JP2009051700A - Method for producing silicon carbide single crystal - Google Patents

Method for producing silicon carbide single crystal Download PDF

Info

Publication number
JP2009051700A
JP2009051700A JP2007221127A JP2007221127A JP2009051700A JP 2009051700 A JP2009051700 A JP 2009051700A JP 2007221127 A JP2007221127 A JP 2007221127A JP 2007221127 A JP2007221127 A JP 2007221127A JP 2009051700 A JP2009051700 A JP 2009051700A
Authority
JP
Japan
Prior art keywords
single crystal
raw material
silicon carbide
content
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007221127A
Other languages
Japanese (ja)
Other versions
JP4924289B2 (en
Inventor
Hiroyuki Kondo
宏行 近藤
Masaki Matsui
正樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007221127A priority Critical patent/JP4924289B2/en
Publication of JP2009051700A publication Critical patent/JP2009051700A/en
Application granted granted Critical
Publication of JP4924289B2 publication Critical patent/JP4924289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method in which the incorporation of metallic impurities into a growing SiC single crystal can be minimized to prevent the SiC single crystal from taking different polymorphic crystal forms other than a desired crystal form. <P>SOLUTION: In this method, a super-high purity raw material 2a and a high purity raw material 2b are used together such that crystal growth is performed by a sublimation gas of the super-high purity raw material 2a in the stage of the initial period of growth of the SiC single crystal 4, and crystal growth is performed by a sublimation gas of the high purity raw material 2b after the initial period of growth. This can minimize the incorporation of metallic impurities into the growing SiC single crystal 4 even when the super-high purity raw material 2a and the high purity raw material 2b are used together, thereby capable of preventing the single crystal from taking different polymorphic crystal forms other than a desired crystal form in the initial period of growth of the SiC single crystal 4. This allows the reduction in material cost compared with the case where the SiC single crystal 4 is grown only by the super-high purity raw material 2a. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体や発光ダイオードなどの素材に利用することができる炭化珪素(以下、SiCという)単結晶の製造方法に関するものである。   The present invention relates to a method for producing a silicon carbide (hereinafter referred to as SiC) single crystal that can be used for a material such as a semiconductor or a light emitting diode.

従来より、SiC単結晶を成長させる方法として、昇華再結晶法が広く用いられている(例えば、特許文献1参照)。この昇華再結晶法は、黒鉛製るつぼ内に配置した黒鉛台座に種結晶を接合すると共に、るつぼ底部に配したSiC原料粉末を加熱昇華させ、その昇華ガスを種結晶に供給することによって種結晶上にSiC単結晶を成長させるものである。   Conventionally, a sublimation recrystallization method has been widely used as a method for growing a SiC single crystal (for example, see Patent Document 1). This sublimation recrystallization method involves joining a seed crystal to a graphite pedestal placed in a graphite crucible, heating and sublimating the SiC raw material powder arranged at the bottom of the crucible, and supplying the sublimation gas to the seed crystal. A SiC single crystal is grown on top.

このような昇華再結晶法を用いたSiC単結晶の製造に用いられるSiC原料粉末として、超高純度原料と呼ばれる金属不純物が10ppm以下のものと高純度原料と呼ばれる金属不純物が100ppm〜4000ppm程度含有されているものがある。超高純度原料は、金属不純物が10ppm以下と非常に少ないため、成長するSiC単結晶への金属不純物の混入を少なく抑えることができるという利点があるが、金属不純物の含有量を少なくするのが難しいために原料コストが高い。一方、高純度原料は、金属不純物が超高純度原料と比べて多いため、原料コストは安くなるという利点があるが、逆に、成長するSiC単結晶への金属不純物の混入が多くなり、SiC単結晶が成長初期に所望の結晶形以外の異種多形になる恐れがある。特に成長にいたるまでの昇温過程においては、成長装置内で残存していた金属不純物が融解、蒸発、昇華したりして、飛び回っており、初期成長に金属不純物が混入される可能性が極めて高い。また、初期成長時はまだ成長温度や圧力が不安定であり、珪素/炭素比も不安定となるため、SiC原料に含有している金属不純物が、結晶に与える影響は極めて高い。その金属不純物の影響を最小限に抑え、高品質、長尺のSiC単結晶を得ることを重視して、原料コストが高くても超高純度原料を用いてSiC単結晶を製造している。
特開平6−219898号公報
As SiC raw material powder used for the production of SiC single crystal using such a sublimation recrystallization method, a metal impurity called ultra-high purity raw material containing 10 ppm or less and a metal impurity called high purity raw material containing about 100 ppm to 4000 ppm There is something that has been. The ultra-high purity raw material has an advantage that metal impurities are very low at 10 ppm or less, so that it is possible to suppress the mixing of metal impurities into the growing SiC single crystal. However, the content of metal impurities should be reduced. Raw material cost is high due to difficulty. On the other hand, the high-purity raw material has an advantage that the raw material cost is low because there are many metal impurities compared to the ultra-high-purity raw material, but conversely, the contamination of the metal impurity into the growing SiC single crystal increases, and the SiC There is a possibility that the single crystal may have a different polymorphism other than the desired crystal form in the early stage of growth. In particular, in the temperature rising process leading to growth, the metal impurities remaining in the growth apparatus are melted, evaporated, and sublimated and fly around, and there is a possibility that metal impurities may be mixed in the initial growth. high. In addition, since the growth temperature and pressure are still unstable during the initial growth and the silicon / carbon ratio is also unstable, the influence of metal impurities contained in the SiC raw material on the crystal is extremely high. The SiC single crystal is manufactured using an ultra-high purity raw material even if the raw material cost is high, with an emphasis on obtaining a high-quality and long SiC single crystal by minimizing the influence of the metal impurities.
Japanese Patent Laid-Open No. 6-21989

