 20, so as to prevent sublimated gas from flowing into the space 23e between the inner wall of the side wall part 21 composing the lid 20 using the partitioning plate 23c and the cylindrical part 23b. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、パワーMOSFET等の素材に利用することができる炭化珪素(以下、SiCという)単結晶の製造方法および装置に関するものである。   The present invention relates to a method and an apparatus for producing silicon carbide (hereinafter referred to as SiC) single crystal that can be used as a material for a power MOSFET or the like.

従来より、坩堝の外周に配置させた抵抗加熱ヒータによって坩堝内にSiC単結晶を成長させる方法が提案されている(例えば、特許文献1参照)。具体的に、特許文献1では、黒鉛製の坩堝内に種結晶を接合すると共に、坩堝底部に配したSiC粉末原料を例えば2300℃に加熱することで、SiC粉末原料を昇華させ、その昇華させたガスを原料温度よりも低い温度に設定された種結晶上に結晶化させる手法が提案されている。   Conventionally, a method has been proposed in which a SiC single crystal is grown in a crucible using a resistance heater arranged on the outer periphery of the crucible (see, for example, Patent Document 1). Specifically, in patent document 1, while joining a seed crystal in a graphite crucible and heating the SiC powder raw material arranged at the bottom of the crucible to 2300 ° C., for example, the SiC powder raw material is sublimated and sublimated. There has been proposed a method of crystallizing a gas on a seed crystal set at a temperature lower than the raw material temperature.

図6は、この昇華再析出法に用いられるSiC単結晶製造装置の模式的な断面構造を示した図である。この図に示されるように、黒鉛製の坩堝J1の蓋材J2の内壁に円柱状の突起部J3を設け、この突起部J3の端面に種結晶J4を貼り付けるようにしている。さらに、種結晶J4の成長表面に対向する面を有すると共に、種結晶J4との間に成長空間領域J5を形成する遮蔽板J6を設けている。   FIG. 6 is a diagram showing a schematic cross-sectional structure of a SiC single crystal manufacturing apparatus used for the sublimation reprecipitation method. As shown in this figure, a cylindrical projection J3 is provided on the inner wall of a lid member J2 of a graphite crucible J1, and a seed crystal J4 is attached to the end face of the projection J3. Further, a shielding plate J6 is provided which has a surface facing the growth surface of the seed crystal J4 and forms a growth space region J5 with the seed crystal J4.

また、蓋材J2に種結晶J4を囲うようにスカート状の円筒部J7を設け、当該円筒部J7および遮蔽板J6により、坩堝J1のうち種結晶J4側の径方向温度分布を小さくし、種結晶J4の成長表面が他の部位よりも低温となるようにしている。このようにして、成長空間領域J5の均熱を保つようにして、種結晶J4の上にSiC単結晶J8を成長させる。この場合、SiC単結晶J8の周辺に多結晶成長も起こる。
特開2001−114598号公報
Further, a skirt-like cylindrical portion J7 is provided in the lid member J2 so as to surround the seed crystal J4. The cylindrical portion J7 and the shielding plate J6 reduce the radial temperature distribution on the seed crystal J4 side of the crucible J1, thereby reducing the seed. The growth surface of the crystal J4 is set to be lower in temperature than other portions. In this way, the SiC single crystal J8 is grown on the seed crystal J4 so as to keep the soaking in the growth space region J5. In this case, polycrystalline growth also occurs around the SiC single crystal J8.
JP 2001-114598 A

しかしながら、上記従来の技術では、SiC単結晶J8の成長時間と共に、遮蔽板J6の外周、具体的には坩堝J1の側壁部の内側と円筒部J7との間の空間に昇華ガスが流れ込んでしまい、当該空間に炭化珪素の多結晶が成長してしまう。この多結晶が坩堝J1および円筒部J7の両者に接するように形成されることにより、坩堝J1がヒータから受ける熱が当該多結晶を介して成長空間領域J5に伝達され、成長空間領域J5における坩堝J1の径方向温度分布が大きくなって均熱状態が保たれなくなる。   However, in the above conventional technique, with the growth time of the SiC single crystal J8, the sublimation gas flows into the outer periphery of the shielding plate J6, specifically, the space between the inside of the side wall portion of the crucible J1 and the cylindrical portion J7. The polycrystalline silicon carbide grows in the space. By forming the polycrystal so as to be in contact with both the crucible J1 and the cylindrical portion J7, the heat received from the heater by the crucible J1 is transmitted to the growth space region J5 through the polycrystal, and the crucible in the growth space region J5. The radial temperature distribution of J1 becomes large and the soaking state cannot be maintained.

すなわち、成長空間領域J5において、坩堝J1の中心軸付近における温度よりも円筒部J7近傍の温度が高くなり、温度が低い坩堝J1の中心軸付近の結晶成長が加速することによってSiC単結晶J8の口径拡大と凸成長が急速に進行してしまう。その結果、SiC単結晶J8に大きな歪みが生じ、SiC単結晶J8が割れてしまうという問題がある。   That is, in the growth space region J5, the temperature in the vicinity of the cylindrical portion J7 becomes higher than the temperature in the vicinity of the central axis of the crucible J1, and the crystal growth in the vicinity of the central axis of the crucible J1 having a low temperature accelerates. Diameter expansion and convex growth will proceed rapidly. As a result, there is a problem that large distortion occurs in SiC single crystal J8, and SiC single crystal J8 breaks.

本発明は、上記点に鑑み、SiC単結晶成長において、成長空間領域を均熱に保ち、炭化珪素単結晶の割れを防止することができる製造装置および製造方法を提供することを目的とする。   In view of the above points, an object of the present invention is to provide a manufacturing apparatus and a manufacturing method capable of keeping a growth space region soaking and preventing cracking of a silicon carbide single crystal in SiC single crystal growth.

上記目的を達成するため、本発明は、蓋体(20)として、中空筒状の側壁部(21)と、板状であって、板の一面側に種結晶(40)が配置されると共に、種結晶(40)が側壁部(21)の中空部分に収納されるように側壁部(21)の開口端の一方に取り付けられる蓋材(22)と、板状であって、種結晶(40)が差し込まれる貫通した窓部(23d)を有しており、板の側面が側壁部(21)の内壁に一体化される支持板(23a)と、側壁部(21)の内壁よりも径が小さい中空筒状をなしており、当該中空筒の中空部分が成長空間領域(60)とされて昇華ガスが供給されるようになっており、支持板(23a)のうち蓋材(22)に対向する面とは反対側の面に中空筒の開口端の一方が一体化された円筒部(23b)と、昇華ガスが側壁部(21)の内壁と円筒部(23b)の外壁との間の空間(23e)に流れ込むことを抑制するドーナツ状のものであって、ドーナツ部の内周端が円筒部(23b)の開口端の他方に一体化され、ドーナツ部の外周端が側壁部(21)の内壁側に配置される仕切り板(23c)とを有していることを特徴とする。   In order to achieve the above object, the present invention provides a lid (20) having a hollow cylindrical side wall (21) and a plate, and a seed crystal (40) is disposed on one side of the plate. A lid (22) attached to one of the open ends of the side wall (21) so that the seed crystal (40) is housed in the hollow part of the side wall (21), and a plate, 40) has a penetrating window part (23d) into which the side surface of the plate is integrated with the inner wall of the side wall part (21), and the inner wall of the side wall part (21). A hollow cylinder having a small diameter is formed, and a hollow portion of the hollow cylinder is used as a growth space region (60) to supply a sublimation gas, and a lid member (22 in the support plate (23a)) is provided. ) And a cylindrical portion (23b) in which one of the open ends of the hollow cylinder is integrated on the surface opposite to the surface opposite to It is a donut-shaped thing which suppresses gas flowing into the space (23e) between the inner wall of the side wall part (21) and the outer wall of the cylindrical part (23b), and the inner peripheral end of the donut part is the cylindrical part (23b ) And a partition plate (23c) which is integrated with the other of the open ends of the donut portion and is arranged on the inner wall side of the side wall portion (21).

