JP2017154926A - Manufacturing apparatus and manufacturing method of silicon carbide single crystal ingot - Google Patents

Manufacturing apparatus and manufacturing method of silicon carbide single crystal ingot Download PDF

Info

Publication number
JP2017154926A
JP2017154926A JP2016039196A JP2016039196A JP2017154926A JP 2017154926 A JP2017154926 A JP 2017154926A JP 2016039196 A JP2016039196 A JP 2016039196A JP 2016039196 A JP2016039196 A JP 2016039196A JP 2017154926 A JP2017154926 A JP 2017154926A
Authority
JP
Japan
Prior art keywords
crucible
silicon carbide
raw material
single crystal
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016039196A
Other languages
Japanese (ja)
Other versions
JP6628640B2 (en
Inventor
弘志 柘植
Hiroshi Tsuge
弘志 柘植
藤本 辰雄
Tatsuo Fujimoto
辰雄 藤本
勝野 正和
Masakazu Katsuno
正和 勝野
正史 中林
Masashi Nakabayashi
正史 中林
佐藤 信也
Shinya Sato
信也 佐藤
昌史 牛尾
Masashi Ushio
昌史 牛尾
小桃 谷
Komomo Tani
小桃 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016039196A priority Critical patent/JP6628640B2/en
Publication of JP2017154926A publication Critical patent/JP2017154926A/en
Application granted granted Critical
Publication of JP6628640B2 publication Critical patent/JP6628640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing apparatus and a manufacturing method of a silicon carbide single crystal ingot capable of efficiently sublimating a silicon carbide raw material loaded in a crucible during growth of a silicon carbide single crystal and manufacturing a silicon carbide single crystal ingot having a large diameter and a long size.SOLUTION: An apparatus for manufacturing a silicon carbide single crystal by a sublimation crystallization process includes a crucible 1 having a crucible body 1a, a crucible top cover 1b, and a raw material loading part for loading a silicon carbide raw material 3 that is located at the lower part of the crucible body 1b, and a work coil 7 located outside the crucible 1 for heating the crucible body 1a by high-frequency induction heating. A heating member 7 having a non-axial-symmetric shape to a central axis of the crucible body 1a and capable of practicing the high-frequency induction heating is installed outside the raw material loading part. A manufacturing apparatus of a silicon carbide single crystal ingot 4 is equipped with a rolling mechanism for relatively rotating the heating member 7 and the crucible body 1a around the central axis of the crucible body 1a. A manufacturing method of the silicon carbide single crystal ingot 4 uses the apparatus.SELECTED DRAWING: Figure 2

Description

この発明は、種結晶を用いた昇華再結晶法によって炭化珪素単結晶を成長させ、炭化珪素単結晶インゴットを製造する際に用いられる炭化珪素単結晶インゴット製造装置、及びこの製造装置を用いて炭化珪素単結晶インゴットを製造する炭化珪素単結晶インゴットの製造方法に関する。   The present invention relates to a silicon carbide single crystal ingot production apparatus used for producing a silicon carbide single crystal ingot by growing a silicon carbide single crystal by a sublimation recrystallization method using a seed crystal, and a carbonization using the production apparatus. The present invention relates to a method for producing a silicon carbide single crystal ingot for producing a silicon single crystal ingot.

高熱伝導率を持ち、バンドギャップの大きい炭化珪素単結晶は、高温で用いられる電子材料や、高耐圧の求められる電子材料の基板として有用な材料である。そして、このような炭化珪素単結晶の作製法の一つとして、昇華再結晶法(レーリー法)が知られている。この昇華再結晶法は、2000℃を超える高温において原料の炭化珪素粉末を昇華させ、生成した昇華ガス(原料ガス)を低温部に再結晶化させることにより、炭化珪素単結晶を製造する方法である。また、このレーリー法において、炭化珪素単結晶からなる種結晶を用いて炭化珪素単結晶を製造する方法は、特に改良レーリー法と呼ばれ(非特許文献1)、バルク状の炭化珪素単結晶インゴットの製造に利用されている。   A silicon carbide single crystal having high thermal conductivity and a large band gap is a useful material as a substrate for electronic materials used at high temperatures and electronic materials that require high breakdown voltage. As one method for producing such a silicon carbide single crystal, a sublimation recrystallization method (Rayleigh method) is known. This sublimation recrystallization method is a method for producing a silicon carbide single crystal by sublimating a raw material silicon carbide powder at a high temperature exceeding 2000 ° C. and recrystallizing the generated sublimation gas (raw material gas) to a low temperature part. is there. Further, in this Rayleigh method, a method of producing a silicon carbide single crystal using a seed crystal composed of a silicon carbide single crystal is called an improved Rayleigh method (Non-patent Document 1), and is a bulk silicon carbide single crystal ingot. It is used for manufacturing.

この改良レーリー法においては、種結晶を用いているために結晶の核形成過程を最適化することができ、また、不活性ガスによる雰囲気圧力を10Paから15kPa程度にすることにより、炭化珪素単結晶の成長速度等の再現性を良くすることができる。このため、一般に、原料と種結晶との間で適切な温度差を設け、種結晶の上に炭化珪素単結晶を成長させることが行われている。また、得られた炭化珪素単結晶(炭化珪素単結晶インゴット)については、電子材料の基板としての規格の形状にするために、研削、切断、研磨といった加工が施されて利用されている。   In this improved Rayleigh method, since a seed crystal is used, the nucleation process of the crystal can be optimized, and by adjusting the atmospheric pressure by an inert gas to about 10 Pa to 15 kPa, a silicon carbide single crystal The reproducibility of the growth rate and the like can be improved. For this reason, generally, an appropriate temperature difference is provided between the raw material and the seed crystal, and a silicon carbide single crystal is grown on the seed crystal. Further, the obtained silicon carbide single crystal (silicon carbide single crystal ingot) is used after being subjected to processing such as grinding, cutting, and polishing in order to obtain a standard shape as a substrate of an electronic material.

ここで、図7を用いて、改良レーリー法の原理を説明する。
昇華再結晶法で用いる炭化珪素原料3として炭化珪素結晶粉末〔通常、アチソン(Acheson)法で作製された炭化珪素結晶粉末を洗浄・前処理したものが使用される。〕が用いられ、また、黒鉛製坩堝1として上端開口筒状の坩堝本体1aとこの坩堝本体1aの上端開口部を閉塞する坩堝上蓋1bとを備えた坩堝が用いられる。そして、前記坩堝本体1a下部の原料充填部1c内に前記炭化珪素原料3が充填され、また、前記坩堝上蓋1bの内面に炭化珪素単結晶からなる種結晶2が設置される。坩堝1内では、前記炭化珪素原料3が、アルゴン等の不活性ガス雰囲気中(10Pa〜15kPa)で2400℃以上に加熱される。この加熱の際に、坩堝1内には炭化珪素原料3側に比べて種結晶2側がやや低温になるように温度勾配が設定され、加熱されて炭化珪素原料3から昇華した炭化珪素の昇華ガスは、濃度勾配(温度勾配により形成される)により種結晶2方向へと拡散し、輸送され、この種結晶2の表面で再結晶し、結晶成長が進行して単結晶インゴット4が生成する。なお、図7中、符号5は断熱材である。
Here, the principle of the improved Rayleigh method will be described with reference to FIG.
As the silicon carbide raw material 3 used in the sublimation recrystallization method, a silicon carbide crystal powder [usually, a silicon carbide crystal powder produced by the Acheson method is washed and pretreated is used. As the graphite crucible 1, a crucible provided with a cylindrical crucible main body 1a having an upper end opening and a crucible upper lid 1b for closing the upper end opening of the crucible main body 1a is used. The silicon carbide raw material 3 is filled in the raw material filling portion 1c below the crucible body 1a, and a seed crystal 2 made of a silicon carbide single crystal is installed on the inner surface of the crucible upper lid 1b. In the crucible 1, the silicon carbide raw material 3 is heated to 2400 ° C. or higher in an inert gas atmosphere such as argon (10 Pa to 15 kPa). During this heating, a temperature gradient is set in the crucible 1 so that the temperature of the seed crystal 2 side is slightly lower than that of the silicon carbide raw material 3 side, and the silicon sublimation gas sublimated from the silicon carbide raw material 3 is heated and sublimated. Is diffused in the direction of the seed crystal 2 due to the concentration gradient (formed by the temperature gradient), transported, recrystallized on the surface of the seed crystal 2, and crystal growth proceeds to produce a single crystal ingot 4. In addition, the code | symbol 5 is a heat insulating material in FIG.

ところで、炭化珪素単結晶基板の口径については、電子デバイスを作製するための基板として用いる際の製造コストをできるだけ下げるために、大口径化が求められている。そして、このために、炭化珪素単結晶基板を製造するためのインゴットについては、その大口径化と同時に、一つのインゴットから多数の基板を製造することができ、また、切断加工時や研削加工時の生産性をより高めることができるように、結晶成長により得られるインゴットの長尺化も求められている。しかしながら、改良レーリー法においては、前記のような方法で結晶成長を行っているため、炭化珪素原料を結晶成長の途中で追加することが困難である。そこで、大口径かつ長尺の炭化珪素単結晶インゴットを作製するためには、小口径のインゴットを結晶成長させる場合に比べて、坩堝の原料充填部により多量の炭化珪素原料を充填する必要があり、原料充填部の径及び深さをより大きくする必要が生じるが、このように多量に充填した炭化珪素原料を結晶成長のために有効に利用するためには、原料充填部内の炭化珪素原料全体を昇華温度まで効率良く加熱し、昇華させることが不可欠になる。   By the way, the diameter of the silicon carbide single crystal substrate is required to be increased in order to reduce the manufacturing cost as much as possible when used as a substrate for manufacturing an electronic device. For this reason, with respect to the ingot for manufacturing a silicon carbide single crystal substrate, it is possible to manufacture a large number of substrates from one ingot at the same time as increasing its diameter, and during cutting and grinding. In order to further increase the productivity, it is also required to lengthen the ingot obtained by crystal growth. However, in the improved Rayleigh method, since the crystal growth is performed by the method as described above, it is difficult to add the silicon carbide raw material during the crystal growth. Therefore, in order to produce a large-diameter and long-sized silicon carbide single crystal ingot, it is necessary to fill a large amount of silicon carbide raw material in the crucible raw material filling portion as compared with the case of crystal growth of a small-diameter ingot. The diameter and depth of the raw material filling portion need to be increased, but in order to effectively use the silicon carbide raw material filled in this way for crystal growth, the entire silicon carbide raw material in the raw material filling portion It is indispensable to efficiently heat and sublimate to sublimation temperature.