しかしながら、SiC単結晶の製造にあたり、超高純度原料のみを用いるのは原料コストが掛かり過ぎ大量生産には向かないため、高純度原料を利用できるようにしたいが、上述したように成長するSiC単結晶への金属不純物の混入が多くなり、SiC単結晶が成長初期に所望の結晶形以外の異種多形になるという問題がある。   However, in the production of SiC single crystals, using only ultra-high-purity raw materials is costly for raw materials and is not suitable for mass production. Therefore, it is desirable to use high-purity raw materials. There is a problem that metal impurities are mixed into the crystal, and the SiC single crystal becomes a different polymorph other than the desired crystal form at the initial stage of growth.

本発明は上記点に鑑みて、金属不純物の含有度が異なる2つの原料を併用しても、成長するSiC単結晶への金属不純物の混入を少なくでき、SiC単結晶が所望の結晶形以外の異種多形になることを防止できるSiC単結晶の製造方法を提供することを目的とする。   In view of the above points, the present invention can reduce the mixing of metal impurities into a growing SiC single crystal even when two raw materials having different metal impurity contents are used in combination, and the SiC single crystal is not in a desired crystal form. It aims at providing the manufacturing method of the SiC single crystal which can prevent becoming a heteropolymorph.

上記目的を達成するため、本発明では、容器(1)内に、SiC原料(2)と種結晶となるSiC単結晶基板(3)を配置し、SiC原料(2)を加熱昇華させてSiC単結晶基板(3)上にSiC単結晶(4)を成長させるSiC単結晶の製造方法において、SiC原料(2)として、金属不純物の含有度が異なる2つの原料(2a、2b)を用意し、原料(2a、2b)のうち金属不純物の含有度が高いもの(2b)の表面が金属不純物の含有度が低いもの(2a)で覆われるようにSiC原料(2)を容器(1)内に配置し、SiC単結晶基板(3)の表面にSiC単結晶(4)を成長させる際の成長初期には原料(2a、2b)のうち金属不純物の含有度が低いもの(2a)の昇華ガスにて成長させ、SiC単結晶(4)が成長し始めてから原料(2a、2b)のうち金属不純物の含有度が高いもの(2b)の昇華ガスにても成長を続けることを特徴としている。   In order to achieve the above object, in the present invention, the SiC raw material (2) and the SiC single crystal substrate (3) serving as a seed crystal are disposed in the container (1), and the SiC raw material (2) is heated and sublimated to produce SiC. In the SiC single crystal manufacturing method for growing the SiC single crystal (4) on the single crystal substrate (3), two raw materials (2a, 2b) having different metal impurity contents are prepared as the SiC raw material (2). The SiC raw material (2) is placed in the container (1) so that the surface of the raw material (2a, 2b) having a high metal impurity content (2b) is covered with the low metal impurity content (2a). Sublimation of the raw material (2a, 2b) having a low content of metal impurities (2a) at the initial growth stage when the SiC single crystal (4) is grown on the surface of the SiC single crystal substrate (3) Growing with gas, SiC single crystal (4) begins to grow Is characterized in that also continue to grow in sublimation gas of the raw material (2a, 2b) having a high content of the metal impurities of (2b) from.

このようにすれば、金属不純物の含有度が異なる2つの原料(2a、2b)を併用しつつ、SiC単結晶(4)の成長初期の段階には原料(2a、2b)のうち金属不純物の含有度が低いもの(2a)の昇華ガスにて成長させることで、成長するSiC単結晶(4)への金属不純物の混入を少なくでき、SiC単結晶(4)の成長初期に所望の結晶形以外の異種多形になることを防止できる。そして、この後は所望の結晶形以外の異種多形になり難くできるため、原料(2a、2b)のうち金属不純物の含有度が高いもの(2b)の昇華ガスにても成長を続けることができる。これにより、成長するSiC単結晶(4)への金属不純物の混入を少なくでき、SiC単結晶が所望の結晶形以外の異種多形になることを防止できる。   In this way, two raw materials (2a, 2b) having different metal impurity contents are used in combination, and at the initial growth stage of the SiC single crystal (4), the metal impurities of the raw materials (2a, 2b) By growing with a sublimation gas having a low content (2a), metal impurities can be reduced in the growing SiC single crystal (4), and the desired crystal form can be obtained at the initial stage of the growth of the SiC single crystal (4). It is possible to prevent heterogeneous polymorphism other than. Then, since it can be difficult to form a different polymorph other than the desired crystal form, the growth can be continued even in the sublimation gas of the raw material (2a, 2b) having a high metal impurity content (2b). it can. As a result, it is possible to reduce the mixing of metal impurities into the growing SiC single crystal (4) and to prevent the SiC single crystal from becoming a different polymorph other than the desired crystal form.