これによると、仕切り板(23c)によって、炭化珪素原料(50)から生じた昇華ガスが側壁部(21)と円筒部(23b)との間の空間(23e)に入り込みにくくすることができる。これにより、この空間(23e)における炭化珪素の多結晶(45)の成長を抑制することができ、仕切り板(23c)が設けられていなかったら空間(23e)に形成されていたであろう多結晶(45)によって側壁部(21)に与えられた熱を円筒部(23b)に伝達させないようにすることができる。したがって、円筒部(23b)の中空部分における熱分布を小さくすることができ、炭化珪素単結晶(70)が成長する成長空間領域(60)を均熱に保つことができる。以上により、炭化珪素単結晶(70)の口径拡大や凸成長を防止することができ、ひいては炭化珪素単結晶(70)の割れを防止することができる。   According to this, the partition plate (23c) can make it difficult for the sublimation gas generated from the silicon carbide raw material (50) to enter the space (23e) between the side wall portion (21) and the cylindrical portion (23b). As a result, the growth of polycrystalline silicon carbide (45) in this space (23e) can be suppressed, and if the partition plate (23c) is not provided, it will be formed in the space (23e). The heat given to the side wall (21) by the crystal (45) can be prevented from being transferred to the cylindrical part (23b). Therefore, the heat distribution in the hollow portion of the cylindrical portion (23b) can be reduced, and the growth space region (60) in which the silicon carbide single crystal (70) is grown can be kept soaking. By the above, the diameter expansion and convex growth of the silicon carbide single crystal (70) can be prevented, and cracking of the silicon carbide single crystal (70) can be prevented.

上記蓋体(20)として、仕切り板(23c)の外周端(23g)が側壁部(21)の内壁に接しておらず、仕切り板(23c)の外周端(23g)と側壁部(21)の内壁との間に隙間(23h)が設けられたものとすることができる。   As the lid (20), the outer peripheral end (23g) of the partition plate (23c) is not in contact with the inner wall of the side wall (21), and the outer peripheral end (23g) of the partition plate (23c) and the side wall (21). A gap (23h) may be provided between the inner wall and the inner wall.

これにより、坩堝(1)内を真空にする際に、空間(23e)内の空気を当該空間(23e)から逃がしやすくすることができる。したがって、空間(23e)内の空気が真空引きの際に坩堝(1)の外部に排出されずに膨張することで坩堝(1)が破壊してしまうことを防止することができる。   Thereby, when the inside of the crucible (1) is evacuated, the air in the space (23e) can be easily released from the space (23e). Therefore, it is possible to prevent the crucible (1) from being destroyed by expanding the air in the space (23e) without being discharged outside the crucible (1) during evacuation.

また、蓋体(20)として、仕切り板(23c)の外周端(23g)が側壁部(21、30)の内壁に接しており、支持板(23a)には、支持板(23a)と蓋材(22)との間の空間と側壁部(21)と円筒部(23b)との間の空間(23e)とを繋ぐ貫通穴(23i)が設けられたものとすることができる。   Further, as the lid (20), the outer peripheral end (23g) of the partition plate (23c) is in contact with the inner wall of the side wall (21, 30), and the support plate (23a) includes the support plate (23a) and the lid. The through-hole (23i) which connects the space between material (22) and the space (23e) between a side wall part (21) and a cylindrical part (23b) can be provided.

このような貫通穴(23i)によっても、坩堝(1)内を真空にする際に、空間(23e)の空気を逃がしやすくすることができる。   Such a through hole (23i) can also make it easy to escape the air in the space (23e) when the crucible (1) is evacuated.

さらに、蓋体(20)として、仕切り板(23c)の外周端(23g)が側壁部(21)の内壁に接しており、側壁部(21)には、当該側壁部(21)と円筒部(23b)との間の空間(23e)と坩堝(1)の外部とを繋ぐ貫通穴(23j)が設けられたものとすることもできる。   Further, as the lid (20), the outer peripheral end (23g) of the partition plate (23c) is in contact with the inner wall of the side wall (21), and the side wall (21) includes the side wall (21) and the cylindrical part. The through-hole (23j) which connects the space (23e) between (23b) and the exterior of the crucible (1) can also be provided.

このような構成によっても、空間(23e)の空気を坩堝(1)の外部に排出しやすくすることができる。   Even with such a configuration, the air in the space (23e) can be easily discharged to the outside of the crucible (1).

そして、蓋体(20)として、側壁部(21)と円筒部(23b)との間の空間(23e)に断熱部材(23k)が配置されたものとすることができる。   And as a cover body (20), the heat insulation member (23k) shall be arrange | positioned in the space (23e) between a side wall part (21) and a cylindrical part (23b).

これにより、坩堝(1)に与えられる熱を成長空間領域(60)への伝達しにくくすることができ、成長空間領域(60)を均熱に保つことができる。   Thereby, the heat given to the crucible (1) can be made difficult to be transmitted to the growth space region (60), and the growth space region (60) can be kept soaked.

上記では、炭化珪素単結晶の製造装置について述べたが、炭化珪素単結晶の製造方法についても同様のことが言える。すなわち、坩堝(1)を加熱して炭化珪素原料(50)から昇華ガスを発生させ、当該昇華ガスを成長空間領域(60)に供給することにより種結晶(40)に炭化珪素単結晶(70)を成長させるに際し、円筒部(23b)に設けた仕切り板(23c)が側壁部(21)と円筒部(23b)との間の空間(23e)に流れ込むことを抑制することで、昇華ガスが側壁部(21)と円筒部(23b)との間の空間(23e)に入り込みにくくすることができ、空間(23e)に炭化珪素の多結晶(45)を成長させないようにすることができる。   In the above description, the silicon carbide single crystal manufacturing apparatus has been described, but the same can be said for the silicon carbide single crystal manufacturing method. That is, the crucible (1) is heated to generate a sublimation gas from the silicon carbide raw material (50), and the sublimation gas is supplied to the growth space region (60), whereby the silicon carbide single crystal (70) is added to the seed crystal (40). ), The partition plate (23c) provided in the cylindrical portion (23b) is prevented from flowing into the space (23e) between the side wall portion (21) and the cylindrical portion (23b), thereby sublimating gas. Can hardly enter the space (23e) between the side wall portion (21) and the cylindrical portion (23b), and the polycrystalline silicon carbide (45) can be prevented from growing in the space (23e). .