そして、坩堝内の炭化珪素原料を加熱する方法としては、一般に、高周波誘導加熱を用いて黒鉛製の坩堝を発熱させ、この発熱した坩堝を介して炭化珪素原料を加熱し、坩堝内に前述の温度勾配を形成することが行われている。また、このような高周波誘導加熱においては、誘導される高周波電流の発生が高周波の浸透深さに依存しているため、坩堝の形状によって定まる発熱分布が発生し、坩堝の側壁内面の表面近傍で強い発熱が生じ、この熱が熱伝導若しくは熱輻射により原料充填部内の炭化珪素原料へと伝達され、これによって炭化珪素原料が加熱される。これを坩堝の原料充填部内に充填された炭化珪素原料に着目してみると、坩堝が円筒状でその原料充填部内に炭化珪素原料が円柱状に充填されていると、誘導加熱により円柱状の炭化珪素原料の側面が強く加熱されることから、炭化珪素原料の外周部(坩堝の原料充填部の外周部)近傍がより加熱され易く、炭化珪素原料の中心軸(坩堝の原料充填部の中心軸)近傍に比べてより高温に加熱され、炭化珪素原料に対する加熱温度が炭化珪素原料の外周部から中心軸に向けて低下する温度分布を持つ傾向がある。   And, as a method of heating the silicon carbide raw material in the crucible, generally, the graphite crucible is heated using high frequency induction heating, the silicon carbide raw material is heated through the heated crucible, and the above described crucible is put in the crucible. A temperature gradient is formed. In addition, in such high frequency induction heating, since the generation of the induced high frequency current depends on the penetration depth of the high frequency, a heat generation distribution determined by the shape of the crucible is generated, and near the inner surface of the crucible side wall. Strong heat generation occurs, and this heat is transmitted to the silicon carbide raw material in the raw material filling portion by heat conduction or radiation, thereby heating the silicon carbide raw material. Focusing on the silicon carbide raw material filled in the raw material filling portion of the crucible, when the crucible is cylindrical and the silicon carbide raw material is filled in the raw material filling portion in a cylindrical shape, Since the side surface of the silicon carbide raw material is strongly heated, the vicinity of the outer peripheral portion of the silicon carbide raw material (the outer peripheral portion of the raw material filling portion of the crucible) is more easily heated, and the central axis of the silicon carbide raw material (the center of the raw material filling portion of the crucible) There is a tendency that the heating temperature for the silicon carbide raw material is higher than that in the vicinity of the axis) and the temperature of the silicon carbide raw material decreases from the outer periphery of the silicon carbide raw material toward the central axis.

このように原料充填部が加熱されると、原料充填部内の炭化珪素原料はその外周部近傍が高温部となってこの高温部から昇華ガスが発生し、種結晶上に結晶成長が生じるが、原料充填部内の炭化珪素原料はその中心軸近傍が低温部となってこれら高温部と低温部との間に不可避的に温度分布が生じ、原料充填部の中心軸近傍の原料は低温部となる。そして、この低温部の温度を昇華温度まで上昇させて低温部となる中心軸近傍の原料を昇華させるためには、誘導電流の電流値を大きくして黒鉛坩堝の側壁部分の温度をより高温にする必要がある。しかしながら、坩堝の側壁部分の温度を高くすると、坩堝全体の温度が高くなり、種結晶や成長中の単結晶の温度も高くなって、種結晶と原料との温度勾配が小さくなるため、温度勾配に基づいた結晶成長の駆動力が小さくなり、結晶成長が途中で停止する結晶成長停止の問題が発生する。   When the raw material filling part is heated in this way, the silicon carbide raw material in the raw material filling part becomes a high temperature part in the vicinity of the outer peripheral part, and sublimation gas is generated from this high temperature part, and crystal growth occurs on the seed crystal. The silicon carbide raw material in the raw material filling portion has a low temperature portion in the vicinity of the central axis, and inevitably a temperature distribution occurs between the high temperature portion and the low temperature portion, and the raw material in the vicinity of the central axis of the raw material filling portion becomes the low temperature portion. . And in order to raise the temperature of this low temperature part to the sublimation temperature and sublimate the raw material near the central axis that becomes the low temperature part, the current value of the induced current is increased and the temperature of the side wall part of the graphite crucible is made higher. There is a need to. However, when the temperature of the side wall portion of the crucible is increased, the temperature of the entire crucible is increased, the temperature of the seed crystal and the growing single crystal is also increased, and the temperature gradient between the seed crystal and the raw material is reduced. The driving force of crystal growth based on the above becomes small, and there is a problem of crystal growth stop that stops crystal growth in the middle.

そこで、従来においても、原料充填部を加熱する方法について、例えば、以下に示すような幾つかの提案がされている。
坩堝の原料充填部の底壁部(坩堝底壁部)の温度低下を防ぐために前記坩堝底壁部に断熱材を配置することで、原料充填部の下部における再結晶化を抑制し、効率的に原料を加熱する方法が開示されている(特許文献1)。また、原料充填部の坩堝の側壁の形状を工夫し、原料内部の温度分布を均一化する方法が開示されている(特許文献2)。更に、このような坩堝底壁部を直接加熱する方法として、坩堝底壁部の下に誘導加熱コイルを配置する方法が開示されている(特許文献3)。更にまた、坩堝側壁部分に発熱部材を配置し、原料部の温度制御性を向上させる方法が開示されている(特許文献4)。そして、種結晶近傍部分の温度分布を非軸対称温度分布とすることで、成長した結晶の品質を高くする方法が開示されている(特許文献5)。
In view of this, conventionally, for example, several proposals have been made as to the method of heating the raw material filling portion as shown below.
In order to prevent lowering of the temperature of the bottom wall part of the crucible material filling part (crucible bottom wall part), by arranging a heat insulating material on the crucible bottom wall part, recrystallization in the lower part of the raw material filling part is suppressed and efficient. Discloses a method of heating a raw material (Patent Document 1). Moreover, the method of making the temperature distribution inside a raw material uniform by devising the shape of the side wall of the crucible of a raw material filling part is disclosed (patent document 2). Furthermore, as a method of directly heating such a crucible bottom wall, a method of disposing an induction heating coil under the crucible bottom wall is disclosed (Patent Document 3). Furthermore, a method of disposing a heat generating member on the crucible side wall portion and improving the temperature controllability of the raw material portion is disclosed (Patent Document 4). And the method of making the quality of the grown crystal high is disclosed by making temperature distribution of the seed crystal vicinity part into non-axisymmetric temperature distribution (patent document 5).

特開2010-76,990号公報JP 2010-76,990 特開2007-230,846号公報JP 2007-230,846 特開2013-216,549号公報JP 2013-216,549 特開2014-234,331号公報JP-A-2014-234,331 特開2012-131,679号公報JP 2012-131,679 A

Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, 52 (1981) pp.146Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, 52 (1981) pp.146

しかしながら、特許文献1の方法では、発熱部分が坩堝の側壁部分であることから、原料充填部の中心軸近傍の温度が外周部の温度よりも低下するという問題が依然とし残り、大口径化のために坩堝の口径を増大させた場合に、原料充填部の中心軸近傍の原料を効率良く加熱するという目的のためには採用し難い方法である。また、特許文献2の方法では、坩堝側壁の発熱分布が変化することに伴い、種結晶上に成長している結晶成長部分近傍での発熱分布も変化し、しかも、前記結晶成長は等温線に沿って進むと考えられることから、発熱分布の変化に伴って成長する結晶の成長面形状も影響を受けるので、原料充填部の均温化と前記結晶成長部分の温度の最適化とを両立させることが必要となり、これら均温化と最適化の両立が非常に難しい。   However, in the method of Patent Document 1, since the heat generating part is the side wall part of the crucible, the problem that the temperature in the vicinity of the central axis of the raw material filling part is lower than the temperature of the outer peripheral part still remains, Therefore, when the diameter of the crucible is increased, this method is difficult to adopt for the purpose of efficiently heating the raw material in the vicinity of the central axis of the raw material filling portion. Further, in the method of Patent Document 2, the heat generation distribution in the vicinity of the crystal growth portion growing on the seed crystal also changes as the heat generation distribution on the side wall of the crucible changes, and the crystal growth becomes an isotherm. Since the shape of the growth surface of the crystal that grows with the change in the heat generation distribution is also affected, both the temperature equalization of the raw material filling portion and the optimization of the temperature of the crystal growth portion are compatible. Therefore, it is very difficult to achieve both soaking and optimization.

また、特許文献3の方法では、坩堝下部を直接加熱することができるが、装置の構造が複雑になると同時に、側部誘導加熱コイルと下部誘導加熱コイルとの相互作用があるために、それぞれの誘導加熱コイルに流す電流の最適化が非常に難しい。更に、特許文献4の方法では、依然として外周部分からの熱を中心部分に伝えることが必要であり、発熱した外周部分からの距離が遠い中心部分の効率的な加熱は困難である。更にまた、特許文献5の方法では、非軸対称な温度分布を坩堝内部に形成することで加熱が困難な部分を中心軸上から移動させることができるが、成長している結晶部分の温度分布の調整であり、成長している結晶から離れている原料の中心部分の温度分布を変化させるものではなく、依然として、原料の中心部分の温度が低く、その中心部分の原料を効率的に昇華させることは困難である。   Further, in the method of Patent Document 3, the lower part of the crucible can be directly heated. However, since the structure of the apparatus is complicated, the side induction heating coil and the lower induction heating coil interact with each other. It is very difficult to optimize the current flowing through the induction heating coil. Furthermore, in the method of Patent Document 4, it is still necessary to transmit heat from the outer peripheral portion to the central portion, and it is difficult to efficiently heat the central portion that is far from the outer peripheral portion where the heat is generated. Furthermore, in the method of Patent Document 5, a non-axisymmetric temperature distribution can be formed inside the crucible so that a portion that is difficult to heat can be moved from the central axis. The temperature distribution of the central part of the raw material that is far from the growing crystal is not changed, the temperature of the central part of the raw material is still low, and the raw material in the central part is efficiently sublimated. It is difficult.

本発明は、炭化珪素単結晶の成長中に坩堝の原料充填部に充填された炭化珪素原料を効率良く昇華させ、炭化珪素単結晶インゴット、特に限定されるものではないが、特に大口径かつ長尺の炭化珪素単結晶インゴットを効率良く製造するのに適した炭化珪素単結晶インゴットの製造方法を提供することを目的とする。   The present invention efficiently sublimates the silicon carbide raw material filled in the raw material filling portion of the crucible during the growth of the silicon carbide single crystal, and the silicon carbide single crystal ingot is not particularly limited. An object of the present invention is to provide a method for producing a silicon carbide single crystal ingot suitable for efficiently producing a long silicon carbide single crystal ingot.