具体的には、容器(1)として一面が開口する有底円筒状のるつぼ本体(1a)と該るつぼ本体(1a)の開口する面を蓋閉めする蓋材(1b)とを有するるつぼ(1)を用い、該るつぼ(1)における蓋材(1b)にSiC単結晶基板(3)を貼り付けると共に、るつぼ本体(1a)の底面に原料(2a、2b)のうち金属不純物の含有度が高いもの(2b)を配置し、該原料(2a、2b)のうち金属不純物の含有度が高いもの(2b)よりもSiC単結晶基板(3)側に原料(2a、2b)のうち金属不純物の含有度が低いもの(2a)を配置することができる。   Specifically, a crucible (1b) having a bottomed cylindrical crucible body (1a) whose one side is open as a container (1) and a lid member (1b) for closing the lid of the crucible body (1a). ), The SiC single crystal substrate (3) is attached to the lid (1b) of the crucible (1), and the content of metal impurities in the raw materials (2a, 2b) on the bottom of the crucible body (1a) Higher ones (2b) are arranged, and the metal impurities of the raw materials (2a, 2b) are closer to the SiC single crystal substrate (3) side than those of the raw materials (2a, 2b) having a higher metal impurity content (2b). (2a) with a low content of can be arranged.

また、例えば、原料(2a、2b)のうち金属不純物の含有度が低いもの(2a)として金属不純物の含有度が10ppm以下のものを用いることができる。金属不純物の含有度が低いもの(2a)として金属不純物の含有度が10ppmを超えるようだと、成長するSiC単結晶への金属不純物の混入が多くなり、SiC単結晶が成長初期に所望の結晶形以外の異種多形になるおそれがある。一方、原料(2a、2b)のうち金属不純物の含有度が高いもの(2b)として金属不純物の含有度が100ppm〜4000ppmのものを用いることができる。金属不純物の含有度が高いもの(2b)の金属不純物の含有度が100ppm未満だと、金属不純物の含有量を少なくするのが難しいために原料コストが高くなってしまう。4000ppmを超えると、成長初期に所望の結晶形以外の異種多形にはならなかったとしても、金属不純物の含有度が高いもの(2b)の昇華ガスが多く発生するようになり、成長するSiC単結晶への金属不純物の混入が多くなり、SiC単結晶が成長途中から所望の結晶形以外の異種多形になるおそれがある。このような理由から、金属不純物の含有度が高いもの(2b)としては、金属不純物の含有度が100ppm〜4000ppmの純度のものが好ましい。   For example, a raw material (2a, 2b) having a low metal impurity content (2a) having a metal impurity content of 10 ppm or less can be used. If the metal impurity content is more than 10 ppm as the metal impurity content is low (2a), the contamination of the SiC single crystal grows so that the SiC single crystal has a desired crystal at the initial stage of growth. There is a risk of heterogeneous polymorphism other than shape. On the other hand, a raw material (2a, 2b) having a high metal impurity content (2b) having a metal impurity content of 100 ppm to 4000 ppm can be used. If the metal impurity content of the metal impurity content (2b) is less than 100 ppm, it is difficult to reduce the metal impurity content, resulting in an increase in raw material cost. If it exceeds 4000 ppm, even if a different polymorphism other than the desired crystal form is not obtained at the initial stage of growth, a large amount of sublimation gas having a high metal impurity content (2b) is generated and SiC grows. There is a risk that the metal impurity is mixed into the single crystal, and the SiC single crystal becomes a different polymorph other than the desired crystal form during the growth. For these reasons, the metal impurities having a high content (2b) are preferably those having a metal impurity content of 100 ppm to 4000 ppm.

この場合、原料(2a、2b)のうち金属不純物の含有度が低いもの(2a)の質量を該原料全質量のうちの5〜50%とし、金属不純物の含有度が高いもの(2b)を残部とすることができる。金属不純物の含有度が低いもの(2a)の質量を該原料全質量のうちの5%未満とすると、初期成長から金属不純物の含有度が高いもの(2b)の昇華が起こり、成長するSiC単結晶への金属不純物の混入が多くなり、SiC単結晶が成長初期に所望の結晶形以外の異種多形になるおそれがある。金属不純物の含有度が低いもの(2a)が50%を超えると、SiC単結晶の製造コストが高価になってしまい好ましくない。特に、原料(2a、2b)のうち金属不純物の含有度が低いもの(2a)の質量を該原料全質量のうちの30%とし、金属不純物の含有度が高いもの(2b)を70%とすると好ましい。   In this case, the mass of the raw material (2a, 2b) having a low content of metal impurities (2a) is 5 to 50% of the total mass of the raw material, and the content of the metal impurities (2b) is high. It can be the rest. If the mass of the metal impurities low content (2a) is less than 5% of the total mass of the raw material, sublimation of the metal impurities high content (2b) occurs from the initial growth, and the growing SiC There is a possibility that the metal impurities are mixed into the crystal and the SiC single crystal becomes a different polymorph other than the desired crystal form at the initial stage of growth. When the content of metal impurities (2a) exceeds 50%, the production cost of the SiC single crystal becomes expensive, which is not preferable. In particular, the mass of the raw material (2a, 2b) having a low metal impurity content (2a) is 30% of the total mass of the raw material, and the high metal impurity content (2b) is 70%. It is preferable.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

以下、本発明の実施形態について図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
本発明の第1実施形態について説明する。図1は、本実施形態にかかるSiC単結晶の製造装置を用いてSiC単結晶を成長させている様子を示した断面図である。
(First embodiment)
A first embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing a state in which a SiC single crystal is grown using the SiC single crystal manufacturing apparatus according to the present embodiment.