これにより、成長空間領域(60)を均熱に保ち、炭化珪素単結晶(70)の口径拡大や凸成長を防止することができ、ひいては炭化珪素単結晶(70)の割れを防止することができる。   As a result, the growth space region (60) can be maintained at a constant temperature, so that the silicon carbide single crystal (70) can be prevented from expanding in diameter and projecting, thereby preventing the silicon carbide single crystal (70) from cracking. it can.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
以下、本発明の第1実施形態について図を参照して説明する。図1は、本発明の第1実施形態にかかるSiC単結晶製造装置の断面構成を示したものである。この図に示されるように、SiC単結晶製造装置は、有底円筒状の容器本体10と、円形状の蓋体20によって構成されたグラファイト製の坩堝1を備えている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional configuration of the SiC single crystal manufacturing apparatus according to the first embodiment of the present invention. As shown in this figure, the SiC single crystal manufacturing apparatus includes a graphite crucible 1 constituted by a bottomed cylindrical container body 10 and a circular lid 20.

坩堝1のうち容器本体10の底部には、台座11が配置され、この台座11にシャフト12が立てられている。当該シャフト12の先端には、種結晶40の成長表面に対向する面を有する遮蔽板13が取り付けられている。   A pedestal 11 is disposed on the bottom of the container body 10 in the crucible 1, and a shaft 12 is erected on the pedestal 11. A shield plate 13 having a surface facing the growth surface of the seed crystal 40 is attached to the tip of the shaft 12.

さらに、容器本体10には、昇華ガスの供給源となるSiCの粉末原料50が配置されている。そして、坩堝1内の空間のうち種結晶40と遮蔽板13との間を成長空間領域60として、粉末原料50からの昇華ガスが種結晶40の表面上に再結晶化して、種結晶40の表面にSiC単結晶70が成長させられる構成とされている。   Furthermore, a SiC powder raw material 50 serving as a sublimation gas supply source is disposed in the container body 10. The sublimation gas from the powder raw material 50 is recrystallized on the surface of the seed crystal 40 using the space between the seed crystal 40 and the shielding plate 13 in the space in the crucible 1 as a growth space region 60. The SiC single crystal 70 is grown on the surface.

蓋体20は、円筒状の側壁部21と、側壁部21の開口部の一方を塞ぐ円板状の蓋材22と、側壁部21に収納される遮蔽部23とを備えて構成されている。蓋材22には円柱状の突起部22aが設けられ、当該突起部22aの開口端に当該開口端を閉じるように例えば円形状のSiCの種結晶40が貼り付けられている。   The lid 20 includes a cylindrical side wall portion 21, a disk-shaped lid member 22 that closes one of the openings of the side wall portion 21, and a shielding portion 23 that is accommodated in the side wall portion 21. . The lid member 22 is provided with a cylindrical protrusion 22a, and a circular SiC seed crystal 40 is attached to the opening end of the protrusion 22a so as to close the opening end.

遮蔽部23は、支持板23aと、円筒部23bと、仕切り板23cとを有している。支持板23aは、当該板が貫通する窓部23dが設けられたものであり、蓋材22の突起部22aが窓部23dに差し込まれた状態で側面が側壁部21の内壁に固定されている。円筒部23bは、スカート状、すなわち筒状をなしており、筒の一端部が支持板23aの端面に一体化されている。この円筒部23bは、種結晶40周辺の径方向温度分布を小さくする、すなわち成長空間領域60を均熱にする役割を果たす。   The shielding part 23 has a support plate 23a, a cylindrical part 23b, and a partition plate 23c. The support plate 23a is provided with a window portion 23d through which the plate penetrates, and the side surface is fixed to the inner wall of the side wall portion 21 in a state where the projection portion 22a of the lid member 22 is inserted into the window portion 23d. . The cylindrical portion 23b has a skirt shape, that is, a cylindrical shape, and one end portion of the cylindrical portion is integrated with the end surface of the support plate 23a. The cylindrical portion 23b serves to reduce the radial temperature distribution around the seed crystal 40, that is, to soak the growth space region 60.

仕切り板23cは、粉末原料50から生じる昇華ガスが側壁部21の内壁と円筒部23bとの間の空間23eへ流れ込むことを抑制する役割を果たすものである。この仕切り板23cはドーナツ状をなしており、当該ドーナツ部の内周端が円筒部23bの開口端に一体化され、外周端が側壁部21の内壁に接した形態とされている。本実施形態では、仕切り板23cの内周端が円筒部23bの開口端の他方に一体化され、外周端が側壁部21の内壁側に配置されており、仕切り板23cは坩堝1の中心軸に垂直方向の面に平行に配置されている。   The partition plate 23c serves to suppress sublimation gas generated from the powder raw material 50 from flowing into the space 23e between the inner wall of the side wall portion 21 and the cylindrical portion 23b. The partition plate 23 c has a donut shape, and the inner peripheral end of the donut portion is integrated with the opening end of the cylindrical portion 23 b, and the outer peripheral end is in contact with the inner wall of the side wall portion 21. In this embodiment, the inner peripheral end of the partition plate 23c is integrated with the other open end of the cylindrical portion 23b, the outer peripheral end is disposed on the inner wall side of the side wall portion 21, and the partition plate 23c is the central axis of the crucible 1. It is arranged in parallel to the vertical plane.

さらに、坩堝1の外周を囲むように図示しない抵抗加熱ヒータが配置されている。以上が、本実施形態に係るSiC単結晶製造装置の構成である。   Further, a resistance heater (not shown) is disposed so as to surround the outer periphery of the crucible 1. The above is the configuration of the SiC single crystal manufacturing apparatus according to the present embodiment.

次に、上記SiC単結晶製造装置を用いてSiC単結晶を製造する方法について、図を参照して説明する。まず、図1に示されるように、蓋材22の突起部22aの開口端に種結晶40を貼り付け、遮蔽部23が取り付けられた側壁部21に当該蓋材22を取り付ける。他方、容器本体10に台座11を配置してシャフト12を介して遮蔽板13を取り付け、容器本体10に粉末原料50を配置する。   Next, a method for manufacturing a SiC single crystal using the SiC single crystal manufacturing apparatus will be described with reference to the drawings. First, as shown in FIG. 1, the seed crystal 40 is attached to the opening end of the protrusion 22 a of the lid member 22, and the lid member 22 is attached to the side wall portion 21 to which the shielding portion 23 is attached. On the other hand, the pedestal 11 is disposed on the container body 10, the shielding plate 13 is attached via the shaft 12, and the powder material 50 is disposed on the container body 10.

続いて、坩堝1を図示しない加熱チャンバに設置し、図示しない排気機構を用いてガス排出を行うことで、坩堝1内を含めた外部チャンバ内を真空にし、上下2つの抵抗加熱ヒータに通電して加熱し、その輻射熱により坩堝1を加熱することで坩堝1内を所定温度にする。このとき、各ヒータへの通電のパワーを異ならせることにより、ヒータで温度差を発生させられるようにしている。   Subsequently, the crucible 1 is placed in a heating chamber (not shown), and gas is discharged using an exhaust mechanism (not shown), whereby the inside of the external chamber including the inside of the crucible 1 is evacuated, and the upper and lower resistance heaters are energized. The crucible 1 is heated to a predetermined temperature by heating the crucible 1 with the radiant heat. At this time, a temperature difference is generated by the heater by changing the power of energization to each heater.

