WO2017135272A1 - Method for manufacturing sic single crystal and sic seed crystal - Google Patents

Method for manufacturing sic single crystal and sic seed crystal Download PDF

Info

Publication number
WO2017135272A1
WO2017135272A1 PCT/JP2017/003519 JP2017003519W WO2017135272A1 WO 2017135272 A1 WO2017135272 A1 WO 2017135272A1 JP 2017003519 W JP2017003519 W JP 2017003519W WO 2017135272 A1 WO2017135272 A1 WO 2017135272A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
sic
sic single
single crystal
crystal growth
Prior art date
Application number
PCT/JP2017/003519
Other languages
French (fr)
Japanese (ja)
Inventor
楠 一彦
和明 関
寛典 大黒
幹尚 加渡
雅喜 土井
Original Assignee
新日鐵住金株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, トヨタ自動車株式会社 filed Critical 新日鐵住金株式会社
Publication of WO2017135272A1 publication Critical patent/WO2017135272A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention relates to a method for producing a SiC single crystal and a SiC seed crystal, and more particularly to a method for producing a SiC single crystal by a solution growth method and a SiC seed crystal used in the solution growth method.
  • SiC single crystal is a thermally and chemically stable compound semiconductor.
  • the SiC single crystal has excellent physical properties as compared with the Si single crystal.
  • a SiC single crystal has a large band gap, a high breakdown voltage, and a high thermal conductivity, and has a high electron saturation rate compared to a Si single crystal. For this reason, SiC single crystals are attracting attention as next-generation semiconductor materials.
  • a sublimation recrystallization method (hereinafter also referred to as a sublimation method), a solution growth method (hereinafter also referred to as a solution method), and the like are known.
  • a SiC single crystal is grown by supplying a raw material on a SiC seed crystal in a gas phase state.
  • a SiC single crystal is grown on the SiC seed crystal by bringing the SiC seed crystal into contact with the Si—C solution.
  • a raw material containing Si is put in a crucible and melted to produce a Si—C solution.
  • a SiC single crystal is manufactured by bringing the SiC seed crystal into contact with the Si—C solution and supercooling the Si—C solution in the vicinity of the SiC seed crystal.
  • the Si—C solution refers to a solution in which carbon (C) is dissolved in a melt of Si or Si alloy.
  • Patent Document 1 JP 2004-323348 A (Patent Document 1), JP 2009-051701 A (Patent Document 2), JP 2010-254520 A (Patent Document 3), and JP 2013-087005 A (Patent Document 2).
  • Document 4 proposes a technique for obtaining a uniform SiC single crystal by adjusting the position of the facet region.
  • the SiC single crystal manufactured using the solution method has fewer defects such as micropipes and basal plane dislocations than the SiC single crystal manufactured using the sublimation method. Therefore, a method for producing a SiC single crystal by a solution method has been studied.
  • solvent inclusion refers to a defect caused by the Si—C solution being confined inside the SiC single crystal. If solvent inclusion occurs, the quality of the SiC single crystal is degraded.
  • Patent Document 5 proposes a technique for suppressing the occurrence of solvent inclusion in a solution method.
  • Patent Document 5 is characterized in that the Si—C solution is stirred by periodically changing the number of revolutions or the number of revolutions and the direction of rotation of the crucible.
  • Patent Document 5 describes that even if the diameter is 1 inch or more and the thickness is as large as 5 microns or more, a high-quality SiC single crystal without inclusion can be produced at a high crystal growth rate.
  • JP 2004-323348 A JP 2009-051701 A JP 2010-254520 A JP 2013-087005 A JP 2006-117441 A
  • An object of the present invention is to provide a method for producing a SiC single crystal by a solution growth method and a SiC seed crystal used for the solution growth method, which can suppress the occurrence of solvent inclusion.
  • the method for producing an SiC single crystal according to the present invention is a production method by a solution growth method in which an SiC single crystal is grown by bringing the crystal growth surface of an SiC seed crystal into contact with an Si—C solution.
  • the manufacturing method includes a preparation process and a growth process.
  • the preparation step the raw material is heated and melted to prepare a Si—C solution.
  • the growth step the crystal growth surface is brought into contact with the Si—C solution, and an SiC single crystal is grown on the crystal growth surface.
  • the crystal growth surface includes a facet region, and the offset angle of the crystal growth surface with respect to the ⁇ 0001 ⁇ plane is 0.5 ° or less.
  • the center of gravity of the facet region is arranged at a distance within 0.40 r from the center of gravity of the crystal growth surface.
  • the length of the longest line segment connecting the center of gravity of the crystal growth surface and the outer periphery of the crystal growth surface is r.
  • the SiC seed crystal according to the present invention is an SiC seed crystal used in a solution growth method in which a SiC single crystal is grown on an SiC seed crystal by bringing the SiC seed crystal into contact with an Si—C solution.
  • the SiC seed crystal has a crystal growth surface having an offset angle of 0.5 ° or less with respect to the ⁇ 0001 ⁇ plane.
  • the crystal growth surface includes a facet region.
  • the center of gravity of the facet region is arranged at a distance within 0.40 r from the center of gravity of the crystal growth surface.
  • the length of the longest line segment connecting the center of gravity of the crystal growth surface and the outer periphery of the crystal growth surface is r.
  • the method for producing a SiC single crystal and the SiC seed crystal according to the present invention can suppress the occurrence of solvent inclusion.
  • FIG. 1 is a schematic view of a manufacturing apparatus used in the method for manufacturing a SiC single crystal according to the present embodiment.
  • FIG. 2 is a bottom view (a diagram of a crystal growth surface) of the SiC seed crystal.
  • FIG. 3 is a bottom view of a SiC seed crystal according to another embodiment different from FIG.
  • the present inventors have made various studies on a method for producing an SiC single crystal by a solution method that can suppress the occurrence of solvent inclusion. As a result, the following knowledge was obtained.
  • the SiC single crystal is grown by bringing the crystal growth surface of the SiC seed crystal into contact with the Si-C solution.
  • the SiC seed crystal may include a facet region.
  • a facet region refers to a region having the same crystal structure as other regions and having a higher screw dislocation density and nitrogen concentration than other regions.
  • the screw dislocation has a small step at an atomic level called a step in which crystal growth easily proceeds.
  • the facet region is a source of steps during crystal growth because of the high screw dislocation density. That is, if a facet region is included in the crystal growth surface, crystal growth proceeds preferentially in the facet region compared to other regions.
  • step bunching promotes three-dimensional growth of SiC single crystal. If the SiC single crystal grows three-dimensionally, a part of the solvent is confined in the SiC single crystal, and solvent inclusion occurs.
  • the facet region is arranged at the center of the crystal growth surface. This reduces the distance between the facet area and the area farthest from the facet area. Therefore, the difference in crystal growth rate between the facet region and the region farthest from the facet region is reduced. That is, the variation in the crystal growth thickness is suppressed. This suppresses step bunching and three-dimensional growth of the SiC single crystal. As a result, solvent inclusion can be suppressed.
  • the SiC single crystal manufacturing method completed based on the above knowledge is a manufacturing method by a solution growth method in which the SiC single crystal is grown by bringing the crystal growth surface of the SiC seed crystal into contact with the Si-C solution.
  • the manufacturing method includes a preparation process and a growth process.
  • the preparation step the raw material is heated and melted to prepare a Si—C solution.
  • the growth step the crystal growth surface is brought into contact with the Si—C solution, and an SiC single crystal is grown on the crystal growth surface.
  • the crystal growth surface includes a facet region, and the offset angle of the crystal growth surface with respect to the ⁇ 0001 ⁇ plane is 0.5 ° or less.
  • the center of gravity of the facet region is arranged at a distance within 0.40 r from the center of gravity of the crystal growth surface.
  • the length of the longest line segment connecting the center of gravity of the crystal growth surface and the outer periphery of the crystal growth surface is r.
  • a SiC single crystal is manufactured using a SiC seed crystal in which the facet region is arranged in the center. Therefore, solvent inclusion can be suppressed.
  • the crystal growth surface is a single surface.
  • the center of gravity of the facet region is arranged at a distance within 0.25r from the center of gravity of the crystal growth surface.
  • the area ratio of the facet region to the crystal growth surface is 0.04 or more.
  • the area ratio of the facet region to the crystal growth surface is 0.10 or more.
  • a SiC single crystal may be grown by 2 mm or more.
  • the yield of the SiC single crystal can be increased.
  • the SiC seed crystal and the SiC single crystal may have a 4H polymorphic crystal structure.
  • the SiC seed crystal according to the present embodiment is an SiC seed crystal used in a solution growth method in which an SiC single crystal is grown on an SiC seed crystal by bringing the SiC seed crystal into contact with an Si—C solution.
  • the SiC seed crystal has a crystal growth surface having an offset angle of 0.5 ° or less with respect to the ⁇ 0001 ⁇ plane.
  • the crystal growth surface includes a facet region.
  • the center of gravity of the facet region is arranged at a distance within 0.40 r from the center of gravity of the crystal growth surface.
  • the length of the longest line segment connecting the center of gravity of the crystal growth surface and the outer periphery of the crystal growth surface is r.
  • the SiC single crystal produced using the seed crystal can suppress solvent inclusion.
  • the crystal growth surface is a single surface.
  • the area ratio of the facet region to the crystal growth surface is 0.04 or more.
  • FIG. 1 is a schematic diagram of an example of a manufacturing apparatus 1 used in the method for manufacturing a SiC single crystal according to the present embodiment.
  • the manufacturing apparatus 1 includes a chamber 2, a crucible 5, a heat insulating member 4, an induction heating device 3, a rotating device 20, and a seed shaft 6.
  • Chamber 2 is a casing.
  • the chamber 2 accommodates the heat insulating member 4 and the induction heating device 3.
  • the chamber 2 can further accommodate a crucible 5.
  • the chamber 2 is cooled with a cooling medium.
  • the crucible 5 is housed in a casing-shaped heat insulating member 4.
  • the crucible 5 is a housing whose upper end is open.
  • the crucible 5 may be provided with a top plate. In this case, evaporation of the Si—C solution 7 can be suppressed.
  • the crucible 5 accommodates the Si—C solution 7.
  • the Si-C solution 7 is produced by melting the raw material by heating.
  • the raw material may be only Si, or may contain Si and another metal element.
  • the metal element contained in the raw material of the Si-C solution 7 is selected from the group consisting of titanium (Ti), manganese (Mn), chromium (Cr), cobalt (Co), vanadium (V), and iron (Fe). 1 type, or 2 or more types.
  • the Si—C solution 7 is generated by further dissolving carbon (C) in these raw materials. When carbon is supplied to the Si—C solution 7 from the added carbon source, the raw material of the Si—C solution 7 contains carbon (C).
  • the crucible 5 When supplying carbon to the Si—C solution 7 by melting the crucible 5, the crucible 5 preferably contains carbon. More preferably, the material of the crucible 5 is graphite. When supplying carbon from the added carbon source to the Si—C solution 7, the crucible 5 may be any material that is stable at the crystal growth temperature. In this case, the material of the crucible 5 may be ceramics or a high melting point metal. When the crucible 5 is made of a material other than graphite, a film containing graphite may be formed on the inner surface of the crucible 5.
  • the heat insulating member 4 surrounds the crucible 5.
  • the heat insulating member 4 is made of a well-known heat insulating material.
  • the heat insulating material is, for example, a fiber-based or non-fiber-based molded heat insulating material.
  • the induction heating device 3 surrounds the heat insulating member 4.
  • the induction heating device 3 includes a high frequency coil.
  • the high frequency coil is disposed coaxially with the seed shaft 6.
  • the induction heating device 3 induction-heats the crucible 5 by electromagnetic induction and melts the raw material stored in the crucible 5 to generate the Si—C solution 7.
  • the induction heating device 3 further maintains the Si—C solution 7 at the crystal growth temperature.
  • Rotating device 20 is a shaft extending in the height direction of chamber 2.
  • the upper end of the rotating device 20 is disposed inside the chamber 2.
  • the crucible 5 is disposed on the upper surface of the rotating device 20.
  • the rotation device 20 is connected to a drive source 21 and rotates around the central axis of the rotation device 20 by the drive source 21. When the rotating device 20 rotates, the crucible 5 rotates.
  • the crucible 5 and the rotating device 20 may rotate or may not rotate.
  • the seed shaft 6 is a shaft extending in the height direction of the chamber 2.
  • the upper end of the seed shaft 6 is disposed outside the chamber 2.
  • the seed shaft 6 is attached to the drive source 9 outside the chamber 2.
  • the lower end of the seed shaft 6 is disposed inside the crucible 5.
  • An SiC seed crystal 8 is attached to the lower end of the seed shaft 6.
  • the seed shaft 6 can be moved up and down and rotated by a drive source 9.
  • the seed shaft 6 is lowered by the drive source 9, and the SiC seed crystal 8 comes into contact with the Si—C solution 7.
  • the seed shaft 6 is rotated by the drive source 9, and the SiC seed crystal 8 is rotated.
  • the rotation direction of the seed shaft 6 may be the same as the rotation direction of the crucible 5 or may be the opposite direction.
  • the seed shaft 6 may rotate or may not rotate.
  • the seed shaft 6 is graphite.
  • SiC seed crystal 8 has a plate shape and is made of a SiC single crystal.
  • SiC seed crystal 8 may be, for example, a SiC single crystal manufactured by a sublimation method.
  • the crystal structure of SiC seed crystal 8 is the same as the crystal structure of the SiC single crystal to be manufactured.