図1に示すように、SiC単結晶の製造装置の容器として円筒状の黒鉛製るつぼ1が用いられている。黒鉛製るつぼ1は、黒鉛製るつぼ1の底部に備えられたSiC原料粉末(SiC原料)2を加熱処理によって昇華させ、種結晶であるSiC単結晶基板3上にSiC単結晶4を結晶成長させるものである。   As shown in FIG. 1, a cylindrical graphite crucible 1 is used as a container of a SiC single crystal production apparatus. The graphite crucible 1 sublimates the SiC raw material powder (SiC raw material) 2 provided at the bottom of the graphite crucible 1 by heat treatment, and causes the SiC single crystal 4 to grow on the SiC single crystal substrate 3 as a seed crystal. Is.

この黒鉛製るつぼ1は、上面が開口している有底円筒状のるつぼ本体1aと、るつぼ本体1aの開口部を塞ぐ蓋材1bとを備えて構成されている。この黒鉛製るつぼ1を構成する蓋材1bの中央部において突き出した部分を台座1cとして、台座1c上にSiC単結晶基板3が図示しない接着剤等を介して接合されている。   The graphite crucible 1 includes a bottomed cylindrical crucible body 1a having an open top surface and a lid 1b that closes the opening of the crucible body 1a. A portion protruding from the center of the lid 1b constituting the graphite crucible 1 is a pedestal 1c, and the SiC single crystal substrate 3 is bonded to the pedestal 1c via an adhesive (not shown).

一方、黒鉛製るつぼ1の外部には、黒鉛製るつぼ1の外周を囲むように誘導コイル等の図示しない加熱装置が備えられており、この加熱装置のパワーを制御することにより、黒鉛製るつぼ1内の温度を制御できるように構成されている。例えば、SiC単結晶4を結晶成長させる際には、この加熱装置のパワーを調節することによって種結晶であるSiC単結晶基板3の温度がSiC原料粉末2の温度よりも100℃程度低温に保たれるようにすることができる。なお、図示しないが、黒鉛製るつぼ1は、アルゴンガスが導入できる真空容器の中に収容されており、この真空容器内で加熱できるようになっている。   On the other hand, a heating device (not shown) such as an induction coil is provided outside the graphite crucible 1 so as to surround the outer periphery of the graphite crucible 1, and the graphite crucible 1 is controlled by controlling the power of the heating device. It is configured to control the temperature inside. For example, when the SiC single crystal 4 is grown, the temperature of the SiC single crystal substrate 3 as a seed crystal is kept at a temperature about 100 ° C. lower than the temperature of the SiC raw material powder 2 by adjusting the power of the heating device. Can be drunk. Although not shown, the graphite crucible 1 is housed in a vacuum vessel into which argon gas can be introduced, and can be heated in this vacuum vessel.

このように構成されたSiC単結晶の製造装置を用いたSiC単結晶の製造工程について説明する。   An SiC single crystal manufacturing process using the SiC single crystal manufacturing apparatus configured as described above will be described.

まず、SiC原料粉末2として、金属不純物が10ppm以下の超高純度原料2aと金属不純物が100〜4000ppm含有された高純度原料2bとを用意し、高純度原料2bを黒鉛製るつぼ1の本体1aの底面側に配置すると共に、超高純度原料2aを高純度原料2bの上、つまり高純度原料2bよりも黒鉛製るつぼ1の蓋材1b側に配置する。このとき、超高純度原料2aによって高純度原料2bが完全に覆い隠されるようにする。この場合の超高純度原料2aと高純度原料2bとの質量の関係は、全SiC原料粉末2の質量に対して、超高純度原料2aの質量は5〜50%、好ましくは30%、高純度原料2bの質量比の質量はその残り(95〜50%、好ましくは70%)であれば良い。   First, as SiC raw material powder 2, an ultra-high-purity raw material 2 a containing 10 ppm or less of metal impurities and a high-purity raw material 2 b containing 100 to 4000 ppm of metal impurities are prepared, and the high-purity raw material 2 b is used as the main body 1 a of the graphite crucible 1. The ultra-high purity raw material 2a is disposed on the high-purity raw material 2b, that is, closer to the lid 1b side of the graphite crucible 1 than the high-purity raw material 2b. At this time, the high-purity raw material 2b is completely covered with the ultra-high-purity raw material 2a. In this case, the mass relationship between the ultra-high purity raw material 2a and the high-purity raw material 2b is such that the mass of the ultra-high purity raw material 2a is 5 to 50%, preferably 30% with respect to the mass of the entire SiC raw material powder 2. The mass of the mass ratio of the purity raw material 2b may be the remainder (95 to 50%, preferably 70%).

そして、台座1cに種結晶であるSiC単結晶基板3を貼り付けたのち、蓋材1bを本体1aに取付け、黒鉛製るつぼ1を図示しない真空容器内に収容し、真空容器内をアルゴンガス雰囲気にする。その後、図示しない加熱装置にて、SiC原料粉末2の温度を2000〜2500℃に加熱し、加熱装置の調節等により、SiC単結晶基板3の温度がSiC原料粉末2の温度よりも低くなるように、黒鉛製るつぼ1内に温度勾配を設ける。   Then, after attaching SiC single crystal substrate 3 as a seed crystal to pedestal 1c, lid 1b is attached to main body 1a, graphite crucible 1 is housed in a vacuum container (not shown), and the inside of the vacuum container is filled with an argon gas atmosphere To. Then, the temperature of SiC raw material powder 2 is heated to 2000-2500 degreeC with the heating apparatus which is not illustrated, and the temperature of SiC single crystal substrate 3 becomes lower than the temperature of SiC raw material powder 2 by adjustment of a heating apparatus, etc. In addition, a temperature gradient is provided in the graphite crucible 1.