続いて、例えば不活性ガス(Arガス等)や水素、結晶へのドーパントとなる窒素などの混入ガスを流入させる。この不活性ガスは排気配管を介して排出される。そして、種結晶40の成長面の温度および粉末原料50の温度を目標温度まで上昇させる。例えば、成長結晶を4H−SiCとする場合、粉末原料50の温度を2100〜2300℃とし、成長結晶表面の温度をそれよりも10〜200℃程度低くする。   Subsequently, for example, an inert gas (Ar gas or the like), hydrogen, or a mixed gas such as nitrogen serving as a dopant to the crystal is introduced. This inert gas is discharged via the exhaust pipe. And the temperature of the growth surface of the seed crystal 40 and the temperature of the powder raw material 50 are raised to the target temperature. For example, when the growth crystal is 4H—SiC, the temperature of the powder raw material 50 is 2100 to 2300 ° C., and the temperature of the growth crystal surface is lower by about 10 to 200 ° C.

加熱チャンバ内には例えば不活性ガス(Arガス等)や水素、結晶へのドーパントとなる窒素などの混入ガスを流入させる。この不活性ガスは排気配管を介して排出される。種結晶40の成長面の温度およびSiC粉末原料50の温度を目標温度まで上昇させるまでは、加熱チャンバ内は大気圧に近い雰囲気圧力にして粉末原料50からの昇華を抑制し、目標温度になったところで、減圧し所定の雰囲気圧力とする。例えば、成長結晶を4H−SiCとする場合、粉末原料50の温度を2100〜2300℃とし、成長結晶表面の温度をそれよりも10〜200℃程度低くして、雰囲気圧力は13.33〜2666Paとする。   For example, an inert gas (Ar gas or the like), hydrogen, or a mixed gas such as nitrogen serving as a dopant to the crystal flows into the heating chamber. This inert gas is discharged via the exhaust pipe. Until the temperature of the growth surface of the seed crystal 40 and the temperature of the SiC powder raw material 50 are raised to the target temperature, the atmosphere in the heating chamber is set to an atmospheric pressure close to atmospheric pressure to suppress sublimation from the powder raw material 50 and reach the target temperature. The pressure is reduced to a predetermined atmospheric pressure. For example, when the growth crystal is 4H—SiC, the temperature of the powder raw material 50 is 2100 to 2300 ° C., the temperature of the growth crystal surface is lower by about 10 to 200 ° C., and the atmospheric pressure is 13.33 to 2666 Pa. And

このようにして、粉末原料50を加熱することで粉末原料50が昇華し、粉末原料50から昇華ガスが発生する。この昇華ガスは、成長空間領域60内を通過して種結晶40に供給される。   Thus, the powder raw material 50 is sublimated by heating the powder raw material 50, and sublimation gas is generated from the powder raw material 50. The sublimation gas passes through the growth space region 60 and is supplied to the seed crystal 40.

このように、昇華ガスが成長空間領域60に供給されると、昇華ガスは成長中のSiC単結晶70だけでなく、遮蔽部23にも吹き付けられる。これにより、図1に示されるように、遮蔽部23の円筒部23bよりもSiC単結晶70側の支持板23a上にSiCの多結晶45が成長する。同様に、昇華ガスが蓋材22にまで達すれば、蓋材22にも多結晶45が成長する。   Thus, when the sublimation gas is supplied to the growth space region 60, the sublimation gas is sprayed not only on the growing SiC single crystal 70 but also on the shielding portion 23. Thereby, as shown in FIG. 1, SiC polycrystal 45 grows on support plate 23 a on the SiC single crystal 70 side of cylindrical portion 23 b of shielding portion 23. Similarly, when the sublimation gas reaches the cover material 22, the polycrystal 45 grows on the cover material 22.

しかしながら、遮蔽部23の円筒部23bと側壁部21の内壁との間の空間23eにおいては、遮蔽部23の円筒部23bに取り付けられた仕切り板23cによって昇華ガスが上記空間23eに流れ込むことが抑制される。このため、空間23e内に多結晶は形成されない。これによると、抵抗加熱ヒータによって加熱された側壁部21の熱が仕切り板23cがなければ成長するであろう多結晶によって遮蔽部23の円筒部23bに伝達されることはなく、円筒部23bと坩堝1の中心軸との間の温度勾配が大きくなることもない。つまり、円筒部23bで囲まれた成長空間領域60が均熱に保たれる。   However, in the space 23e between the cylindrical part 23b of the shielding part 23 and the inner wall of the side wall part 21, the partition plate 23c attached to the cylindrical part 23b of the shielding part 23 prevents the sublimation gas from flowing into the space 23e. Is done. For this reason, a polycrystal is not formed in the space 23e. According to this, the heat of the side wall part 21 heated by the resistance heater is not transmitted to the cylindrical part 23b of the shielding part 23 by the polycrystal that would grow without the partition plate 23c, and the cylindrical part 23b The temperature gradient between the center axis of the crucible 1 does not increase. That is, the growth space region 60 surrounded by the cylindrical portion 23b is kept soaked.

したがって、成長空間領域60において坩堝1の中心軸付近における温度と円筒部23b近傍の温度とがほぼ同じに保たれるので、SiC単結晶70の口径拡大および凸成長の進行が抑制される。これに伴い、SiC単結晶70に歪みが生じず、SiC単結晶70の割れを防止することができる。   Therefore, in the growth space region 60, the temperature in the vicinity of the central axis of the crucible 1 and the temperature in the vicinity of the cylindrical portion 23b are kept substantially the same, so that the diameter expansion of the SiC single crystal 70 and the progress of the convex growth are suppressed. As a result, the SiC single crystal 70 is not distorted, and cracking of the SiC single crystal 70 can be prevented.

以上説明したように、本実施形態では、蓋体20を構成する遮蔽部23の円筒部23bの開口端に仕切り板23cを設け、当該仕切り板23cで蓋体20を構成する側壁部21の内壁と円筒部23bとの間の空間23eに昇華ガスが流れ込むことを抑制することが特徴となっている。   As described above, in this embodiment, the partition plate 23c is provided at the opening end of the cylindrical portion 23b of the shielding portion 23 constituting the lid body 20, and the inner wall of the side wall portion 21 constituting the lid body 20 by the partition plate 23c. The sublimation gas is prevented from flowing into the space 23e between the cylindrical portion 23b and the cylindrical portion 23b.

これにより、当該空間23eに多結晶を成長させないようにすることができ、この空間23eへの多結晶の成長抑制によって側壁部21が抵抗加熱ヒータから受ける熱を円筒部23bに伝達させないようにすることができる。すなわち、成長空間領域60において円筒部23bと坩堝1の中心軸との間に温度勾配が大きくならないようにすることができる。つまり、円筒部23bで囲まれた成長空間領域60を均熱に維持することが可能となる。   Thereby, it is possible to prevent the polycrystal from growing in the space 23e, and to prevent the side wall portion 21 from transferring heat received from the resistance heater to the cylindrical portion 23b by suppressing the growth of the polycrystal in the space 23e. be able to. That is, it is possible to prevent a temperature gradient from increasing between the cylindrical portion 23 b and the central axis of the crucible 1 in the growth space region 60. That is, the growth space region 60 surrounded by the cylindrical portion 23b can be maintained soaking.