本発明者らは、高周波誘導加熱により炭化珪素単結晶インゴットを製造する場合に、黒鉛製の坩堝の原料充填部内に充填された炭化珪素原料を効率良く昇華させることができる方法について鋭意検討した。その結果、坩堝の原料充填部の外側に坩堝の中心軸に対して非軸対称な形状を有すると共に高周波誘導加熱可能な発熱部材を配設し、原料充填部内の炭化珪素原料を非軸対称に加熱することにより、従来は坩堝本体の中心軸上にあった原料充填部内の低温部を前記中心軸上とは異なる位置にずらすことができ、更に、前記発熱部材と前記坩堝とを坩堝の中心軸を回転軸として相対的に回転させることにより、結晶成長中に原料充填部内において非軸対称な温度分布を坩堝の中心軸周りに移動させ、原料充填部内の中心軸近傍の原料を効率良く加熱して原料充填部の均温化が達成できることを見出した。   The present inventors diligently studied a method for efficiently sublimating a silicon carbide raw material filled in a raw material filling portion of a graphite crucible when producing a silicon carbide single crystal ingot by high frequency induction heating. As a result, a heating member having a non-axisymmetric shape with respect to the center axis of the crucible and capable of high-frequency induction heating is disposed outside the raw material filling portion of the crucible, and the silicon carbide raw material in the raw material filling portion is non-axisymmetric. By heating, the low temperature part in the raw material filling part which has been conventionally on the central axis of the crucible body can be shifted to a position different from that on the central axis, and the heating member and the crucible are further moved to the center of the crucible. By relatively rotating the axis as a rotation axis, a non-axisymmetric temperature distribution is moved around the central axis of the crucible during crystal growth, and the raw material near the central axis in the raw material filling part is efficiently heated. As a result, it was found that temperature equalization of the raw material filling portion can be achieved.

そして、この方法によれば、従来の軸対称な加熱では坩堝の原料充填部の中心軸近傍にあって最も加熱され難かった原料を、有効に加熱して昇華させることができ、坩堝の原料充填部内に充填された炭化珪素原料を効率良く昇華させ、大口径かつ長尺の炭化珪素単結晶インゴットであっても製造することができることを見出し、本発明を完成した。   According to this method, the raw material that is most difficult to be heated in the vicinity of the central axis of the raw material filling portion of the crucible by the conventional axisymmetric heating can be effectively heated and sublimated. The present invention was completed by finding that even a large-diameter and long silicon carbide single crystal ingot can be produced by efficiently sublimating the silicon carbide raw material filled in the part.

すなわち、本発明の要旨は次の通りである。
(1) 上端開口筒状に形成された黒鉛製の坩堝本体とこの坩堝本体の上端開口部を閉塞する黒鉛製の坩堝上蓋とを有すると共に、前記坩堝本体下部には炭化珪素原料が充填される原料充填部を有する坩堝と、前記坩堝の外側に配設され、高周波誘導加熱により坩堝本体を発熱させるワークコイルとを備え、昇華再結晶法により炭化珪素単結晶を製造するための炭化珪素単結晶インゴットの製造装置において、
前記坩堝本体下部の原料充填部の外側に、前記坩堝本体の中心軸に対して非軸対称な形状を有すると共に、前記ワークコイルによる高周波誘導加熱により発熱する発熱部材を配設し、また、前記発熱部材と前記坩堝本体とを坩堝本体の中心軸を回転軸として相対的に回転させる回転機構を設けたことを特徴とする炭化珪素単結晶インゴットの製造装置。
(2) 前記発熱部材が、前記坩堝本体下部の原料充填部の外側を取り囲むように配設され、外周の中心軸が内周の中心軸に対して偏心した非軸対称形状を有する筒状加熱部材であることを特徴とする前記(1)の炭化珪素単結晶インゴットの製造装置。
(3) 前記発熱部材は、高さが原料充填部の高さに対して0.6倍以上1倍以下であることを特徴とする前記(1)又は(2)に記載の炭化珪素単結晶インゴットの製造装置。
(4) 前記発熱部材と前記坩堝本体との間の相対回転速度が1時間当り2〜60回転であることを特徴とする前記(1)〜(3)のいずれか1項に記載の炭化珪素単結晶インゴットの製造装置。
(5) 黒鉛製の坩堝本体下部の原料充填部内に充填された炭化珪素原料を加熱して昇華させ、生成した昇華ガスを前記坩堝上蓋の内面に設置された炭化珪素単結晶からなる種結晶の表面で再結晶化させる炭化珪素単結晶インゴットの製造方法において、
前記坩堝本体下部の原料充填部の外側に、前記坩堝本体の中心軸に対して非軸対称形状を有する高周波誘導加熱可能な発熱部材を配設し、この発熱部材と前記坩堝本体とを坩堝本体の中心軸を回転軸として相対的に回転させながら、高周波誘導加熱により前記坩堝本体と前記発熱部材とを発熱させ、前記原料充填部の内部に非軸対称の温度分布を形成しつつ前記炭化珪素原料を昇華させることを特徴とする炭化珪素単結晶インゴットの製造方法。
That is, the gist of the present invention is as follows.
(1) It has a graphite crucible body formed in a cylindrical shape with an upper end opening and a graphite crucible upper lid that closes the upper end opening of the crucible body, and the lower part of the crucible body is filled with silicon carbide raw material A silicon carbide single crystal for producing a silicon carbide single crystal by a sublimation recrystallization method, comprising a crucible having a raw material filling portion and a work coil disposed outside the crucible and generating heat from the crucible body by high frequency induction heating In ingot production equipment,
Outside the raw material filling portion at the lower part of the crucible body, a heating member that has a non-axisymmetric shape with respect to the central axis of the crucible body and generates heat by high-frequency induction heating by the work coil is disposed. An apparatus for manufacturing a silicon carbide single crystal ingot, comprising: a rotation mechanism that relatively rotates a heat generating member and the crucible body about a central axis of the crucible body.
(2) Cylindrical heating having a non-axisymmetric shape in which the heat generating member is disposed so as to surround the outer side of the raw material filling portion at the lower part of the crucible body, and the central axis of the outer periphery is eccentric to the central axis of the inner periphery The apparatus for producing a silicon carbide single crystal ingot according to (1), wherein the apparatus is a member.
(3) The silicon carbide single crystal according to (1) or (2), wherein the heat generating member has a height of 0.6 to 1 times the height of the raw material filling portion Ingot manufacturing equipment.
(4) The silicon carbide according to any one of (1) to (3), wherein a relative rotation speed between the heat generating member and the crucible body is 2 to 60 rotations per hour. Single crystal ingot manufacturing equipment.
(5) The silicon carbide raw material filled in the raw material filling portion at the lower part of the graphite crucible body is heated and sublimated, and the generated sublimation gas is a seed crystal composed of a silicon carbide single crystal installed on the inner surface of the crucible upper lid. In the method for producing a silicon carbide single crystal ingot to be recrystallized on the surface,
A heat generating member capable of high-frequency induction heating having a non-axisymmetric shape with respect to the central axis of the crucible body is disposed outside the raw material filling portion at the lower part of the crucible body, and the heat generating member and the crucible body are connected to the crucible body. The silicon carbide is heated while causing the crucible body and the heat generating member to generate heat by high-frequency induction heating while relatively rotating about the central axis of the material, and forming a non-axisymmetric temperature distribution inside the raw material filling portion A method for producing a silicon carbide single crystal ingot, wherein the raw material is sublimated.

本発明の炭化珪素単結晶インゴットの製造装置によれば、この黒鉛製の坩堝を用いて炭化珪素単結晶インゴットを効率良く成長させる際に、坩堝の原料充填部に充填された炭化珪素原料を適切に加熱することが可能であり、従来の方法では比較的低温となる原料充填部の中心軸近傍での炭化珪素原料の再結晶化を未然に防ぎ、原料充填部に充填された炭化珪素原料を有効に昇華させること、すなわち炭化珪素原料の結晶化率〔=(成長した炭化珪素単結晶インゴットの重量)/(充填された炭化珪素原料の重量)〕を高くすることができる。   According to the silicon carbide single crystal ingot manufacturing apparatus of the present invention, when the silicon carbide single crystal ingot is efficiently grown using the graphite crucible, the silicon carbide raw material filled in the raw material filling portion of the crucible is appropriately used. In the conventional method, it is possible to prevent recrystallization of the silicon carbide raw material in the vicinity of the central axis of the raw material filling portion, which is relatively low in the conventional method. Effective sublimation, that is, the crystallization rate of the silicon carbide raw material [= (weight of grown silicon carbide single crystal ingot) / (weight of filled silicon carbide raw material)] can be increased.

また、本発明の炭化珪素単結晶インゴットの製造方法は、坩堝の原料充填部に充填された炭化珪素原料を効率良く昇華させて炭化珪素単結晶インゴットを製造することができ、大口径かつ長尺の炭化珪素単結晶インゴットの製造に適しているほか、種結晶の結晶成長面に昇華ガスが効率的かつ安定的に供給されるようになり、種結晶の結晶成長面に昇華ガスの供給が変動することに起因する欠陥の発生を抑制することができ、高品質の炭化珪素インゴットを製造することができる。また、本発明の方法で製造された高品質の炭化珪素単結晶インゴットを用いて電子材料用の炭化珪素単結晶基板を製造すれば、炭化珪素原料に対して製造される基板の歩留まりが向上し、炭化珪素単結晶基板のコスト低減を図ることができる。   Further, the method for producing a silicon carbide single crystal ingot of the present invention can produce a silicon carbide single crystal ingot by efficiently sublimating the silicon carbide raw material filled in the raw material filling portion of the crucible, and has a large diameter and a long length. In addition to being suitable for the production of silicon carbide single crystal ingots, the sublimation gas is efficiently and stably supplied to the crystal growth surface of the seed crystal, and the supply of sublimation gas to the crystal growth surface of the seed crystal varies. It is possible to suppress the occurrence of defects due to the fact that a high quality silicon carbide ingot can be manufactured. Moreover, if a silicon carbide single crystal substrate for an electronic material is manufactured using a high quality silicon carbide single crystal ingot manufactured by the method of the present invention, the yield of the substrate manufactured with respect to the silicon carbide raw material is improved. In addition, the cost of the silicon carbide single crystal substrate can be reduced.

図1は、本発明の実施形態1に係る炭化珪素単結晶インゴットの製造装置を説明するための説明図である。FIG. 1 is an explanatory diagram for explaining an apparatus for manufacturing a silicon carbide single crystal ingot according to Embodiment 1 of the present invention. 図2は、図1に示す坩堝、発熱部材、及び断熱材を説明するために、これらの関係を概略的に拡大して示す拡大説明図である。FIG. 2 is an enlarged explanatory view schematically showing the relationship between the crucible, the heat generating member, and the heat insulating material shown in FIG. 図3は、本発明の非軸対称な温度分布を概念的に説明するための説明図である。FIG. 3 is an explanatory diagram for conceptually explaining the non-axisymmetric temperature distribution of the present invention. 図4は、本発明の実施形態2に係る炭化珪素単結晶インゴットの製造装置を示す図2と同様の説明図である。FIG. 4 is an explanatory view similar to FIG. 2 showing an apparatus for manufacturing a silicon carbide single crystal ingot according to Embodiment 2 of the present invention. 図5は、本発明の実施形態3に係る炭化珪素単結晶インゴットの製造装置を示す図2と同様の説明図である。FIG. 5 is an explanatory view similar to FIG. 2 showing an apparatus for manufacturing a silicon carbide single crystal ingot according to Embodiment 3 of the present invention. 図6は、図5の坩堝が上方に移動した状態を説明するための図4と同様の説明図である。FIG. 6 is an explanatory view similar to FIG. 4 for explaining a state where the crucible of FIG. 5 has moved upward. 図7は、改良レーリー法の原理を説明するための説明図である。FIG. 7 is an explanatory diagram for explaining the principle of the improved Rayleigh method.