次に、真空容器の真空度を調整することで黒鉛製るつぼ1内の圧力を13.3Pa〜26.7kPaとして、昇華法成長を開始すると、SiC原料粉末2が昇華して昇華ガスとなり、SiC単結晶4に到達し、SiC原料粉末2側よりも相対的に低温となるSiC単結晶基板3の表面上にSiC単結晶4が成長する。   Next, the pressure in the graphite crucible 1 is adjusted to 13.3 Pa to 26.7 kPa by adjusting the degree of vacuum of the vacuum vessel, and when the sublimation growth starts, the SiC raw material powder 2 sublimates to become a sublimation gas, and SiC The SiC single crystal 4 grows on the surface of the SiC single crystal substrate 3 that reaches the single crystal 4 and is at a relatively lower temperature than the SiC raw material powder 2 side.

このとき、まず、超高純度原料2aの昇華ガスがSiC単結晶基板3の表面に供給され、SiC単結晶4が成長し始めるため、成長初期における異種多形発生の原因となる金属不純物のSiC単結晶4内への混入を防止することが可能となる。そして、SiC単結晶4の結晶成長が進んだ後、超高純度原料2aが昇華し尽くすと、若しくは、超高純度原料2aの隙間を通じて、高純度原料2bの昇華ガスが成長途中のSiC単結晶4の表面に供給される。   At this time, first, the sublimation gas of the ultra-high purity raw material 2a is supplied to the surface of the SiC single crystal substrate 3, and the SiC single crystal 4 begins to grow. It becomes possible to prevent mixing into the single crystal 4. Then, after the crystal growth of the SiC single crystal 4 proceeds, when the ultra-high purity raw material 2a is completely sublimated, or the SiC single crystal in which the sublimation gas of the high-purity raw material 2b is growing through the gap between the ultra-high purity raw material 2a. 4 is supplied to the surface.

このように、SiC単結晶4の成長初期の段階には超高純度原料2aの昇華ガスが供給されるようにすることで、成長初期に所望の結晶形以外の異種多形が発生することを防止できる。そして、成長初期に異種多形が発生しないようにできれば、その後の成長においては下地の結晶形が継承され易くなるため、成長初期以降は高純度原料2bの昇華ガスによってSiC単結晶4を成長させても、高品質で長尺に成長させることが可能となる。   As described above, by supplying the sublimation gas of the ultra-high purity raw material 2a to the initial stage of the growth of the SiC single crystal 4, it is possible to generate different polymorphs other than the desired crystal form in the initial stage of growth. Can be prevented. If different polymorphs can be prevented from occurring in the early stage of growth, the underlying crystal form is easily inherited in subsequent growth. Therefore, after the initial stage of growth, the SiC single crystal 4 is grown by the sublimation gas of the high-purity raw material 2b. However, it becomes possible to grow long with high quality.

この後は、SiC原料粉末2の減少量がほぼ一定となるようにさせつつ、SiC単結晶4を結晶成長させる。例えば、加熱装置のパワーを調整することにより黒鉛製るつぼ1内の温度分布を調整することができる。このようにすることで、るつぼ1内の珪素/炭素比を安定化させることができ、SiC単結晶4を確実に高品質、長尺に形成することができる。   Thereafter, the SiC single crystal 4 is grown while making the amount of reduction of the SiC raw material powder 2 substantially constant. For example, the temperature distribution in the graphite crucible 1 can be adjusted by adjusting the power of the heating device. By doing in this way, the silicon / carbon ratio in the crucible 1 can be stabilized, and the SiC single crystal 4 can be reliably formed in high quality and long.

以上説明したように、本実施形態では、超高純度原料2aと高純度原料2bとを併用しつつ、SiC単結晶4の成長初期の段階には超高純度原料2aの昇華ガスにより結晶成長が行われるようにし、成長初期以降には高純度原料2bの昇華ガスも用いて結晶成長が行われるようにしている。このようにすることで、超高純度原料2aと高純度原料2bとを併用しても成長するSiC単結晶4への金属不純物の混入を少なくでき、SiC単結晶4の成長初期に所望の結晶形以外の異種多形になることを防止できる。そして、本実施形態の製造方法によれば、超高純度原料2aのみによってSiC単結晶4を成長させる場合と比べて原料コストを削減することが可能となるため、大量生産にも適したSiC単結晶4の製造方法とすることができる。   As described above, in this embodiment, while using the ultra-high purity raw material 2a and the high-purity raw material 2b in combination, crystal growth is caused by the sublimation gas of the ultra-high purity raw material 2a at the initial stage of the growth of the SiC single crystal 4. The crystal growth is performed using the sublimation gas of the high-purity raw material 2b after the initial stage of growth. By doing so, it is possible to reduce the mixing of metal impurities into the SiC single crystal 4 that grows even when the ultra-high purity raw material 2a and the high purity raw material 2b are used in combination, and a desired crystal at the initial growth stage of the SiC single crystal 4 It is possible to prevent different polymorphs other than shapes. According to the manufacturing method of the present embodiment, the raw material cost can be reduced as compared with the case where the SiC single crystal 4 is grown only by the ultra-high purity raw material 2a. It can be set as the manufacturing method of the crystal 4.