  • the surface on which the SiC single crystal grows on the Si-C solution 7 is called a crystal growth surface.
  • the offset angle of the crystal growth surface of the seed crystal of the present invention with respect to the ⁇ 0001 ⁇ plane is 0.5 ° or less.
  • the offset angle of the crystal growth surface with respect to the ⁇ 0001 ⁇ plane is also simply referred to as “offset angle”. If the offset angle is larger than 0.5 °, the step density is different between a region near the ⁇ 0001 ⁇ plane and a region far from the ⁇ 0001 ⁇ plane on the crystal growth surface.
  • the step density is higher in the region near the ⁇ 0001 ⁇ plane on the crystal growth surface than in the region far from the ⁇ 0001 ⁇ plane on the crystal growth surface.
  • step bunching is likely to occur in an area where the step density is high.
  • irregularities are generated on the surface of the grown crystal, and solvent inclusion may occur. Therefore, the offset angle of the crystal growth surface of the seed crystal of the present invention with respect to the ⁇ 0001 ⁇ plane is 0.5 ° or less.
  • the crystal growth surface is a ⁇ 0001 ⁇ plane. That is, the offset angle is 0.0 °.
  • the crystal growth plane is a (000-1) plane (carbon plane).
  • the fact that the offset angle of the crystal growth surface with respect to the ⁇ 0001 ⁇ plane is 0.5 ° or less is also referred to as “the crystal growth surface is on axis”.
  • the crystal growth surface of the seed crystal of the present invention is a single surface.
  • a single surface means a smooth surface having no ridgeline.
  • the crystal growth surface of the seed crystal of the present invention may have microscopic distortion as long as it does not have a ridgeline.
  • unevenness may occur in the ridge line portion of the grown crystal surface.
  • solvent inclusion may occur.
  • the crystal growth surface is a single plane.
  • FIG. 2 is a bottom view of the SiC seed crystal 8 (a diagram of a crystal growth surface).
  • crystal growth surface 80 includes a facet region 81.
  • the crystal growth surface 80 may be circular as shown in FIG. 2 or other shapes.
  • the shape of the crystal growth surface 80 is, for example, a hexagon shown in FIG.
  • the shape of the crystal growth surface 80 may be another polygon (such as a quadrangle and an octagon), or may be an ellipse.
  • the shape of the crystal growth surface 80 is not particularly limited.
  • the facet region 81 is a region having the same crystal structure as other regions and having a higher screw dislocation density and nitrogen concentration than the other regions.
  • the facet region 81 can be confirmed by measuring the screw dislocation density and the nitrogen concentration by a known method.
  • the facet area 81 can also be confirmed by the following method.
  • the SiC seed crystal 8 is cut to a thickness of 1 mm or less. The cut piece is placed in front of a light source such as an incandescent bulb to transmit light. A portion (facet region 81) that is more strongly colored than the other regions can be visually confirmed.
  • Facet region 81 is arranged at the center of crystal growth surface 80. Specifically, the centroid 82 of the facet region 81 is arranged at a distance within 0.40 r from the centroid 83 of the crystal growth surface 80. Here, the length of the longest line segment among the line segments connecting the center of gravity 83 of the crystal growth surface 80 and the outer periphery 84 of the crystal growth surface 80 is r.
  • facet region 81 By disposing facet region 81 in the center of crystal growth surface 80, the distance between facet region 81 and the region farthest from facet region 81 is reduced. Therefore, the difference in crystal growth rate between the facet region 81 and the region farthest from the facet region 81 is reduced. That is, the variation in the crystal growth thickness is suppressed. This suppresses the progress of step bunching during crystal growth. As a result, solvent inclusion can be suppressed.
  • the center of gravity 82 of the facet region 81 is arranged at a distance within 0.25 r from the center of gravity 83 of the crystal growth surface 80.
  • the area ratio of facet region 81 to crystal growth surface 80 is 0.04 or more, more preferably 0.10 or more.
  • the upper limit of the area ratio of facet region 81 to crystal growth surface 80 is not particularly limited.
  • the SiC seed crystal 8 including the crystal growth surface 80 including the facet region 81 in the center is manufactured by being cut out from a SiC single crystal ingot.
  • a well-known method can be adopted as a method for cutting the SiC single crystal ingot.
  • a blade saw method and a wire saw method are used as a method for cutting the SiC single crystal ingot.
  • the manufacturing method of the SiC single crystal according to the present embodiment includes a preparation process and a growth process.
  • the raw material is heated and melted to prepare the Si—C solution 7.
  • the raw material of the Si—C solution 7 having the above composition is stored in the crucible 5.
  • the crucible 5 containing the raw material is disposed on the upper surface of the rotating device 20 in the chamber 2.
  • the chamber 2 is filled with an inert gas, for example, helium gas.
  • the raw material of the crucible 5 and the Si—C solution 7 is heated by the induction heating device 3 to the melting point or higher of the raw material of the Si—C solution 7. If the crucible 5 containing carbon is heated, carbon melts from the crucible 5 into the melt.
  • a Si—C solution 7 is generated.
  • a solid-phase carbon source is charged into the Si—C solution 7 and dissolved.
  • the solid-phase carbon source is, for example, one or more selected from the group consisting of graphite, amorphous carbon raw material, SiC, and carbides of additive elements. These are added to the Si-C solution 7 in the form of blocks, rods, granules and powders.
  • the Si—C solution 7 is generated by heating the raw material containing carbon.
  • the heating is performed until the Si-C solution 7 reaches the crystal growth temperature. Heating may be continued up to the crystal growth temperature, or a period for holding at a constant temperature may be provided. When holding at a constant temperature, the holding temperature should just be more than the liquidus temperature of a raw material. In this case, the heating is performed until the SiC concentration in the Si—C solution 7 approaches a saturated state. When using a solid carbon source, it is preferable to heat until the carbon source is completely dissolved.
  • the heating time is, for example, 0.5 to 10 hours.
  • the crystal growth surface 80 of the SiC seed crystal 8 is brought into contact with the Si—C solution 7 to grow a SiC single crystal on the crystal growth surface 80 of the SiC seed crystal 8.
  • the crystal growth surface 80 of the SiC seed crystal 8 is brought into contact with the Si—C solution 7 (hereinafter also referred to as a landing liquid).
  • the crystal growth surface 80 is on axis and includes a facet region 81.
  • the facet region 81 includes a screw dislocation.
  • the steps (small steps at the atomic level) possessed by screw dislocations are structures depending on the crystal structure. Therefore, a crystal structure similar to SiC seed crystal 8 grows stably.
  • the output of the induction heating device 3 is adjusted to maintain the temperature of the Si—C solution 7 at the crystal growth temperature.
  • the crystal growth temperature is, for example, 1850 to 2050 ° C.
  • a SiC single crystal By applying a temperature gradient to the Si-C solution 7, a SiC single crystal can be produced efficiently. Specifically, a temperature gradient is applied so that the vicinity of the SiC seed crystal 8 in the Si—C solution 7 is lower in temperature than other portions. Thereby, the supersaturation degree of SiC in the vicinity of SiC seed crystal 8 can be increased. As a result, the growth rate of the SiC single crystal is increased.
  • the output of the induction heating device 3 is adjusted to give a temperature gradient so that the upper part of the Si—C solution 7 becomes a low temperature. Otherwise, the output of the induction heating device 3 is adjusted so that the temperature of the Si—C solution 7 is maintained by heat transfer from the crucible 5.
  • a temperature gradient is applied so that the center of the Si—C solution 7 has a low temperature.
  • the temperature gradient is preferably in the range of 5 to 50 ° C./cm regardless of the vertical direction or the horizontal direction. If the temperature gradient is 5 ° C./cm or more, the growth rate of the SiC single crystal is increased. If the temperature gradient is 50 ° C./cm or less, spontaneous generation of SiC nuclei in the Si—C solution 7 can be suppressed.
  • the growth step may be performed while maintaining the temperature of the Si—C solution 7 constant or may be performed while the temperature is increased.
  • the degree of supersaturation of the carbon (C) concentration in the Si—C solution 7 can be adjusted to an appropriate range. Therefore, spiral growth proceeds predominantly. As a result, mixing of different crystal polymorphs due to two-dimensional nucleus growth can be further suppressed.
  • the growth step is performed while raising the temperature of the Si—C solution 7, if the rate of temperature rise is within a certain range, the two-dimensional nucleus growth can be stably suppressed without dissolving the SiC single crystal.
  • a meniscus may be formed after the landing.
  • the SiC seed crystal 8 in contact with the Si—C solution 7 is pulled upward from the liquid level of the Si—C solution 7.
  • the meniscus height is, for example, 0.1 to 4.0 mm.
  • FIG. 1 the example of the manufacturing apparatus 1 using the crucible 5 is shown.
  • a levitation method in which the raw material is levitated and melted by electromagnetic force without using the crucible 5 may be employed.
  • a cold crucible method for generating the Si—C solution 7 levitated by magnetic repulsion in a water-cooled metal crucible may be employed.
  • the SiC single crystal of this embodiment can be manufactured through the above steps.
  • the manufacturing apparatus 1 shown in FIG. 1 was used.
  • the crucible 5 was a graphite crucible
  • the induction heating device 3 was a high frequency coil
  • the seed shaft 6 was graphite
  • the chamber 2 was a water-cooled stainless steel chamber.
  • the inside of the production apparatus was replaced with helium gas.
  • the raw material of the graphite crucible and the Si—C solution was heated by a high frequency coil to prepare an Si—C solution.
  • a temperature gradient was formed so that the upper part of the Si-C solution had a low temperature.
  • the temperature gradient was formed by controlling the positional relationship between the graphite crucible and the high frequency coil. Specifically, the temperature gradient was formed by arranging the Si—C solution so that the center portion is located above the center of the high-frequency coil (heat generation center). The temperature gradient was confirmed by inserting a thermocouple into the Si—C solution in advance and measuring the temperature separately from this example. The temperature gradient in the vicinity of the SiC seed crystal was about 12 ° C./cm. The temperature of the Si-C solution near the SiC seed crystal during crystal growth was measured. The measurement was performed by measuring the temperature of the graphite on the back surface of the SiC seed crystal with an optical thermometer using a seed shaft provided with a temperature measuring hole. The crystal growth temperature was 1940 ° C.
  • the seed shaft was lowered to allow the SiC seed crystal to land on the Si-C solution.
  • the SiC seed crystal was manufactured by a sublimation recrystallization method and had a circular crystal growth surface with a radius of 37.5 mm.
  • the crystal structure of the SiC seed crystal was 4H—SiC.
  • the crystal growth surface was a single plane and was a (000-1) plane on axis. That is, the offset angle of the crystal growth surface was 0.3 °.
  • the facet region was visually confirmed.
  • the facet area was circular. Table 1 shows the position of the center of gravity of the facet region, the area of the facet region, and the area ratio of the facet region to the crystal growth surface.
  • the position of the center of gravity of the facet region indicates the distance between the center of gravity of the crystal growth surface and the center of gravity of the facet region.
  • the length of the longest line segment among the line segments connecting the center of gravity of the crystal growth surface and the outer periphery of the crystal growth surface is described as r (mm).
  • the seed shaft After landing, the seed shaft was pulled up to form a meniscus. The meniscus height was 0.5 mm. Crystal growth was performed while keeping the temperature of the Si-C solution constant. The crucible and the seed shaft were rotated at 10 rpm in the opposite direction. The time from the landing to the end of crystal growth was 50 hours. After completion of crystal growth, the seed shaft was raised to separate the SiC single crystal from the Si—C solution. After slowly cooling the graphite crucible to room temperature, the SiC single crystal was separated from the seed shaft and collected.
  • the SiC seed crystals of Test No. 1 to Test No. 3 had a center of gravity position of the facet region of 0.25 r or less. Therefore, the SiC single crystals of Test No. 1 to Test No. 3 had a larger inclusion-free thickness than the SiC single crystals of Test No. having the same facet area ratio. Specifically, the inclusion-free thickness of the SiC single crystal of test number 1 was larger than that of the SiC single crystal of test number 4. The SiC single crystal of test number 2 had a larger inclusion-free thickness than the SiC single crystal of test number 5. The SiC single crystal of test number 3 had a larger inclusion-free thickness than the SiC single crystal of test number 6.
  • SiC single crystals having the same test number with the same center of gravity of the facet region solvent inclusion was suppressed as the area ratio of the facet region to the crystal growth surface was larger.
  • the SiC seed crystals of test numbers 2 and 3 had an area ratio of 0.04 or more. Therefore, the SiC single crystals of test numbers 2 and 3 had a larger inclusion-free thickness than the single crystal of test number 1.
  • the SiC seed crystals of test numbers 5 and 6 had an area ratio of 0.04 or more. Therefore, the SiC single crystals of test numbers 5 and 6 had a larger inclusion-free thickness than the SiC single crystal of test number 4.
  • the area ratio of the SiC seed crystal of test number 3 was 0.10 or more. Therefore, the SiC single crystal of test number 3 had a larger inclusion-free thickness than the SiC single crystals of test numbers 1 and 2.
  • the SiC seed crystal of test number 6 had an area ratio of 0.10 or more. Therefore, the SiC single crystal of test number 6 had a larger inclusion-free thickness than the SiC single crystals of test numbers 4 and 5.
  • the SiC seed crystals of Test No. 7 to Test No. 9 had a center of gravity position of the facet region larger than 0.40r. For this reason, the SiC single crystals of Test No. 7 to Test No. 9 had an inclusion free thickness of less than 2.0 mm.

