JP2009051701A - Apparatus and method for producing silicon carbide single crystal - Google Patents

Apparatus and method for producing silicon carbide single crystal Download PDF

Info

Publication number
JP2009051701A
JP2009051701A JP2007221128A JP2007221128A JP2009051701A JP 2009051701 A JP2009051701 A JP 2009051701A JP 2007221128 A JP2007221128 A JP 2007221128A JP 2007221128 A JP2007221128 A JP 2007221128A JP 2009051701 A JP2009051701 A JP 2009051701A
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
crucible
carbide single
sic single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007221128A
Other languages
Japanese (ja)
Other versions
JP4924290B2 (en
Inventor
Hiroyuki Kondo
宏行 近藤
Shoichi Onda
正一 恩田
Masaki Matsui
正樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007221128A priority Critical patent/JP4924290B2/en
Publication of JP2009051701A publication Critical patent/JP2009051701A/en
Application granted granted Critical
Publication of JP4924290B2 publication Critical patent/JP4924290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a long high-quality SiC single crystal. <P>SOLUTION: A graphite crucible 1 is arranged such that a central axis R2 of the graphite crucible 1 is shifted by a certain distance L relative to a central axis R1 of a rotating device 5 or a heating device 6, and a region 4b in which screw dislocation can occur in a SiC single crystal substrate 3 is in agreement with the central axis R1 of the rotating device 5 and the heating device 6. Thereby, when growing up a SiC single crystal 4 on the SiC single crystal substrate 3, it is possible to prevent that the region 4b in which screw dislocation can occur in the SiC single crystal 4 have a higher temperature than the region surrounding the above region. Thus, the growth of a long SiC single crystal 4 becomes possible, and it also becomes possible to obtain many high-quality crystals having a large diameter. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体や発光ダイオードなどの素材に利用することができる炭化珪素(以下、SiCという)単結晶の製造装置およびその製造方法に関するものである。   The present invention relates to an apparatus for manufacturing a silicon carbide (hereinafter referred to as SiC) single crystal that can be used for a material such as a semiconductor or a light emitting diode, and a method for manufacturing the same.

従来より、SiC単結晶を成長させる方法として、昇華再結晶法が広く用いられている。この昇華再結晶法は、黒鉛製るつぼ内に配置した黒鉛台座に種結晶を接合すると共に、るつぼ底部に配したSiC原料を加熱昇華させ、その昇華ガスを種結晶に供給することによって種結晶上にSiC単結晶を成長させるものである。   Conventionally, a sublimation recrystallization method has been widely used as a method for growing a SiC single crystal. This sublimation recrystallization method involves joining a seed crystal to a graphite pedestal placed in a graphite crucible, heating and sublimating the SiC raw material arranged at the bottom of the crucible, and supplying the sublimation gas to the seed crystal. To grow a SiC single crystal.

このような昇華再結晶法を用いたSiC単結晶の製造方法として、例えば特許文献1〜4に示される手法がある。   As a method for producing an SiC single crystal using such a sublimation recrystallization method, for example, there are methods disclosed in Patent Documents 1 to 4.

図2(a)は、特許文献1に示される手法によってSiC単結晶を成長させている様子を示した断面図である。この図に示したように、るつぼの蓋部J1の台座J2の上に例えば{0001}面から8°傾いた面が露出した転位制御種結晶J3を配置し、この転位制御種結晶J3の表面にSiC単結晶J4を成長させている。このような成長を行った場合、成長初期はc面ファセットJ5の位置を結晶の端の方に形成することができ、螺旋転位発生可能領域J6内にc面ファセットJ5を収めることができるので、所望の単一多形、例えば4H単一多形や6H単一多形のSiC単結晶に異種多形や異方位結晶が発生することはない。   FIG. 2A is a cross-sectional view showing a state in which a SiC single crystal is grown by the technique disclosed in Patent Document 1. FIG. As shown in this figure, a dislocation control seed crystal J3 having a surface inclined at an angle of, for example, 8 ° from the {0001} plane is disposed on a pedestal J2 of the lid portion J1 of the crucible, and the surface of the dislocation control seed crystal J3. An SiC single crystal J4 is grown on the substrate. When such growth is performed, since the position of the c-plane facet J5 can be formed toward the end of the crystal at the initial stage of growth, the c-plane facet J5 can be accommodated in the screw dislocation generation possible region J6. A heterogeneous polymorph or a different orientation crystal does not occur in a desired single polymorph, for example, a 4H single polymorph or a 6H single polymorph SiC single crystal.

また、特許文献2に示される手法では、階段状に多数の(0001)面が形成された6H多形のオフアングル種結晶の表面にSiC単結晶を形成するようにし、(0001)面のうち最表面に近いほど、つまり成長ステップの高さに比例して昇華ガスの供給量を増加させるようにしている。   In the technique disclosed in Patent Document 2, a SiC single crystal is formed on the surface of a 6H polymorphic off-angle seed crystal in which a large number of (0001) planes are formed stepwise, The closer to the outermost surface, that is, the amount of sublimation gas supplied is increased in proportion to the height of the growth step.

また、特許文献3に示される手法では、反応炉の蓋部の中心から一方向に偏った位置に種結晶基板を配置し、種結晶の一方の縁部から対向する他方の縁部にわたって温度勾配を設け、ステップ成長を主体とすることで核生成を制御している。   In the method disclosed in Patent Document 3, a seed crystal substrate is disposed at a position deviated in one direction from the center of the lid of the reaction furnace, and a temperature gradient extends from one edge of the seed crystal to the other opposite edge. And nucleation is controlled mainly by step growth.

また、特許文献4に示される手法では、ジャストアングルの種結晶を用いると共に種結晶の中心部に低温領域を設け、成長初期に実質的にオフアングル状態を形成することで、ステップフロー成長を実現して成長核の発生を制御することで欠陥の発生を抑制している。
特許第3764462号公報 特開平4−357824号公報 特開平8−245299号公報 特開平11−278985号公報
In the method disclosed in Patent Document 4, step-flow growth is realized by using a just-angle seed crystal and providing a low-temperature region at the center of the seed crystal to form an off-angle state substantially at the initial stage of growth. Thus, the generation of defects is suppressed by controlling the generation of growth nuclei.
Japanese Patent No. 3764462 JP-A-4-357824 JP-A-8-245299 Japanese Patent Laid-Open No. 11-278985

しかしながら、特許文献1に示す手法では、SiC単結晶を長尺に成長させようとすると、成長に伴ってSiC単結晶の外周側が比較的高温になっていくため、図2(b)に示すように成長表面が曲面になり、c面ファセットJ5は徐々に内側に移動して、螺旋転位発生可能領域J6からc面ファセットJ5が外れてしまう。そのため、下地の多形を継承するための成長ステップがなくなり、SiC単結晶J4に異種多形や異方位結晶が新たに発生し易くなるという問題がある。このため、実質上、SiC単結晶J4の成長長さに限界がある。したがって、特許文献1に示す手法では、長尺の成長が困難なため、大口径の高品質結晶を多数枚得ることができない。   However, in the method shown in Patent Document 1, when the SiC single crystal is grown to be long, the outer peripheral side of the SiC single crystal becomes relatively high with the growth, and as shown in FIG. The growth surface becomes a curved surface, and the c-plane facet J5 gradually moves inward, so that the c-plane facet J5 comes off the spiral dislocation generation possible region J6. Therefore, there is no growth step for inheriting the underlying polymorph, and there is a problem that different polymorphs and different orientation crystals are likely to be newly generated in the SiC single crystal J4. For this reason, the growth length of the SiC single crystal J4 is substantially limited. Therefore, in the method shown in Patent Document 1, since long growth is difficult, a large number of high-quality crystals having a large diameter cannot be obtained.