以下、添付図面に示す炭化珪素単結晶インゴットの製造装置を用いて、本発明の炭化珪素単結晶インゴットの製造装置、及びこの製造装置を用いた本発明の炭化珪素単結晶インゴットの製造方法について、その実施の形態を説明する。   Hereinafter, using a silicon carbide single crystal ingot manufacturing apparatus shown in the accompanying drawings, a silicon carbide single crystal ingot manufacturing apparatus of the present invention, and a method of manufacturing a silicon carbide single crystal ingot of the present invention using this manufacturing apparatus, The embodiment will be described.

〔実施形態1〕
図1は、本発明の実施形態1に係る炭化珪素単結晶インゴットの製造装置を説明するためのものであり、この製造装置において、二重石英管13内には黒鉛製の黒鉛坩堝1(以下、「坩堝」と略す。)とこの坩堝1を取り囲むように覆う黒鉛製の断熱材5(5a,5b)とが配設されている。そして、前記坩堝1は、上端開口筒状に形成された黒鉛製の坩堝本体1aとその上端開口部を閉塞する黒鉛製の坩堝上蓋1bとで構成されており、また、前記坩堝本体1a下部には炭化珪素原料(以下、単に「原料」という。)3を充填する原料充填部1cが位置しており、更に、前記坩堝上蓋1bの内面には炭化珪素単結晶からなる種結晶2が取り付けられている。そして、前記坩堝1は、坩堝支持体10の上に配置され、この坩堝支持体10が有する図示外の回転機構により、前記二重石英管13に対して回転可能な機能を有しており、また、この坩堝1を取り囲む前記断熱材5(5a,5b)は、坩堝本体1aの外周側を覆う断熱材5aと坩堝本体1a下部の原料充填部1cの底壁部(以下、単に「坩堝底壁部」ということがある。)を覆う断熱材5bとからなり、前記断熱材5(5a,5b)を坩堝1に対して鉛直方向に上下動を行うための上下動駆動装置12を介して断熱材支持部材11により支持されている。
Embodiment 1
FIG. 1 is a diagram for explaining an apparatus for manufacturing a silicon carbide single crystal ingot according to Embodiment 1 of the present invention. In this apparatus, a graphite crucible 1 made of graphite (hereinafter referred to as a graphite crucible 1) is placed in a double quartz tube 13. And a graphite heat insulating material 5 (5a, 5b) covering the crucible 1 so as to surround the crucible 1. The crucible 1 is composed of a graphite crucible body 1a formed in a cylindrical shape with an upper end opening and a graphite crucible upper lid 1b that closes the upper end opening, and the crucible body 1a has a lower part. Is provided with a raw material filling portion 1c for filling a silicon carbide raw material (hereinafter simply referred to as "raw material") 3, and a seed crystal 2 made of a silicon carbide single crystal is attached to the inner surface of the crucible upper lid 1b. ing. The crucible 1 is disposed on the crucible support 10 and has a function capable of rotating with respect to the double quartz tube 13 by a rotation mechanism (not shown) included in the crucible support 10. The heat insulating material 5 (5a, 5b) surrounding the crucible 1 is composed of a heat insulating material 5a covering the outer peripheral side of the crucible main body 1a and a bottom wall portion of the raw material filling portion 1c below the crucible main body 1a (hereinafter simply referred to as “crucible bottom”). Through a vertical movement drive device 12 for moving the thermal insulation material 5 (5a, 5b) vertically relative to the crucible 1 in a vertical direction. It is supported by a heat insulating material support member 11.

なお、この図1において、符号6は切欠き孔を示し、符号13は二重石英管を示し、符号14は真空排気装置を示し、符号15はArガス配管を示し、符号16はArガス用マスフローコントローラを示し、符号17は発熱部材として機能する前記坩堝1の坩堝本体1a及び後述する発熱部材7を発熱させるための高周波誘導加熱用のワークコイルを示し、前記ワークコイル17には高周波電流を流すための図示外の高周波電源が取り付けられている。また、ワークコイル17には坩堝1に対して鉛直方向に上下動を行うための上下動駆動装置18が取り付けられている。   In FIG. 1, reference numeral 6 indicates a notch hole, reference numeral 13 indicates a double quartz tube, reference numeral 14 indicates a vacuum exhaust device, reference numeral 15 indicates an Ar gas pipe, and reference numeral 16 indicates an Ar gas pipe. A mass flow controller is shown. Reference numeral 17 denotes a work coil for high-frequency induction heating for heating a crucible body 1a of the crucible 1 functioning as a heat-generating member and a heat-generating member 7 described later. A high-frequency current is applied to the work coil 17. A high-frequency power source (not shown) for flowing is attached. The work coil 17 is provided with a vertical movement drive device 18 for moving the vertical movement relative to the crucible 1 in the vertical direction.

この実施形態1においては、図1及び図2に示すように、前記断熱材支持部材11により支持された断熱材5bの上に、坩堝1と同じ黒鉛製であって高周波誘導加熱可能な両端開口円筒状の発熱部材7が配設されている。そして、この両端開口円筒状の発熱部材7は、前記坩堝本体1a下部に位置する原料充填部1cの外周側とこの原料充填部1cの外周側を覆う前記断熱材5aとの間において、原料充填部1cの外周を取り囲むように位置しており、また、その内周の中心軸Oiが前記坩堝1(坩堝本体1a)の坩堝中心軸Ocと略一致して位置していると共に、その外周の中心軸Ooが前記内周の中心軸Oi(又は坩堝中心軸Oc)から偏心して位置しており、結果として、発熱部材7の壁厚が横断面円周方向に沿って変化する非軸対称な形状を有している。 In the first embodiment, as shown in FIGS. 1 and 2, both end openings made of the same graphite as the crucible 1 and capable of high-frequency induction heating are formed on the heat insulating material 5b supported by the heat insulating material supporting member 11. A cylindrical heating member 7 is provided. The cylindrical heating member 7 having both ends open is filled with the raw material between the outer peripheral side of the raw material filling part 1c located at the lower part of the crucible body 1a and the heat insulating material 5a covering the outer peripheral side of the raw material filling part 1c. Is located so as to surround the outer periphery of the portion 1c, and the center axis O i of the inner periphery thereof is positioned substantially coincident with the crucible center axis O c of the crucible 1 (the crucible body 1a), The outer peripheral central axis O o is eccentric from the inner peripheral central axis O i (or the crucible central axis O c ), and as a result, the wall thickness of the heat generating member 7 changes along the circumferential direction of the cross section. It has a non-axisymmetric shape.

この実施形態1の製造装置において、二重石英管13内部は、真空排気装置14により高真空排気(10-3Pa以下)とすることができ、かつArガス配管15とArガス用マスフローコントローラ16を用いて、内部雰囲気をArガスにより圧力制御することができるようになっている。そして、坩堝1の温度の計測は、坩堝1の上下部を覆う黒鉛製の断熱材5の中央部にそれぞれ光路を設け、坩堝1の上部(坩堝上蓋1b)及び下部〔坩堝本体1a下部の原料充填部1cの底壁部(坩堝底壁部)〕からの光を取り出して、二色温度計を用いて行い、坩堝1下部の温度から原料温度を判断し、また、坩堝1上部の温度から種結晶2の温度を判断するようになっている。 In the manufacturing apparatus of the first embodiment, the inside of the double quartz tube 13 can be evacuated to a high vacuum (10 −3 Pa or less) by a vacuum exhaust device 14, and an Ar gas pipe 15 and an Ar gas mass flow controller 16. The internal atmosphere can be pressure controlled with Ar gas. The temperature of the crucible 1 is measured by providing an optical path at the center of the graphite heat insulating material 5 covering the upper and lower parts of the crucible 1, and the upper part of the crucible 1 (crucible upper cover 1b) and the lower part (the raw material of the lower part of the crucible body 1a). The light from the bottom wall portion of the filling portion 1c (crucible bottom wall portion)] is taken out and performed using a two-color thermometer, the raw material temperature is judged from the temperature at the bottom of the crucible 1, and from the temperature at the top of the crucible 1 The temperature of the seed crystal 2 is judged.

そして、この実施形態1の製造装置を用いて、種結晶2上に炭化珪素単結晶の結晶成長させる際には、坩堝1内部の上下方向に温度勾配を形成し、原料充填部1cの温度を高くして種結晶2の結晶成長部分の温度を相対的に低くさせるが、この際に、坩堝本体1a下部の原料充填部1cに充填された原料3の低温部は、発熱部材7の発熱に起因して、坩堝本体1aのみの発熱による加熱によって原料3の低温部が発生する従来の坩堝中心軸Oc上ではなくて、この従来の坩堝中心軸Oc(すなわち、発熱部材7の内周の中心軸Oi)上からずれた位置に発生する。 When the silicon carbide single crystal is grown on the seed crystal 2 using the manufacturing apparatus of the first embodiment, a temperature gradient is formed in the vertical direction inside the crucible 1, and the temperature of the raw material filling portion 1c is set. The temperature of the crystal growth portion of the seed crystal 2 is relatively lowered to lower the temperature, but at this time, the low temperature portion of the raw material 3 filled in the raw material filling portion 1c below the crucible body 1a Because of this, not the conventional crucible central axis O c where the low temperature portion of the raw material 3 is generated by heating only by the heat generation of the crucible body 1a, but the conventional crucible central axis O c (that is, the inner circumference of the heating member 7). Is generated at a position shifted from the center axis O i ).