Abstract

Provided is a method for manufacturing an SiC single crystal with a solution growth method, allowing for suppression of solvent inclusion, and an SiC seed crystal. The method for manufacturing an SiC single crystal according to the present embodiment is a manufacturing method based on a solution growth method for growing an SiC single crystal, by contacting a crystal growth face (80) of an SiC seed crystal (8) with an Si-C solution (7). The manufacturing method comprises a preparation step and a growth step. In the preparation step, a starting material is heated and melted to prepare the Si-C solution (7). In the growth step, the crystal growth face (80) is brought into contact with the Si-C solution (7), and a SiC single crystal is grown on the crystal growth face (80). The crystal growth face (80) includes a facet region (81), and the offset angle of the crystal growth face (80) is 0.5° or less. The center of gravity (82) of the facet region (81) is arranged within a distance of 0.40 r from the center of gravity (83) of the crystal growth face (80). The maximum length of a line segment connecting the center of gravity (83) and outer periphery (84) of the crystal growth face (80) is r.

Description

SiC単結晶の製造方法及びSiC種結晶Method for producing SiC single crystal and SiC seed crystal
 本発明は、SiC単結晶の製造方法及びSiC種結晶に関し、さらに詳しくは、溶液成長法によるSiC単結晶の製造方法及び溶液成長法に用いるSiC種結晶に関する。 The present invention relates to a method for producing a SiC single crystal and a SiC seed crystal, and more particularly to a method for producing a SiC single crystal by a solution growth method and a SiC seed crystal used in the solution growth method.
 SiC単結晶は、熱的及び化学的に安定な化合物半導体である。SiC単結晶は、Si単結晶と比較して、優れた物性を有する。例えば、SiC単結晶は、Si単結晶と比較して、大きいバンドギャップ、高い絶縁破壊電圧及び高い熱伝導率を有し、電子の飽和速度が速い。そのため、SiC単結晶は、次世代の半導体材料として注目されている。 SiC single crystal is a thermally and chemically stable compound semiconductor. The SiC single crystal has excellent physical properties as compared with the Si single crystal. For example, a SiC single crystal has a large band gap, a high breakdown voltage, and a high thermal conductivity, and has a high electron saturation rate compared to a Si single crystal. For this reason, SiC single crystals are attracting attention as next-generation semiconductor materials.
 SiC単結晶を製造する方法として、昇華再結晶法(以下、昇華法ともいう)及び溶液成長法(以下、溶液法ともいう)等が知られている。昇華再結晶法では、原料を気相の状態にしてSiC種結晶の上に供給することでSiC単結晶を成長させる。 As a method for producing a SiC single crystal, a sublimation recrystallization method (hereinafter also referred to as a sublimation method), a solution growth method (hereinafter also referred to as a solution method), and the like are known. In the sublimation recrystallization method, a SiC single crystal is grown by supplying a raw material on a SiC seed crystal in a gas phase state.
 一方、溶液成長法では、Si‐C溶液にSiC種結晶を接触させて、SiC種結晶上にSiC単結晶を成長させる。具体的には、坩堝内にSiを含む原料を入れて溶融させ、Si‐C溶液を製造する。Si‐C溶液にSiC種結晶を接触させて、SiC種結晶近傍のSi‐C溶液を過冷却することで、SiC単結晶を製造する。ここで、Si‐C溶液とは、Si又はSi合金の融液に炭素(C)が溶解した溶液のことをいう。 On the other hand, in the solution growth method, a SiC single crystal is grown on the SiC seed crystal by bringing the SiC seed crystal into contact with the Si—C solution. Specifically, a raw material containing Si is put in a crucible and melted to produce a Si—C solution. A SiC single crystal is manufactured by bringing the SiC seed crystal into contact with the Si—C solution and supercooling the Si—C solution in the vicinity of the SiC seed crystal. Here, the Si—C solution refers to a solution in which carbon (C) is dissolved in a melt of Si or Si alloy.
 SiC単結晶を製造する際、その製造方法に関わらず、多結晶の発生、異種の結晶多形の混入、結晶欠陥及び転位の導入等が生じ、SiC単結晶の品質が低下する場合がある。このため、SiC単結晶には、さらなる品質の向上が求められている。 When a SiC single crystal is manufactured, regardless of the manufacturing method, polycrystal generation, mixing of different crystal polymorphs, introduction of crystal defects and dislocations, and the like may occur, and the quality of the SiC single crystal may deteriorate. For this reason, the further improvement of quality is calculated | required by the SiC single crystal.
 SiC単結晶の品質を向上するため、昇華法においてはたとえば、結晶成長中に発生するファセット領域の位置を調整して均質なSiC単結晶を得るための検討がされている。たとえば、特開2004-323348号公報(特許文献1)、特開2009-051701号公報(特許文献2)、特開2010-254520号公報(特許文献3)及び特開2013-087005号公報(特許文献4)には、ファセット領域の位置を調整して、均質なSiC単結晶を得るための技術が提案されている。 In order to improve the quality of the SiC single crystal, in the sublimation method, for example, studies have been made to obtain a uniform SiC single crystal by adjusting the position of the facet region generated during crystal growth. For example, JP 2004-323348 A (Patent Document 1), JP 2009-051701 A (Patent Document 2), JP 2010-254520 A (Patent Document 3), and JP 2013-087005 A (Patent Document 2). Document 4) proposes a technique for obtaining a uniform SiC single crystal by adjusting the position of the facet region.
 一方、溶液法を用いて製造されたSiC単結晶は、昇華法を用いて製造されたSiC単結晶と比較して、マイクロパイプや基底面転位等の欠陥が少ない。そのため、溶液法によるSiC単結晶の製造方法が検討されている。 On the other hand, the SiC single crystal manufactured using the solution method has fewer defects such as micropipes and basal plane dislocations than the SiC single crystal manufactured using the sublimation method. Therefore, a method for producing a SiC single crystal by a solution method has been studied.
 しかしながら、溶液法を用いてSiC単結晶を製造すれば、溶媒インクルージョンが発生する場合がある。溶媒インクルージョンとは、SiC単結晶内部にSi‐C溶液が閉じ込められてしまうことにより生じる欠陥をいう。溶媒インクルージョンが発生すれば、SiC単結晶の品質が低下する。 However, when SiC single crystals are produced using the solution method, solvent inclusion may occur. The solvent inclusion refers to a defect caused by the Si—C solution being confined inside the SiC single crystal. If solvent inclusion occurs, the quality of the SiC single crystal is degraded.
 特開2006-117441号公報(特許文献5)は、溶液法において溶媒インクルージョンの発生を抑制するための技術を提案する。特許文献5では、坩堝の回転数又は回転数および回転方向を周期的に変化させることによってSi‐C溶液を攪拌することを特徴とする。これにより、径が1インチ以上で厚みが5ミクロン以上と大型になっても、インクルージョンのない良質のSiC単結晶を高い結晶成長速度で製造できる、と特許文献5には記載されている。 JP-A-2006-117441 (Patent Document 5) proposes a technique for suppressing the occurrence of solvent inclusion in a solution method. Patent Document 5 is characterized in that the Si—C solution is stirred by periodically changing the number of revolutions or the number of revolutions and the direction of rotation of the crucible. Thus, Patent Document 5 describes that even if the diameter is 1 inch or more and the thickness is as large as 5 microns or more, a high-quality SiC single crystal without inclusion can be produced at a high crystal growth rate.
特開2004-323348号公報JP 2004-323348 A 特開2009-051701号公報JP 2009-051701 A 特開2010-254520号公報JP 2010-254520 A 特開2013-087005号公報JP 2013-087005 A 特開2006-117441号公報JP 2006-117441 A
 しかしながら、上述の特許文献5に開示された技術を用いても、SiC単結晶に溶媒インクルージョンが発生する場合がある。 However, even if the technique disclosed in Patent Document 5 described above is used, solvent inclusion may occur in the SiC single crystal.
 本発明の目的は、溶媒インクルージョンの発生を抑制できる、溶液成長法によるSiC単結晶の製造方法及び溶液成長法に用いるSiC種結晶を提供することである。 An object of the present invention is to provide a method for producing a SiC single crystal by a solution growth method and a SiC seed crystal used for the solution growth method, which can suppress the occurrence of solvent inclusion.
 本発明によるSiC単結晶の製造方法は、SiC種結晶の結晶成長面をSi‐C溶液に接触させてSiC単結晶を成長させる溶液成長法による製造方法である。製造方法は、準備工程と、成長工程とを備える。準備工程では、原料を加熱して溶融し、Si‐C溶液を準備する。成長工程では、結晶成長面をSi‐C溶液に接触させ、結晶成長面上にSiC単結晶を成長させる。結晶成長面はファセット領域を含み、結晶成長面の{0001}面に対するオフセット角は0.5°以下である。ファセット領域の重心は、結晶成長面の重心から0.40r以内の距離に配置される。ここで、結晶成長面の重心と結晶成長面の外周とを結ぶ線分のうち最長の線分の長さをrとする。 The method for producing an SiC single crystal according to the present invention is a production method by a solution growth method in which an SiC single crystal is grown by bringing the crystal growth surface of an SiC seed crystal into contact with an Si—C solution. The manufacturing method includes a preparation process and a growth process. In the preparation step, the raw material is heated and melted to prepare a Si—C solution. In the growth step, the crystal growth surface is brought into contact with the Si—C solution, and an SiC single crystal is grown on the crystal growth surface. The crystal growth surface includes a facet region, and the offset angle of the crystal growth surface with respect to the {0001} plane is 0.5 ° or less. The center of gravity of the facet region is arranged at a distance within 0.40 r from the center of gravity of the crystal growth surface. Here, the length of the longest line segment connecting the center of gravity of the crystal growth surface and the outer periphery of the crystal growth surface is r.
 本発明によるSiC種結晶は、SiC種結晶をSi‐C溶液に接触させてSiC種結晶上にSiC単結晶を成長させる溶液成長法に用いるSiC種結晶である。SiC種結晶は、{0001}面に対するオフセット角が0.5°以下である結晶成長面を備える。結晶成長面は、ファセット領域を含む。ファセット領域の重心は、結晶成長面の重心から0.40r以内の距離に配置される。ここで、結晶成長面の重心と結晶成長面の外周とを結ぶ線分のうち最長の線分の長さをrとする。 The SiC seed crystal according to the present invention is an SiC seed crystal used in a solution growth method in which a SiC single crystal is grown on an SiC seed crystal by bringing the SiC seed crystal into contact with an Si—C solution. The SiC seed crystal has a crystal growth surface having an offset angle of 0.5 ° or less with respect to the {0001} plane. The crystal growth surface includes a facet region. The center of gravity of the facet region is arranged at a distance within 0.40 r from the center of gravity of the crystal growth surface. Here, the length of the longest line segment connecting the center of gravity of the crystal growth surface and the outer periphery of the crystal growth surface is r.
 本発明によるSiC単結晶の製造方法及びSiC種結晶は、溶媒インクルージョンの発生を抑制可能である。 The method for producing a SiC single crystal and the SiC seed crystal according to the present invention can suppress the occurrence of solvent inclusion.
図1は、本実施形態によるSiC単結晶の製造方法に用いられる製造装置の模式図である。FIG. 1 is a schematic view of a manufacturing apparatus used in the method for manufacturing a SiC single crystal according to the present embodiment. 図2は、SiC種結晶の底面図(結晶成長面の図)である。FIG. 2 is a bottom view (a diagram of a crystal growth surface) of the SiC seed crystal. 図3は、図2とは異なる他の実施形態によるSiC種結晶の底面図である。FIG. 3 is a bottom view of a SiC seed crystal according to another embodiment different from FIG.
 本発明者らは、溶媒インクルージョンの発生を抑制できる、溶液法によるSiC単結晶の製造方法について種々検討を行った。その結果、以下の知見を得た。 The present inventors have made various studies on a method for producing an SiC single crystal by a solution method that can suppress the occurrence of solvent inclusion. As a result, the following knowledge was obtained.
 溶液法によるSiC単結晶の結晶成長では、SiC種結晶の結晶成長面をSi‐C溶液に接触させてSiC単結晶を結晶成長させる。SiC種結晶には、ファセット領域が含まれている場合がある。ファセット領域とは、他の領域と同じ結晶構造を持ち、他の領域と比較して螺旋転位密度及び窒素濃度が高い領域をいう。螺旋転位は、結晶成長が進行しやすいステップと呼ばれる原子レベルの小さな階段を有する。ファセット領域は、螺旋転位密度が高いため、結晶成長中にステップの供給源となる。すなわち、結晶成長面にファセット領域が含まれていれば、ファセット領域では、他の領域に比べて優先的に結晶成長が進行する。 In the crystal growth of the SiC single crystal by the solution method, the SiC single crystal is grown by bringing the crystal growth surface of the SiC seed crystal into contact with the Si-C solution. The SiC seed crystal may include a facet region. A facet region refers to a region having the same crystal structure as other regions and having a higher screw dislocation density and nitrogen concentration than other regions. The screw dislocation has a small step at an atomic level called a step in which crystal growth easily proceeds. The facet region is a source of steps during crystal growth because of the high screw dislocation density. That is, if a facet region is included in the crystal growth surface, crystal growth proceeds preferentially in the facet region compared to other regions.
 ファセット領域では、結晶成長が早い。一方、ファセット領域以外の領域では、ファセット領域から遠い程結晶成長が遅い。そのため、結晶成長面の端にファセット領域があれば、ファセット領域とファセット領域から最も離れた領域とで結晶成長速度が大きく異なる。この場合、ファセット領域とファセット領域から最も離れた領域とでSiC単結晶が成長する厚さが大きく異なる。結晶成長厚さが大きく異なれば、ステップバンチングと呼ばれるステップの束化が進行する。ステップバンチングは、SiC単結晶の三次元的成長を促進する。SiC単結晶が三次元的に成長すれば、溶媒の一部がSiC単結晶中に閉じ込められて、溶媒インクルージョンが発生する。 In the facet region, crystal growth is fast. On the other hand, in regions other than the facet region, the crystal growth is slower as the distance from the facet region increases. Therefore, if there is a facet region at the end of the crystal growth surface, the crystal growth rate differs greatly between the facet region and the region farthest from the facet region. In this case, the thickness at which the SiC single crystal grows greatly differs between the facet region and the region farthest from the facet region. If the crystal growth thickness differs greatly, step bundling called step bunching proceeds. Step bunching promotes three-dimensional growth of SiC single crystal. If the SiC single crystal grows three-dimensionally, a part of the solvent is confined in the SiC single crystal, and solvent inclusion occurs.