このように、成長空間領域60を均熱に保つことができることから、坩堝1の径方向においてSiC単結晶70の成長速度に差が生じないようにすることができ、SiC単結晶70の凸成長を抑制することができる。したがって、SiC単結晶70の歪みを抑制することができ、ひいてはSiC単結晶70の割れを防止することができる。   As described above, since the growth space region 60 can be kept soaking, it is possible to prevent a difference in the growth rate of the SiC single crystal 70 in the radial direction of the crucible 1, and the convex growth of the SiC single crystal 70. Can be suppressed. Therefore, distortion of SiC single crystal 70 can be suppressed, and as a result, cracking of SiC single crystal 70 can be prevented.

(第2実施形態)
本実施形態では、第1実施形態と異なる部分についてのみ説明する。上記第1実施形態では、仕切り板23cの外周端は側壁部21の内壁に接しているが、本実施形態では、当該外周端が側壁部21の内壁から離れていることが特徴となっている。
(Second Embodiment)
In the present embodiment, only different parts from the first embodiment will be described. In the said 1st Embodiment, although the outer peripheral end of the partition plate 23c is in contact with the inner wall of the side wall part 21, in this embodiment, the said outer peripheral end is separated from the inner wall of the side wall part 21. .

図2は、本発明の第2実施形態にかかるSiC単結晶製造装置の蓋体20の断面構成を示したものである。この図に示されるように、仕切り板23cの外周端23gと側壁部21の内壁との間に隙間23hが設けられている。当該隙間23hによって、遮蔽部23と側壁部21とで構成される空間23eが容器本体10内と繋がった状態となる。   FIG. 2 shows a cross-sectional configuration of the lid 20 of the SiC single crystal manufacturing apparatus according to the second embodiment of the present invention. As shown in this figure, a gap 23 h is provided between the outer peripheral end 23 g of the partition plate 23 c and the inner wall of the side wall portion 21. Due to the gap 23h, the space 23e formed by the shielding part 23 and the side wall part 21 is connected to the inside of the container body 10.

このような隙間23hを設けることで、SiC単結晶70を成長させる場合、坩堝1内を真空にする際に空間23e内の空気を坩堝1の外部に排出しやすくすることができる。すなわち、仕切り板23cによって空間23eが密閉されることで、空間23e内の空気が真空引きの際に坩堝1の外部に排出されずに膨張し、坩堝1が破壊してしまうことを防止することができる。隙間23hは0.5mm以下が望ましく、大きすぎると多結晶が空間23eに成長してしまう。   By providing such a gap 23h, when the SiC single crystal 70 is grown, the air in the space 23e can be easily discharged outside the crucible 1 when the crucible 1 is evacuated. That is, the space 23e is hermetically sealed by the partition plate 23c, thereby preventing the air in the space 23e from expanding without being discharged to the outside of the crucible 1 during evacuation, thereby preventing the crucible 1 from being destroyed. Can do. The gap 23h is desirably 0.5 mm or less, and if it is too large, a polycrystal will grow in the space 23e.

(第3実施形態)
本実施形態では、上記各実施形態と異なる部分についてのみ説明する。第2実施形態では、遮蔽部23と側壁部21とによって構成される空間23eが、仕切り板23cの外周端と側壁部21の内壁との間の隙間23hによって他の空間と繋がった状態とされているが、本実施形態では、遮蔽部23に貫通穴を設けることで空間23eを他の空間と繋げることが特徴となっている。
(Third embodiment)
In the present embodiment, only different portions from the above embodiments will be described. In the second embodiment, the space 23e formed by the shielding portion 23 and the side wall portion 21 is connected to another space by a gap 23h between the outer peripheral end of the partition plate 23c and the inner wall of the side wall portion 21. However, the present embodiment is characterized in that the space 23e is connected to another space by providing a through hole in the shielding portion 23.

図3は、本発明の第3実施形態にかかるSiC単結晶製造装置の蓋体20の断面構成を示したものである。この図に示されるように、仕切り板23cの外周端23gは側壁部21の内壁に接した形態になっている。そして、遮蔽部23の支持板23aのうち、空間23eを構成する部分に、支持板23aを貫通する貫通穴23iが設けられている。   FIG. 3 shows a cross-sectional configuration of the lid 20 of the SiC single crystal manufacturing apparatus according to the third embodiment of the present invention. As shown in this figure, the outer peripheral end 23 g of the partition plate 23 c is in contact with the inner wall of the side wall portion 21. And the through-hole 23i which penetrates the support plate 23a is provided in the part which comprises the space 23e among the support plates 23a of the shielding part 23. As shown in FIG.

上記貫通穴23iは、遮蔽部23と側壁部21とで構成される空間23eを坩堝1内の空間と繋げる役割を果たす。この貫通穴23iによって、坩堝1内を真空にする際に空間23e内の空気を坩堝1の外部に排出しやすくすることができる。貫通穴23iは、今回30°毎に1mmの穴を配置したが、穴径は0.5mm以上が望ましく、あまり小さいと穴加工が困難となり、大きすぎたり多すぎると温度分布への影響が無視できなくなる。   The through hole 23 i serves to connect the space 23 e formed by the shielding portion 23 and the side wall portion 21 with the space in the crucible 1. The through hole 23i can facilitate the discharge of the air in the space 23e to the outside of the crucible 1 when the crucible 1 is evacuated. As for the through hole 23i, a 1 mm hole is arranged every 30 ° this time, but the hole diameter is desirably 0.5 mm or more. If the hole diameter is too small, drilling is difficult. If too large or too large, the influence on the temperature distribution is ignored. become unable.

(第4実施形態)
本実施形態では、第3実施形態と異なる部分についてのみ説明する。上記第3実施形態では、空間23e内の空気を逃がすために遮蔽部23の支持板23aに貫通穴23iを設けていたが、本実施形態では側壁部21に貫通穴を設けることが特徴となっている。
(Fourth embodiment)
In the present embodiment, only different parts from the third embodiment will be described. In the third embodiment, the through hole 23i is provided in the support plate 23a of the shielding part 23 in order to allow the air in the space 23e to escape. However, in the present embodiment, the through hole is provided in the side wall part 21. ing.

図4は、本発明の第4実施形態にかかるSiC単結晶製造装置の蓋体20の断面構成を示したものである。この図に示されるように、仕切り板23cの外周端23gは側壁部21の内壁に接した状態とされている。また、側壁部21に当該側壁部21を貫通する貫通穴23jが設けられている。   FIG. 4 shows a cross-sectional configuration of the lid 20 of the SiC single crystal manufacturing apparatus according to the fourth embodiment of the present invention. As shown in this figure, the outer peripheral end 23 g of the partition plate 23 c is in contact with the inner wall of the side wall portion 21. The side wall 21 is provided with a through hole 23j that passes through the side wall 21.

この貫通穴23jによって、遮蔽部23と側壁部21とで構成される空間23eが坩堝1の外に繋がる形態となっている。これにより、空間23e内の空気を坩堝1外部に逃がしやすくすることができる。貫通穴23jは、今回30°毎に1mmの穴を配置したが、穴径は0.5mm以上が望ましく、あまり小さいと穴加工が困難となり、大きすぎたり多すぎると温度分布への影響が無視できなくなる。   A space 23e formed by the shielding portion 23 and the side wall portion 21 is connected to the outside of the crucible 1 by the through hole 23j. Thereby, the air in the space 23e can be easily released to the outside of the crucible 1. As for the through hole 23j, a 1 mm hole is arranged every 30 ° this time, but the hole diameter is desirably 0.5 mm or more. If the hole diameter is too small, drilling is difficult, and if it is too large or too large, the influence on the temperature distribution is ignored. become unable.