また、特許文献2に示す手法では、温度分布の精密制御が不可能のため、成長ステップの高さに比例して反応ガス量を精密に制御することが困難であり、成長条件によって成長面内のいたる箇所で核生成する可能性があり、核生成を完全に制御することができずに3C多形が混在してしまう。したがって、特許文献2に示す手法も、高品質結晶を得ることができない。   In addition, in the method shown in Patent Document 2, since it is impossible to precisely control the temperature distribution, it is difficult to precisely control the amount of reaction gas in proportion to the height of the growth step. There is a possibility that nucleation may occur at any place, and nucleation cannot be completely controlled, and 3C polymorphism is mixed. Therefore, the method shown in Patent Document 2 cannot obtain high-quality crystals.

また、特許文献3に示す手法では、一番温度が低い部分は成長ステップが存在しないため、核生成の制御ができず、種結晶とは異種の多形が発生するおそれがあるという問題がある。また、径方向に大きな温度勾配(30℃)を設けて成長するため、SiC単結晶の形状は、るつぼの中心軸に近い位置で成長が大きく、そこから離れた位置で成長が小さいといういびつな形状となり、大きな歪みが生じるため欠陥が多数発生する。したがって、特許文献3に示す手法によっても、高品質結晶を得ることができない。   In addition, the method shown in Patent Document 3 has a problem in that a growth step does not exist in the portion where the temperature is lowest, so that nucleation cannot be controlled, and there is a possibility that polymorphism different from the seed crystal may occur. . Further, since the SiC single crystal grows with a large temperature gradient (30 ° C.) in the radial direction, the shape of the SiC single crystal is large at a position close to the central axis of the crucible and small at a position away from it. Since the shape becomes large and large distortion occurs, many defects are generated. Therefore, high quality crystals cannot be obtained even by the technique shown in Patent Document 3.

さらに、特許文献4に示す手法では、上述した特許文献3と同様、低温領域ではステップがないため、核生成の制御ができず、種結晶とは異種の多形が発生しまう可能性がある。また、偶然的に低温領域にステップが存在したとしても、成長量が大きくなるに連れて成長結晶からの放熱が面内で均一化してくるため、中心部での低温化が妨げられ、初期成長でしか効果が得られない。このため、成長量を大きくしたときの結晶の品質は劣化してしまう。したがって、特許文献4に示す手法によっても、高品質結晶を長尺に成長することができない。   Further, in the method shown in Patent Document 4, since there is no step in the low temperature region as in Patent Document 3 described above, nucleation cannot be controlled, and polymorphism different from the seed crystal may occur. In addition, even if there is a step in the low temperature region by chance, as the growth amount increases, the heat radiation from the growth crystal becomes uniform in the plane, preventing the low temperature at the center and preventing the initial growth. The effect can only be obtained. For this reason, the quality of the crystal when the growth amount is increased is deteriorated. Therefore, even with the technique shown in Patent Document 4, it is impossible to grow a high quality crystal long.

本発明は上記点に鑑みて、高品質なSiC単結晶を長尺に成長することができるSiC単結晶の製造装置およびその製造方法を提供することを目的とする。   In view of the above points, an object of the present invention is to provide a SiC single crystal manufacturing apparatus and a manufacturing method thereof capable of growing a high-quality SiC single crystal long.

上記目的を達成するため、本発明では、底部および開口部を有する有底円筒状部材にて構成されたるつぼ本体(1a)と、SiC単結晶基板(3)が配置される台座(1c)を含み、るつぼ本体(1a)の開口部を密封するための蓋材(1b)とを有してなる円筒形状のるつぼ(1)と、るつぼ(1)の外周に配置された加熱装置(6)とを備え、るつぼ本体(1a)内にSiC原料(2)を配置すると共に、台座(1c)にSiC単結晶基板(3)として{0001}面から1°以上かつ15°以下傾斜させた面を成長面として有していて該成長面上に成長させるSiC単結晶(4)に螺旋転位(4a)を周囲よりも高密度で発生させることができる螺旋転位発生可能領域(4b)を{0001}面の法線ベクトルを成長面に投影したベクトルの方向であるオフセット方向の端部であって、かつ、成長面上の50%以下の領域に有する種結晶を配置し、加熱装置(6)によりSiC原料(2)を加熱昇華させることでSiC単結晶基板(3)上にSiC単結晶(4)を成長させるSiC単結晶の製造装置において、るつぼ(1)は、加熱装置(6)の中心軸(R1)に対して台座(1c)の中心を通る該るつぼ(1)の中心軸(R2)が所定距離(L)ずらされて配置されていることを特徴としている。   To achieve the above object, in the present invention, a crucible body (1a) composed of a bottomed cylindrical member having a bottom and an opening, and a pedestal (1c) on which a SiC single crystal substrate (3) is disposed. A cylindrical crucible (1) having a lid (1b) for sealing the opening of the crucible body (1a), and a heating device (6) disposed on the outer periphery of the crucible (1) The SiC raw material (2) is disposed in the crucible main body (1a), and the pedestal (1c) is inclined by 1 ° or more and 15 ° or less from the {0001} plane as the SiC single crystal substrate (3). Is formed on the SiC single crystal (4) grown on the growth surface, and the screw dislocation generation region (4b) capable of generating screw dislocations (4a) at a higher density than the surroundings is provided in the {0001 } Vect of the normal vector of the surface projected onto the growth surface A seed crystal having an end portion in the offset direction, which is the direction of the steel, and in a region of 50% or less on the growth surface, and heating and sublimating the SiC raw material (2) by the heating device (6) In the SiC single crystal manufacturing apparatus for growing the SiC single crystal (4) on the SiC single crystal substrate (3), the crucible (1) has a pedestal (1c) with respect to the central axis (R1) of the heating apparatus (6). The crucible (1) passing through the center of the crucible (1) is arranged such that the central axis (R2) is shifted by a predetermined distance (L).

このように、加熱装置(6)の中心軸(R1)に対してるつぼ(1)の中心軸(R2)が所定距離(L)ずらされるようにるつぼ(1)を配置している。このような構造において、SiC単結晶基板(3)における螺旋転位発生可能領域(4b)が加熱装置(6)の中心軸(R1)と一致するようにすれば、SiC単結晶基板(3)にSiC単結晶(4)を成長させる際に、SiC単結晶(4)のうちの螺旋転位発生可能領域(4b)がその周囲の領域と比べて高温になることを防止できる。つまり、螺旋転位発生可能領域(4b)では相対的に成長速度を早くでき、螺旋転位による螺旋(スパイラル)成長をするので、下地の多形を引き継いで、単一多形を得ることが可能となる。これにより、SiC単結晶(4)の長尺の成長が可能となり、大口径の高品質結晶を多数枚得ることも可能となる。   Thus, the crucible (1) is arranged such that the central axis (R2) of the crucible (1) is shifted by a predetermined distance (L) with respect to the central axis (R1) of the heating device (6). In such a structure, if the region (4b) in which the screw dislocations can be generated in the SiC single crystal substrate (3) is aligned with the central axis (R1) of the heating device (6), the SiC single crystal substrate (3) is formed. When the SiC single crystal (4) is grown, it is possible to prevent the region (4b) in which the screw dislocation can be generated in the SiC single crystal (4) from becoming higher temperature than the surrounding region. In other words, in the region (4b) where the screw dislocation can be generated, the growth rate can be made relatively fast and the screw grows by spiral dislocation, so that it is possible to obtain a single polymorph by taking over the underlying polymorph. Become. As a result, the SiC single crystal (4) can be grown long, and a large number of high-quality crystals having a large diameter can be obtained.