 本実施形態では、ファセット領域を結晶成長面の中央部に配置する。これにより、ファセット領域とファセット領域から最も離れた領域との距離が小さくなる。そのため、ファセット領域とファセット領域から最も離れた領域とで結晶成長速度の差が小さくなる。つまり、結晶成長厚さのバラつきが抑制される。これにより、ステップバンチング及びSiC単結晶の三次元的成長を抑制する。その結果、溶媒インクルージョンを抑制できる。 In this embodiment, the facet region is arranged at the center of the crystal growth surface. This reduces the distance between the facet area and the area farthest from the facet area. Therefore, the difference in crystal growth rate between the facet region and the region farthest from the facet region is reduced. That is, the variation in the crystal growth thickness is suppressed. This suppresses step bunching and three-dimensional growth of the SiC single crystal. As a result, solvent inclusion can be suppressed.
 以上の知見に基づいて完成した本実施形態によるSiC単結晶の製造方法は、SiC種結晶の結晶成長面をSi‐C溶液に接触させてSiC単結晶を成長させる溶液成長法による製造方法である。製造方法は、準備工程と、成長工程とを備える。準備工程では、原料を加熱して溶融し、Si‐C溶液を準備する。成長工程では、結晶成長面をSi‐C溶液に接触させ、結晶成長面上にSiC単結晶を成長させる。結晶成長面はファセット領域を含み、結晶成長面の{0001}面に対するオフセット角は0.5°以下である。ファセット領域の重心は、結晶成長面の重心から0.40r以内の距離に配置される。ここで、結晶成長面の重心と結晶成長面の外周とを結ぶ線分のうち最長の線分の長さをrとする。 The SiC single crystal manufacturing method according to the present embodiment completed based on the above knowledge is a manufacturing method by a solution growth method in which the SiC single crystal is grown by bringing the crystal growth surface of the SiC seed crystal into contact with the Si-C solution. . The manufacturing method includes a preparation process and a growth process. In the preparation step, the raw material is heated and melted to prepare a Si—C solution. In the growth step, the crystal growth surface is brought into contact with the Si—C solution, and an SiC single crystal is grown on the crystal growth surface. The crystal growth surface includes a facet region, and the offset angle of the crystal growth surface with respect to the {0001} plane is 0.5 ° or less. The center of gravity of the facet region is arranged at a distance within 0.40 r from the center of gravity of the crystal growth surface. Here, the length of the longest line segment connecting the center of gravity of the crystal growth surface and the outer periphery of the crystal growth surface is r.
 上記製造方法は、ファセット領域が中央部に配置されたSiC種結晶を用いてSiC単結晶を製造する。そのため、溶媒インクルージョンが抑制できる。 In the above manufacturing method, a SiC single crystal is manufactured using a SiC seed crystal in which the facet region is arranged in the center. Therefore, solvent inclusion can be suppressed.
 好ましくは、結晶成長面は単一の面である。 Preferably, the crystal growth surface is a single surface.
 この場合、溶媒インクルージョンがさらに抑制できる。 In this case, solvent inclusion can be further suppressed.
 好ましくは、ファセット領域の重心は、結晶成長面の重心から0.25r以内の距離に配置される。 Preferably, the center of gravity of the facet region is arranged at a distance within 0.25r from the center of gravity of the crystal growth surface.
 この場合、溶媒インクルージョンがさらに抑制できる。 In this case, solvent inclusion can be further suppressed.
 好ましくは、ファセット領域の結晶成長面に対する面積比は0.04以上である。 Preferably, the area ratio of the facet region to the crystal growth surface is 0.04 or more.
 この場合、溶媒インクルージョンがさらに抑制できる。 In this case, solvent inclusion can be further suppressed.
 好ましくは、ファセット領域の結晶成長面に対する面積比は0.10以上である。 Preferably, the area ratio of the facet region to the crystal growth surface is 0.10 or more.
 この場合、溶媒インクルージョンがさらに抑制できる。 In this case, solvent inclusion can be further suppressed.
 上記成長工程では、SiC単結晶を2mm以上成長させてもよい。 In the growth step, a SiC single crystal may be grown by 2 mm or more.
 この場合、SiC単結晶の収量を高めることができる。 In this case, the yield of the SiC single crystal can be increased.
 SiC種結晶及びSiC単結晶は4H多形の結晶構造を有してもよい。 The SiC seed crystal and the SiC single crystal may have a 4H polymorphic crystal structure.
 本実施形態によるSiC種結晶は、SiC種結晶をSi‐C溶液に接触させてSiC種結晶上にSiC単結晶を成長させる溶液成長法に用いるSiC種結晶である。SiC種結晶は、{0001}面に対するオフセット角が0.5°以下である結晶成長面を備える。結晶成長面は、ファセット領域を含む。ファセット領域の重心は、結晶成長面の重心から0.40r以内の距離に配置される。ここで、結晶成長面の重心と結晶成長面の外周とを結ぶ線分のうち最長の線分の長さをrとする。 The SiC seed crystal according to the present embodiment is an SiC seed crystal used in a solution growth method in which an SiC single crystal is grown on an SiC seed crystal by bringing the SiC seed crystal into contact with an Si—C solution. The SiC seed crystal has a crystal growth surface having an offset angle of 0.5 ° or less with respect to the {0001} plane. The crystal growth surface includes a facet region. The center of gravity of the facet region is arranged at a distance within 0.40 r from the center of gravity of the crystal growth surface. Here, the length of the longest line segment connecting the center of gravity of the crystal growth surface and the outer periphery of the crystal growth surface is r.
 上記種結晶を用いて製造したSiC単結晶は、溶媒インクルージョンが抑制できる。 The SiC single crystal produced using the seed crystal can suppress solvent inclusion.
 好ましくは、結晶成長面は単一の面である。 Preferably, the crystal growth surface is a single surface.
 この場合、溶媒インクルージョンがさらに抑制できる。 In this case, solvent inclusion can be further suppressed.
 好ましくは、ファセット領域の結晶成長面に対する面積比は0.04以上である。 Preferably, the area ratio of the facet region to the crystal growth surface is 0.04 or more.
 この場合、溶媒インクルージョンがさらに抑制できる。 In this case, solvent inclusion can be further suppressed.
 以下、図面を参照して、本実施形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, this embodiment will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 [製造装置]
 図1は、本実施形態によるSiC単結晶の製造方法に用いられる製造装置1の一例の模式図である。
[Manufacturing equipment]
FIG. 1 is a schematic diagram of an example of a manufacturing apparatus 1 used in the method for manufacturing a SiC single crystal according to the present embodiment.
 製造装置1は、チャンバ2と、坩堝5と、断熱部材4と、誘導加熱装置3と、回転装置20と、シードシャフト6とを備える。 The manufacturing apparatus 1 includes a chamber 2, a crucible 5, a heat insulating member 4, an induction heating device 3, a rotating device 20, and a seed shaft 6.
 チャンバ2は筐体である。チャンバ2は断熱部材4及び誘導加熱装置3を収容する。チャンバ2はさらに、坩堝5を収納可能である。SiC単結晶が製造されるとき、チャンバ2は冷却媒体で冷却される。 Chamber 2 is a casing. The chamber 2 accommodates the heat insulating member 4 and the induction heating device 3. The chamber 2 can further accommodate a crucible 5. When the SiC single crystal is manufactured, the chamber 2 is cooled with a cooling medium.
 坩堝5は、筐体状の断熱部材4内に収納される。坩堝5は、上端が開口した筐体である。坩堝5には、天板が設けられていてもよい。この場合、Si‐C溶液7の蒸発を抑制することができる。坩堝5は、Si‐C溶液7を収容する。 The crucible 5 is housed in a casing-shaped heat insulating member 4. The crucible 5 is a housing whose upper end is open. The crucible 5 may be provided with a top plate. In this case, evaporation of the Si—C solution 7 can be suppressed. The crucible 5 accommodates the Si—C solution 7.
 Si‐C溶液7は、原料を加熱により溶融して生成される。原料は、Siのみであってもよいし、Siと他の金属元素とを含有してもよい。Si‐C溶液7の原料に含有される金属元素はたとえば、チタン(Ti)、マンガン(Mn)、クロム(Cr)、コバルト(Co)、バナジウム(V)及び鉄(Fe)からなる群から選択される1種又は2種以上である。これらの原料にさらに炭素(C)が溶解することでSi‐C溶液7が生成される。添加した炭素源からSi‐C溶液7へ炭素を供給する場合、Si‐C溶液7の原料は炭素(C)を含有する。 The Si-C solution 7 is produced by melting the raw material by heating. The raw material may be only Si, or may contain Si and another metal element. For example, the metal element contained in the raw material of the Si-C solution 7 is selected from the group consisting of titanium (Ti), manganese (Mn), chromium (Cr), cobalt (Co), vanadium (V), and iron (Fe). 1 type, or 2 or more types. The Si—C solution 7 is generated by further dissolving carbon (C) in these raw materials. When carbon is supplied to the Si—C solution 7 from the added carbon source, the raw material of the Si—C solution 7 contains carbon (C).
 坩堝5の溶解によってSi‐C溶液7へ炭素を供給する場合、坩堝5は、好ましくは、炭素を含有する。より好ましくは、坩堝5の素材は黒鉛である。添加した炭素源からSi‐C溶液7へ炭素を供給する場合、坩堝5は、結晶成長温度で安定な材料であればよい。この場合、坩堝5の素材は、セラミックスや高融点の金属であってもよい。坩堝5が黒鉛以外の素材である場合、坩堝5の内表面に黒鉛を含有する被膜を形成してもよい。 When supplying carbon to the Si—C solution 7 by melting the crucible 5, the crucible 5 preferably contains carbon. More preferably, the material of the crucible 5 is graphite. When supplying carbon from the added carbon source to the Si—C solution 7, the crucible 5 may be any material that is stable at the crystal growth temperature. In this case, the material of the crucible 5 may be ceramics or a high melting point metal. When the crucible 5 is made of a material other than graphite, a film containing graphite may be formed on the inner surface of the crucible 5.
 断熱部材4は、坩堝5を取り囲む。断熱部材4は、周知の断熱材からなる。断熱材はたとえば、繊維系又は非繊維系の成形断熱材である。 The heat insulating member 4 surrounds the crucible 5. The heat insulating member 4 is made of a well-known heat insulating material. The heat insulating material is, for example, a fiber-based or non-fiber-based molded heat insulating material.
 誘導加熱装置3は、断熱部材4を取り囲む。誘導加熱装置3は、高周波コイルを含む。高周波コイルは、シードシャフト6と同軸に配置される。誘導加熱装置3は、電磁誘導により、坩堝5を誘導加熱して、坩堝5内に収納された原料を溶融してSi‐C溶液7を生成する。誘導加熱装置3はさらに、Si‐C溶液7を結晶成長温度に維持する。 The induction heating device 3 surrounds the heat insulating member 4. The induction heating device 3 includes a high frequency coil. The high frequency coil is disposed coaxially with the seed shaft 6. The induction heating device 3 induction-heats the crucible 5 by electromagnetic induction and melts the raw material stored in the crucible 5 to generate the Si—C solution 7. The induction heating device 3 further maintains the Si—C solution 7 at the crystal growth temperature.
 回転装置20は、チャンバ2の高さ方向に延びるシャフトである。回転装置20の上端は、チャンバ2の内部に配置される。坩堝5は、回転装置20の上面に配置される。回転装置20は、駆動源21と連結されており、駆動源21により回転装置20の中心軸周りに回転する。回転装置20が回転することによって、坩堝5が回転する。坩堝5及び回転装置20は回転してもよいし、回転しなくてもよい。 Rotating device 20 is a shaft extending in the height direction of chamber 2. The upper end of the rotating device 20 is disposed inside the chamber 2. The crucible 5 is disposed on the upper surface of the rotating device 20. The rotation device 20 is connected to a drive source 21 and rotates around the central axis of the rotation device 20 by the drive source 21. When the rotating device 20 rotates, the crucible 5 rotates. The crucible 5 and the rotating device 20 may rotate or may not rotate.
 シードシャフト6は、チャンバ2の高さ方向に延びるシャフトである。シードシャフト6の上端は、チャンバ2の外部に配置される。シードシャフト6は、チャンバ2の外部で駆動源9に取り付けられている。シードシャフト6の下端は、坩堝5の内部に配置される。シードシャフト6の下端には、SiC種結晶8が取り付けられている。シードシャフト6は、駆動源9によって昇降及び回転できる。シードシャフト6が、駆動源9によって降下して、SiC種結晶8がSi‐C溶液7と接触する。シードシャフト6が、駆動源9によって回転して、SiC種結晶8が回転する。シードシャフト6の回転方向は、坩堝5の回転方向と同じ方向でもよいし、反対方向でもよい。シードシャフト6は回転してもよいし、回転しなくてもよい。好ましくは、シードシャフト6は、黒鉛である。 The seed shaft 6 is a shaft extending in the height direction of the chamber 2. The upper end of the seed shaft 6 is disposed outside the chamber 2. The seed shaft 6 is attached to the drive source 9 outside the chamber 2. The lower end of the seed shaft 6 is disposed inside the crucible 5. An SiC seed crystal 8 is attached to the lower end of the seed shaft 6. The seed shaft 6 can be moved up and down and rotated by a drive source 9. The seed shaft 6 is lowered by the drive source 9, and the SiC seed crystal 8 comes into contact with the Si—C solution 7. The seed shaft 6 is rotated by the drive source 9, and the SiC seed crystal 8 is rotated. The rotation direction of the seed shaft 6 may be the same as the rotation direction of the crucible 5 or may be the opposite direction. The seed shaft 6 may rotate or may not rotate. Preferably, the seed shaft 6 is graphite.
 [SiC種結晶]
 SiC種結晶8は板状であり、SiC単結晶からなる。SiC種結晶8はたとえば、昇華法で製造されたSiC単結晶でもよい。好ましくは、SiC種結晶8の結晶構造は、製造しようとするSiC単結晶の結晶構造と同じである。たとえば、4H多形のSiC単結晶を製造する場合、4H多形のSiC種結晶8を用いることが好ましい。
[SiC seed crystal]
The SiC seed crystal 8 has a plate shape and is made of a SiC single crystal. SiC seed crystal 8 may be, for example, a SiC single crystal manufactured by a sublimation method. Preferably, the crystal structure of SiC seed crystal 8 is the same as the crystal structure of the SiC single crystal to be manufactured. For example, when producing a 4H polymorphic SiC single crystal, it is preferable to use a 4H polymorphic SiC seed crystal 8.
 [結晶成長面]
 SiC種結晶8の表面のうち、Si‐C溶液7と接触し、その上にSiC単結晶が成長する面を結晶成長面という。本発明の種結晶の結晶成長面の{0001}面に対するオフセット角は0.5°以下である。本明細書において、結晶成長面の{0001}面に対するオフセット角を単に「オフセット角」ともいう。オフセット角が0.5°より大きければ、結晶成長面において、{0001}面から近い領域と、{0001}面から遠い領域とで、ステップ密度が異なる。具体的には、結晶成長面上の{0001}面から近い領域は、結晶成長面上の{0001}面から遠い領域よりも、ステップ密度が高くなる。この場合、ステップ密度の高い領域では、ステップバンチングが起こりやすい。そのため、成長した結晶表面に凹凸が生じ、溶媒インクルージョンが発生する場合がある。したがって、本発明の種結晶の結晶成長面の{0001}面に対するオフセット角は0.5°以下である。好ましくは、結晶成長面は{0001}面である。すなわち、オフセット角は0.0°である。さらに好ましくは、結晶成長面は(000-1)面(カーボン面)である。なお、本明細書において、結晶成長面の{0001}面に対するオフセット角が0.5°以下であることを、「結晶成長面はon axisである」ともいう。
[Crystal growth surface]