(第5実施形態)
本実施形態では、上記各実施形態と異なる部分についてのみ説明する。本実施形態では、成長空間領域60に温度勾配が生じないようにするために、遮蔽部23と側壁部21とで構成される空間23e内に断熱部材を設けることが特徴となっている。
(Fifth embodiment)
In the present embodiment, only different portions from the above embodiments will be described. The present embodiment is characterized in that a heat insulating member is provided in the space 23e formed by the shielding portion 23 and the side wall portion 21 in order to prevent a temperature gradient from occurring in the growth space region 60.

図5は、本発明の第5実施形態にかかるSiC単結晶製造装置の蓋体20の断面構成を示したものである。この図に示されるように、空間23eに断熱部材23kが配置されている。本実施形態では、断熱部材23kは遮蔽部23の円筒部23bと接するように設けられている。このような断熱部材23kとして、例えばカーボン材が採用される。   FIG. 5 shows a cross-sectional configuration of the lid 20 of the SiC single crystal manufacturing apparatus according to the fifth embodiment of the present invention. As shown in this figure, a heat insulating member 23k is disposed in the space 23e. In the present embodiment, the heat insulating member 23k is provided in contact with the cylindrical portion 23b of the shielding portion 23. For example, a carbon material is employed as the heat insulating member 23k.

この断熱部材23kは、坩堝1に与えられる熱の成長空間領域60への伝達を抑制する機能を果たす。これにより、成長空間領域60における坩堝1の径方向の温度勾配が大きくならないように効果をさらに大きくすることができ、均熱を保つことができる。   The heat insulating member 23k functions to suppress transmission of heat applied to the crucible 1 to the growth space region 60. Thereby, the effect can be further increased so that the temperature gradient in the radial direction of the crucible 1 in the growth space region 60 does not increase, and soaking can be maintained.

(他の実施形態)
第1実施形態では、仕切り板23cは坩堝1の中心軸に垂直方向の面に平行に配置されているが、仕切り板23cの配置はこれに限らず、例えば坩堝1の中心軸方向において仕切り板23cの外周端が内周端よりも容器本体10側に位置するように配置しても構わない。
(Other embodiments)
In the first embodiment, the partition plate 23c is arranged in parallel to a plane perpendicular to the central axis of the crucible 1, but the arrangement of the partition plate 23c is not limited to this, for example, the partition plate in the central axis direction of the crucible 1. You may arrange | position so that the outer peripheral end of 23c may be located in the container main body 10 side rather than an inner peripheral end.

第5実施形態で示された断熱部材23kを第1〜第4実施形態に示される蓋体20にそれぞれ採用することもできる。   The heat insulating member 23k shown in the fifth embodiment can also be employed in the lid body 20 shown in the first to fourth embodiments.

第5実施形態では、断熱部材23kは遮蔽部23の円筒部23bに接するように配置されているが、円筒部23bに接していなくても良く、空間23eに配置されていればどの場所でも構わない。   In 5th Embodiment, although the heat insulation member 23k is arrange | positioned so that the cylindrical part 23b of the shielding part 23 may be contacted, it does not need to be in contact with the cylindrical part 23b, and as long as it is arrange | positioned in the space 23e, it may be anywhere. Absent.

本発明の第1実施形態にかかるSiC単結晶製造装置の断面構成図である。It is a section lineblock diagram of the SiC single crystal manufacturing device concerning a 1st embodiment of the present invention. 本発明の第2実施形態にかかるSiC単結晶製造装置の蓋体の断面構成図である。It is a cross-sectional block diagram of the cover body of the SiC single crystal manufacturing apparatus concerning 2nd Embodiment of this invention. 本発明の第3実施形態にかかるSiC単結晶製造装置の蓋体の断面構成図である。It is a cross-sectional block diagram of the cover body of the SiC single crystal manufacturing apparatus concerning 3rd Embodiment of this invention. 本発明の第4実施形態にかかるSiC単結晶製造装置の蓋体の断面構成図である。It is a cross-sectional block diagram of the cover body of the SiC single crystal manufacturing apparatus concerning 4th Embodiment of this invention. 本発明の第5実施形態にかかるSiC単結晶製造装置の蓋体の断面構成図である。It is a cross-sectional block diagram of the cover body of the SiC single crystal manufacturing apparatus concerning 5th Embodiment of this invention. 従来のSiC単結晶製造装置の模式的な断面構造図である。It is a typical cross-section figure of the conventional SiC single crystal manufacturing apparatus.

符号の説明Explanation of symbols

1…坩堝、10…容器本体、20…蓋体、21…側壁部、22…蓋材、23…遮蔽部、23a…支持板、23b…円筒部、23c…仕切り板、23d…窓部、23e…空間、23g…他端、23h…隙間、23i、23j…貫通穴、23k…断熱部材、30…連結部、40…種結晶、50…粉末原料、60…成長空間領域、70…SiC単結晶。   DESCRIPTION OF SYMBOLS 1 ... Crucible, 10 ... Container main body, 20 ... Lid body, 21 ... Side wall part, 22 ... Lid material, 23 ... Shielding part, 23a ... Supporting plate, 23b ... Cylindrical part, 23c ... Partition plate, 23d ... Window part, 23e ... space, 23g ... other end, 23h ... gap, 23i, 23j ... through hole, 23k ... heat insulating member, 30 ... connecting portion, 40 ... seed crystal, 50 ... powder material, 60 ... growth space region, 70 ... SiC single crystal .

Claims (10)