この場合、所定距離(L)は、加熱装置(6)の中心軸(R1)を中心として所定距離(L)の範囲に螺旋転位発生可能領域(4b)が含まれるように、加熱装置(6)の中心軸(R1)の径方向における螺旋転位発生可能領域(4b)の幅(D)の1/2よりも大きいことが望ましい。また、螺旋転位発生可能領域(4b)の幅(D)は螺旋転位発生可能領域(4b)を{0001}面の法線ベクトルを成長面に投影したベクトルの方向であるオフセット方向の端部であって、かつ、成長面上の50%以下の領域に有する種結晶と前述にあるので、2D≦Rsという関係が成り立つ。   In this case, the predetermined distance (L) is such that the region (4b) where the screw dislocation can be generated is included in the range of the predetermined distance (L) around the central axis (R1) of the heating apparatus (6). It is desirable that it is larger than ½ of the width (D) of the spiral dislocation generation possible region (4b) in the radial direction of the central axis (R1). In addition, the width (D) of the screw dislocation generation possible region (4b) is the end portion in the offset direction which is the direction of the vector obtained by projecting the normal vector of the {0001} plane onto the growth surface of the screw dislocation generation possible region (4b). In addition, since there is the seed crystal in the region of 50% or less on the growth surface as described above, the relationship 2D ≦ Rs is established.

また、所定距離(L)は、円盤状のSiC単結晶基板(4)の径(Rs)の1/2よりも小さいことが望ましい。このようにすることで、るつぼ(1)の中心軸(R2)が加熱装置(6)の中心軸(R1)から離れ過ぎないようにできる。   The predetermined distance (L) is preferably smaller than ½ of the diameter (Rs) of the disc-shaped SiC single crystal substrate (4). By doing in this way, it can prevent that the center axis | shaft (R2) of a crucible (1) is separated too much from the center axis | shaft (R1) of a heating apparatus (6).

さらに、るつぼ(1)を搭載し、加熱装置(6)の中心軸(R1)と同心軸を回転軸としてるつぼ(1)を偏心回転させる回転装置(5)を備えることもできる。このような回転装置(5)によりるつぼ(1)を偏心回転させることで、回転装置(5)および加熱装置(6)の中心軸(R1)から等距離の場所での温度分布の均一化を図ることが可能となる。   Furthermore, a crucible (1) can be mounted, and a rotating device (5) that eccentrically rotates the crucible (1) with the central axis (R1) and the concentric axis of the heating device (6) as the rotation axis can be provided. By rotating the crucible (1) eccentrically by such a rotating device (5), the temperature distribution at the same distance from the central axis (R1) of the rotating device (5) and the heating device (6) can be made uniform. It becomes possible to plan.

以上では本発明をSiC半導体装置の製造装置として把握した場合について説明したが、本発明をSiC半導体装置の製造方法として把握することも可能である。すなわち、加熱装置(6)の中心軸(R1)に対して台座(1c)の中心を通る該るつぼ(1)の中心軸(R2)が所定距離(L)ずらされ、かつ、SiC単結晶基板(4)を加熱装置(6)の中心軸(R1)を中心として所定距離(L)の範囲に螺旋転位発生可能領域(4b)が含まれるようにるつぼ(1)を配置することで、SiC単結晶(4)の長尺の成長が可能となり、大口径の高品質結晶を多数枚得ることも可能となる。   Although the case where the present invention is grasped as an apparatus for manufacturing an SiC semiconductor device has been described above, the present invention can also be grasped as a method for manufacturing an SiC semiconductor device. That is, the center axis (R2) of the crucible (1) passing through the center of the pedestal (1c) is shifted from the center axis (R1) of the heating device (6) by a predetermined distance (L), and the SiC single crystal substrate By placing the crucible (1) so that the region (4b) in which the screw dislocation can be generated is included in the range of the predetermined distance (L) with the center axis (R1) of the heating device (6) as the center, (4) The long growth of the single crystal (4) becomes possible, and a large number of high-quality crystals having a large diameter can be obtained.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
本発明の第1実施形態について説明する。図1は、本実施形態にかかる結晶成長装置を用いてSiC単結晶を成長させている様子を示した断面図である。
(First embodiment)
A first embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing a state in which a SiC single crystal is grown using the crystal growth apparatus according to the present embodiment.

図1に示すように、結晶成長装置の容器として円筒状の黒鉛製るつぼ1が用いられている。黒鉛製るつぼ1は、黒鉛製るつぼ1の底部に備えられたSiC原料粉末(SiC原料)2を加熱処理によって昇華させ、種結晶であるSiC単結晶基板3上にSiC単結晶4を結晶成長させるものである。   As shown in FIG. 1, a cylindrical graphite crucible 1 is used as a container for a crystal growth apparatus. The graphite crucible 1 sublimates the SiC raw material powder (SiC raw material) 2 provided at the bottom of the graphite crucible 1 by heat treatment, and causes the SiC single crystal 4 to grow on the SiC single crystal substrate 3 as a seed crystal. Is.

この黒鉛製るつぼ1は、上面が開口している有底円筒状のるつぼ本体1aと、るつぼ本体1aの開口部を塞ぐ円盤状の蓋材1bとを備えて構成されている。また、黒鉛製るつぼ1を構成する蓋材1bの中央部において突き出した部分を台座1cとして、台座1c上にSiC単結晶基板3が図示しない接着剤等を介して接合されている。台座1cは、円盤状の蓋材1bの中心に円柱状で形成されており、台座1cの径寸法は接合されるSiC単結晶基板3のとほぼ同等とされている。今回は台座1cの径寸法RsとSiC単結晶基板3の径寸法はともにφ75mmである。   The graphite crucible 1 includes a bottomed cylindrical crucible body 1a having an open top surface and a disc-shaped lid 1b that closes the opening of the crucible body 1a. Further, with the portion protruding at the center of the lid 1b constituting the graphite crucible 1 as a pedestal 1c, the SiC single crystal substrate 3 is bonded onto the pedestal 1c via an adhesive (not shown). Pedestal 1c is formed in a cylindrical shape at the center of disc-shaped lid member 1b, and the diameter of pedestal 1c is substantially the same as that of SiC single crystal substrate 3 to be joined. This time, the diameter Rs of the base 1c and the diameter of the SiC single crystal substrate 3 are both 75 mm.

また、黒鉛製るつぼ1は、回転装置5に搭載されている。具体的には、回転装置5は、図中の中心軸R1を中心として回転するようになっており、この回転装置5の中心軸R1に対して黒鉛製るつぼ1の中心軸R2(台座1cの中心およびSiC単結晶基板3の中心と同心軸)が一定距離Lずらされるように黒鉛るつぼ1が搭載されている。今回のこの一定距離Lは15mmである。このため、回転装置5を回転させると、黒鉛製るつぼ1は回転装置5の中心軸R1に対して黒鉛製るつぼ1の中心軸R2が偏心するように回転させられる構造となっている。   The graphite crucible 1 is mounted on the rotating device 5. Specifically, the rotating device 5 rotates about a central axis R1 in the figure, and the central axis R2 of the graphite crucible 1 relative to the central axis R1 of the rotating device 5 (of the base 1c). The graphite crucible 1 is mounted so that the center and the center of the SiC single crystal substrate 3 are concentric with each other by a certain distance L. This constant distance L this time is 15 mm. For this reason, when the rotating device 5 is rotated, the graphite crucible 1 is configured to be rotated such that the central axis R2 of the graphite crucible 1 is eccentric with respect to the central axis R1 of the rotating device 5.