なお、SiC単結晶4を結晶成長させる際に、最初に超高純度原料2aの昇華ガスが結晶成長に用いられ、その後に高純度原料2bの昇華ガスが結晶成長に用いられるようにするには、少なくとも高純度原料2bを覆うように超高純度原料2aが配置されている必要がある。このときの超高純度原料2aと高純度原料2bの質量比は、黒鉛製るつぼ1の寸法等によって決まることになるが、上述したように、全SiC原料粉末2の質量に対して、超高純度原料2aの質量を5〜50%、高純度原料2bの質量比の質量をその残り(95〜50%)とすれば良い。   When the SiC single crystal 4 is grown, the sublimation gas of the ultra high purity raw material 2a is first used for crystal growth, and then the sublimation gas of the high purity raw material 2b is used for crystal growth. The ultra-high purity raw material 2a needs to be disposed so as to cover at least the high-purity raw material 2b. The mass ratio between the ultra-high purity raw material 2a and the high-purity raw material 2b at this time is determined by the dimensions of the graphite crucible 1 and the like. The mass of the purity raw material 2a may be 5 to 50%, and the mass of the mass ratio of the high purity raw material 2b may be the rest (95 to 50%).

このような超高純度原料2aと高純度原料2bとの質量の関係については、実験結果に基づいて決定している。図2は、超高純度原料2aと高純度原料2bとの質量と異種多形発生との関係を調べた結果の一例を示した図表である。この図に示されるように、金属不純物含有度が10ppmである超高純度原料2aの質量と金属不純物含有度が100ppm〜4000ppmである高純度原料2bの質量との割合を30:70とした場合、異種多形が発生していない。これに対して、超高純度原料2aの金属不純物含有度が10ppmを超えると異種多形が発生し、また高純度原料2bの金属不純物含有度が5000ppmになると途中から異種多形が発生している。そして、超高純度原料2aの金属不純物含有度が10ppmとしても、超高純度原料2aの質量を5%未満にすると、異種多形が発生していた。このことから、超高純度原料2aと高純度原料2bとの質量の関係を上記のような関係としている。   The mass relationship between the ultra-high purity raw material 2a and the high-purity raw material 2b is determined based on experimental results. FIG. 2 is a chart showing an example of the result of examining the relationship between the masses of the ultra-high purity raw material 2a and the high-purity raw material 2b and the occurrence of different types of polymorphs. As shown in this figure, when the ratio of the mass of the ultra-high purity raw material 2a having a metal impurity content of 10 ppm and the mass of the high-purity raw material 2b having a metal impurity content of 100 ppm to 4000 ppm is 30:70 No heterogeneous polymorphism has occurred. On the other hand, when the metal impurity content of the ultra-high purity raw material 2a exceeds 10 ppm, a heterogeneous polymorph occurs, and when the metal impurity content of the high-purity raw material 2b reaches 5000 ppm, a heterogeneous polymorph occurs from the middle. Yes. And even if the metal impurity content of the ultra-high purity raw material 2a is 10 ppm, when the mass of the ultra-high purity raw material 2a is less than 5%, different polymorphs have occurred. From this, the mass relationship between the ultra-high purity raw material 2a and the high-purity raw material 2b is as described above.

(他の実施形態)
上記第1、第2実施形態では、SiC単結晶の製造装置の容器の一例として円筒状の黒鉛製るつぼ1を例に挙げたが、これは単なる一例であり、黒鉛製るつぼ1の形状は必ずしも円筒状でなくても良いし、すべてが黒鉛製でなくても構わない。例えば、容器の外形が正多角柱形状であっても良い。また、容器の金属不純物含有度も10ppm以下であることが好ましい。
(Other embodiments)
In the first and second embodiments, the cylindrical graphite crucible 1 is taken as an example of the container of the SiC single crystal manufacturing apparatus. However, this is merely an example, and the shape of the graphite crucible 1 is not necessarily limited. It does not have to be cylindrical, and not all may be made of graphite. For example, the outer shape of the container may be a regular polygonal column shape. Further, the metal impurity content of the container is also preferably 10 ppm or less.

また、ここでは超高純度原料2aと高純度原料2bという金属不純物の含有度が異なるSiC原料を用いる場合について説明したが、これらの金属不純物の含有度も一例であり、金属不純物の含有度の異なる2種のSiC原料を併用するような場合に本発明を適用することが可能である。また、SiC単結晶基板3の最も近い側に超高純度原料2aを配置すれば、金属不純物の含有度が異なるSiC原料2の種類は2種類に限らず、2種類以上の金属不純物の含有度が異なる原料を用いてもよい。   Moreover, although the case where the SiC raw materials having different metal impurity contents such as the ultra-high purity raw material 2a and the high-purity raw material 2b are used has been described here, the contents of these metal impurities are also an example. The present invention can be applied to a case where two different types of SiC raw materials are used in combination. Moreover, if the ultra-high purity raw material 2a is arranged on the closest side of the SiC single crystal substrate 3, the types of the SiC raw materials 2 having different metal impurity contents are not limited to two kinds, but the contents of two or more kinds of metal impurities. Different raw materials may be used.