有底円筒状の容器本体(10)と当該容器本体(10)を蓋閉めするための蓋体(20)とを有した中空状の円柱形状をなす坩堝(1)を有し、前記蓋体(20)に炭化珪素基板からなる種結晶(40)を配置すると共に前記容器本体(10)に炭化珪素原料(50)を配置し、前記炭化珪素原料(50)の昇華ガスを供給することにより、前記種結晶(40)上に炭化珪素単結晶(70)を成長させる炭化珪素単結晶の製造装置において、
前記蓋体(20)は、
中空筒状の側壁部(21)と、
板状であって、前記板の一面側に前記種結晶(40)が配置されると共に、前記種結晶(40)が前記側壁部(21)の中空部分に収納されるように前記側壁部(21)の開口端の一方に取り付けられる蓋材(22)と、
板状であって、前記種結晶(40)が差し込まれる貫通した窓部(23d)を有しており、前記板の側面が前記側壁部(21)の内壁に一体化される支持板(23a)と、
前記側壁部(21)の内壁よりも径が小さい中空筒状をなしており、当該中空筒の中空部分が成長空間領域(60)とされて前記昇華ガスが供給されるようになっており、前記支持板(23a)のうち前記蓋材(22)に対向する面とは反対側の面に前記中空筒の開口端の一方が一体化された円筒部(23b)と、
前記昇華ガスが前記側壁部(21)の内壁と前記円筒部(23b)の外壁との間の空間(23e)に流れ込むことを抑制するドーナツ状のものであって、前記ドーナツ部の内周端が前記円筒部(23b)の開口端の他方に一体化され、前記ドーナツ部の外周端が前記側壁部(21)の内壁側に配置される仕切り板(23c)とを有していることを特徴とする炭化珪素単結晶の製造装置。
A hollow cylindrical crucible (1) having a bottomed cylindrical container body (10) and a lid (20) for closing the container body (10); By disposing a seed crystal (40) made of a silicon carbide substrate in (20) and disposing a silicon carbide raw material (50) in the container body (10) and supplying a sublimation gas of the silicon carbide raw material (50). In the silicon carbide single crystal manufacturing apparatus for growing the silicon carbide single crystal (70) on the seed crystal (40),
The lid (20)
A hollow cylindrical side wall (21);
The side wall portion (40) is plate-shaped, and the seed crystal (40) is disposed on one surface side of the plate, and the seed crystal (40) is accommodated in a hollow portion of the side wall portion (21). 21) a lid member (22) attached to one of the open ends;
A support plate (23a) having a plate-like shape and having a through window (23d) into which the seed crystal (40) is inserted, and a side surface of the plate being integrated with an inner wall of the side wall (21). )When,
A hollow cylinder having a diameter smaller than the inner wall of the side wall (21) is formed, and a hollow portion of the hollow cylinder is used as a growth space region (60) to supply the sublimation gas, A cylindrical portion (23b) in which one of the open ends of the hollow cylinder is integrated with a surface of the support plate (23a) opposite to the surface facing the lid member (22);
An inner peripheral end of the doughnut-shaped portion that suppresses the sublimation gas from flowing into the space (23e) between the inner wall of the side wall portion (21) and the outer wall of the cylindrical portion (23b). Is integrated with the other open end of the cylindrical part (23b), and the outer peripheral end of the donut part has a partition plate (23c) arranged on the inner wall side of the side wall part (21). An apparatus for producing a silicon carbide single crystal characterized.
前記仕切り板(23c)の外周端(23g)は、前記側壁部(21)の内壁に接しておらず、前記仕切り板(23c)の外周端と前記側壁部(21)の内壁との間に隙間(23h)が設けられていることを特徴とする請求項1に記載の炭化珪素単結晶の製造装置。 The outer peripheral end (23g) of the partition plate (23c) is not in contact with the inner wall of the side wall portion (21), and is between the outer peripheral end of the partition plate (23c) and the inner wall of the side wall portion (21). The apparatus for producing a silicon carbide single crystal according to claim 1, wherein a gap (23h) is provided. 前記仕切り板(23c)の外周端(23g)が前記側壁部(21)の内壁に接しており、前記支持板(23a)には、前記支持板(23a)と前記蓋材(22)との間の空間と前記側壁部(21)と前記円筒部(23b)との間の前記空間(23e)とを繋ぐ貫通穴(23i)が設けられていることを特徴とする請求項1に記載の炭化珪素単結晶の製造装置。 An outer peripheral end (23g) of the partition plate (23c) is in contact with an inner wall of the side wall portion (21), and the support plate (23a) includes the support plate (23a) and the lid member (22). The through hole (23i) which connects the space between and the space (23e) between the side wall part (21) and the cylindrical part (23b) is provided. Silicon carbide single crystal production equipment. 前記仕切り板(23c)の外周端(23g)が前記側壁部(21)の内壁に接しており、前記側壁部(21)には、当該側壁部(21)と前記円筒部(23b)との間の前記空間(23e)と前記坩堝(1)の外部とを繋ぐ貫通穴(23j)が設けられていることを特徴とする請求項1に記載の炭化珪素単結晶の製造装置。 An outer peripheral end (23g) of the partition plate (23c) is in contact with an inner wall of the side wall portion (21), and the side wall portion (21) includes the side wall portion (21) and the cylindrical portion (23b). The apparatus for producing a silicon carbide single crystal according to claim 1, further comprising a through hole (23j) that connects the space (23e) between the space and the outside of the crucible (1). 前記側壁部(21)と前記円筒部(23b)との間の前記空間(23e)に断熱部材(23k)が配置されていることを特徴とする請求項1ないし4のいずれか1つに記載の炭化珪素単結晶の製造装置。 The heat insulating member (23k) is disposed in the space (23e) between the side wall (21) and the cylindrical portion (23b), according to any one of claims 1 to 4. An apparatus for producing a silicon carbide single crystal. 有底円筒状の容器本体(10)と当該容器本体(10)を蓋閉めするための蓋体(20)とを有した中空状の円柱形状をなす坩堝(1)を有し、前記蓋体(20)に炭化珪素基板からなる種結晶(40)を配置すると共に前記容器本体(10)に炭化珪素原料(50)を配置し、前記炭化珪素原料(50)の昇華ガスを供給することにより、前記種結晶(40)上に炭化珪素単結晶(70)を成長させる炭化珪素単結晶の製造方法において、
前記蓋体(20)として、
中空筒状の側壁部(21)と、
板状であって、前記板の一面側に前記種結晶(40)が配置されると共に、前記種結晶(40)が前記側壁部(21)の中空部分に収納されるように前記側壁部(21)の開口端の一方に取り付けられる蓋材(22)と、
板状であって、前記種結晶(40)が差し込まれる貫通した窓部(23d)を有しており、前記板の側面が前記側壁部(21)の内壁に一体化される支持板(23a)と、
前記側壁部(21)の内壁よりも径が小さい中空筒状をなしており、当該中空筒の中空部分が成長空間領域(60)とされて前記昇華ガスが供給されるようになっており、前記支持板(23a)のうち前記蓋材(22)に対向する面とは反対側の面に前記中空筒の開口端の一方が一体化された円筒部(23b)と、
前記昇華ガスが前記側壁部(21)の内壁と前記円筒部(23b)の外壁との間の空間(23e)に流れ込むことを抑制するドーナツ状のものであって、前記ドーナツ部の内周端が前記円筒部(23b)の開口端の他方に一体化され、前記ドーナツ部の外周端が前記側壁部(21)の内壁側に配置される仕切り板(23c)とを有するものを用意し、
前記容器本体(10)に前記炭化珪素原料(50)を配置させて前記蓋体(20)にて前記容器本体(10)を蓋閉めして前記坩堝(1)を構成した後、前記坩堝(1)を加熱することで、前記炭化珪素原料(50)から前記昇華ガスを発生させ、当該昇華ガスを前記成長空間領域(60)に供給することにより前記種結晶(40)に前記炭化珪素単結晶(70)を成長させることを特徴とする炭化珪素単結晶の製造方法。
A hollow cylindrical crucible (1) having a bottomed cylindrical container body (10) and a lid (20) for closing the container body (10); By disposing a seed crystal (40) made of a silicon carbide substrate in (20) and disposing a silicon carbide raw material (50) in the container body (10) and supplying a sublimation gas of the silicon carbide raw material (50). In the method for producing a silicon carbide single crystal, the silicon carbide single crystal (70) is grown on the seed crystal (40).
As the lid (20),
A hollow cylindrical side wall (21);
It is plate-shaped, and the side wall portion (40) is disposed on one side of the plate and the seed crystal (40) is accommodated in a hollow portion of the side wall portion (21). 21) a lid member (22) attached to one of the open ends;
A support plate (23a) having a plate-like shape and having a through window (23d) into which the seed crystal (40) is inserted, and a side surface of the plate being integrated with an inner wall of the side wall (21). )When,
A hollow cylinder having a diameter smaller than the inner wall of the side wall (21) is formed, and a hollow portion of the hollow cylinder is used as a growth space region (60) to supply the sublimation gas, A cylindrical portion (23b) in which one of the open ends of the hollow cylinder is integrated with a surface of the support plate (23a) opposite to the surface facing the lid member (22);
An inner peripheral end of the doughnut-shaped portion that suppresses the sublimation gas from flowing into the space (23e) between the inner wall of the side wall portion (21) and the outer wall of the cylindrical portion (23b). Is prepared to be integrated with the other open end of the cylindrical portion (23b), and the outer peripheral end of the donut portion has a partition plate (23c) disposed on the inner wall side of the side wall portion (21).
After the silicon carbide raw material (50) is arranged in the container body (10) and the container body (10) is closed with the lid body (20) to form the crucible (1), the crucible ( 1) is heated to generate the sublimation gas from the silicon carbide raw material (50), and the sublimation gas is supplied to the growth space region (60), whereby the silicon carbide single crystal is added to the seed crystal (40). A method for producing a silicon carbide single crystal, comprising growing a crystal (70).
前記蓋体(20)として、前記仕切り板(23c)の外周端(23g)が、前記側壁部(21)の内壁に接しておらず、前記仕切り板(23c)の外周端(23g)と前記側壁部(21)の内壁との間に隙間(23h)が設けられたものを用意することを特徴とする請求項6に記載の炭化珪素単結晶の製造方法。 As the lid (20), the outer peripheral end (23g) of the partition plate (23c) is not in contact with the inner wall of the side wall (21), and the outer peripheral end (23g) of the partition plate (23c) The method for producing a silicon carbide single crystal according to claim 6, wherein a device having a gap (23 h) provided between the side wall portion (21) and the inner wall is prepared. 前記蓋体(20)として、前記仕切り板(23c)の外周端(23g)が前記側壁部(21)の内壁に接しており、前記支持板(23a)には、前記支持板(23a)と前記蓋材(22)との間の空間と前記側壁部(21)と前記円筒部(23b)との間の前記空間(23e)とを繋ぐ貫通穴(23i)が設けられたものを用意することを特徴とする請求項6に記載の炭化珪素単結晶の製造方法。 As the lid (20), an outer peripheral end (23g) of the partition plate (23c) is in contact with an inner wall of the side wall portion (21), and the support plate (23a) includes the support plate (23a) and the support plate (23a). Prepare one provided with a through hole (23i) that connects the space between the lid member (22) and the space (23e) between the side wall portion (21) and the cylindrical portion (23b). The method for producing a silicon carbide single crystal according to claim 6. 前記蓋体(20)として、前記仕切り板(23c)の外周端(23g)が前記側壁部(21)の内壁に接しており、前記側壁部(21)には、当該側壁部(21)と前記円筒部(23b)との間の前記空間(23e)と前記坩堝(1)の外部とを繋ぐ貫通穴(23j)が設けられたものを用意することを特徴とする請求項6に記載の炭化珪素単結晶の製造方法。 As the lid (20), an outer peripheral end (23g) of the partition plate (23c) is in contact with an inner wall of the side wall (21), and the side wall (21) includes the side wall (21) and The thing provided with the through-hole (23j) which connects the said space (23e) between the said cylindrical parts (23b) and the exterior of the said crucible (1) is prepared. A method for producing a silicon carbide single crystal. 前記蓋体(20)として、前記側壁部(21)と前記円筒部(23b)との間の前記空間(23e)に断熱部材(23k)が配置されたものを用意することを特徴とする請求項6ないし9のいずれか1つに記載の炭化珪素単結晶の製造方法。 The lid (20) is prepared by arranging a heat insulating member (23k) in the space (23e) between the side wall (21) and the cylindrical part (23b). Item 10. A method for producing a silicon carbide single crystal according to any one of Items 6 to 9.
JP2007189329A 2007-07-20 2007-07-20 Method and apparatus for producing silicon carbide single crystal Active JP4962186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007189329A JP4962186B2 (en) 2007-07-20 2007-07-20 Method and apparatus for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007189329A JP4962186B2 (en) 2007-07-20 2007-07-20 Method and apparatus for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2009023879A true JP2009023879A (en) 2009-02-05
JP4962186B2 JP4962186B2 (en) 2012-06-27

Family

ID=40396042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007189329A Active JP4962186B2 (en) 2007-07-20 2007-07-20 Method and apparatus for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP4962186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110820042A (en) * 2018-08-08 2020-02-21 昭和电工株式会社 Shielding member and single crystal growth apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122668B1 (en) 2018-12-12 2020-06-12 에스케이씨 주식회사 Apparatus for ingot and preparation method of silicon carbide ingot with the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044383A (en) * 1998-07-30 2000-02-15 Denso Corp Growth unit for single crystal
JP2002520252A (en) * 1998-07-14 2002-07-09 シーメンス アクチエンゲゼルシヤフト Method for producing SiC single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520252A (en) * 1998-07-14 2002-07-09 シーメンス アクチエンゲゼルシヤフト Method for producing SiC single crystal
JP2000044383A (en) * 1998-07-30 2000-02-15 Denso Corp Growth unit for single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110820042A (en) * 2018-08-08 2020-02-21 昭和电工株式会社 Shielding member and single crystal growth apparatus
CN110820042B (en) * 2018-08-08 2021-11-12 昭和电工株式会社 Shielding member and single crystal growth apparatus
US11261541B2 (en) 2018-08-08 2022-03-01 Showa Denko K.K. Shielding member and apparatus for single crystal growth

Also Published As

Publication number Publication date
JP4962186B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP5392169B2 (en) Method for producing silicon carbide single crystal
JP2008290885A (en) Apparatus and method for producing silicon carbide single crystal
JP2012030994A (en) Apparatus and method for producing silicon carbide single crystal
JP2011219295A (en) Apparatus for producing silicon carbide single crystal ingot
JP6338439B2 (en) Method for producing silicon carbide single crystal ingot
TWI570265B (en) Film forming apparatus, base, and film forming method
JP2000264795A (en) Apparatus and method for producing silicon carbide single crystal
JP2009051701A (en) Apparatus and method for producing silicon carbide single crystal
JPH11268990A (en) Production of single crystal and production device
JP4962186B2 (en) Method and apparatus for producing silicon carbide single crystal
JP2011136903A (en) Production method and production apparatus for silicon carbide single crystal
JP4238450B2 (en) Method and apparatus for producing silicon carbide single crystal
JP2009091173A (en) Manufacturing apparatus for silicon carbide single crystal
JP2007077017A (en) Growth apparatus and growth method for single crystal
JP4766022B2 (en) Method and apparatus for producing silicon carbide single crystal
EP2055813B1 (en) Device for manufacturing sic single crystal and method for the same
US9453291B2 (en) Single crystal pulling apparatus and low heat conductive member used for single crystal pulling apparatus
KR101724291B1 (en) Apparatus for growing silicon carbide single crystal using the method of reversal of Physical Vapor Transport
JP5333315B2 (en) Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
JP4735622B2 (en) Silicon carbide single crystal manufacturing equipment
JP4924253B2 (en) Method and apparatus for producing silicon carbide single crystal
JP2012254892A (en) Manufacturing method and manufacturing device for single crystal
JP2012020893A (en) Apparatus for manufacturing silicon carbide single crystal, and method for manufacturing silicon carbide single crystal
JP2008074653A (en) Apparatus for producing silicon carbide single crystal
JP4831041B2 (en) Silicon carbide single crystal manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R151 Written notification of patent or utility model registration

Ref document number: 4962186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250