さらに、黒鉛製るつぼ1の外部には、黒鉛製るつぼ1の外周を囲むようにヒータ等の加熱装置6が備えられている。加熱装置6の中心は回転装置5の中心軸R1と同心軸とされており、黒鉛製るつぼ1の中心軸R1から所定距離Lずらされた状態とされている。このように配置された加熱装置6のパワーを制御することにより、黒鉛製るつぼ1内の温度を制御できるように構成されている。例えば、SiC単結晶4を結晶成長させる際には、この加熱装置6のパワーを調節することによって種結晶であるSiC単結晶基板3の温度がSiC原料粉末2の温度よりも100℃程度低温に保たれるようにすることができる。なお、図示しないが、黒鉛製るつぼ1や回転装置5等は、アルゴンガスが導入できる真空容器の中に収容されており、この真空容器内で加熱できるようになっている。   Further, a heating device 6 such as a heater is provided outside the graphite crucible 1 so as to surround the outer periphery of the graphite crucible 1. The center of the heating device 6 is concentric with the central axis R1 of the rotating device 5, and is shifted from the central axis R1 of the graphite crucible 1 by a predetermined distance L. By controlling the power of the heating device 6 arranged in this way, the temperature in the graphite crucible 1 can be controlled. For example, when the SiC single crystal 4 is grown, the temperature of the SiC single crystal substrate 3 as a seed crystal is lowered by about 100 ° C. from the temperature of the SiC raw material powder 2 by adjusting the power of the heating device 6. Can be kept. Although not shown, the graphite crucible 1 and the rotating device 5 are accommodated in a vacuum vessel into which argon gas can be introduced, and can be heated in this vacuum vessel.

このように構成された結晶成長装置を用いたSiC単結晶の製造工程について説明する。   An SiC single crystal manufacturing process using the crystal growth apparatus configured as described above will be described.

まず、SiC原料粉末2を黒鉛製るつぼ1のるつぼ本体1a内に配置すると共に、蓋材1bの台座1cに接着剤等を介して種結晶であるSiC単結晶基板3を貼り付ける。このとき、SiC単結晶基板3としては、上述した特許文献1に示される種結晶(転位制御種結晶)と同様のもの、すなわち{0001}面から1°以上かつ15°以下傾斜させた面を成長面として有し、成長中のSiC単結晶4に螺旋転位4aを周囲よりも高密度で発生させることができる螺旋転位発生可能領域4bを{0001}面の法線ベクトルを成長面に投影したベクトルの方向であるオフセット方向の端部であって、かつ、成長面上の50%以下の領域に有する種結晶を用意する。   First, the SiC raw material powder 2 is placed in the crucible main body 1a of the graphite crucible 1, and the SiC single crystal substrate 3 that is a seed crystal is attached to the base 1c of the lid 1b via an adhesive or the like. At this time, the SiC single crystal substrate 3 is the same as the seed crystal (dislocation control seed crystal) shown in Patent Document 1 described above, that is, a plane inclined by 1 ° or more and 15 ° or less from the {0001} plane. A normal vector of the {0001} plane is projected onto the growth plane, which is a growth plane and has a screw dislocation generation region 4b in which the screw dislocations 4a can be generated in the growing SiC single crystal 4 at a higher density than the surroundings. A seed crystal having an end portion in an offset direction which is a vector direction and having a region of 50% or less on the growth surface is prepared.

ここで、{0001}面から1°以上としたのは、1°未満傾斜させた面では螺旋転位発生可能領域4bをc軸方向または成長面に垂直な方向において成長中の途中の表面(以下、途中表面という)に投影した領域と、c面ファセット4cとが重なるようにSiC単結晶4を成長させるのが困難になる可能性があるためである。また、{0001}面から15°以下としたのは、15°を超えて傾斜させた面では、積層欠陥を排除するために、c軸方向に高くSiC単結晶4を成長させなければならなくなるためである。今回は{0001}面から8°傾斜させた4H単一多形のSiC種結晶3を用意する。   Here, the reason why the angle is set to 1 ° or more from the {0001} plane is that the surface where the screw dislocation generation region 4b is being grown in the c-axis direction or the direction perpendicular to the growth surface (hereinafter referred to as “below”) This is because it may be difficult to grow the SiC single crystal 4 so that the region projected onto the intermediate surface) and the c-plane facet 4c overlap. Further, the reason why the angle is set to 15 ° or less from the {0001} plane is that the SiC single crystal 4 must be grown high in the c-axis direction in order to eliminate stacking faults on the plane inclined more than 15 °. Because. In this case, a 4H single polymorphic SiC seed crystal 3 inclined by 8 ° from the {0001} plane is prepared.

そして、るつぼ本体1aを蓋材1bで塞いだのち、このようにした黒鉛製るつぼ1を回転装置5に搭載する。このとき、回転装置5の中心軸R1に対して黒鉛製るつぼ1の中心軸R2が一定距離Lずらされるように黒鉛るつぼ1を搭載すると共に、SiC単結晶基板3における螺旋転位発生可能領域4bが回転装置5および加熱装置6の中心軸R1と一致するように、具体的には加熱装置6の中心軸R1を中心として所定距離Lの範囲に螺旋転位発生可能領域4bが含まれるようにしている。換言すると、黒鉛製るつぼ1が偏心回転させられたときに黒鉛製るつぼ1の中心軸R2が通過する軌跡内にSiC単結晶基板3の表面における螺旋転位発生可能領域4bがほぼ全域含まれるように位置合わせして、黒鉛製るつぼ1を回転装置5に搭載する。   Then, the crucible body 1 a is closed with the lid member 1 b, and the graphite crucible 1 made in this way is mounted on the rotating device 5. At this time, the graphite crucible 1 is mounted such that the central axis R2 of the graphite crucible 1 is shifted by a certain distance L with respect to the central axis R1 of the rotating device 5, and the spiral dislocation generation possible region 4b in the SiC single crystal substrate 3 is provided. Specifically, the spiral dislocation generation possible region 4b is included in a range of a predetermined distance L around the central axis R1 of the heating device 6 so as to coincide with the central axis R1 of the rotating device 5 and the heating device 6. . In other words, when the graphite crucible 1 is eccentrically rotated, the trajectory through which the central axis R2 of the graphite crucible 1 passes includes the substantially all regions 4b where screw dislocations can be generated on the surface of the SiC single crystal substrate 3. The graphite crucible 1 is mounted on the rotating device 5 in alignment.

ここで、所定距離Lは、SiC単結晶基板3の径Rsと螺旋転位発生可能領域4bの幅Dとの関係により決まる値であり、径Rsの1/2以下、かつ、幅Dの1/2以上とされる。このようにすることで、黒鉛製るつぼ1が偏心回転させられたときに黒鉛製るつぼ1の中心軸R2が通過する軌跡内にSiC単結晶基板3の表面における螺旋転位発生可能領域4bが全域含まれるようにしつつ、かつ、黒鉛製るつぼ1の中心軸R2が回転装置5および加熱装置6の中心軸R1から離れ過ぎないようにできる。今回の場合、前述したが、L=15mm、Rs=75mmで螺旋転位発生可能領域4bの幅Dは25mmであるので、1/2D<L<1/2Rs、かつ、2D≦Rsの関係を満たす。   Here, the predetermined distance L is a value determined by the relationship between the diameter Rs of the SiC single crystal substrate 3 and the width D of the screw dislocation generation region 4b, and is equal to or less than 1/2 of the diameter Rs and 1 / of the width D. 2 or more. By doing so, the entire region including the screw dislocation generation possible region 4b on the surface of the SiC single crystal substrate 3 is included in the trajectory through which the central axis R2 of the graphite crucible 1 passes when the graphite crucible 1 is eccentrically rotated. In addition, the central axis R2 of the graphite crucible 1 can be prevented from being too far from the central axis R1 of the rotating device 5 and the heating device 6. In this case, as described above, since L = 15 mm, Rs = 75 mm, and the width D of the screw dislocation generation region 4b is 25 mm, the relationship of 1 / 2D <L <1 / 2Rs and 2D ≦ Rs is satisfied. .