この原料3の低温部が従来の坩堝中心軸Oc(発熱部材7の内周の中心軸Oi)上よりも発熱部材7の外周の中心軸Oo側にずれた状態を概念的に図示したのが図3である。
すなわち、図2において、高周波誘導加熱により発熱する製造装置の坩堝本体1a及び発熱部材7のうちで、坩堝本体1aのみに着目した場合の坩堝1の径方向の温度分布は、従来の製造装置と同様に、坩堝本体1aの側壁で高周波誘導加熱により発生した熱を、原料充填部1c内の原料3から種結晶2を経由させて系外へと放出させているので、原料充填部1c内の原料3の外周部近傍の温度が高く、その中心軸近傍に向かって温度が低下し、坩堝1の径方向には図3中に一点鎖線で示したような温度分布が生じ、坩堝本体1aの坩堝中心軸OC近傍に低温部が生じることになる。また、図2において、製造装置に設けられた発熱部材7のみに着目した場合の坩堝1の径方向の温度分布については、発熱部材7が上記の如く横断面円周方向に壁厚が変化する非軸対称な形状を有しているので、原料充填部1c内の原料3には、例えば図3中に実線で示したように、上記一点鎖線で示した温度分布とは異なる坩堝1の径方向にずれた温度分布が生じることになる。そして、本願発明の如くこれら坩堝本体1aと発熱部材7とが共に高周波誘導加熱により発熱した場合には、上記の坩堝本体1aに基づく一点鎖線の温度分布と上記の発熱部材7に基づく実線の温度分布とが重なり合い、原料充填部1c内の原料3に発生する低温部Bは、発熱部材7が存在しない場合の坩堝中心軸OC(すなわち、発熱部材7の内周の中心軸Oi)近傍から外れた位置にずれて形成されることになる。
A conceptual illustration of a state where the low temperature portion of the raw material 3 is shifted to the central axis O o side of the outer periphery of the heat generating member 7 from the conventional crucible central axis O c (the central axis O i of the inner periphery of the heat generating member 7). This is shown in FIG.
That is, in FIG. 2, the temperature distribution in the radial direction of the crucible 1 when focusing only on the crucible body 1a out of the crucible body 1a and the heating member 7 of the manufacturing apparatus that generates heat by high frequency induction heating is the same as that of the conventional manufacturing apparatus. Similarly, the heat generated by the high frequency induction heating at the side wall of the crucible body 1a is discharged from the raw material 3 in the raw material filling portion 1c through the seed crystal 2 to the outside of the system. The temperature in the vicinity of the outer peripheral portion of the raw material 3 is high, the temperature decreases toward the vicinity of the central axis thereof, and a temperature distribution as shown by a one-dot chain line in FIG. 3 is generated in the radial direction of the crucible 1. so that the low temperature portion occur in the O C near the crucible center axis. In FIG. 2, regarding the temperature distribution in the radial direction of the crucible 1 when focusing only on the heat generating member 7 provided in the manufacturing apparatus, the wall thickness of the heat generating member 7 changes in the circumferential direction of the cross section as described above. Since it has a non-axisymmetric shape, the raw material 3 in the raw material filling portion 1c has a diameter of the crucible 1 different from the temperature distribution shown by the one-dot chain line, for example, as shown by a solid line in FIG. A temperature distribution shifted in the direction will occur. When both the crucible main body 1a and the heat generating member 7 generate heat by high frequency induction heating as in the present invention, the temperature distribution of the one-dot chain line based on the crucible main body 1a and the temperature of the solid line based on the heat generating member 7 are described. The low temperature portion B generated in the raw material 3 in the raw material filling portion 1c overlaps with the distribution, and is in the vicinity of the crucible central axis O C (that is, the central axis O i of the inner periphery of the heat generating member 7) when the heat generating member 7 does not exist. Therefore, it is shifted to a position deviated from the position.

また、この実施形態1においては、図1に示す坩堝支持体10に組み込まれた図示外の回転機構を用い、結晶成長中に坩堝1を発熱部材7に対して回転させ、これによって、坩堝中心軸OC(すなわち、発熱部材7の内周の中心軸Oi)近傍から外れた位置に形成されている原料3の低温部Bを、原料3内部において坩堝中心軸OCの軸周りに移動させることができるようになっている。すなわち、低温部Bを回転機構を用いて坩堝中心軸OCの軸周りに回転させ、温度分布を変化させることにより、この低温部Bを高温に加熱するものであり、低温部で再結晶化した原料をその後の坩堝の回転による温度変化で高温に加熱し、原料3を有効に昇華させて利用するものである。 In the first embodiment, the crucible 1 is rotated with respect to the heat generating member 7 during crystal growth by using a rotation mechanism (not shown) incorporated in the crucible support 10 shown in FIG. The low temperature part B of the raw material 3 formed at a position deviated from the vicinity of the axis O C (that is, the central axis O i of the inner periphery of the heat generating member 7) moves around the axis of the crucible central axis O C inside the raw material 3. It can be made to. That is rotated around the axis of the crucible center axis O C using a rotating mechanism of the low temperature section B, by changing the temperature distribution, which heats the low temperature section B to a high temperature, recrystallization at low temperature portion Then, the raw material 3 is heated to a high temperature by the temperature change caused by the subsequent rotation of the crucible, and the raw material 3 is effectively sublimated for use.

〔実施形態2〕
図4は本発明の実施形態2に係る炭化珪素単結晶インゴットの製造装置を示す図2と同様の説明図であり、実施形態1の場合と異なり、発熱部材7は、その内周が円形状であって中心軸が坩堝本体1aの中心軸(坩堝中心軸)と一致した位置に形成されていると共に、その外周が楕円形状に形成されており、また、外周の中心軸が内周の中心軸(坩堝中心軸)から偏心して位置した非軸対称の両端開口円筒形状に形成されている。
この実施形態2の製造装置においても、実施形態1の場合と同様に、発熱部材7の壁厚が横断面円周方向に沿って変化する非軸対称な形状となっており、原料充填部1c内の原料3に発生する低温部を従来の坩堝中心軸OC(すなわち、発熱部材7の内周の中心軸)近傍から外れた位置にずらして形成させることができ、坩堝1の回転機構を用いてこの低温部を坩堝中心軸OCの軸周りに回転させることにより、原料3を有効に昇華させて利用することができる。
[Embodiment 2]
FIG. 4 is an explanatory view similar to FIG. 2 showing an apparatus for manufacturing a silicon carbide single crystal ingot according to Embodiment 2 of the present invention. Unlike Embodiment 1, the heating member 7 has a circular inner periphery. And the central axis is formed at a position coincident with the central axis of the crucible body 1a (crucible central axis), and the outer periphery thereof is formed in an elliptical shape, and the outer peripheral central axis is the center of the inner periphery. It is formed in a non-axisymmetric both-end opening cylindrical shape that is located eccentrically from the axis (crucible central axis).
Also in the manufacturing apparatus of the second embodiment, as in the first embodiment, the wall thickness of the heat generating member 7 has a non-axisymmetric shape that varies along the circumferential direction of the cross section, and the raw material filling portion 1c The low temperature portion generated in the raw material 3 can be shifted to a position deviated from the vicinity of the conventional crucible central axis O C (that is, the central axis of the inner periphery of the heat generating member 7). used by rotating the low temperature portion around the axis of the crucible center axis O C, it can be utilized by effectively sublimate material 3.

〔実施形態3〕
図5及び図6は、本発明の実施形態3に係る炭化珪素単結晶インゴットの製造装置を示す図2と同様の説明図であり、実施形態1の場合と異なり、断熱材5aには、坩堝1の上方にこの坩堝1を断熱材5(5a,5b)に対して上下方向に相対的に移動可能にする上下動スペースSが設けられており、図1に示す上下動駆動装置12により断熱材5(5a,5b)を上下方向に移動させ、高周波誘導加熱により原料充填部1c内の原料3に発生する温度分布を変化させ、この原料3をより均一に加熱できるようになっている。
この実施形態3の製造装置においても、実施形態1の場合と同様に、発熱部材7の壁厚が横断面円周方向に沿って変化する非軸対称な形状となっており、原料充填部1c内の原料3に発生する低温部を従来の坩堝中心軸OC(すなわち、発熱部材7の内周の中心軸)近傍から外れた位置にずらして形成させることができ、坩堝1の回転機構を用いてこの低温部を坩堝中心軸OCの軸周りに回転させることにより、原料3を有効に昇華させて利用することができる。
[Embodiment 3]
5 and 6 are explanatory views similar to FIG. 2 showing an apparatus for producing a silicon carbide single crystal ingot according to Embodiment 3 of the present invention. Unlike Embodiment 1, the heat insulating material 5a includes a crucible. 1 is provided with a vertical movement space S that allows the crucible 1 to move in the vertical direction relative to the heat insulating material 5 (5a, 5b). The vertical movement drive device 12 shown in FIG. The material 5 (5a, 5b) is moved up and down to change the temperature distribution generated in the raw material 3 in the raw material filling portion 1c by high-frequency induction heating so that the raw material 3 can be heated more uniformly.
Also in the manufacturing apparatus of the third embodiment, as in the first embodiment, the wall thickness of the heat generating member 7 has a non-axisymmetric shape that varies along the circumferential direction of the cross section, and the raw material filling portion 1c The low temperature portion generated in the raw material 3 can be shifted to a position deviated from the vicinity of the conventional crucible central axis O C (that is, the central axis of the inner periphery of the heat generating member 7). used by rotating the low temperature portion around the axis of the crucible center axis O C, it can be utilized by effectively sublimate material 3.

ここで、以下に本発明で用いる非軸対称な発熱部材について、より詳細に説明する。
先ず、発熱部材の素材については、高周波誘導加熱で加熱される材料であればよいが、成長した結晶に不純物を導入しない材料であることが望ましく、坩堝と同様の黒鉛材であることが好ましい。また、発熱部材の形状については、上記の実施形態1及び3や実施形態2に示した壁厚が横断面円周方向に沿って変化する非軸対称な両端開口円筒形状に限らず、周壁が横断面円周方向に沿って複数の壁厚の異なる壁部材に分割され、これら複数の壁部材が全体として筒形状を構成する構造であってもよく、本発明の目的を達成できる構造であれば特に限定され眼ものではない。
Here, the non-axisymmetric heat generating member used in the present invention will be described in more detail below.
First, the material of the heat generating member may be any material that is heated by high-frequency induction heating, but is preferably a material that does not introduce impurities into the grown crystal, and is preferably a graphite material similar to the crucible. In addition, the shape of the heat generating member is not limited to the non-axisymmetric both-end opening cylindrical shape in which the wall thickness shown in the first and third embodiments and the second embodiment changes along the circumferential direction of the cross section. The wall member may be divided into a plurality of wall members having different wall thicknesses along the circumferential direction of the cross section, and the plurality of wall members may constitute a cylindrical shape as a whole, and the structure capable of achieving the object of the present invention. The eye is not particularly limited.

また、本発明において、坩堝の坩堝本体上部については、高周波誘導加熱により軸対称な誘導電流が流れ、軸対称な発熱分布が形成されることが望ましく、また、本発明において、発熱部材7を設けることの理由は原料充填部内の原料内部に非軸対称な温度分布を形成させることが目的であるため、発熱部材の高さ及び設置位置については、原料の高さと同じ、若しくは、その高さより低くするのがよく、通常原料の高さの0.6倍以上1倍以下であるのがよく、また、坩堝1の底面と発熱部材7の底面とが一致する位置、若しくは、坩堝1の底面より発熱部材7が低い位置にすることが好ましい。発熱部材の高さを原料の高さより高くした場合には、成長している結晶の温度分布が非軸対称となる傾向が生じて適切な成長条件を得られなくなる虞がある。   In the present invention, the crucible body upper portion of the crucible preferably has an axially symmetric induced current flowing by high-frequency induction heating to form an axially symmetric heat generation distribution. In the present invention, the heat generating member 7 is provided. The reason for this is to form a non-axisymmetric temperature distribution inside the raw material in the raw material filling section, so the height and installation position of the heating member is the same as or lower than the height of the raw material. It is preferable that the height of the raw material is not less than 0.6 times and not more than 1 time, and the position where the bottom surface of the crucible 1 coincides with the bottom surface of the heating member 7 or from the bottom surface of the crucible 1. It is preferable to set the heat generating member 7 at a low position. If the height of the heat generating member is made higher than the height of the raw material, the temperature distribution of the growing crystal tends to be non-axisymmetric, and there is a possibility that appropriate growth conditions cannot be obtained.