本発明の第1実施形態にかかるSiC単結晶の製造装置に備えられる黒鉛製るつぼの断面構成を示す図である。It is a figure which shows the cross-sectional structure of the graphite crucible with which the manufacturing apparatus of the SiC single crystal concerning 1st Embodiment of this invention is equipped. 超高純度原料と高純度原料との金属不純物含有度および質量と異種多形発生との関係を調べた実験結果の一例を示した図表である。It is the graph which showed an example of the experimental result which investigated the relationship between metal impurity content and mass of a very high purity raw material and a high purity raw material, and heterogeneous polymorphism generation | occurrence | production.

符号の説明Explanation of symbols

1…黒鉛製るつぼ、1a…本体、1b…蓋材、1c…台座、2…SiC原料粉末、
2a…超高純度原料、2b…高純度原料、3…単結晶基板、4…SiC単結晶
DESCRIPTION OF SYMBOLS 1 ... Graphite crucible, 1a ... Main body, 1b ... Cover material, 1c ... Base, 2 ... SiC raw material powder,
2a ... Ultra high purity raw material, 2b ... High purity raw material, 3 ... Single crystal substrate, 4 ... SiC single crystal

Claims (5)

容器(1)内に、炭化珪素原料(2)と種結晶となる炭化珪素単結晶基板(3)を配置し、前記炭化珪素原料(2)を加熱昇華させて前記炭化珪素単結晶基板(3)上に炭化珪素単結晶(4)を成長させる炭化珪素単結晶の製造方法において、
前記炭化珪素原料(2)として、金属不純物の含有度が異なる2つの原料(2a、2b)を用意し、前記原料(2a、2b)のうち前記金属不純物の含有度が高いもの(2b)の表面が前記金属不純物の含有度が低いもの(2a)で覆われるように前記炭化珪素原料(2)を前記容器(1)内に配置し、前記炭化珪素単結晶基板(3)の表面に前記炭化珪素単結晶(4)を成長させる際の成長初期には前記原料(2a、2b)のうち前記金属不純物の含有度が低いもの(2a)の昇華ガスにて成長させ、前記炭化珪素単結晶(4)が成長し始めてから前記原料(2a、2b)のうち前記金属不純物の含有度が高いもの(2b)の昇華ガスにても成長を続けることを特徴とする炭化珪素単結晶の製造方法。
In a container (1), a silicon carbide raw material (2) and a silicon carbide single crystal substrate (3) to be a seed crystal are arranged, and the silicon carbide raw material (2) is heated and sublimated to form the silicon carbide single crystal substrate (3). In the method for producing a silicon carbide single crystal in which a silicon carbide single crystal (4) is grown on
As the silicon carbide raw material (2), two raw materials (2a, 2b) having different metal impurity contents are prepared. Of the raw materials (2a, 2b), the metal impurity content (2b) is high. The silicon carbide raw material (2) is disposed in the container (1) so that the surface is covered with the low content of metal impurities (2a), and the surface of the silicon carbide single crystal substrate (3) is At the initial stage of growth when growing the silicon carbide single crystal (4), the raw material (2a, 2b) is grown with a sublimation gas having a low metal impurity content (2a), and the silicon carbide single crystal is grown. A method for producing a silicon carbide single crystal, characterized in that the growth continues even in the sublimation gas of the raw material (2a, 2b) having a high metal impurity content (2b) after the growth of (4) begins .
前記容器として一面が開口する有底円筒状のるつぼ本体(1a)と該るつぼ本体(1a)の開口する面を蓋閉めする蓋材(1b)とを有するるつぼ(1)を用い、該るつぼ(1)における前記蓋材(1b)に前記炭化珪素単結晶基板(3)を貼り付けると共に、前記るつぼ本体(1a)の底面に前記原料(2a、2b)のうち前記金属不純物の含有度が高いもの(2b)を配置し、該原料(2a、2b)のうち前記金属不純物の含有度が高いもの(2b)よりも前記炭化珪素単結晶基板(3)側に前記原料(2a、2b)のうち前記金属不純物の含有度が低いもの(2a)を配置することを特徴とする請求項1に記載の炭化珪素単結晶の製造方法。 A crucible (1) having a bottomed cylindrical crucible body (1a) having one open surface and a lid member (1b) for closing the open surface of the crucible body (1a) is used as the container. The silicon carbide single crystal substrate (3) is attached to the lid member (1b) in 1), and the content of the metal impurities in the raw materials (2a, 2b) is high on the bottom surface of the crucible body (1a). The material (2b) is placed on the silicon carbide single crystal substrate (3) side of the raw material (2a, 2b) having a higher metal impurity content (2b) than the material (2b). 2. The method for producing a silicon carbide single crystal according to claim 1, wherein one having a low metal impurity content (2a) is disposed. 前記原料(2a、2b)のうち前記金属不純物の含有度が低いもの(2a)として前記金属不純物の含有度が10ppm以下のものを用い、原料(2a、2b)のうち前記金属不純物の含有度が高いもの(2b)として前記金属不純物の含有度が100ppm〜4000ppmのものを用いることを特徴とする請求項1または2に記載の炭化珪素単結晶の製造方法。 Among the raw materials (2a, 2b), those having a low metal impurity content (2a) having a metal impurity content of 10 ppm or less, and the raw metal (2a, 2b) content of the metal impurities. 3. The method for producing a silicon carbide single crystal according to claim 1, wherein the metal impurity content is 100 ppm to 4000 ppm. 前記原料(2a、2b)のうち前記金属不純物の含有度が低いもの(2a)の質量を該原料全質量のうちの5〜50%とし、前記金属不純物の含有度が高いもの(2b)を残部とすることを特徴とする請求項3に記載の炭化珪素単結晶の製造方法。 Among the raw materials (2a, 2b), the mass (2a) having a low content of the metal impurity is 5 to 50% of the total mass of the raw material, and the content (2b) having a high content of the metal impurity. The method for producing a silicon carbide single crystal according to claim 3, wherein the balance is the balance. 前記原料(2a、2b)のうち前記金属不純物の含有度が低いもの(2a)の質量を該原料全質量のうちの30%とし、前記金属不純物の含有度が高いもの(2b)を70%とすることを特徴とする請求項4に記載の炭化珪素単結晶の製造方法。 Of the raw materials (2a, 2b), the mass of the low content of metal impurities (2a) is 30% of the total mass of the raw materials, and the high content of metal impurities (2b) is 70%. The method for producing a silicon carbide single crystal according to claim 4, wherein:
JP2007221127A 2007-08-28 2007-08-28 Method for producing silicon carbide single crystal Active JP4924289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221127A JP4924289B2 (en) 2007-08-28 2007-08-28 Method for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221127A JP4924289B2 (en) 2007-08-28 2007-08-28 Method for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2009051700A true JP2009051700A (en) 2009-03-12
JP4924289B2 JP4924289B2 (en) 2012-04-25

Family

ID=40503118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221127A Active JP4924289B2 (en) 2007-08-28 2007-08-28 Method for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP4924289B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015642A2 (en) * 2011-07-28 2013-01-31 Lg Innotek Co., Ltd. Method for growth of ingot
JP2017178673A (en) * 2016-03-30 2017-10-05 新日鐵住金株式会社 Production method of silicon carbide single crystal ingot
CN110878424A (en) * 2018-09-06 2020-03-13 昭和电工株式会社 Method for producing SiC single crystal and coated member
CN114411258A (en) * 2022-03-29 2022-04-29 中电化合物半导体有限公司 Growth method and growth equipment of silicon carbide crystals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095794A (en) * 2001-09-19 2003-04-03 Bridgestone Corp Silicon carbide single crystal and method of producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095794A (en) * 2001-09-19 2003-04-03 Bridgestone Corp Silicon carbide single crystal and method of producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015642A2 (en) * 2011-07-28 2013-01-31 Lg Innotek Co., Ltd. Method for growth of ingot
WO2013015642A3 (en) * 2011-07-28 2013-04-11 Lg Innotek Co., Ltd. Method for growth of ingot
JP2017178673A (en) * 2016-03-30 2017-10-05 新日鐵住金株式会社 Production method of silicon carbide single crystal ingot
CN110878424A (en) * 2018-09-06 2020-03-13 昭和电工株式会社 Method for producing SiC single crystal and coated member
US11421339B2 (en) 2018-09-06 2022-08-23 Showa Denko K.K. Method of manufacturing SiC single crystal and covering member
CN114411258A (en) * 2022-03-29 2022-04-29 中电化合物半导体有限公司 Growth method and growth equipment of silicon carbide crystals
CN114411258B (en) * 2022-03-29 2022-07-08 中电化合物半导体有限公司 Growth method and growth equipment of silicon carbide crystals

Also Published As

Publication number Publication date
JP4924289B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP5170127B2 (en) Method for producing SiC single crystal
CN109518276B (en) Preparation method and device of high-quality silicon carbide crystal
JP5304600B2 (en) SiC single crystal manufacturing apparatus and manufacturing method
WO2009139447A1 (en) Single crystal manufacturing device and manufacturing method
JP4924290B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method thereof
JP2018140884A (en) Single crystal production apparatus, and single crystal production method
JP5012655B2 (en) Single crystal growth equipment
JP4924289B2 (en) Method for producing silicon carbide single crystal
JP4924291B2 (en) Method for producing silicon carbide single crystal
EP1540048B1 (en) Silicon carbide single crystal and method and apparatus for producing the same
JP2000264793A (en) Method and apparatus for producing silicon carbide single crystal
JP5069657B2 (en) Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
JP4310880B2 (en) Method and apparatus for producing silicon carbide single crystal
JP4967925B2 (en) Silicon carbide single crystal manufacturing equipment
JP2010076990A (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
JP4197178B2 (en) Single crystal manufacturing method
JP4505202B2 (en) Method and apparatus for producing silicon carbide single crystal
JP2007182333A (en) Method of manufacturing single crystal
JP2006290685A (en) Method for producing silicon carbide single crystal
JPH10139589A (en) Production of single crystal
JP2007145679A (en) Apparatus for and method of producing aluminum nitride single crystal
JP2010248028A (en) Apparatus for manufacturing silicon carbide single crystal
JP2006143497A (en) Apparatus for manufacturing silicon carbide single crystal
JP5541269B2 (en) Silicon carbide single crystal manufacturing equipment
JP2009023846A (en) Method for producing silicon carbide single crystal and apparatus for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4924289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250