Of the surface of the SiC seed crystal 8, the surface on which the SiC single crystal grows on the Si-C solution 7 is called a crystal growth surface. The offset angle of the crystal growth surface of the seed crystal of the present invention with respect to the {0001} plane is 0.5 ° or less. In the present specification, the offset angle of the crystal growth surface with respect to the {0001} plane is also simply referred to as “offset angle”. If the offset angle is larger than 0.5 °, the step density is different between a region near the {0001} plane and a region far from the {0001} plane on the crystal growth surface. Specifically, the step density is higher in the region near the {0001} plane on the crystal growth surface than in the region far from the {0001} plane on the crystal growth surface. In this case, step bunching is likely to occur in an area where the step density is high. For this reason, irregularities are generated on the surface of the grown crystal, and solvent inclusion may occur. Therefore, the offset angle of the crystal growth surface of the seed crystal of the present invention with respect to the {0001} plane is 0.5 ° or less. Preferably, the crystal growth surface is a {0001} plane. That is, the offset angle is 0.0 °. More preferably, the crystal growth plane is a (000-1) plane (carbon plane). In this specification, the fact that the offset angle of the crystal growth surface with respect to the {0001} plane is 0.5 ° or less is also referred to as “the crystal growth surface is on axis”.
 好ましくは、本発明の種結晶の結晶成長面は単一の面である。本明細書において単一の面とは、稜線を有しない平滑な面を意味する。本発明の種結晶の結晶成長面は、稜線を有していなければ、微視的な歪みを有していてもよい。種結晶の結晶成長面に稜線を有する場合、成長した結晶表面のうち、稜線部分に凹凸が生じる場合がある。その結果、溶媒インクルージョンが生じる場合がある。さらに好ましくは、結晶成長面は、単一の平面である。 Preferably, the crystal growth surface of the seed crystal of the present invention is a single surface. In this specification, a single surface means a smooth surface having no ridgeline. The crystal growth surface of the seed crystal of the present invention may have microscopic distortion as long as it does not have a ridgeline. When the crystal growth surface of the seed crystal has a ridge line, unevenness may occur in the ridge line portion of the grown crystal surface. As a result, solvent inclusion may occur. More preferably, the crystal growth surface is a single plane.
 図2は、SiC種結晶8の底面図(結晶成長面の図)である。図2を参照して、結晶成長面80は、ファセット領域81を含む。結晶成長面80は、図2に示す円形でもよいし、他の形状でもよい。結晶成長面80の形状はたとえば、図3に示す六角形である。結晶成長面80の形状は、他の多角形(四角形及び八角形等)でもよいし、楕円形でもよい。結晶成長面80の形状は特に限定されない。 FIG. 2 is a bottom view of the SiC seed crystal 8 (a diagram of a crystal growth surface). Referring to FIG. 2, crystal growth surface 80 includes a facet region 81. The crystal growth surface 80 may be circular as shown in FIG. 2 or other shapes. The shape of the crystal growth surface 80 is, for example, a hexagon shown in FIG. The shape of the crystal growth surface 80 may be another polygon (such as a quadrangle and an octagon), or may be an ellipse. The shape of the crystal growth surface 80 is not particularly limited.
 [ファセット領域] 
 ファセット領域81とは、他の領域と同じ結晶構造を持ち、他の領域と比較して螺旋転位密度及び窒素濃度が高い領域をいう。ファセット領域81は、周知の方法により螺旋転位密度及び窒素濃度を測定することで確認することができる。ファセット領域81はさらに、次の方法でも確認することができる。SiC種結晶8を1mm以下の厚さに切断する。切断片を白熱電球等の光源の前に配置して光を透過させる。目視により、他の領域より着色が強い部分(ファセット領域81)を確認できる。
[Facet area]
The facet region 81 is a region having the same crystal structure as other regions and having a higher screw dislocation density and nitrogen concentration than the other regions. The facet region 81 can be confirmed by measuring the screw dislocation density and the nitrogen concentration by a known method. The facet area 81 can also be confirmed by the following method. The SiC seed crystal 8 is cut to a thickness of 1 mm or less. The cut piece is placed in front of a light source such as an incandescent bulb to transmit light. A portion (facet region 81) that is more strongly colored than the other regions can be visually confirmed.
 [ファセット領域の位置]
 ファセット領域81は、結晶成長面80の中央部に配置される。具体的には、ファセット領域81の重心82は、結晶成長面80の重心83から0.40r以内の距離に配置される。ここで、結晶成長面80の重心83と結晶成長面80の外周84とを結ぶ線分のうち最長の線分の長さをrとする。ファセット領域81が結晶成長面80の中央部に配置されることで、ファセット領域81とファセット領域81から最も離れた領域との距離が小さくなる。そのため、ファセット領域81とファセット領域81から最も離れた領域とで結晶成長速度の差が小さくなる。つまり、結晶成長厚さのバラつきが抑制される。これにより、結晶成長中にステップバンチングの進行が抑制される。その結果、溶媒インクルージョンを抑制できる。
[Position of facet area]
Facet region 81 is arranged at the center of crystal growth surface 80. Specifically, the centroid 82 of the facet region 81 is arranged at a distance within 0.40 r from the centroid 83 of the crystal growth surface 80. Here, the length of the longest line segment among the line segments connecting the center of gravity 83 of the crystal growth surface 80 and the outer periphery 84 of the crystal growth surface 80 is r. By disposing facet region 81 in the center of crystal growth surface 80, the distance between facet region 81 and the region farthest from facet region 81 is reduced. Therefore, the difference in crystal growth rate between the facet region 81 and the region farthest from the facet region 81 is reduced. That is, the variation in the crystal growth thickness is suppressed. This suppresses the progress of step bunching during crystal growth. As a result, solvent inclusion can be suppressed.
 ファセット領域81の重心82の位置が、結晶成長面80の重心83に近い程、溶媒インクルージョンを抑制する効果が高くなる。好ましくは、ファセット領域81の重心82は、結晶成長面80の重心83から0.25r以内の距離に配置される。 The closer the position of the center of gravity 82 of the facet region 81 is to the center of gravity 83 of the crystal growth surface 80, the higher the effect of suppressing solvent inclusion. Preferably, the center of gravity 82 of the facet region 81 is arranged at a distance within 0.25 r from the center of gravity 83 of the crystal growth surface 80.
 [ファセット領域の面積比]
 さらに、ファセット領域81の結晶成長面80に対する面積比が大きい程、溶媒インクルージョンを抑制する効果が高くなる。これは、上記面積比が大きい程、ファセット領域81とファセット領域81から最も離れた領域との距離が小さくなるためであると推測される。好ましくは、ファセット領域81の結晶成長面80に対する面積比は0.04以上、より好ましくは0.10以上である。ファセット領域81の結晶成長面80に対する面積比の上限は特に限定されない。
[Area ratio of facet area]
Furthermore, the larger the area ratio of the facet region 81 to the crystal growth surface 80, the higher the effect of suppressing solvent inclusion. This is presumably because the distance between the facet region 81 and the region farthest from the facet region 81 decreases as the area ratio increases. Preferably, the area ratio of facet region 81 to crystal growth surface 80 is 0.04 or more, more preferably 0.10 or more. The upper limit of the area ratio of facet region 81 to crystal growth surface 80 is not particularly limited.
 上記ファセット領域81を中央部に含む結晶成長面80を含むSiC種結晶8は、SiC単結晶インゴットから切り出されることによって製造される。SiC単結晶インゴットの切り出し方法はたとえば、周知の方法を採用できる。たとえば、ブレードソー方式及びワイヤーソー方式である。SiC種結晶8を切り出す際、ファセット領域81と結晶成長面80との位置を、上述のとおりとなる様に適宜調整する。 The SiC seed crystal 8 including the crystal growth surface 80 including the facet region 81 in the center is manufactured by being cut out from a SiC single crystal ingot. For example, a well-known method can be adopted as a method for cutting the SiC single crystal ingot. For example, a blade saw method and a wire saw method. When the SiC seed crystal 8 is cut out, the positions of the facet region 81 and the crystal growth surface 80 are appropriately adjusted so as to be as described above.
 [製造方法]
 本実施形態によるSiC単結晶の製造方法は、準備工程と、成長工程とを備える。
[Production method]
The manufacturing method of the SiC single crystal according to the present embodiment includes a preparation process and a growth process.
 [準備工程]
 準備工程では、原料を加熱して溶融し、Si‐C溶液7を準備する。初めに、坩堝5内に上述の組成を有するSi‐C溶液7の原料を収納する。原料が収納された坩堝5を、チャンバ2内の回転装置20の上面に配置する。坩堝5をチャンバ2内に収納した後、チャンバ2内に不活性ガス、たとえば、ヘリウムガスを充填する。さらに、誘導加熱装置3によって、坩堝5及びSi‐C溶液7の原料を、Si‐C溶液7の原料の融点以上に加熱する。炭素を含有する坩堝5を加熱すれば、坩堝5から炭素が融液に溶け込む。その結果、Si‐C溶液7が生成される。別の方法として、炭化水素ガスからSi‐C溶液7へ炭素を溶解させる気相経由の方法がある。さらに別の方法として、固相の炭素源をSi‐C溶液7に投入して溶解させる方法がある。固相の炭素源はたとえば、黒鉛、非晶質炭素原料、SiC及び添加元素の炭化物からなる群から選択される1種又は2種以上である。これらは、ブロック、棒、顆粒及び紛体等の形状でSi‐C溶液7に添加される。炭素を含む原料を加熱することでSi‐C溶液7が生成する。
[Preparation process]
In the preparation step, the raw material is heated and melted to prepare the Si—C solution 7. First, the raw material of the Si—C solution 7 having the above composition is stored in the crucible 5. The crucible 5 containing the raw material is disposed on the upper surface of the rotating device 20 in the chamber 2. After the crucible 5 is stored in the chamber 2, the chamber 2 is filled with an inert gas, for example, helium gas. Further, the raw material of the crucible 5 and the Si—C solution 7 is heated by the induction heating device 3 to the melting point or higher of the raw material of the Si—C solution 7. If the crucible 5 containing carbon is heated, carbon melts from the crucible 5 into the melt. As a result, a Si—C solution 7 is generated. As another method, there is a method via a gas phase in which carbon is dissolved from a hydrocarbon gas into the Si—C solution 7. As yet another method, there is a method in which a solid-phase carbon source is charged into the Si—C solution 7 and dissolved. The solid-phase carbon source is, for example, one or more selected from the group consisting of graphite, amorphous carbon raw material, SiC, and carbides of additive elements. These are added to the Si-C solution 7 in the form of blocks, rods, granules and powders. The Si—C solution 7 is generated by heating the raw material containing carbon.
 加熱は、Si‐C溶液7が結晶成長温度に到達するまで行う。加熱は、結晶成長温度まで継続してもよいし、一定温度で保持する期間を設けてもよい。一定温度で保持する場合、その保持温度は、原料の液相温度以上であればよい。この場合、加熱は、Si‐C溶液7中のSiC濃度が飽和状態に近づくまで行う。固体の炭素源を使用する場合は、炭素供給源が完全に溶解するまで加熱することが好ましい。加熱時間はたとえば、0.5~10時間である。 The heating is performed until the Si-C solution 7 reaches the crystal growth temperature. Heating may be continued up to the crystal growth temperature, or a period for holding at a constant temperature may be provided. When holding at a constant temperature, the holding temperature should just be more than the liquidus temperature of a raw material. In this case, the heating is performed until the SiC concentration in the Si—C solution 7 approaches a saturated state. When using a solid carbon source, it is preferable to heat until the carbon source is completely dissolved. The heating time is, for example, 0.5 to 10 hours.
 [成長工程]
 成長工程では、Si‐C溶液7にSiC種結晶8の結晶成長面80を接触させ、SiC種結晶8の結晶成長面80上にSiC単結晶を成長させる。
[Growth process]
In the growth step, the crystal growth surface 80 of the SiC seed crystal 8 is brought into contact with the Si—C solution 7 to grow a SiC single crystal on the crystal growth surface 80 of the SiC seed crystal 8.
 Si‐C溶液7を生成した後、シードシャフト6を降下させて、SiC種結晶8の結晶成長面80をSi‐C溶液7に接触させる(以下、着液ともいう)。結晶成長面80はon axisであり、ファセット領域81を含む。ファセット領域81は、螺旋転位を含む。螺旋転位が有するステップ(原子レベルの小さな階段)は、結晶構造に依存した構造である。そのため、SiC種結晶8と同様の結晶構造が安定して成長する。 After the Si—C solution 7 is generated, the seed shaft 6 is lowered, and the crystal growth surface 80 of the SiC seed crystal 8 is brought into contact with the Si—C solution 7 (hereinafter also referred to as a landing liquid). The crystal growth surface 80 is on axis and includes a facet region 81. The facet region 81 includes a screw dislocation. The steps (small steps at the atomic level) possessed by screw dislocations are structures depending on the crystal structure. Therefore, a crystal structure similar to SiC seed crystal 8 grows stably.
 誘導加熱装置3の出力を調整して、Si‐C溶液7の温度を結晶成長温度に維持する。結晶成長温度はたとえば1850~2050℃である。 The output of the induction heating device 3 is adjusted to maintain the temperature of the Si—C solution 7 at the crystal growth temperature. The crystal growth temperature is, for example, 1850 to 2050 ° C.
 Si‐C溶液7に温度勾配を付与することによって、効率的にSiC単結晶を製造できる。具体的には、Si‐C溶液7中SiC種結晶8の近傍が、他の部分より低温になるような温度勾配を付与する。これにより、SiC種結晶8の近傍のSiCの過飽和度を高めることができる。その結果、SiC単結晶の成長速度が速くなる。たとえば、誘導加熱装置3の出力を調整して、Si‐C溶液7の上部が低温になるように温度勾配を付与する。他には、坩堝5からの伝熱によりSi‐C溶液7の温度を維持するように誘導加熱装置3の出力を調整する。これにより、Si‐C溶液7の中心部が低温となるような温度勾配を付与する。温度勾配は、上下方向及び水平方向のいずれの場合であっても、5~50℃/cmの範囲であることが好ましい。温度勾配が5℃/cm以上であれば、SiC単結晶の成長速度が速くなる。温度勾配が50℃/cm以下であれば、Si‐C溶液7中のSiCの核の自然発生を抑制できる。 By applying a temperature gradient to the Si-C solution 7, a SiC single crystal can be produced efficiently. Specifically, a temperature gradient is applied so that the vicinity of the SiC seed crystal 8 in the Si—C solution 7 is lower in temperature than other portions. Thereby, the supersaturation degree of SiC in the vicinity of SiC seed crystal 8 can be increased. As a result, the growth rate of the SiC single crystal is increased. For example, the output of the induction heating device 3 is adjusted to give a temperature gradient so that the upper part of the Si—C solution 7 becomes a low temperature. Otherwise, the output of the induction heating device 3 is adjusted so that the temperature of the Si—C solution 7 is maintained by heat transfer from the crucible 5. As a result, a temperature gradient is applied so that the center of the Si—C solution 7 has a low temperature. The temperature gradient is preferably in the range of 5 to 50 ° C./cm regardless of the vertical direction or the horizontal direction. If the temperature gradient is 5 ° C./cm or more, the growth rate of the SiC single crystal is increased. If the temperature gradient is 50 ° C./cm or less, spontaneous generation of SiC nuclei in the Si—C solution 7 can be suppressed.