更に、坩堝を発熱部材に対して回転させる際の回転速度については、坩堝本体や発熱部材が発熱し、これによって発生する温度分布の変化が十分に温度分布として反映される程度の時間があることが必要であり、坩堝と発熱部材との相対的な回転速度は1時間当り通常2回転以上60回転以下であることが好ましい。この回転速度より遅い場合には、原料内部の低温部の移動が遅くなって、高温部が比較的長時間に亘って加熱され続けることになり、昇華ガスの枯渇を引き起こし易く、原料を有効に昇華させる効果が得られない虞が生じる。また、この回転速度より早い場合には、坩堝本体や発熱部材が発熱して発生する温度分布の変化が十分に温度分布に影響を及ぼすことができなくなり、非軸対称な温度分布が高速回転により平均化されて軸対称な温度分布になり、発明の効果が得られなくなる虞がある。   Furthermore, with respect to the rotation speed when the crucible is rotated with respect to the heat generating member, the crucible body and the heat generating member generate heat, and there is a time enough for the change in temperature distribution generated thereby to be sufficiently reflected as the temperature distribution. The relative rotation speed between the crucible and the heat generating member is preferably 2 to 60 rotations per hour. If it is slower than this rotational speed, the movement of the low temperature part inside the raw material will be slow, and the high temperature part will continue to be heated for a relatively long time, which tends to cause depletion of the sublimation gas, making the raw material effective. There is a possibility that the effect of sublimation cannot be obtained. In addition, when the rotational speed is higher than this, the temperature distribution change caused by the heat generation of the crucible body and the heating member cannot sufficiently affect the temperature distribution, and the non-axisymmetric temperature distribution is caused by the high speed rotation. There is a possibility that the averaged temperature distribution becomes axisymmetric and the effect of the invention cannot be obtained.

そして、非軸対称な形状を持つ発熱部材の厚さについては、高周波誘導加熱に用いられる誘導加熱周波数に応じて決めることが望ましい。
一般に、高周波を導体に流した場合、磁場との相互作用により、電流密度は導体表面が高く、内側に入るに従って低下する。表面の電流密度が1/eの電流密度に減衰する際の厚さが「表皮厚さ」と呼ばれ、次式のdで記述される。
d=(2/σωμ)1/2
〔ここで、σ:導体の導電率、ω:電流の角速度=2πf(f:電流の周波数)、μ:導体の透磁率〕
The thickness of the heat generating member having a non-axisymmetric shape is desirably determined according to the induction heating frequency used for high frequency induction heating.
In general, when a high frequency is passed through a conductor, the current density is high on the conductor surface due to the interaction with the magnetic field, and decreases as it enters the inside. The thickness at which the surface current density decays to a current density of 1 / e is called the “skin thickness” and is described by d in the following equation.
d = (2 / σωμ) 1/2
[Where σ: conductivity of conductor, ω: angular velocity of current = 2πf (f: frequency of current), μ: permeability of conductor]

つまり、高周波電流の周波数が高くなるに従って表皮厚さdは薄くなり、高周波電流が表面に集中することになる。そのため、発熱部材の厚さが表皮厚さdに比べて十分に厚い場合には、発熱部材の表面近傍での発熱は、発熱部材の厚さに依存しなくなって周方向に亘って一様となる。この場合、温度分布の非軸対称性は発熱部材の形状の非軸対称性のみに依存し、温度分布の非軸対称性の発現の程度までは得られるもののその効果は小さい。発熱部材の厚さが、表皮深さdと同程度、若しくは、表皮厚さdよりも薄い場合には、発熱部材の内側の坩堝まで磁場が浸透する。この際、発熱部材の厚さが薄い部分の電流密度が高くなるために、発熱が大きくなる。同時に、発熱部材の厚さが薄い部分は発熱部材の厚さが厚い部分に比べて、坩堝との距離が近い部分で発熱が生じ、温度が高くなる。これらのことから、発熱部材は、その薄い部分の厚さが表皮厚さdの0.1倍以上0.8倍以下であって、その厚い部分の厚さが表皮厚さdの1倍以上1.5倍以下であることが好ましい。   That is, as the frequency of the high-frequency current increases, the skin thickness d decreases and the high-frequency current concentrates on the surface. Therefore, when the thickness of the heat generating member is sufficiently larger than the skin thickness d, the heat generation near the surface of the heat generating member is not dependent on the thickness of the heat generating member and is uniform in the circumferential direction. Become. In this case, the non-axisymmetric property of the temperature distribution depends only on the non-axisymmetric property of the shape of the heat generating member, and although it can be obtained up to the degree of the non-axisymmetric property of the temperature distribution, the effect is small. When the thickness of the heat generating member is about the same as the skin depth d or thinner than the skin thickness d, the magnetic field penetrates to the crucible inside the heat generating member. At this time, since the current density in the portion where the thickness of the heat generating member is thin increases, heat generation increases. At the same time, heat is generated in the portion where the thickness of the heat generating member is small compared to the portion where the thickness of the heat generating member is thick, and the temperature is increased. For these reasons, the heat generating member has a thin portion having a thickness of 0.1 to 0.8 times the skin thickness d, and a thickness of the thick portion being 1 or more times the skin thickness d. It is preferably 1.5 times or less.

本発明の製造方法により成長高さが40mm以上100mm以下の炭化珪素単結晶インゴットを製造した場合には、坩堝内に充填した炭化珪素原料を有効に利用することができるため、結晶化率を向上させることができる。また、結晶成長中の結晶成長速度の変動が小さくなって高品質の炭化珪素単結晶を得ることができる。このため、電子材料用の炭化珪素単結晶を効率良く作製することが可能になり、炭化珪素単結晶インゴットをより安価に製造することができる。   When a silicon carbide single crystal ingot having a growth height of 40 mm or more and 100 mm or less is manufactured by the manufacturing method of the present invention, the silicon carbide raw material filled in the crucible can be used effectively, so that the crystallization rate is improved. Can be made. Further, the fluctuation of the crystal growth rate during crystal growth is reduced, and a high-quality silicon carbide single crystal can be obtained. For this reason, it becomes possible to produce the silicon carbide single crystal for electronic materials efficiently, and the silicon carbide single crystal ingot can be manufactured at a lower cost.

〔実施例1〕
実施例1においては、図1及び図2に示す実施形態1の炭化珪素単結晶インゴットの製造装置を用いた。この製造装置の発熱部材は、坩堝と同じ黒鉛材で形成されており、原料充填部と同じ高さでこの原料充填部の周囲に配置されており、黒鉛製の坩堝本体と発熱部材とが高周波誘導加熱により発熱するようになっている。
[Example 1]
In Example 1, the apparatus for manufacturing a silicon carbide single crystal ingot of Embodiment 1 shown in FIGS. 1 and 2 was used. The heat generating member of this manufacturing apparatus is formed of the same graphite material as that of the crucible, and is arranged around the raw material filling portion at the same height as the raw material filling portion. Heat is generated by induction heating.

発熱部材は、その高さが坩堝の原料充填部の高さの0.9倍であり、円柱状の黒鉛材料を用い、その中心軸から偏心させて円筒状に刳り貫いて作製した。厚い部分の厚さは20mmであって表皮厚さdの1倍であり、また、薄い部分の厚さは10mmであって表皮厚さdの0.5倍である。
坩堝の坩堝本体下部の原料充填部内には、アチソン法により作製された炭化珪素結晶粉末からなる炭化珪素原料を2.6kg充填し、また、坩堝の坩堝上蓋には、種結晶として、口径105mmの(0001)面を有する4Hポリタイプの炭化珪素単結晶ウェハを配置した。
The heat generating member was 0.9 times as high as the raw material filling portion of the crucible, and was made by using a columnar graphite material and decentering from the central axis and penetrating into a cylindrical shape. The thickness of the thick part is 20 mm, which is 1 times the skin thickness d, and the thickness of the thin part is 10 mm, which is 0.5 times the skin thickness d.
In the raw material filling portion at the lower part of the crucible body, 2.6 kg of silicon carbide raw material made of silicon carbide crystal powder produced by the Atchison method is filled, and the crucible upper lid of the crucible has a diameter of 105 mm as a seed crystal. A 4H polytype silicon carbide single crystal wafer having a (0001) plane was placed.

このようにして準備された坩堝及び発熱部材等からなる構成部材を、図1に示すように、二重石英管の内部に設置し、前記手順で常法に従って炭化珪素単結晶の結晶成長を行った。すなわち、原料温度を目標温度である2300℃まで上昇させた後、二重石英管内のArの圧力を成長圧力1.3kPaまで30分かけて減圧し、炭化珪素単結晶の成長を開始させ、加熱を160時間継続して炭化珪素単結晶を成長させた。また、この際に、坩堝を発熱部材に対して10回転/時間の一定速度で回転させた。   As shown in FIG. 1, the component member composed of the crucible and the heat generating member prepared in this way is installed inside a double quartz tube, and crystal growth of a silicon carbide single crystal is performed according to a conventional method according to the above procedure. It was. That is, after raising the raw material temperature to the target temperature of 2300 ° C., the pressure of Ar in the double quartz tube is reduced to a growth pressure of 1.3 kPa over 30 minutes to start the growth of the silicon carbide single crystal, Was continued for 160 hours to grow a silicon carbide single crystal. At this time, the crucible was rotated at a constant speed of 10 rotations / hour with respect to the heating member.

この実施例1の炭化珪素単結晶インゴットの製造において、成長速度は約0.35mm/時であって、口径が105mm程度で、高さが55mm程度の炭化珪素単結晶インゴットが得られた。坩堝内の原料の残渣を観察したところ、原料充填部の坩堝中心軸近傍においても原料が効率良く昇華したことが確認され、高周波誘導加熱の際に原料に対する加熱温度を効果的に変化させることができ、結果として中心軸近傍の原料も効率良く加熱することができた。また、得られた単結晶インゴットの重量は1.5kg程度であり、また、結晶化率は60%であった。
更に、得られた炭化珪素単結晶インゴットについて、X線回折及びラマン散乱により分析したところ、4Hの単一ポリタイプからなるインゴットであり、また、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。
このインゴットから切り出された炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。
In the production of the silicon carbide single crystal ingot of Example 1, a silicon carbide single crystal ingot having a growth rate of about 0.35 mm / hour, a diameter of about 105 mm, and a height of about 55 mm was obtained. Observation of the residue of the raw material in the crucible confirmed that the raw material was efficiently sublimated even in the vicinity of the crucible central axis of the raw material filling portion, and the heating temperature for the raw material can be effectively changed during high frequency induction heating. As a result, the raw material near the central axis could also be heated efficiently. Further, the weight of the obtained single crystal ingot was about 1.5 kg, and the crystallization rate was 60%.
Furthermore, when the obtained silicon carbide single crystal ingot was analyzed by X-ray diffraction and Raman scattering, it was an ingot consisting of a single polytype of 4H, and it was extremely high quality with few crystal defects such as micropipes. It was confirmed.
The silicon carbide single crystal substrate cut out from the ingot is useful as a substrate for manufacturing an electronic device.