この後、図示しない真空容器内をアルゴンガス雰囲気にしたのち、加熱装置6にて、SiC原料粉末2の温度を2000〜2500℃に加熱し、加熱装置6の調節等により、SiC単結晶基板3の温度がSiC原料粉末2の温度よりも低くなるように、黒鉛製るつぼ1内に温度勾配を設ける。このとき、加熱装置6の中心の位置では、加熱装置6から最も距離が離れた位置となるため、構造的にSiC単結晶基板3の表面のうち螺旋転位発生可能領域4bが他の領域と比較して低温となる。   Thereafter, after the inside of the vacuum vessel (not shown) is made an argon gas atmosphere, the temperature of the SiC raw material powder 2 is heated to 2000 to 2500 ° C. by the heating device 6, and the SiC single crystal substrate 3 is adjusted by adjusting the heating device 6. A temperature gradient is provided in the graphite crucible 1 so that the temperature of is lower than the temperature of the SiC raw material powder 2. At this time, the center position of the heating device 6 is the farthest distance from the heating device 6, so that the structurally dislocation-producible region 4 b of the surface of the SiC single crystal substrate 3 is structurally compared with other regions. And it becomes low temperature.

次に、真空装置の真空度を調整することで黒鉛製るつぼ1内の圧力を13.3Pa〜26.7kPaとして、昇華法成長を開始すると、SiC原料粉末2が昇華して昇華ガスとなり、SiC単結晶4に到達し、SiC原料粉末2側よりも相対的に低温となるSiC単結晶基板3の表面上にSiC単結晶4が成長する。   Next, by adjusting the degree of vacuum of the vacuum device, the pressure in the graphite crucible 1 is set to 13.3 Pa to 26.7 kPa, and when sublimation growth is started, the SiC raw material powder 2 is sublimated to become sublimation gas, and SiC. The SiC single crystal 4 grows on the surface of the SiC single crystal substrate 3 that reaches the single crystal 4 and is at a relatively lower temperature than the SiC raw material powder 2 side.

この後は、SiC原料粉末2の減少量がほぼ一定となるようにさせつつ、SiC単結晶4を結晶成長させる。例えば、加熱装置6のパワーを調整することにより黒鉛製るつぼ1内の温度分布を調整することができる。このようにすることで、るつぼ1内の珪素/炭素比を安定化させることができ、SiC単結晶4を長尺に成長させることが可能となる。   Thereafter, the SiC single crystal 4 is grown while making the amount of reduction of the SiC raw material powder 2 substantially constant. For example, the temperature distribution in the graphite crucible 1 can be adjusted by adjusting the power of the heating device 6. By doing so, the silicon / carbon ratio in the crucible 1 can be stabilized, and the SiC single crystal 4 can be grown long.

そして、このとき、上述したように構造的にSiC単結晶基板3の表面のうち螺旋転位発生可能領域4bが他の領域と比較して低温となるため、SiC単結晶4が成長したときに、成長に伴ってSiC単結晶4中の螺旋転位発生可能領域4bがその周囲の領域と比べて高温になることを防止できる。このため、図1中に示したように、c面ファセット4cの軌跡がほぼSiC単結晶4の成長方向に沿って伸びた状態となり、c面ファセット4cが螺旋転位発生可能領域4b中に含まれた状態となる。つまり、SiC単結晶4中の螺旋転位発生可能領域4bが含まれるSiC単結晶4の外周部分において、従来のように成長表面が曲面になることで、c面ファセット4cが徐々に内側に移動し、螺旋転位発生可能領域4bからc面ファセット4cJ5が外れてしまうという現象が生じることを防止できる。   At this time, as described above, the structurally possible region 4b of the screw dislocations in the surface of the SiC single crystal substrate 3 has a lower temperature than other regions, so that when the SiC single crystal 4 grows, It can be prevented that the region 4b in which the screw dislocation can be generated in the SiC single crystal 4 becomes higher in temperature than the surrounding region. For this reason, as shown in FIG. 1, the locus of the c-plane facet 4c extends substantially along the growth direction of the SiC single crystal 4, and the c-plane facet 4c is included in the screw dislocation generation possible region 4b. It becomes a state. That is, in the outer peripheral portion of the SiC single crystal 4 including the region 4b where the screw dislocation can be generated in the SiC single crystal 4, the growth surface becomes a curved surface as in the conventional case, so that the c-plane facet 4c gradually moves inward. It is possible to prevent the phenomenon that the c-plane facet 4cJ5 is detached from the spiral dislocation generation possible region 4b.

したがって、下地の多形を継承するための成長ステップを確保することができ、SiC単結晶4に異種多形や異方位結晶が新たに発生し易くなることを防止できる。このため、SiC単結晶4の長尺の成長が可能となり、高品質結晶を多数枚得ることも可能となる。今回は4H単一多形のSiC単結晶4の長尺量が45mm、φ90mmの径寸法の成長が可能となり、次式に基づき、螺旋転位発生可能領域4bを除去して、φ50〜φ65mmの径寸法の高品質なSiC単結晶4のウエハを多数枚得ることも可能となる。   Therefore, a growth step for inheriting the underlying polymorph can be secured, and it is possible to prevent the heterogeneous polymorph and different orientation crystal from being easily generated in the SiC single crystal 4. For this reason, the SiC single crystal 4 can be grown long, and a large number of high-quality crystals can be obtained. This time, the 4H single polymorphic SiC single crystal 4 can be grown in a diameter of 45 mm and a diameter of φ90 mm, and the screw dislocation generation region 4 b is removed based on the following formula to obtain a diameter of φ50 to φ65 mm. It becomes possible to obtain a large number of high-quality SiC single crystal 4 wafers.

(数1)
75−25=50((SiC単結晶基板3の径寸法)−(螺旋転位発生可能領域4bの幅D)=(SiC単結晶4の高品質部分の径寸法))
(数2)
90−25=65((SiC単結晶4の径寸法)−(螺旋転位発生可能領域4bの幅D)=(SiC単結晶4の高品質部分の径寸法))
以上説明したように、本実施形態では、回転装置5や加熱装置6の中心軸R1に対して黒鉛製るつぼ1の中心軸R2が一定距離Lずらされるように黒鉛るつぼ1を配置すると共に、SiC単結晶基板3における螺旋転位発生可能領域4bが回転装置5および加熱装置6の中心軸R1と一致するようにしている。このため、SiC単結晶基板3にSiC単結晶4を成長させる際に、SiC単結晶4のうちの螺旋転位発生可能領域4bがその周囲の領域と比べて高温になることを防止できる。これにより、SiC単結晶4の長尺の成長が可能となり、高品質結晶を多数枚得ることも可能となる。
(Equation 1)
75−25 = 50 ((diameter size of SiC single crystal substrate 3) − (width D of spiral dislocation generation region 4b) = (diameter size of high quality portion of SiC single crystal 4))
(Equation 2)
90−25 = 65 ((Diameter size of SiC single crystal 4) − (Width D of spiral dislocation generation possible region 4b) = (Diameter size of high quality portion of SiC single crystal 4))
As described above, in the present embodiment, the graphite crucible 1 is disposed so that the central axis R2 of the graphite crucible 1 is shifted by a certain distance L with respect to the central axis R1 of the rotating device 5 and the heating device 6, and SiC A region 4 b where the screw dislocation can be generated in the single crystal substrate 3 is made to coincide with the central axis R 1 of the rotating device 5 and the heating device 6. For this reason, when the SiC single crystal 4 is grown on the SiC single crystal substrate 3, it is possible to prevent the region 4 b in which the screw dislocations can be generated in the SiC single crystal 4 from becoming higher temperature than the surrounding region. As a result, the SiC single crystal 4 can be grown long, and a large number of high-quality crystals can be obtained.

(第2の実施形態)
本発明の第2実施形態について説明する。本実施形態は、第1実施形態に対してSiC単結晶の製造装置の寸法を変更したものであり、その他に関しては第1実施形態と同様であるため、異なる部分についてのみ説明する。
(Second Embodiment)
A second embodiment of the present invention will be described. In this embodiment, the size of the SiC single crystal manufacturing apparatus is changed from that of the first embodiment. The other aspects are the same as those in the first embodiment, and only different parts will be described.

今回は台座1cの径寸法RsとSiC単結晶基板3の径寸法はともに75mm、
一定距離Lは15mm、螺旋転位発生可能領域4bの幅Dは15mmであり、1/2D<L<1/2Rs、かつ、2D≦Rsの関係を満たす。
This time, the diameter Rs of the base 1c and the diameter of the SiC single crystal substrate 3 are both 75 mm,
The constant distance L is 15 mm, and the width D of the screw dislocation generation possible region 4b is 15 mm, and satisfies the relationship of 1 / 2D <L <1 / 2Rs and 2D ≦ Rs.

このような寸法にしたら、4H単一多形のSiC単結晶4の長尺量が45mm、φ90mmの径寸法の成長が可能となり、次式に基づき、螺旋転位発生可能領域4bを除去して、φ60〜φ75mmの径寸法の高品質なSiC単結晶4のウエハを多数枚得ることも可能となる。   With such a dimension, the 4H single polymorphic SiC single crystal 4 can grow to have a length of 45 mm and a diameter of φ90 mm, and based on the following formula, the screw dislocation generation region 4b is removed, It is also possible to obtain a large number of high-quality SiC single crystal 4 wafers having a diameter of φ60 to φ75 mm.

(数3)
75−15=60((SiC単結晶基板3の径寸法)−(螺旋転位発生可能領域4bの幅D)=(SiC単結晶4の高品質部分の径寸法))
(数4)
90−15=75((SiC単結晶4の径寸法)−(螺旋転位発生可能領域4bの幅D)=(SiC単結晶4の高品質部分の径寸法))
このように、螺旋転位発生可能領域4bの幅Dを15mmと第1実施形態と比較して小さくしても(螺旋転位発生可能領域4bの幅Dは螺旋転位発生可能領域4bを{0001}面の法線ベクトルを成長面に投影したベクトルの方向であるオフセット方向の端部であって、かつ、成長面上の50%以下の領域に有する種結晶と前述にあるが、20%(=15/75)に相当する。要するに、螺旋転位発生可能領域4bの割合を小さくした方がSiC単結晶4の高品質部分の径寸法を大きくするためには効率的である。)、SiC単結晶基板3にSiC単結晶4を成長させる際に、SiC単結晶4のうちの螺旋転位発生可能領域4bがその周囲の領域と比べて高温になることを防止できる。よって、SiC単結晶4の高品質部分の径寸法を大きくすることが可能となり、大口径の高品質結晶を多数枚得ることも可能となる。
(Equation 3)
75-15 = 60 ((Diameter size of SiC single crystal substrate 3)-(Width D of spiral dislocation generation possible region 4b) = (Diameter size of high quality portion of SiC single crystal 4))
(Equation 4)
90-15 = 75 ((Diameter dimension of SiC single crystal 4)-(Width D of spiral dislocation generation possible region 4b) = (Diameter dimension of high quality portion of SiC single crystal 4))
Thus, even if the width D of the screw dislocation generation possible region 4b is reduced to 15 mm as compared with the first embodiment (the width D of the screw dislocation generation possible region 4b is equal to the {0001} plane of the screw dislocation generation possible region 4b. As described above, it is the end crystal in the offset direction which is the direction of the vector projected onto the growth plane and the seed crystal in the region of 50% or less on the growth plane. In short, it is more effective to increase the diameter of the high-quality portion of the SiC single crystal 4 by reducing the ratio of the screw dislocation generation possible region 4b.), SiC single crystal substrate 3, when the SiC single crystal 4 is grown, it is possible to prevent the region 4 b of the SiC single crystal 4 from generating a high temperature compared to the surrounding region. Therefore, the diameter of the high quality portion of the SiC single crystal 4 can be increased, and a large number of high quality crystals having a large diameter can be obtained.

(他の実施形態)
上記実施形態では、るつぼの一例として黒鉛製るつぼ1を例に挙げたが、これは単なる一例であり、すべてが黒鉛製でなくても構わない。例えば、Ta(タンタル)等で内壁面がコーティングされていても良い。
(Other embodiments)
In the above embodiment, the graphite crucible 1 is taken as an example of the crucible, but this is merely an example, and not all of the crucible may be made of graphite. For example, the inner wall surface may be coated with Ta (tantalum) or the like.

また、上記実施形態では回転装置5を用いて黒鉛製るつぼ1を回転させるようにしたが、回転装置5および加熱装置6の中心軸R1から等距離の場所での温度分布の均一化を図るためであり、必ずしも回転させる必要はない。   In the above embodiment, the graphite crucible 1 is rotated using the rotating device 5. However, in order to make the temperature distribution uniform at a location equidistant from the central axis R 1 of the rotating device 5 and the heating device 6. It is not always necessary to rotate.

また、上記実施形態では螺旋転位発生可能領域4bの幅Dは2通りの寸法を例としてあげたが、幅Dのみならず、他の寸法も上記に限られるのものではなく、どんな値でも適用可能である。また、一定距離Lは大きい値として、螺旋転位発生可能領域4bの幅Dはできる限り小さい値とすることで、効率よく大口径結晶を得ることが可能となる。それは、SiC単結晶基板3にSiC単結晶4を成長させる際に、SiC単結晶4のうちの螺旋転位発生可能領域4bがその周囲の領域と比べて高温になることを一定距離Lを大きい値とすることで防止しやすくするからである。そうすれば、螺旋転位発生可能領域(4b)では相対的に成長速度を早くでき、螺旋転位による螺旋(スパイラル)成長をするので、下地の多形を引き継いで、単一多形を得ることが可能となる。   In the above-described embodiment, the width D of the screw dislocation generation region 4b is exemplified by two dimensions. However, not only the width D but also other dimensions are not limited to the above, and any values are applicable. Is possible. In addition, by setting the constant distance L to a large value and the width D of the screw dislocation generation possible region 4b to be as small as possible, a large-diameter crystal can be efficiently obtained. That is, when the SiC single crystal 4 is grown on the SiC single crystal substrate 3, the constant distance L is set to a large value that the spiral dislocation generation possible region 4b of the SiC single crystal 4 becomes higher in temperature than the surrounding region. It is because it makes it easy to prevent. By doing so, the growth rate can be relatively increased in the region (4b) where the screw dislocation can be generated, and the spiral growth is caused by the screw dislocation, so that the single polymorph can be obtained by taking over the underlying polymorph. It becomes possible.

本発明の第1実施形態における黒鉛製るつぼの断面構成を示す図である。It is a figure which shows the cross-sectional structure of the graphite crucible in 1st Embodiment of this invention. (a)は、従来手法によってSiC単結晶を成長させている様子を示した断面図であり、(b)は、(a)の状態から更にSiC単結晶を長尺成長させたときの様子を示した断面図である。(A) is sectional drawing which showed a mode that the SiC single crystal was grown by the conventional method, (b) is a mode when the SiC single crystal was further grown long from the state of (a). It is sectional drawing shown.