 成長工程は、Si‐C溶液7の温度を一定に維持しながら行ってもよいし、昇温しながら行ってもよい。Si‐C溶液7を昇温させながら結晶成長を行うことにより、Si‐C溶液7における炭素(C)濃度の過飽和度を、適度な範囲に調整することができる。そのため、螺旋成長が支配的に進行する。その結果、2次元核成長による異種の結晶多形の混入をさらに抑制できる。Si‐C溶液7を昇温しながら成長工程を実施する場合、昇温速度が一定の範囲内であれば、SiC単結晶が溶解されることなく、安定して2次元核成長を抑制できる。 The growth step may be performed while maintaining the temperature of the Si—C solution 7 constant or may be performed while the temperature is increased. By performing crystal growth while raising the temperature of the Si—C solution 7, the degree of supersaturation of the carbon (C) concentration in the Si—C solution 7 can be adjusted to an appropriate range. Therefore, spiral growth proceeds predominantly. As a result, mixing of different crystal polymorphs due to two-dimensional nucleus growth can be further suppressed. When the growth step is performed while raising the temperature of the Si—C solution 7, if the rate of temperature rise is within a certain range, the two-dimensional nucleus growth can be stably suppressed without dissolving the SiC single crystal.
 着液後に、メニスカスを形成してもよい。メニスカスを形成する場合、Si‐C溶液7に接触したSiC種結晶8を、Si‐C溶液7の液面より上方に引き上げる。メニスカスを形成することによって、Si‐C溶液7の濡れ上がりを抑制することができる。その結果、多結晶が抑制できる。メニスカス高さはたとえば、0.1~4.0mmである。 A meniscus may be formed after the landing. In the case of forming a meniscus, the SiC seed crystal 8 in contact with the Si—C solution 7 is pulled upward from the liquid level of the Si—C solution 7. By forming the meniscus, wetting of the Si—C solution 7 can be suppressed. As a result, polycrystals can be suppressed. The meniscus height is, for example, 0.1 to 4.0 mm.
 [その他の製造方法]
 図1では、坩堝5を用いる製造装置1の例を示している。しかしながら、坩堝5を用いず、電磁力により原料を浮揚させて溶解するレビテーション法を採用してもよい。他には、水冷された金属坩堝内で磁気反発により浮揚したSi‐C溶液7を生成するコールドクルーシブル法を採用してもよい。
[Other manufacturing methods]
In FIG. 1, the example of the manufacturing apparatus 1 using the crucible 5 is shown. However, a levitation method in which the raw material is levitated and melted by electromagnetic force without using the crucible 5 may be employed. Alternatively, a cold crucible method for generating the Si—C solution 7 levitated by magnetic repulsion in a water-cooled metal crucible may be employed.
 以上の工程により、本実施形態のSiC単結晶を製造できる。 The SiC single crystal of this embodiment can be manufactured through the above steps.
 図1に示す製造装置1を用いた。実施例において、坩堝5は黒鉛坩堝であり、誘導加熱装置3は高周波コイルであり、シードシャフト6は黒鉛であり、チャンバ2は水冷ステンレスチャンバであった。 The manufacturing apparatus 1 shown in FIG. 1 was used. In the example, the crucible 5 was a graphite crucible, the induction heating device 3 was a high frequency coil, the seed shaft 6 was graphite, and the chamber 2 was a water-cooled stainless steel chamber.
 黒鉛坩堝内に、Si‐C溶液の原料(モル比、Si:Cr=60:40)を投入した。製造装置の内部を、ヘリウムガスで置換した。高周波コイルにより黒鉛坩堝及びSi‐C溶液の原料を加熱して、Si‐C溶液を作製した。 In a graphite crucible, the raw material of the Si—C solution (molar ratio, Si: Cr = 60: 40) was charged. The inside of the production apparatus was replaced with helium gas. The raw material of the graphite crucible and the Si—C solution was heated by a high frequency coil to prepare an Si—C solution.
 Si‐C溶液の上部が低温となるように温度勾配を形成した。温度勾配の形成は、黒鉛坩堝と高周波コイルとの位置関係を制御して形成した。具体的には、Si‐C溶液の中央部が高周波コイルの高さの中央(発熱中心)よりも上側になるように配置することにより、温度勾配を形成した。温度勾配は、本実施例とは別に、あらかじめSi‐C溶液内に熱電対を挿入して温度を測定することで確認した。SiC種結晶近傍の温度勾配は約12℃/cmであった。結晶成長中のSiC種結晶近傍のSi‐C溶液の温度を測定した。測定は、測温孔を備えたシードシャフトを用いて、SiC種結晶背面の黒鉛の温度を光温度計で測温することで実施した。結晶成長温度は1940℃であった。 A temperature gradient was formed so that the upper part of the Si-C solution had a low temperature. The temperature gradient was formed by controlling the positional relationship between the graphite crucible and the high frequency coil. Specifically, the temperature gradient was formed by arranging the Si—C solution so that the center portion is located above the center of the high-frequency coil (heat generation center). The temperature gradient was confirmed by inserting a thermocouple into the Si—C solution in advance and measuring the temperature separately from this example. The temperature gradient in the vicinity of the SiC seed crystal was about 12 ° C./cm. The temperature of the Si-C solution near the SiC seed crystal during crystal growth was measured. The measurement was performed by measuring the temperature of the graphite on the back surface of the SiC seed crystal with an optical thermometer using a seed shaft provided with a temperature measuring hole. The crystal growth temperature was 1940 ° C.
 シードシャフトを降下させて、SiC種結晶をSi‐C溶液に着液させた。SiC種結晶は、昇華再結晶法により製造され、半径37.5mmの円形の結晶成長面を有した。SiC種結晶の結晶構造は4H‐SiCであった。結晶成長面は単一の平面であり、(000‐1)面on axisであった。つまり、結晶成長面のオフセット角は0.3°であった。上述の方法を用いて、目視でファセット領域を確認した。ファセット領域は円形であった。ファセット領域の重心位置、ファセット領域の面積及びファセット領域の結晶成長面に対する面積比は表1に示すとおりであった。表1において、「ファセット領域の重心位置」とは、結晶成長面の重心とファセット領域の重心との距離を示す。上記距離は、結晶成長面の重心と結晶成長面の外周とを結ぶ線分のうち最長の線分の長さをr(mm)として記載した。 The seed shaft was lowered to allow the SiC seed crystal to land on the Si-C solution. The SiC seed crystal was manufactured by a sublimation recrystallization method and had a circular crystal growth surface with a radius of 37.5 mm. The crystal structure of the SiC seed crystal was 4H—SiC. The crystal growth surface was a single plane and was a (000-1) plane on axis. That is, the offset angle of the crystal growth surface was 0.3 °. Using the method described above, the facet region was visually confirmed. The facet area was circular. Table 1 shows the position of the center of gravity of the facet region, the area of the facet region, and the area ratio of the facet region to the crystal growth surface. In Table 1, “the position of the center of gravity of the facet region” indicates the distance between the center of gravity of the crystal growth surface and the center of gravity of the facet region. For the distance, the length of the longest line segment among the line segments connecting the center of gravity of the crystal growth surface and the outer periphery of the crystal growth surface is described as r (mm).
 着液後、シードシャフトを引き上げてメニスカスを形成した。メニスカス高さは0.5mmであった。Si‐C溶液の温度を一定に維持して結晶成長を行った。坩堝とシードシャフトとは逆方向に10rpmで回転させた。着液から結晶成長終了までの時間は、50時間であった。結晶成長終了後、シードシャフトを上昇させてSiC単結晶をSi‐C溶液から離した。黒鉛坩堝を室温まで徐冷した後、SiC単結晶をシードシャフトから離して回収した。 After landing, the seed shaft was pulled up to form a meniscus. The meniscus height was 0.5 mm. Crystal growth was performed while keeping the temperature of the Si-C solution constant. The crucible and the seed shaft were rotated at 10 rpm in the opposite direction. The time from the landing to the end of crystal growth was 50 hours. After completion of crystal growth, the seed shaft was raised to separate the SiC single crystal from the Si—C solution. After slowly cooling the graphite crucible to room temperature, the SiC single crystal was separated from the seed shaft and collected.
 [成長厚さ測定試験]
 各試験番号のSiC種結晶及びSiC単結晶を結晶成長方向に切断し、断面を研磨した。断面をノマルスキ型微分干渉顕微鏡を用いて観察した。SiC単結晶の結晶成長方向の厚さを測定し、成長厚さとした。結果を表1に示す。
[Growth thickness measurement test]
The SiC seed crystal and SiC single crystal of each test number were cut in the crystal growth direction, and the cross section was polished. The cross section was observed using a Nomarski type differential interference microscope. The thickness of the SiC single crystal in the crystal growth direction was measured and used as the growth thickness. The results are shown in Table 1.
 [インクルージョンフリー厚さ測定試験]
 各試験番号のSiC単結晶において、溶媒インクルージョンを発生せずに結晶成長した厚さを測定した。具体的には、上記成長厚さ測定試験と同様に顕微鏡観察を行った。ファセット領域とそれ以外の領域との境界に発生したステップバンチング及び溶媒インクルージョンが発生していないSiC単結晶の結晶成長厚さを測定し、インクルージョンフリー厚さとした。結果を表1に示す。
[Inclusion-free thickness measurement test]
In the SiC single crystal of each test number, the thickness of the crystal grown without generating solvent inclusion was measured. Specifically, microscopic observation was performed in the same manner as in the growth thickness measurement test. The crystal growth thickness of the SiC single crystal in which no step bunching or solvent inclusion occurred at the boundary between the facet region and the other region was measured to obtain an inclusion free thickness. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [評価結果]
 試験番号1~試験番号6では、適切なSiC種結晶を用いてSiC単結晶を製造した。具体的には、試験番号1~試験番号6のSiC種結晶は、ファセット領域の重心位置が0.40r以下であった。そのため、試験番号1~試験番号6のSiC単結晶はインクルージョンフリー厚さが2.0mm以上となった。
[Evaluation results]
In Test No. 1 to Test No. 6, SiC single crystals were produced using appropriate SiC seed crystals. Specifically, the SiC seed crystals of Test No. 1 to Test No. 6 had a center of gravity position of the facet region of 0.40 r or less. For this reason, the SiC single crystals of Test No. 1 to Test No. 6 had an inclusion free thickness of 2.0 mm or more.
 さらに、試験番号1~試験番号3のSiC種結晶は、ファセット領域の重心位置が0.25r以下であった。そのため、試験番号1~試験番号3のSiC単結晶は、ファセット領域の面積比が同程度の試験番号のSiC単結晶と比較して、インクルージョンフリー厚さが大きかった。具体的には、試験番号1のSiC単結晶は試験番号4のSiC単結晶と比較してインクルージョンフリー厚さが大きかった。試験番号2のSiC単結晶は試験番号5のSiC単結晶と比較してインクルージョンフリー厚さが大きかった。試験番号3のSiC単結晶は試験番号6のSiC単結晶と比較してインクルージョンフリー厚さが大きかった。 Furthermore, the SiC seed crystals of Test No. 1 to Test No. 3 had a center of gravity position of the facet region of 0.25 r or less. Therefore, the SiC single crystals of Test No. 1 to Test No. 3 had a larger inclusion-free thickness than the SiC single crystals of Test No. having the same facet area ratio. Specifically, the inclusion-free thickness of the SiC single crystal of test number 1 was larger than that of the SiC single crystal of test number 4. The SiC single crystal of test number 2 had a larger inclusion-free thickness than the SiC single crystal of test number 5. The SiC single crystal of test number 3 had a larger inclusion-free thickness than the SiC single crystal of test number 6.
 さらに、ファセット領域の重心位置が同様の試験番号のSiC単結晶同士を比較して、結晶成長面に対するファセット領域の面積比が大きい程溶媒インクルージョンが抑制された。具体的には、試験番号2及び3のSiC種結晶は、上記面積比が0.04以上であった。そのため、試験番号2及び3のSiC単結晶は、試験番号1の単結晶と比較してインクルージョンフリー厚さが大きかった。試験番号5及び6のSiC種結晶は、上記面積比が0.04以上であった。そのため、試験番号5及び6のSiC単結晶は試験番号4のSiC単結晶と比較してインクルージョンフリー厚さが大きかった。 Furthermore, comparing SiC single crystals having the same test number with the same center of gravity of the facet region, solvent inclusion was suppressed as the area ratio of the facet region to the crystal growth surface was larger. Specifically, the SiC seed crystals of test numbers 2 and 3 had an area ratio of 0.04 or more. Therefore, the SiC single crystals of test numbers 2 and 3 had a larger inclusion-free thickness than the single crystal of test number 1. The SiC seed crystals of test numbers 5 and 6 had an area ratio of 0.04 or more. Therefore, the SiC single crystals of test numbers 5 and 6 had a larger inclusion-free thickness than the SiC single crystal of test number 4.
 さらに、試験番号3のSiC種結晶は、上記面積比が0.10以上であった。そのため、試験番号3のSiC単結晶は、試験番号1及び2のSiC単結晶と比較してインクルージョンフリー厚さが大きかった。試験番号6のSiC種結晶は、上記面積比が0.10以上であった。そのため、試験番号6のSiC単結晶は、試験番号4及び5のSiC単結晶と比較してインクルージョンフリー厚さが大きかった。 Further, the area ratio of the SiC seed crystal of test number 3 was 0.10 or more. Therefore, the SiC single crystal of test number 3 had a larger inclusion-free thickness than the SiC single crystals of test numbers 1 and 2. The SiC seed crystal of test number 6 had an area ratio of 0.10 or more. Therefore, the SiC single crystal of test number 6 had a larger inclusion-free thickness than the SiC single crystals of test numbers 4 and 5.
 一方、試験番号7~試験番号9のSiC種結晶は、ファセット領域の重心位置が0.40rより大きかった。そのため、試験番号7~試験番号9のSiC単結晶は、インクルージョンフリー厚さが2.0mm未満となった。 On the other hand, the SiC seed crystals of Test No. 7 to Test No. 9 had a center of gravity position of the facet region larger than 0.40r. For this reason, the SiC single crystals of Test No. 7 to Test No. 9 had an inclusion free thickness of less than 2.0 mm.
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The embodiment of the present invention has been described above. However, the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately changing the above-described embodiment without departing from the spirit thereof.
 1    製造装置
 7    Si‐C溶液
 8    SiC種結晶
 80   結晶成長面
 81   ファセット領域
 82   ファセット領域の重心
 83   結晶成長面の重心
 84   結晶成長面の外周
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 7 Si-C solution 8 SiC seed crystal 80 Crystal growth surface 81 Facet region 82 Center of gravity of facet region 83 Center of gravity of crystal growth surface 84 Perimeter of crystal growth surface