〔実施例2〕
実施例2においては、発熱部材の高さを原料充填部の高さの0.6倍とし、厚い部分の厚さを28mmとして表皮厚さdの1.4倍とし、また、薄い部分の厚さを6mmとして表皮厚さdの0.3倍とし、そして、坩堝の坩堝本体下部の原料充填部内に炭化珪素原料を5.4kg充填し、また、坩堝の坩堝上蓋に、種結晶として、口径155mmの(0001)面を有する4Hポリタイプの炭化珪素単結晶ウェハを配置したこと以外については、上記実施例1の場合と同様にして、坩堝及び発熱部材等からなる構成部材を準備した。
[Example 2]
In Example 2, the height of the heat generating member is 0.6 times the height of the raw material filling portion, the thickness of the thick portion is 28 mm, the skin thickness d is 1.4 times, and the thickness of the thin portion is The thickness is set to 6 mm and the skin thickness d is 0.3 times, and 5.4 kg of silicon carbide raw material is filled in the raw material filling portion at the bottom of the crucible body, and the diameter of the crucible upper lid is a seed crystal. Except that a 4H polytype silicon carbide single crystal wafer having a (0001) surface of 155 mm was disposed, a constituent member including a crucible and a heating member was prepared in the same manner as in Example 1 above.

このようにして準備された坩堝及び発熱部材等からなる構成部材を、図1に示すように、二重石英管の内部に設置し、前記手順で常法に従って炭化珪素単結晶の結晶成長を行った。すなわち、原料温度を目標温度である2300℃まで上昇させた後、二重石英管内のArの圧力を成長圧力1.3kPaまで30分かけて減圧し、炭化珪素単結晶の成長を開始させ、加熱を140時間継続して炭化珪素単結晶を成長させた。また、この際に、坩堝を発熱部材に対して50回転/時間の一定速度で回転させた。   As shown in FIG. 1, the component member composed of the crucible and the heat generating member prepared in this way is installed inside a double quartz tube, and crystal growth of a silicon carbide single crystal is performed according to a conventional method according to the above procedure. It was. That is, after raising the raw material temperature to the target temperature of 2300 ° C., the pressure of Ar in the double quartz tube is reduced to a growth pressure of 1.3 kPa over 30 minutes to start the growth of the silicon carbide single crystal, Was continued for 140 hours to grow a silicon carbide single crystal. At this time, the crucible was rotated at a constant speed of 50 rotations / hour with respect to the heat generating member.

この実施例2の炭化珪素単結晶インゴットの製造において、成長速度は約0.4mm/時であって、口径が155mm程度で、高さが56mm程度の炭化珪素単結晶インゴットが得られた。坩堝内の原料の残渣を観察したところ、原料充填部の坩堝中心軸近傍においても原料が効率良く昇華したことが確認され、高周波誘導加熱の際に原料に対する加熱温度を効果的に変化させることができ、結果として中心軸近傍の原料も効率良く加熱することができた。また、得られた単結晶インゴットの重量は3.4kg程度であり、また、結晶化率は63%であった。
更に、得られた炭化珪素単結晶インゴットについて、X線回折及びラマン散乱により分析したところ、4Hの単一ポリタイプからなるインゴットであり、また、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。
このインゴットから切り出された炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。
In the production of the silicon carbide single crystal ingot of Example 2, a silicon carbide single crystal ingot having a growth rate of about 0.4 mm / hour, a diameter of about 155 mm, and a height of about 56 mm was obtained. Observation of the residue of the raw material in the crucible confirmed that the raw material was efficiently sublimated even in the vicinity of the crucible central axis of the raw material filling portion, and the heating temperature for the raw material can be effectively changed during high frequency induction heating. As a result, the raw material near the central axis could also be heated efficiently. The weight of the obtained single crystal ingot was about 3.4 kg, and the crystallization rate was 63%.
Furthermore, when the obtained silicon carbide single crystal ingot was analyzed by X-ray diffraction and Raman scattering, it was an ingot consisting of a single polytype of 4H, and it was extremely high quality with few crystal defects such as micropipes. It was confirmed.
The silicon carbide single crystal substrate cut out from the ingot is useful as a substrate for manufacturing an electronic device.

〔実施例3〕
実施例3においては、図1、図5、及び図6に示す実施形態3の炭化珪素単結晶インゴットの製造装置を用いた。この製造装置においても、実施例1及び2と同様に、黒鉛製の坩堝本体と発熱部材とが高周波誘導加熱により発熱するようになっている。
Example 3
In Example 3, the silicon carbide single crystal ingot manufacturing apparatus of Embodiment 3 shown in FIGS. 1, 5, and 6 was used. Also in this manufacturing apparatus, the graphite crucible body and the heat generating member generate heat by high-frequency induction heating, as in Examples 1 and 2.

発熱部材は、その高さが坩堝の原料充填部の高さの0.8倍であり、円柱状の黒鉛材料を用い、その中心軸から偏心させて円筒状に刳り貫いて作製した。厚い部分の厚さは24mmであって表皮厚さdの1.2倍であり、また、薄い部分の厚さは12mmであって表皮厚さdの0.6倍である。
坩堝の坩堝本体下部の原料充填部内には、アチソン法により作製された炭化珪素結晶粉末からなる炭化珪素原料を7.5kg充填し、また、坩堝の坩堝上蓋には、種結晶として、口径155mmの(0001)面を有する4Hポリタイプの炭化珪素単結晶ウェハを配置した。
The heat generating member was 0.8 times the height of the raw material filling portion of the crucible, and was made by using a columnar graphite material that was eccentric from the central axis and penetrated into a cylindrical shape. The thickness of the thick portion is 24 mm, which is 1.2 times the skin thickness d, and the thickness of the thin portion is 12 mm, which is 0.6 times the skin thickness d.
The raw material filling portion at the lower part of the crucible body is filled with 7.5 kg of silicon carbide raw material made of silicon carbide crystal powder produced by the Atchison method, and the crucible upper lid of the crucible has a diameter of 155 mm as a seed crystal. A 4H polytype silicon carbide single crystal wafer having a (0001) plane was placed.

このようにして準備された坩堝及び発熱部材等からなる構成部材を、図1に示すように、二重石英管の内部に設置し、前記手順で常法に従って炭化珪素単結晶の結晶成長を行った。すなわち、原料温度を目標温度である2300℃まで上昇させた後、二重石英管内のArの圧力を成長圧力1.3kPaまで30分かけて減圧し、炭化珪素単結晶の成長を開始させ、加熱を180時間継続して炭化珪素単結晶を成長させた。また、この際に、坩堝を発熱部材に対して20回転/時間の一定速度で回転させ、更に、結晶成長中に発熱部材を図5に示す坩堝に対して高い位置から図6に示す低い位置へと0.02mm/hの速度で移動をさせた。   As shown in FIG. 1, the component member composed of the crucible and the heat generating member prepared in this way is installed inside a double quartz tube, and crystal growth of a silicon carbide single crystal is performed according to a conventional method according to the above procedure. It was. That is, after raising the raw material temperature to the target temperature of 2300 ° C., the pressure of Ar in the double quartz tube is reduced to a growth pressure of 1.3 kPa over 30 minutes to start the growth of the silicon carbide single crystal, For 180 hours to grow a silicon carbide single crystal. Further, at this time, the crucible is rotated at a constant speed of 20 rotations / hour with respect to the heat generating member, and the heat generating member is moved from a position higher than the crucible shown in FIG. 5 to a low position shown in FIG. And moved at a speed of 0.02 mm / h.

この実施例3の炭化珪素単結晶インゴットの製造において、成長速度は約0.45mm/時であって、口径が155mm程度で、高さが56mm程度の炭化珪素単結晶インゴットが得られた。坩堝内の原料の残渣を観察したところ、原料充填部の坩堝中心軸近傍においても原料が効率良く昇華したことが確認され、高周波誘導加熱の際に原料に対する加熱温度を効果的に変化させることができ、結果として中心軸近傍の原料も効率良く加熱することができた。また、得られた単結晶インゴットの重量は4.9kg程度であり、また、結晶化率は65%であった。
更に、得られた炭化珪素単結晶インゴットについて、X線回折及びラマン散乱により分析したところ、4Hの単一ポリタイプからなるインゴットであり、また、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。
このインゴットから切り出された炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。
In the production of the silicon carbide single crystal ingot of Example 3, a silicon carbide single crystal ingot having a growth rate of about 0.45 mm / hour, a diameter of about 155 mm, and a height of about 56 mm was obtained. Observation of the residue of the raw material in the crucible confirmed that the raw material was efficiently sublimated even in the vicinity of the crucible central axis of the raw material filling portion, and the heating temperature for the raw material can be effectively changed during high frequency induction heating. As a result, the raw material near the central axis could also be heated efficiently. The weight of the obtained single crystal ingot was about 4.9 kg, and the crystallization rate was 65%.
Furthermore, when the obtained silicon carbide single crystal ingot was analyzed by X-ray diffraction and Raman scattering, it was an ingot consisting of a single polytype of 4H, and it was extremely high quality with few crystal defects such as micropipes. It was confirmed.
The silicon carbide single crystal substrate cut out from the ingot is useful as a substrate for manufacturing an electronic device.

〔比較例1〕
比較例1においては、発熱部材を用いることなく、また、この発熱部材以外は、各部材の配置も含めて、実施例1と同様の条件で同様にして結晶成長を行った。
[Comparative Example 1]
In Comparative Example 1, crystal growth was performed in the same manner as in Example 1 without using the heat generating member and including the arrangement of each member other than the heat generating member.

この比較例1の炭化珪素単結晶インゴットの製造において、成長速度は約0.17mm/時であって、口径が155mm程度で、高さが16mm程度の炭化珪素単結晶インゴットが得られた。坩堝内の原料の残渣を観察したところ、原料の中心軸近傍において原料が再結晶し、結晶成長に有効に活用されていないことが判明した。この原料の中心軸近傍での昇華ガスの再結晶のため、結晶成長の途中で原料ガスの供給が途絶え、成長した結晶の成長面が昇華し、成長面が炭化した。得られた単結晶インゴットの重量は0.4kg程度であり、結晶化率は17%過ぎなかった。
更に、得られた炭化珪素単結晶インゴットについて、X線回折により分析したところ、マイクロパイプ等の結晶欠陥が発生し、電子デバイス作製のための基板には不適であることが判明した。
In the production of the silicon carbide single crystal ingot of Comparative Example 1, a silicon carbide single crystal ingot having a growth rate of about 0.17 mm / hour, a diameter of about 155 mm, and a height of about 16 mm was obtained. Observation of the residue of the raw material in the crucible revealed that the raw material was recrystallized in the vicinity of the central axis of the raw material and was not effectively used for crystal growth. Due to the recrystallization of the sublimation gas in the vicinity of the central axis of the raw material, the supply of the raw material gas was interrupted during the crystal growth, the growth surface of the grown crystal was sublimated, and the growth surface was carbonized. The weight of the obtained single crystal ingot was about 0.4 kg, and the crystallization rate was only 17%.
Furthermore, when the obtained silicon carbide single crystal ingot was analyzed by X-ray diffraction, crystal defects such as micropipes were generated, and it was found that the silicon carbide single crystal ingot was unsuitable for a substrate for producing an electronic device.

1…坩堝、1a…坩堝本体、1b…坩堝上蓋、1c…原料充填部、2…種結晶、3…炭化珪素原料(原料)、4…単結晶インゴット、5,5a,5b…断熱材、6…切欠き孔、7…発熱部材、10…坩堝支持体、11…断熱材支持部材、12…上下動駆動装置、13…二重石英管、14…真空排気装置、15…Arガス配管、16…Arガス用マスフローコントローラ、17…ワークコイル、18…上下動駆動装置、Oc…坩堝中心軸、Oi…発熱部材の内周の中心軸、Oo…発熱部材の外周の中心軸、B…低温部、S…上下動スペース。
DESCRIPTION OF SYMBOLS 1 ... Crucible, 1a ... Crucible body, 1b ... Crucible top cover, 1c ... Raw material filling part, 2 ... Seed crystal, 3 ... Silicon carbide raw material (raw material), 4 ... Single crystal ingot, 5, 5a, 5b ... Insulating material, 6 DESCRIPTION OF SYMBOLS ... Notch hole, 7 ... Heat generating member, 10 ... Crucible support, 11 ... Insulation support member, 12 ... Vertical motion drive device, 13 ... Double quartz tube, 14 ... Vacuum exhaust device, 15 ... Ar gas piping, 16 ... Ar gas mass flow controller, 17 ... work coil, 18 ... vertical drive, Oc ... crucible central axis, O i ... heat generating member inner peripheral axis, O o ... heat generating member outer peripheral central axis, B ... Low temperature part, S ... Vertical movement space.

Claims (5)

上端開口筒状に形成された黒鉛製の坩堝本体とこの坩堝本体の上端開口部を閉塞する黒鉛製の坩堝上蓋とを有すると共に、前記坩堝本体下部には炭化珪素原料が充填される原料充填部を有する坩堝と、前記坩堝の外側に配設され、高周波誘導加熱により坩堝本体を発熱させるワークコイルとを備え、昇華再結晶法により炭化珪素単結晶を製造するための炭化珪素単結晶インゴットの製造装置において、
前記坩堝本体下部の原料充填部の外側に、前記坩堝本体の中心軸に対して非軸対称な形状を有すると共に、前記ワークコイルによる高周波誘導加熱により発熱する発熱部材を配設し、また、前記発熱部材と前記坩堝本体とを坩堝本体の中心軸を回転軸として相対的に回転させる回転機構を設けたことを特徴とする炭化珪素単結晶インゴットの製造装置。
A raw material filling portion having a graphite crucible main body formed in a cylindrical shape with an upper end opening and a graphite crucible upper lid closing the upper end opening of the crucible main body, and a silicon carbide raw material filled in the lower portion of the crucible main body A silicon carbide single crystal ingot for producing a silicon carbide single crystal by a sublimation recrystallization method, and a work coil disposed outside the crucible and configured to heat the crucible body by high frequency induction heating In the device
Outside the raw material filling portion at the lower part of the crucible body, a heating member that has a non-axisymmetric shape with respect to the central axis of the crucible body and generates heat by high-frequency induction heating by the work coil is disposed. An apparatus for manufacturing a silicon carbide single crystal ingot, comprising: a rotation mechanism that relatively rotates a heat generating member and the crucible body about a central axis of the crucible body.
前記発熱部材が、前記坩堝本体下部の原料充填部の外側を取り囲むように配設され、外周の中心軸が内周の中心軸に対して偏心した非軸対称形状を有する筒状加熱部材であることを特徴とする請求項1記載の炭化珪素単結晶インゴットの製造装置。   The heating member is a cylindrical heating member that is disposed so as to surround the outer side of the raw material filling portion at the lower part of the crucible body, and has a non-axisymmetric shape in which an outer peripheral central axis is eccentric with respect to an inner peripheral central axis. The apparatus for producing a silicon carbide single crystal ingot according to claim 1. 前記発熱部材は、高さが原料充填部の高さに対して0.6倍以上1倍以下であることを特徴とする請求項1又は2に記載の炭化珪素単結晶インゴットの製造装置。   3. The apparatus for producing a silicon carbide single crystal ingot according to claim 1, wherein the heating member has a height that is not less than 0.6 times and not more than 1 time with respect to a height of the raw material filling portion. 前記発熱部材と前記坩堝本体との間の相対回転速度が1時間当り2〜60回転であることを特徴とする請求項1〜3のいずれか1項に記載の炭化珪素単結晶インゴットの製造装置。   The relative rotation speed between the said heat generating member and the said crucible main body is 2-60 rotations per hour, The manufacturing apparatus of the silicon carbide single crystal ingot of any one of Claims 1-3 characterized by the above-mentioned. . 黒鉛製の坩堝本体下部の原料充填部内に充填された炭化珪素原料を加熱して昇華させ、生成した昇華ガスを前記坩堝上蓋の内面に設置された炭化珪素単結晶からなる種結晶の表面で再結晶化させる炭化珪素単結晶インゴットの製造方法において、
前記坩堝本体下部の原料充填部の外側に、前記坩堝本体の中心軸に対して非軸対称形状を有する高周波誘導加熱可能な発熱部材を配設し、この発熱部材と前記坩堝本体とを坩堝本体の中心軸を回転軸として相対的に回転させながら、高周波誘導加熱により前記坩堝本体と前記発熱部材とを発熱させ、前記原料充填部の内部に非軸対称の温度分布を形成しつつ前記炭化珪素原料を昇華させることを特徴とする炭化珪素単結晶インゴットの製造方法。

The silicon carbide raw material filled in the raw material filling portion at the lower part of the graphite crucible body is heated and sublimated, and the generated sublimation gas is regenerated on the surface of the seed crystal composed of a silicon carbide single crystal installed on the inner surface of the crucible upper lid. In the method for producing a silicon carbide single crystal ingot to be crystallized,
A heat generating member capable of high-frequency induction heating having a non-axisymmetric shape with respect to the central axis of the crucible body is disposed outside the raw material filling portion at the lower part of the crucible body, and the heat generating member and the crucible body are connected to the crucible body. The silicon carbide is heated while causing the crucible body and the heat generating member to generate heat by high-frequency induction heating while relatively rotating about the central axis of the material, and forming a non-axisymmetric temperature distribution inside the raw material filling portion A method for producing a silicon carbide single crystal ingot, wherein the raw material is sublimated.

JP2016039196A 2016-03-01 2016-03-01 Apparatus and method for producing silicon carbide single crystal ingot Active JP6628640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016039196A JP6628640B2 (en) 2016-03-01 2016-03-01 Apparatus and method for producing silicon carbide single crystal ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016039196A JP6628640B2 (en) 2016-03-01 2016-03-01 Apparatus and method for producing silicon carbide single crystal ingot

Publications (2)

Publication Number Publication Date
JP2017154926A true JP2017154926A (en) 2017-09-07
JP6628640B2 JP6628640B2 (en) 2020-01-15

Family

ID=59807882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016039196A Active JP6628640B2 (en) 2016-03-01 2016-03-01 Apparatus and method for producing silicon carbide single crystal ingot

Country Status (1)

Country Link
JP (1) JP6628640B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168023A (en) * 2017-03-30 2018-11-01 昭和電工株式会社 Device and method for manufacturing silicon carbide single crystal ingot
WO2019130873A1 (en) * 2017-12-27 2019-07-04 信越半導体株式会社 Method for manufacturing silicon carbide single crystal
CN110777427A (en) * 2018-07-25 2020-02-11 昭和电工株式会社 Crystal growing device
CN113564696A (en) * 2021-07-26 2021-10-29 哈尔滨科友半导体产业装备与技术研究院有限公司 Device and method for improving radial uniformity of PVT method grown crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051701A (en) * 2007-08-28 2009-03-12 Denso Corp Apparatus and method for producing silicon carbide single crystal
JP2012131679A (en) * 2010-12-24 2012-07-12 Nippon Steel Corp Device for producing silicon carbide single crystal ingot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051701A (en) * 2007-08-28 2009-03-12 Denso Corp Apparatus and method for producing silicon carbide single crystal
JP2012131679A (en) * 2010-12-24 2012-07-12 Nippon Steel Corp Device for producing silicon carbide single crystal ingot

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168023A (en) * 2017-03-30 2018-11-01 昭和電工株式会社 Device and method for manufacturing silicon carbide single crystal ingot
WO2019130873A1 (en) * 2017-12-27 2019-07-04 信越半導体株式会社 Method for manufacturing silicon carbide single crystal
JP2019116405A (en) * 2017-12-27 2019-07-18 信越半導体株式会社 Method of manufacturing silicon carbide single crystal
US11149357B2 (en) 2017-12-27 2021-10-19 Shin-Etsu Handotai Co., Ltd. Method for manufacturing a silicon carbide single crystal by adjusting the position of a hole in a top of the growth container relative to the off angle of the silicon carbide substrate
CN110777427A (en) * 2018-07-25 2020-02-11 昭和电工株式会社 Crystal growing device
US11105016B2 (en) 2018-07-25 2021-08-31 Showa Denko K.K. Crystal growth apparatus with controlled center position of heating
CN110777427B (en) * 2018-07-25 2021-11-19 昭和电工株式会社 Crystal growing device
CN113564696A (en) * 2021-07-26 2021-10-29 哈尔滨科友半导体产业装备与技术研究院有限公司 Device and method for improving radial uniformity of PVT method grown crystal

Also Published As

Publication number Publication date
JP6628640B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
JP6861555B2 (en) Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Manufacturing Method
JP3961750B2 (en) Single crystal growth apparatus and growth method
JP6111873B2 (en) Method for producing silicon carbide single crystal ingot
JP6338439B2 (en) Method for producing silicon carbide single crystal ingot
JP4388538B2 (en) Silicon carbide single crystal manufacturing equipment
JP5560862B2 (en) Silicon carbide single crystal ingot manufacturing equipment
JP5402798B2 (en) Method for producing silicon carbide single crystal ingot
JP6628640B2 (en) Apparatus and method for producing silicon carbide single crystal ingot
WO2011101727A1 (en) Method of producing silicon carbide single crystal
JP5482643B2 (en) Silicon carbide single crystal ingot manufacturing equipment
US20150013590A1 (en) Seed crystal holding shaft for use in single crystal production device, and method for producing single crystal
US20160002820A1 (en) Crucible and method for producing single crystal
JP6681687B2 (en) Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot
JP6015397B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
JP6910168B2 (en) Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Manufacturing Method
JP4459211B2 (en) Single crystal growth apparatus and growth method
JP5516167B2 (en) Silicon carbide single crystal manufacturing equipment
JP5375783B2 (en) Method for producing silicon carbide single crystal
JP6223290B2 (en) Single crystal manufacturing equipment
JP2011079693A (en) Apparatus for producing semiconductor single crystal
JP2006096578A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
WO2017135272A1 (en) Method for manufacturing sic single crystal and sic seed crystal
JP6501494B2 (en) Method and apparatus for manufacturing silicon carbide single crystal ingot
KR20170073834A (en) Growth device for silicon carbide single crystal
KR100906281B1 (en) Heat shield structure for growing silicon single crystal ingot and grower using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180301

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191203

R150 Certificate of patent or registration of utility model

Ref document number: 6628640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350