符号の説明Explanation of symbols

1…黒鉛製るつぼ、1a…本体、1b…蓋材、1c…台座、2…SiC原料粉末、
3…単結晶基板、4…SiC単結晶、5…回転装置、6…加熱装置
DESCRIPTION OF SYMBOLS 1 ... Graphite crucible, 1a ... Main body, 1b ... Cover material, 1c ... Base, 2 ... SiC raw material powder,
3 ... single crystal substrate, 4 ... SiC single crystal, 5 ... rotating device, 6 ... heating device

Claims (5)

底部および開口部を有する有底円筒状部材にて構成されたるつぼ本体(1a)と、炭化珪素単結晶基板(3)が配置される台座(1c)を含み、前記るつぼ本体(1a)の前記開口部を密封するための蓋材(1b)とを有してなる円筒形状のるつぼ(1)と、前記るつぼ(1)の外周に配置された加熱装置(6)とを備え、
前記るつぼ本体(1a)内に炭化珪素原料(2)を配置すると共に、前記台座(1c)に前記炭化珪素単結晶基板(3)として{0001}面から1°以上かつ15°以下傾斜させた面を成長面として有していて該成長面上に成長させる炭化珪素単結晶(4)に螺旋転位(4a)を周囲よりも高密度で発生させることができる螺旋転位発生可能領域(4b)を{0001}面の法線ベクトルを成長面に投影したベクトルの方向であるオフセット方向の端部であって、かつ、成長面上の50%以下の領域に有する種結晶を配置し、
前記加熱装置(6)により前記炭化珪素原料(2)を加熱昇華させることで前記炭化珪素単結晶基板(3)上に前記炭化珪素単結晶(4)を成長させる炭化珪素単結晶の製造装置において、
前記るつぼ(1)は、前記加熱装置(6)の中心軸(R1)に対して前記台座(1c)の中心を通る該るつぼ(1)の中心軸(R2)が所定距離(L)ずらされて配置されていることを特徴とする炭化珪素単結晶の製造装置。
A crucible body (1a) composed of a bottomed cylindrical member having a bottom and an opening, and a pedestal (1c) on which a silicon carbide single crystal substrate (3) is disposed, the crucible body (1a) A cylindrical crucible (1) having a lid (1b) for sealing the opening, and a heating device (6) disposed on the outer periphery of the crucible (1),
The silicon carbide raw material (2) is disposed in the crucible body (1a), and the pedestal (1c) is inclined by 1 ° or more and 15 ° or less from the {0001} plane as the silicon carbide single crystal substrate (3). A screw dislocation generation possible region (4b) capable of generating screw dislocations (4a) at a higher density than the surroundings in the silicon carbide single crystal (4) having a surface as a growth surface and growing on the growth surface. Disposing a seed crystal having an end portion in an offset direction, which is a vector direction obtained by projecting a normal vector of the {0001} plane onto the growth plane, and having a region of 50% or less on the growth plane;
In the silicon carbide single crystal manufacturing apparatus for growing the silicon carbide single crystal (4) on the silicon carbide single crystal substrate (3) by heating and sublimating the silicon carbide raw material (2) with the heating device (6). ,
In the crucible (1), the central axis (R2) of the crucible (1) passing through the center of the pedestal (1c) is shifted from the central axis (R1) of the heating device (6) by a predetermined distance (L). An apparatus for producing a silicon carbide single crystal, wherein
前記所定距離(L)は、前記加熱装置(6)の中心軸(R1)を中心として前記所定距離(L)の範囲に前記螺旋転位発生可能領域(4b)が含まれるように、前記加熱装置(6)の中心軸(R1)の径方向における前記螺旋転位発生可能領域(4b)の幅(D)の1/2よりも大きくされていることを特徴とする請求項1に記載の炭化珪素単結晶の製造装置。 The heating device such that the predetermined distance (L) includes the region (4b) in which the screw dislocation can be generated within a range of the predetermined distance (L) around the central axis (R1) of the heating device (6). 2. The silicon carbide according to claim 1, wherein the silicon carbide is larger than ½ of a width (D) of the spiral dislocation generation possible region (4 b) in the radial direction of the central axis (R 1) of (6). Single crystal manufacturing equipment. 前記所定距離(L)は、円盤状の前記炭化珪素単結晶基板(4)の径(Rs)の1/2よりも小さいことを特徴とする請求項1に記載の炭化珪素単結晶の製造装置。 The said predetermined distance (L) is smaller than 1/2 of the diameter (Rs) of the said disk-shaped silicon carbide single crystal substrate (4), The manufacturing apparatus of the silicon carbide single crystal of Claim 1 characterized by the above-mentioned. . 前記るつぼ(1)を搭載し、前記加熱装置(6)の中心軸(R1)と同心軸を回転軸として前記るつぼ(1)を偏心回転させる回転装置(5)を備えていることを特徴とする請求項1ないし3のいずれか1つに記載の炭化珪素単結晶の製造装置。 The crucible (1) is mounted, and a rotating device (5) for rotating the crucible (1) eccentrically with a central axis (R1) and a concentric axis of the heating device (6) as rotation axes is provided. The apparatus for producing a silicon carbide single crystal according to any one of claims 1 to 3. 底部および開口部を有する有底円筒状部材にて構成されたるつぼ本体(1a)と、炭化珪素単結晶基板(3)が配置される台座(1c)を含み、前記るつぼ本体(1a)の前記開口部を密封するための蓋材(1b)とを有してなる円筒形状のるつぼ(1)と、前記るつぼ(1)の外周に配置された加熱装置(6)とを用意し、
前記るつぼ本体(1a)内に炭化珪素原料(2)を配置すると共に、前記台座(1c)に前記炭化珪素単結晶基板(3)として{0001}面から1°以上かつ15°以下傾斜させた面を成長面として有していて該成長面上に成長させる炭化珪素単結晶(4)に螺旋転位(4a)を周囲よりも高密度で発生させることができる螺旋転位発生可能領域(4b)を{0001}面の法線ベクトルを成長面に投影したベクトルの方向であるオフセット方向の端部であって、かつ、成長面上の50%以下の領域に有する種結晶を配置し、
前記加熱装置(6)により前記炭化珪素原料(2)を加熱昇華させることで前記炭化珪素単結晶基板(3)上に前記炭化珪素単結晶(4)を成長させる炭化珪素単結晶の製造方法において、
前記加熱装置(6)の中心軸(R1)に対して前記台座(1c)の中心を通る該るつぼ(1)の中心軸(R2)が所定距離(L)ずらされ、かつ、前記炭化珪素単結晶基板(3)を前記加熱装置(6)の中心軸(R1)を中心として前記所定距離(L)の範囲に前記螺旋転位発生可能領域(4b)が含まれるように前記るつぼ(1)を配置することを特徴とする炭化珪素単結晶の製造方法。
A crucible body (1a) composed of a bottomed cylindrical member having a bottom and an opening, and a pedestal (1c) on which a silicon carbide single crystal substrate (3) is disposed, the crucible body (1a) A cylindrical crucible (1) having a lid (1b) for sealing the opening and a heating device (6) arranged on the outer periphery of the crucible (1) are prepared,
The silicon carbide raw material (2) is disposed in the crucible body (1a), and the pedestal (1c) is inclined by 1 ° or more and 15 ° or less from the {0001} plane as the silicon carbide single crystal substrate (3). A region (4b) capable of generating screw dislocations in a silicon carbide single crystal (4) having a surface as a growth surface and capable of generating screw dislocations (4a) at a higher density than the surroundings. Disposing a seed crystal having an end portion in an offset direction, which is a vector direction obtained by projecting a normal vector of the {0001} plane onto the growth plane, and having a region of 50% or less on the growth plane;
In the method for producing a silicon carbide single crystal, the silicon carbide single crystal (4) is grown on the silicon carbide single crystal substrate (3) by heating and sublimating the silicon carbide raw material (2) with the heating device (6). ,
The center axis (R2) of the crucible (1) passing through the center of the pedestal (1c) is shifted from the center axis (R1) of the heating device (6) by a predetermined distance (L), and the silicon carbide single unit The crucible (1) is placed so that the crystal dislocation generation possible region (4b) is included in the range of the predetermined distance (L) centering on the central axis (R1) of the heating device (6). A method for producing a silicon carbide single crystal comprising disposing the silicon carbide single crystal.
JP2007221128A 2007-08-28 2007-08-28 Silicon carbide single crystal manufacturing apparatus and manufacturing method thereof Active JP4924290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221128A JP4924290B2 (en) 2007-08-28 2007-08-28 Silicon carbide single crystal manufacturing apparatus and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221128A JP4924290B2 (en) 2007-08-28 2007-08-28 Silicon carbide single crystal manufacturing apparatus and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009051701A true JP2009051701A (en) 2009-03-12
JP4924290B2 JP4924290B2 (en) 2012-04-25

Family

ID=40503119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221128A Active JP4924290B2 (en) 2007-08-28 2007-08-28 Silicon carbide single crystal manufacturing apparatus and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4924290B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020893A (en) * 2010-07-13 2012-02-02 Denso Corp Apparatus for manufacturing silicon carbide single crystal, and method for manufacturing silicon carbide single crystal
KR20130073696A (en) * 2011-12-23 2013-07-03 엘지이노텍 주식회사 Apparatus for fabricating ingot and method for fabricating ingot
KR20130074705A (en) * 2011-12-26 2013-07-04 엘지이노텍 주식회사 Apparatus and method for fabricating single crystal
CN105568370A (en) * 2016-03-01 2016-05-11 山东大学 Centrally symmetric silicon carbide (SiC) single crystal growing device and method
JP2017154926A (en) * 2016-03-01 2017-09-07 新日鐵住金株式会社 Manufacturing apparatus and manufacturing method of silicon carbide single crystal ingot
CN115537927A (en) * 2022-12-01 2022-12-30 浙江晶越半导体有限公司 Silicon carbide single crystal ingot growth system and method for preparing low-basal plane dislocation
CN115537926A (en) * 2022-12-01 2022-12-30 浙江晶越半导体有限公司 Large-size physical vapor phase method silicon carbide growth crucible capable of improving growth efficiency
JP7415810B2 (en) 2019-06-26 2024-01-17 株式会社レゾナック SiC ingot manufacturing method and SiC ingot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111719184B (en) * 2020-06-28 2021-08-13 北京北方华创微电子装备有限公司 Semiconductor processing equipment and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245299A (en) * 1995-03-10 1996-09-24 Sanyo Electric Co Ltd Method for growing silicon carbide crystal
JP3764462B2 (en) * 2003-04-10 2006-04-05 株式会社豊田中央研究所 Method for producing silicon carbide single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245299A (en) * 1995-03-10 1996-09-24 Sanyo Electric Co Ltd Method for growing silicon carbide crystal
JP3764462B2 (en) * 2003-04-10 2006-04-05 株式会社豊田中央研究所 Method for producing silicon carbide single crystal

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020893A (en) * 2010-07-13 2012-02-02 Denso Corp Apparatus for manufacturing silicon carbide single crystal, and method for manufacturing silicon carbide single crystal
KR20130073696A (en) * 2011-12-23 2013-07-03 엘지이노텍 주식회사 Apparatus for fabricating ingot and method for fabricating ingot
KR101886271B1 (en) 2011-12-23 2018-08-08 엘지이노텍 주식회사 Apparatus for fabricating ingot and method for fabricating ingot
KR20130074705A (en) * 2011-12-26 2013-07-04 엘지이노텍 주식회사 Apparatus and method for fabricating single crystal
KR101882317B1 (en) 2011-12-26 2018-07-27 엘지이노텍 주식회사 Apparatus and method for fabricating single crystal
CN105568370A (en) * 2016-03-01 2016-05-11 山东大学 Centrally symmetric silicon carbide (SiC) single crystal growing device and method
JP2017154926A (en) * 2016-03-01 2017-09-07 新日鐵住金株式会社 Manufacturing apparatus and manufacturing method of silicon carbide single crystal ingot
JP7415810B2 (en) 2019-06-26 2024-01-17 株式会社レゾナック SiC ingot manufacturing method and SiC ingot
CN115537927A (en) * 2022-12-01 2022-12-30 浙江晶越半导体有限公司 Silicon carbide single crystal ingot growth system and method for preparing low-basal plane dislocation
CN115537926A (en) * 2022-12-01 2022-12-30 浙江晶越半导体有限公司 Large-size physical vapor phase method silicon carbide growth crucible capable of improving growth efficiency
CN115537927B (en) * 2022-12-01 2023-03-10 浙江晶越半导体有限公司 Silicon carbide single crystal ingot growth system and method for preparing low-basal plane dislocation
CN115537926B (en) * 2022-12-01 2023-03-17 浙江晶越半导体有限公司 Large-size physical vapor phase method silicon carbide growth crucible capable of improving growth efficiency

Also Published As

Publication number Publication date
JP4924290B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4924290B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method thereof
JP5240100B2 (en) Silicon carbide single crystal manufacturing equipment
JP2010202485A (en) Crucible for producing silicon carbide single crystal, and production apparatus and production method for silicon carbide single crystal
JP6887174B2 (en) Methods and Equipment for Producing Bulk Silicon Carbide from Silicon Carbide Precursors
JP4888548B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method
JP2018168023A (en) Device and method for manufacturing silicon carbide single crystal ingot
JP5012655B2 (en) Single crystal growth equipment
JP2008001569A (en) SINGLE CRYSTAL SiC AND PRODUCTION METHOD THEREFOR, AND APPARATUS FOR PRODUCING SINGLE CRYSTAL SiC
JP2001226197A (en) Method and device for producing silicon carbide single crystal
JP5516167B2 (en) Silicon carbide single crystal manufacturing equipment
JP7054934B2 (en) Bulk Silicon Carbide with Low Defect Density
JP6621300B2 (en) SiC single crystal growth apparatus and SiC single crystal growth method
JP2007277089A (en) SYNTHETIC METHOD OF GaN SINGLE CRYSTAL
JP2011207691A (en) Apparatus and method for producing silicon carbide single crystal
JP2006290685A (en) Method for producing silicon carbide single crystal
JP2009051700A (en) Method for producing silicon carbide single crystal
CN112334607B (en) Silicon carbide single crystal and method for producing same
JP2007308355A (en) Apparatus and method for manufacturing silicon carbide single crystal
JP2008050174A (en) SINGLE CRYSTAL SiC AND METHOD FOR PRODUCING THE SAME
JP7255089B2 (en) Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
JP2013216514A (en) Method of manufacturing silicon carbide single crystal
JP2008115045A (en) SINGLE CRYSTAL SiC AND ITS PRODUCING METHOD
JP4347325B2 (en) Single crystal SiC, method for manufacturing the same, and apparatus for manufacturing single crystal SiC
CN114574954B (en) Crystal growing device
WO2008018322A1 (en) Single-crystal silicon carbide and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4924290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250