Claims (10)

  1.  SiC種結晶の結晶成長面をSi‐C溶液に接触させてSiC単結晶を成長させる溶液成長法によるSiC単結晶の製造方法であって、
     原料を加熱して溶融し、前記Si‐C溶液を準備する工程と、
     重心が前記結晶成長面の重心から0.40r以内の距離に配置されるファセット領域を含み、{0001}面に対するオフセット角が0.5°以下である前記結晶成長面を前記Si‐C溶液に接触させ、前記結晶成長面上に前記SiC単結晶を成長させる工程とを備える、SiC単結晶の製造方法。
     ここで、前記結晶成長面の前記重心と前記結晶成長面の外周とを結ぶ線分のうち最長の線分の長さをrとする。
    A method for producing an SiC single crystal by a solution growth method in which an SiC single crystal is grown by bringing a crystal growth surface of an SiC seed crystal into contact with an Si-C solution,
    Heating and melting the raw material to prepare the Si-C solution;
    The crystal growth surface including a facet region whose center of gravity is disposed at a distance within 0.40 r from the center of gravity of the crystal growth surface and having an offset angle of 0.5 ° or less with respect to the {0001} plane is added to the Si-C solution. And a step of growing the SiC single crystal on the crystal growth surface.
    Here, the length of the longest line segment among the line segments connecting the center of gravity of the crystal growth surface and the outer periphery of the crystal growth surface is defined as r.
  2.  請求項1に記載のSiC単結晶の製造方法であって、
     前記結晶成長面は単一の面である、SiC単結晶の製造方法。
    It is a manufacturing method of the SiC single crystal according to claim 1,
    The method for producing a SiC single crystal, wherein the crystal growth surface is a single surface.
  3.  請求項1又は請求項2に記載のSiC単結晶の製造方法であって、
     前記ファセット領域の前記重心は、前記結晶成長面の前記重心から0.25r以内の距離に配置される、SiC単結晶の製造方法。
    A method for producing a SiC single crystal according to claim 1 or 2,
    The SiC single crystal manufacturing method, wherein the center of gravity of the facet region is arranged at a distance within 0.25 r from the center of gravity of the crystal growth surface.
  4.  請求項1~請求項3に記載のSiC単結晶の製造方法であって、
     前記ファセット領域の前記結晶成長面に対する面積比は0.04以上である、SiC単結晶の製造方法。
    A method for producing a SiC single crystal according to any one of claims 1 to 3,
    The SiC single crystal manufacturing method, wherein an area ratio of the facet region to the crystal growth surface is 0.04 or more.
  5.  請求項4に記載のSiC単結晶の製造方法であって、
     前記面積比は0.10以上である、SiC単結晶の製造方法。
    It is a manufacturing method of the SiC single crystal according to claim 4,
    The manufacturing method of the SiC single crystal whose said area ratio is 0.10 or more.
  6.  請求項1~請求項5のいずれか1項に記載のSiC単結晶の製造方法であって、
     前記SiC単結晶を成長させる工程では、
     前記結晶成長面上に前記SiC単結晶を2mm以上成長させる、SiC単結晶の製造方法。
    A method for producing a SiC single crystal according to any one of claims 1 to 5,
    In the step of growing the SiC single crystal,
    A method for producing a SiC single crystal, wherein the SiC single crystal is grown by 2 mm or more on the crystal growth surface.
  7.  請求項1~請求項6のいずれか1項に記載のSiC単結晶の製造方法であって、
     前記SiC種結晶及び前記SiC単結晶は4H多形の結晶構造を有する、SiC単結晶の製造方法。
    A method for producing a SiC single crystal according to any one of claims 1 to 6,
    The method for producing a SiC single crystal, wherein the SiC seed crystal and the SiC single crystal have a 4H polymorphic crystal structure.
  8.  SiC種結晶をSi‐C溶液に接触させて前記SiC種結晶上にSiC単結晶を成長させる溶液成長法に用いるSiC種結晶であって、
     {0001}面に対するオフセット角が0.5°以下である結晶成長面を備え、
     前記結晶成長面は、重心が前記結晶成長面の重心から0.40r以内の距離に配置されるファセット領域を含む、SiC種結晶。
     ここで、前記結晶成長面の前記重心と前記結晶成長面の外周とを結ぶ線分のうち最長の線分の長さをrとする。
    A SiC seed crystal used in a solution growth method in which a SiC single crystal is grown on the SiC seed crystal by bringing the SiC seed crystal into contact with a Si-C solution,
    A crystal growth surface having an offset angle of 0.5 ° or less with respect to the {0001} plane;
    The crystal growth surface is a SiC seed crystal including a facet region in which a center of gravity is arranged at a distance within 0.40 r from the center of gravity of the crystal growth surface.
    Here, the length of the longest line segment among the line segments connecting the center of gravity of the crystal growth surface and the outer periphery of the crystal growth surface is defined as r.
  9.  請求項8に記載のSiC種結晶であって、
     前記結晶成長面は単一の面である、SiC種結晶。
    The SiC seed crystal according to claim 8,
    The SiC seed crystal, wherein the crystal growth surface is a single surface.
  10.  請求項8又は請求項9に記載のSiC種結晶であって、
     前記ファセット領域の前記結晶成長面に対する面積比は0.04以上である、SiC種結晶。
    The SiC seed crystal according to claim 8 or 9, wherein
    The SiC seed crystal whose area ratio with respect to the said crystal growth surface of the said facet area | region is 0.04 or more.
PCT/JP2017/003519 2016-02-04 2017-02-01 Method for manufacturing sic single crystal and sic seed crystal WO2017135272A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016019550 2016-02-04
JP2016-019550 2016-02-04

Publications (1)

Publication Number Publication Date
WO2017135272A1 true WO2017135272A1 (en) 2017-08-10

Family

ID=59500825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003519 WO2017135272A1 (en) 2016-02-04 2017-02-01 Method for manufacturing sic single crystal and sic seed crystal

Country Status (1)

Country Link
WO (1) WO2017135272A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911268A (en) * 2018-09-14 2020-03-24 株式会社迪思科 Wafer generation method and laser processing apparatus
JP2020077783A (en) * 2018-11-08 2020-05-21 株式会社ディスコ Facet area detection method and detection apparatus, wafer generation method, and laser processing apparatus
TWI831862B (en) 2018-11-08 2024-02-11 日商迪思科股份有限公司 Facet area detection method and detection device, wafer generation method and laser processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126380A (en) * 2008-11-26 2010-06-10 Bridgestone Corp Production method of silicon carbide single crystal
JP2013100217A (en) * 2011-10-17 2013-05-23 Sumitomo Electric Ind Ltd Silicon carbide ingot and silicon carbide substrate, and method for producing them
JP2014043369A (en) * 2012-08-26 2014-03-13 Nagoya Univ METHOD FOR MAKING SiC SINGLE CRYSTAL AND SiC SINGLE CRYSTAL
JP2016204196A (en) * 2015-04-21 2016-12-08 昭和電工株式会社 SiC SINGLE CRYSTAL SEED, SiC INGOT, PRODUCTION METHOD OF SiC SINGLE CRYSTAL SEED, AND PRODUCTION METHOD OF SiC SINGLE CRYSTAL INGOT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126380A (en) * 2008-11-26 2010-06-10 Bridgestone Corp Production method of silicon carbide single crystal
JP2013100217A (en) * 2011-10-17 2013-05-23 Sumitomo Electric Ind Ltd Silicon carbide ingot and silicon carbide substrate, and method for producing them
JP2014043369A (en) * 2012-08-26 2014-03-13 Nagoya Univ METHOD FOR MAKING SiC SINGLE CRYSTAL AND SiC SINGLE CRYSTAL
JP2016204196A (en) * 2015-04-21 2016-12-08 昭和電工株式会社 SiC SINGLE CRYSTAL SEED, SiC INGOT, PRODUCTION METHOD OF SiC SINGLE CRYSTAL SEED, AND PRODUCTION METHOD OF SiC SINGLE CRYSTAL INGOT

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911268A (en) * 2018-09-14 2020-03-24 株式会社迪思科 Wafer generation method and laser processing apparatus
CN110911268B (en) * 2018-09-14 2024-03-19 株式会社迪思科 Wafer generating method and laser processing device
JP2020077783A (en) * 2018-11-08 2020-05-21 株式会社ディスコ Facet area detection method and detection apparatus, wafer generation method, and laser processing apparatus
JP7229729B2 (en) 2018-11-08 2023-02-28 株式会社ディスコ Method and apparatus for detecting facet area, method for producing wafer, and laser processing apparatus
TWI831862B (en) 2018-11-08 2024-02-11 日商迪思科股份有限公司 Facet area detection method and detection device, wafer generation method and laser processing device

Similar Documents

Publication Publication Date Title
JP5517913B2 (en) SiC single crystal manufacturing apparatus, jig used in the manufacturing apparatus, and SiC single crystal manufacturing method
JP5434801B2 (en) Method for producing SiC single crystal
US20150167196A1 (en) Sic single crystal ingot and production method therefor
WO2016059788A1 (en) SiC SINGLE CRYSTAL PRODUCTION METHOD AND SiC SINGLE CRYSTAL PRODUCTION DEVICE
US9530642B2 (en) Method for producing SiC single crystal
WO2015137439A1 (en) METHOD FOR PRODUCING MONOCRYSTALLINE SiC
US10450671B2 (en) SiC single crystal and method for producing same
WO2017135272A1 (en) Method for manufacturing sic single crystal and sic seed crystal
WO2018062224A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SEED CRYSTAL
JP5828810B2 (en) SiC single crystal manufacturing apparatus used in solution growth method, crucible used in the manufacturing apparatus, and SiC single crystal manufacturing method using the manufacturing apparatus
JP6354615B2 (en) Method for producing SiC single crystal
KR101983491B1 (en) Manufacturing method of SiC single crystal
JP2013112553A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL AND APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL
JP6409955B2 (en) Method for producing SiC single crystal
US9822468B2 (en) Method for producing SiC single crystal
WO2014192573A1 (en) SiC-SINGLE-CRYSTAL PRODUCTION DEVICE, AND SiC-SINGLE-CRYSTAL PRODUCTION METHOD USING SAID PRODUCTION DEVICE
JP6104414B2 (en) Seed shaft, single crystal manufacturing apparatus, and single crystal manufacturing method
JP2010248003A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
US10260167B2 (en) Method for producing silicon carbide single crystal in a solution process using a seed crystal having a bottom face with a circular shape and at least a partially removed section
JP6030525B2 (en) Method for producing SiC single crystal
JP6627984B2 (en) Method and apparatus for producing SiC single crystal, and seed shaft used for producing SiC single crystal
WO2017086449A1 (en) SiC SINGLE CRYSTAL PRODUCTION METHOD AND SiC SINGLE CRYSTAL INGOT
JP2018048044A (en) PRODUCTION METHOD OF SiC SINGLE CRYSTAL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP