JP2001114598A - Method of and device for producing silicon carbide single crystal - Google Patents

Method of and device for producing silicon carbide single crystal

Info

Publication number
JP2001114598A
JP2001114598A JP29446899A JP29446899A JP2001114598A JP 2001114598 A JP2001114598 A JP 2001114598A JP 29446899 A JP29446899 A JP 29446899A JP 29446899 A JP29446899 A JP 29446899A JP 2001114598 A JP2001114598 A JP 2001114598A
Authority
JP
Japan
Prior art keywords
silicon carbide
seed crystal
single crystal
carbide single
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29446899A
Other languages
Japanese (ja)
Other versions
JP4450118B2 (en
Inventor
Kazuto Hara
一都 原
Koki Futatsuyama
幸樹 二ツ山
Shoichi Onda
正一 恩田
Fusao Hirose
富佐雄 廣瀬
Hidemi Oguri
英美 小栗
Naohiro Sugiyama
尚宏 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP29446899A priority Critical patent/JP4450118B2/en
Priority to US09/686,232 priority patent/US6451112B1/en
Priority to DE10050767A priority patent/DE10050767B4/en
Publication of JP2001114598A publication Critical patent/JP2001114598A/en
Application granted granted Critical
Publication of JP4450118B2 publication Critical patent/JP4450118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a silicon carbide single crystal by which the silicon carbide single crystal can be grow in a large length in a state flatly maintaining the growth surface of the single crystal without generating crack detects. SOLUTION: A graphite-made crucible 1 whose lid 11 comprises a seed crystal- adhering member 12 and a polycrystal growth member 13 surrounding the periphery of the projected portion 12a of the seed crystal-adhering member 12 is prepared. A seed crystal 3 is adhered to the surface 12b of the projected portion 12a, and silicon carbide raw material 2 is allowed to sublime, thus supplying the silicon carbide raw material gas to the growth surface of the seed crystal 3. Thereby, the silicon carbide single crystal 4 grows, and a polycrystal 6 simultaneously grows in the same height as the silicon carbide single crystal 4 on the surface 13c of the polycrystal growth member 13. When the silicon carbide single crystal 4 thus grows in such the state as embedded in the polycrystal 6, the temperature distribution of the growth surface of the silicon carbide single crystal 4 is approximately uniformed, and the silicon carbide single crystal can be grown in a long length in a state flatly maintaining the growth surface of the single crystal without generating crack detects.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、種結晶上に欠陥の
少ない高品質な炭化珪素単結晶を歩留りよく製造する炭
化珪素単結晶製造方法及びこれに適した炭化珪素単結晶
製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide single crystal manufacturing method for manufacturing a high quality silicon carbide single crystal having few defects on a seed crystal with good yield, and a silicon carbide single crystal manufacturing apparatus suitable for the method.

【0002】[0002]

【従来の技術】炭化珪素単結晶は、高耐圧、高電子移動
度という特徴を有するため、パワーデバイス用半導体基
板として期待されている。炭化珪素単結晶においては、
歩留まり向上のための高品質化と生産向上のための大口
径化・長尺化が求められている。この炭化珪素単結晶成
長には、一般に、昇華法(改良レーリー法)と呼ばれる
単結晶成長方法が用いられる。
2. Description of the Related Art Silicon carbide single crystals are expected to be used as semiconductor substrates for power devices because of their characteristics of high breakdown voltage and high electron mobility. In a silicon carbide single crystal,
There is a demand for higher quality for higher yield and larger diameter and longer length for higher production. For the growth of silicon carbide single crystal, a single crystal growth method generally called a sublimation method (improved Rayleigh method) is used.

【0003】改良レーリー法は、黒鉛製るつぼ内に炭化
珪素原料を挿入すると共にこの原料部と対向するように
種結晶を黒鉛製るつぼの内壁に装着し、原料部を220
0〜2400℃に加熱して昇華ガスを発生させ、原料部
より数十〜数百℃低温にした種結晶に再結晶化させるこ
とで炭化珪素単結晶を成長させるものである。
In the improved Rayleigh method, a silicon carbide raw material is inserted into a graphite crucible, and a seed crystal is mounted on the inner wall of the graphite crucible so as to face the raw material portion.
The substrate is heated to 0 to 2400 ° C. to generate a sublimation gas, and is recrystallized into a seed crystal whose temperature is lower by several tens to several hundreds degrees Celsius than a raw material part, thereby growing a silicon carbide single crystal.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、黒鉛製
るつぼを試作し、昇華法を用いて炭化珪素単結晶の製造
を行った。このときの様子を図7に示す。この図に示す
ように、黒鉛製るつぼ101の蓋材102の内壁に突起
部102aを設け、この突起部102aに種結晶103
を貼り付けるようにしている。そして、突起部102a
のうち種結晶103が貼り付けられる面の逆側を凹ませ
てザグリ102bを形成すると共に、種結晶103の成
長表面に対向する面を有する遮蔽板104を設け、種結
晶103の成長表面が他の部位よりも低温となるように
している。このように構成した黒鉛製るつぼ101を用
いて、種結晶103の上に炭化珪素単結晶105を成長
させた。
The present inventors prototyped a crucible made of graphite and manufactured a silicon carbide single crystal using a sublimation method. The situation at this time is shown in FIG. As shown in this figure, a projection 102a is provided on the inner wall of a lid 102 of a graphite crucible 101, and a seed crystal 103 is provided on the projection 102a.
Is to be pasted. Then, the protrusion 102a
A counterbore 102b is formed by recessing the opposite side of the surface on which the seed crystal 103 is attached, and a shielding plate 104 having a surface facing the growth surface of the seed crystal 103 is provided. Temperature is lower than that of the part. Using the graphite crucible 101 configured as described above, a silicon carbide single crystal 105 was grown on the seed crystal 103.

【0005】しかしながら、図7に示すように、上記黒
鉛製るつぼ101にて炭化珪素単結晶105を成長させ
た場合には、長尺化に伴って成長した炭化珪素単結晶1
05の成長面が曲面となり、その曲面上に亀裂欠陥が発
生するという問題が生じた。
[0007] However, as shown in FIG. 7, when silicon carbide single crystal 105 is grown in crucible 101 made of graphite, silicon carbide single crystal 1
The growth surface of No. 05 became a curved surface, and there was a problem that a crack defect was generated on the curved surface.

【0006】本発明は上記問題に鑑みて成され、炭化珪
素単結晶の成長表面をフラットに保ったまま長尺成長さ
せられ、かつ亀裂欠陥を発生させない炭化珪素単結晶の
製造方法及びこれに適した単結晶製造装置を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned problems, and is directed to a method of manufacturing a silicon carbide single crystal which is grown long while keeping the growth surface of the silicon carbide single crystal flat, and which does not generate crack defects. It is an object of the present invention to provide a single crystal manufacturing apparatus.

【0007】[0007]

【課題を解決するための手段】上記問題を解決するべ
く、本発明者らは炭化珪素単結晶の成長面が曲面となる
原因について検討を行った。
Means for Solving the Problems In order to solve the above problems, the present inventors have studied the cause of the growth surface of a silicon carbide single crystal being a curved surface.

【0008】まず、上記した黒鉛製るつぼ101を用い
て炭化珪素単結晶105を結晶させたときの熱シミュレ
ーション解析を行った。これにより解析された黒鉛製る
つぼ101内の温度分布を図8に示す。この図に示され
るように、炭化珪素単結晶105の成長表面の中心と端
部との間において温度差が2℃程度生じており、等温線
が大きく曲がっていることが判る。このため、炭化珪素
単結晶105の成長面の形状は温度分布に応じて決定さ
れていると考えられる。
First, thermal simulation analysis was performed when silicon carbide single crystal 105 was crystallized using graphite crucible 101 described above. FIG. 8 shows the temperature distribution in the graphite crucible 101 analyzed in this way. As shown in this figure, a temperature difference occurs between the center and the end of the growth surface of silicon carbide single crystal 105 by about 2 ° C., indicating that the isotherm is largely bent. Therefore, it is considered that the shape of the growth surface of silicon carbide single crystal 105 is determined according to the temperature distribution.

【0009】そこで、上記目的を達成するため、請求項
1に記載の発明においては、種結晶貼付部(12a)と
該種結晶貼付部の周囲を囲む周縁部(13)とが所定面
に配設されてなるるつぼ(1)を用意し、種結晶貼付部
の表面に種結晶(3)を取付けたのち、るつぼ内の成長
空間に炭化珪素原料ガスを導入し、種結晶の成長表面上
に炭化珪素単結晶(4)を成長させると共に、周縁部の
表面(13c)に炭化珪素単結晶と同等の高さとなるよ
うに多結晶(6)を成長させ、多結晶に囲まれて埋め込
まれた状態で炭化珪素単結晶を成長させることを特徴と
している。
Therefore, in order to achieve the above object, according to the first aspect of the present invention, the seed crystal attaching portion (12a) and the peripheral portion (13) surrounding the seed crystal attaching portion are arranged on a predetermined surface. The crucible (1) provided is prepared, the seed crystal (3) is attached to the surface of the seed crystal sticking portion, and a silicon carbide raw material gas is introduced into the growth space in the crucible, and the seed crystal is placed on the growth surface of the seed crystal. While growing the silicon carbide single crystal (4), the polycrystal (6) was grown on the peripheral surface (13c) so as to have the same height as the silicon carbide single crystal, and was buried surrounded by the polycrystal. It is characterized in that a silicon carbide single crystal is grown in a state.

【0010】このように、炭化珪素単結晶と同等の高さ
の多結晶を成長させ、炭化珪素単結晶が多結晶に埋め込
まれるような状態で成長させることで、炭化珪素単結晶
の成長表面の温度分布がほぼ均一となるようにすること
ができる。このため、炭化珪素単結晶の成長表面をフラ
ットに保ったまま長尺化でき、かつ亀裂欠陥を発生させ
ないようにすることができる。
As described above, by growing a polycrystal having a height equivalent to that of a silicon carbide single crystal and growing the silicon carbide single crystal so as to be embedded in the polycrystal, the growth surface of the silicon carbide single crystal is grown. The temperature distribution can be made substantially uniform. For this reason, it is possible to lengthen the silicon carbide single crystal while keeping the growth surface flat, and to prevent generation of crack defects.

【0011】例えば、請求項2に示すように、周縁部の
表面に炭化珪素単結晶の成長表面とほぼフラットになる
成長表面を有する多結晶を成長させるようにすればよ
い。
For example, as set forth in claim 2, a polycrystal having a growth surface substantially flat with the growth surface of the silicon carbide single crystal on the surface of the peripheral portion may be grown.

【0012】具体的には、請求項3に示すように、周縁
部の表面の温度よりも種結晶の成長表面の温度が同一温
度もしくはやや低温になるようにすることで、種結晶の
成長表面上に炭化珪素単結晶を成長させると共に、周縁
部の表面に炭化珪素単結晶と同等の高さの多結晶を成長
させることができる。例えば、請求項4に示すように、
周縁部の厚み(A+B)が炭化珪素貼付部材の厚み
(C)よりも厚くなるようにすればよい。
More specifically, the temperature of the growth surface of the seed crystal is set to be equal to or slightly lower than the temperature of the surface of the peripheral portion, thereby increasing the growth surface of the seed crystal. A silicon carbide single crystal can be grown thereon, and a polycrystal having the same height as the silicon carbide single crystal can be grown on the surface of the peripheral portion. For example, as shown in claim 4,
The thickness (A + B) of the peripheral portion may be larger than the thickness (C) of the silicon carbide attaching member.

【0013】また、請求項10に示すように、周縁部の
うち多結晶が成長する表面を構成する部分の厚み(B)
を5mm以上とすること、もしくはるつぼの他の部分よ
りも熱伝導率の悪い材料で構成することで径方向の温度
均一化を向上させることができる。
According to a tenth aspect of the present invention, a thickness (B) of a portion constituting a surface on which a polycrystal grows in a peripheral portion is defined.
Is set to 5 mm or more, or by using a material having a lower thermal conductivity than other portions of the crucible, the temperature uniformity in the radial direction can be improved.

【0014】請求項5に記載の発明においては、種結晶
貼付部と周縁部のうち種結晶貼付部を囲む内周壁との間
に、所定間隔の隙間を設けることを特徴としている。
The invention according to claim 5 is characterized in that a predetermined gap is provided between the seed crystal attachment portion and an inner peripheral wall of the peripheral portion surrounding the seed crystal attachment portion.

【0015】これにより、種結晶の成長表面上に形成さ
れる炭化珪素単結晶と周縁部の表面に形成される多結晶
とが分離されるようにできる。この場合、隙間が大きす
ぎると隙間が実質的に成長空間と同等になり、小さすぎ
ると隙間がないのと同等になってしまうので、好ましく
は、請求項6に示すように、隙間を1mmとするのが良
い。
Thereby, the silicon carbide single crystal formed on the growth surface of the seed crystal and the polycrystal formed on the peripheral surface can be separated. In this case, if the gap is too large, the gap becomes substantially equivalent to the growth space, and if it is too small, it becomes equivalent to no gap. Therefore, preferably, the gap is set to 1 mm. Good to do.

【0016】請求項7に記載の発明においては、種結晶
貼付部と周縁部とを、相対的に逆回転させることを特徴
としている。
The invention according to claim 7 is characterized in that the seed crystal sticking portion and the peripheral portion are relatively reversely rotated.

【0017】これにより、種結晶の成長表面上に形成さ
れる炭化珪素単結晶と周縁部の表面に形成される多結晶
とが分離されるようにできる。特に、炭化珪素単結晶や
多結晶が長尺になると、それぞれの結晶の横方向の成長
のために成長結晶が一体化し易くなるが、このような一
体化を防止することができる。
Thus, the silicon carbide single crystal formed on the growth surface of the seed crystal and the polycrystal formed on the peripheral surface can be separated. In particular, when the silicon carbide single crystal or polycrystal becomes long, the grown crystals are easily integrated due to the lateral growth of each crystal, but such integration can be prevented.

【0018】請求項8に記載の発明においては、るつぼ
のうち種結晶貼付部及び周縁部が配設された所定面と対
向する面に炭化珪素原料を備え、炭化珪素単結晶の成長
中に種結晶貼付部を炭化珪素原料から離れる方向に移動
させることを特徴としている。
[0018] In the invention according to claim 8, a silicon carbide raw material is provided on a surface of the crucible facing the predetermined surface on which the seed crystal attachment portion and the peripheral portion are disposed, and the seed is grown during growth of the silicon carbide single crystal. It is characterized in that the crystal sticking part is moved in a direction away from the silicon carbide raw material.

【0019】これにより、炭化珪素単結晶や多結晶を長
尺に成長させても、炭化珪素単結晶を炭化珪素原料から
離間させ、所望の温度状態に制御することができる。例
えば、請求項9に示すように、種結晶貼付部の移動速度
を、炭化珪素単結晶の成長速度と同等にすれば、一定の
位置で炭化珪素単結晶を成長させることができるため、
炭化珪素単結晶の成長表面の温度を一定の温度状態に保
つことができる。
Thus, even when a silicon carbide single crystal or polycrystal is grown long, the silicon carbide single crystal can be separated from the silicon carbide raw material and controlled to a desired temperature state. For example, as set forth in claim 9, if the moving speed of the seed crystal attachment portion is made equal to the growth speed of the silicon carbide single crystal, the silicon carbide single crystal can be grown at a fixed position.
The temperature on the growth surface of the silicon carbide single crystal can be maintained at a constant temperature.

【0020】請求項11乃至17に記載の発明は、請求
項1乃至10に記載の炭化珪素単結晶の製造方法に適用
させる炭化珪素単結晶の製造装置である。
The invention according to claims 11 to 17 is an apparatus for producing a silicon carbide single crystal applied to the method for producing a silicon carbide single crystal according to claims 1 to 10.

【0021】なお、上記各手段の括弧内の符号は、後述
する実施形態に記載の具体的手段との対応関係を示すも
のである。
Note that the reference numerals in parentheses of the above means indicate the correspondence with specific means described in the embodiments described later.

【0022】[0022]

【発明の実施の形態】(第1実施形態)以下、図に示す
実施形態について説明する。図1に、本実施形態で用い
る結晶成長装置としての黒鉛製るつぼ1を示す。この図
は、黒鉛製るつぼ1内に備えられた炭化珪素原料2を熱
処理によって昇華させ、炭化珪素単結晶層で構成された
種結晶3の上に炭化珪素単結晶4を結晶成長させたとき
の黒鉛製るつぼ1の断面構成を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) The embodiment shown in the drawings will be described below. FIG. 1 shows a graphite crucible 1 as a crystal growth apparatus used in the present embodiment. This figure shows the case where silicon carbide raw material 2 provided in graphite crucible 1 is sublimated by heat treatment, and silicon carbide single crystal 4 is grown on seed crystal 3 formed of a silicon carbide single crystal layer. 1 shows a cross-sectional configuration of a graphite crucible 1.

【0023】黒鉛製るつぼ1は、上面が開口したるつぼ
本体10と、るつぼ本体10の開口部を塞ぐ蓋材11と
から構成されている。るつぼ本体10の開口部側には段
付き部10aが設けられている。
The graphite crucible 1 includes a crucible main body 10 having an open upper surface, and a lid member 11 for closing the opening of the crucible main body 10. A stepped portion 10 a is provided on the opening side of the crucible body 10.

【0024】るつぼ本体10は、断面円形のコップ形状
を成しており、コップ形状の底には炭化珪素原料2が備
えられている。
Crucible body 10 has a cup shape having a circular cross section, and silicon carbide raw material 2 is provided at the bottom of the cup shape.

【0025】蓋材11は、るつぼ本体10の開口部の形
状に対応した円形状を成している。蓋材11は、種結晶
貼付部材12と多結晶成長部材13とによって構成され
ている。種結晶貼付部材12は円盤形状の中央部を円柱
状に突出させて構成しており、この突出した部分(以
下、突出部という)12aの先端面12bに種結晶3が
貼り付けられるようになっている。なお、ここで示した
突出部12aが種結晶貼付部を構成し、種結晶貼付部材
12のうちの突出部12a以外の部分(突出部12aの
周囲の部分)12c及び多結晶成長部材13が周縁部を
構成している。
The lid 11 has a circular shape corresponding to the shape of the opening of the crucible body 10. The lid member 11 includes a seed crystal sticking member 12 and a polycrystalline growth member 13. The seed crystal sticking member 12 is formed by projecting a disc-shaped central portion into a columnar shape, and the seed crystal 3 can be stuck to a tip end surface 12b of the projecting portion (hereinafter referred to as a projecting portion) 12a. ing. Note that the protruding portion 12a shown here constitutes a seed crystal attaching portion, and a portion (a portion around the protruding portion 12a) 12c of the seed crystal attaching member 12 other than the protruding portion 12a and the polycrystalline growth member 13 are peripheral portions. Unit.

【0026】多結晶成長部材13は、るつぼ本体10の
開口部から挿入され、開口部近傍において、るつぼ本体
10に形成された段付き部10aによって所定位置に保
持されるようになっている。
The polycrystalline growth member 13 is inserted through the opening of the crucible main body 10 and is held at a predetermined position near the opening by a stepped portion 10a formed in the crucible main body 10.

【0027】この多結晶成長部材13は、中央に断面円
形状の空洞部13aが形成されており、この空洞部13
a内に種結晶貼付部材12の突出部12aが挿入され
て、突出部12aの外周壁を空洞部13aの内壁面で囲
むようにしている。多結晶成長部材13の空洞部13a
の内径が、種結晶貼付部材12の突出部12aの外径よ
り若干大きくされており、空洞部13aの内周壁と突出
部12aの外周壁との間の隙間dが所定間隔となるよう
にしている。具体的には、隙間dの大きさが1mm程度
となるようにしている。これは、隙間dが小さくなり過
ぎると実質的に隙間が空けられていないのと同様になっ
てしまい、逆に、大きくなり過ぎると黒鉛製るつぼ1内
の成長空間と同様に作用してしまうからである。また、
多結晶製造部材13には、空洞部13aから等間隔離
れ、空洞部13aを囲うように形成された円筒形状のガ
イド13bが設けられている。このガイド13bは、多
結晶成長部材13のうち突出部12aの先端面12bの
成長表面に対して平行又は同一平面を成す表面13cか
ら炭化珪素原料2の方向に向かって延設されている。
The polycrystalline growth member 13 has a cavity 13a having a circular cross section at the center.
The protruding portion 12a of the seed crystal attaching member 12 is inserted into a, so that the outer peripheral wall of the protruding portion 12a is surrounded by the inner wall surface of the cavity 13a. Cavity 13a of polycrystalline growth member 13
Is slightly larger than the outer diameter of the protruding portion 12a of the seed crystal affixing member 12, so that the gap d between the inner peripheral wall of the cavity 13a and the outer peripheral wall of the protruding portion 12a has a predetermined interval. I have. Specifically, the size of the gap d is set to be about 1 mm. This is because if the gap d is too small, it is substantially the same as when no gap is provided, and if it is too large, it acts similarly to the growth space in the graphite crucible 1. It is. Also,
The polycrystal manufacturing member 13 is provided with a cylindrical guide 13b formed so as to be spaced apart from the cavity 13a at equal intervals and to surround the cavity 13a. Guide 13b extends from surface 13c of polycrystalline growth member 13 parallel or coplanar with the growth surface of tip end surface 12b of protrusion 12a toward silicon carbide raw material 2.

【0028】図2に、黒鉛製るつぼ1の蓋材11の近傍
を拡大した図を示す。この図に示されるように、種結晶
貼付部材12のうち突出部12aの周囲の部分12cの
厚みをAとし、多結晶成長部材13のうち突出部12a
の周囲を囲む部分(多結晶成長部材13のうちガイド1
3bよりも内側の部分)の厚みをBとし、種結晶貼付部
材12の突出部12aの厚みをCとすると、厚みAと厚
みBとの和が厚みCよりも大きくなる(A+B>C)よ
うにしている。
FIG. 2 is an enlarged view of the vicinity of the lid member 11 of the graphite crucible 1. As shown in the figure, the thickness of a portion 12c around the protruding portion 12a of the seed crystal attaching member 12 is set to A, and the protruding portion 12a of the polycrystalline growth member 13 is set.
(The guide 1 of the polycrystalline growth member 13)
Assuming that the thickness of the portion (the portion inside 3b) is B and the thickness of the protruding portion 12a of the seed crystal attaching member 12 is C, the sum of the thickness A and the thickness B is larger than the thickness C (A + B> C). I have to.

【0029】また、種結晶3を貼り付けたときに、種結
晶3の成長表面が多結晶成長部材13の表面13cに対
してほぼフラットとなるように、若しくは若干突出する
ように厚みA〜Cを設定している。
When the seed crystal 3 is attached, the thicknesses A to C are set so that the growth surface of the seed crystal 3 is substantially flat with respect to the surface 13c of the polycrystalline growth member 13 or slightly protrudes. Is set.

【0030】このように構成することにより、種結晶貼
付部材12及び多結晶成長部材13を炭化珪素原料2側
から見た際に、種結晶3が取り付けていない時には、突
出部12aが多結晶成長部材13の表面よりも凹んだ構
成となり、種結晶3を取り付けた時には、種結晶3の成
長表面が多結晶成長部材13の表面に対してフラットと
なっているか、若しくは若干量突出した構成となる。
With this structure, when seed crystal attaching member 12 and polycrystalline growth member 13 are viewed from silicon carbide raw material 2 side, and when seed crystal 3 is not attached, projecting portion 12a is formed by polycrystalline growth. When the seed crystal 3 is attached, the growth surface of the seed crystal 3 is flat with respect to the surface of the polycrystal growth member 13 or slightly protrudes from the surface of the polycrystal growth member 13 when the seed crystal 3 is attached. .

【0031】さらに、図1に示すように、黒鉛製るつぼ
1は、アルゴンガスが導入できる真空容器(加熱炉)の
中でヒータ5により加熱できるようになっており、この
ヒータパワーを調節することによって種結晶3の温度が
炭化珪素原料2の温度よりも100℃程度低温に保たれ
るようにしている。
Further, as shown in FIG. 1, the graphite crucible 1 can be heated by a heater 5 in a vacuum vessel (heating furnace) into which an argon gas can be introduced. Thereby, the temperature of seed crystal 3 is maintained at a temperature lower by about 100 ° C. than the temperature of silicon carbide raw material 2.

【0032】このように構成された黒鉛製るつぼ1をヒ
ータ5によって加熱したときの温度分布を熱シミュレー
ションによって求めた。その結果を図3に示す。この図
に示した点線は等温線を表わしており、紙面上方から下
方に向かって順に高温になってる。この図に示されるよ
うに、種結晶3の表面温度は、多結晶成長部材13の表
面の温度よりも若干低温になるようになっている。そし
て、種結晶3や炭化珪素単結晶4の成長表面温度がほぼ
均一となっている。具体的には、温度分布ΔTが0.3
℃程度となっていた。
The temperature distribution when the graphite crucible 1 thus configured was heated by the heater 5 was determined by thermal simulation. The result is shown in FIG. The dotted line shown in this figure represents an isotherm, and the temperature increases in order from the upper side to the lower side of the paper. As shown in this figure, the surface temperature of seed crystal 3 is slightly lower than the temperature of the surface of polycrystalline growth member 13. Then, the growth surface temperatures of seed crystal 3 and silicon carbide single crystal 4 are substantially uniform. Specifically, the temperature distribution ΔT is 0.3
° C.

【0033】これは、種結晶3が貼り付けられる突出部
12aを多結晶成長部材13から切り離すと共に、突出
部12aの厚みCが、その周囲を囲む部分の厚みAと厚
みBの和よりも小さくなるようにしていることから、熱
伝導の関係により、突出部12aに多結晶成長部材13
の熱が伝わりにくく、かつ突出部12aは外部に放熱し
やすくなるように構成されているためである。
This is because the protruding portion 12a to which the seed crystal 3 is attached is cut off from the polycrystalline growth member 13, and the thickness C of the protruding portion 12a is smaller than the sum of the thickness A and the thickness B of the surrounding portion. Therefore, due to heat conduction, the polycrystalline growth member 13
This is because the heat is hardly transmitted, and the protruding portion 12a is configured to easily radiate heat to the outside.

【0034】このように構成された黒鉛製るつぼ1を用
いて、(0001)面を成長表面とする種結晶3の上に
炭化珪素単結晶4を成長させた。具体的には、成長圧力
を100Torrとし、原料の輸送速度を遅くして成長
速度を制御しながら、15時間成長を行った。これによ
り、図1に示すように、炭化珪素単結晶4の成長に伴っ
て多結晶成長部材13の表面13c上には多結晶6が同
様に成長した。このとき、多結晶6は、炭化珪素単結晶
4から所定間隔隔てた状態で炭化珪素単結晶4を囲むよ
うに成長することが判った。つまり炭化珪素単結晶4が
多結晶6に埋め込まれたような状態で成長するという埋
め込み成長をするのである。
Using the graphite crucible 1 thus configured, a silicon carbide single crystal 4 was grown on a seed crystal 3 having a (0001) plane as a growth surface. Specifically, the growth was performed for 15 hours while the growth pressure was set to 100 Torr and the growth rate was controlled by reducing the transport speed of the raw material. Thereby, as shown in FIG. 1, polycrystal 6 similarly grew on surface 13 c of polycrystal growth member 13 along with growth of silicon carbide single crystal 4. At this time, it was found that polycrystal 6 grew so as to surround silicon carbide single crystal 4 at a predetermined distance from silicon carbide single crystal 4. In other words, buried growth is performed in which silicon carbide single crystal 4 grows in a state of being buried in polycrystal 6.

【0035】そして、炭化珪素単結晶4の成長表面は多
結晶6の成長表面に対してほぼフラット、若しくは若干
突出した状態となっており、炭化珪素単結晶4の成長表
面の高さと多結晶6の成長表面の高さとの位置関係がほ
ぼ一定のまま成長していた。これは、炭化珪素単結晶4
や多結晶6が成長しても、これらそれぞれの成長表面の
温度関係が、上述した種結晶3の成長表面と多結晶成長
部材13の表面の温度関係と同様になることを示してい
る。つまり、炭化珪素単結晶4の成長表面の温度が多結
晶6の成長表面の温度よりも若干低温となり、かつ炭化
珪素単結晶4の成長表面の温度分布が均一となるのであ
る。
The growth surface of silicon carbide single crystal 4 is substantially flat or slightly protruded from the growth surface of polycrystal 6. Grew with the positional relationship with the height of the growth surface kept almost constant. This is silicon carbide single crystal 4
This shows that even when the polycrystal 6 is grown, the temperature relationship between the respective growth surfaces is similar to the temperature relationship between the growth surface of the seed crystal 3 and the surface of the polycrystal growth member 13 described above. That is, the temperature on the growth surface of silicon carbide single crystal 4 is slightly lower than the temperature on the growth surface of polycrystal 6, and the temperature distribution on the growth surface of silicon carbide single crystal 4 becomes uniform.

【0036】さらに、炭化珪素単結晶4においては、成
長表面の略中心から波紋状に広がるファセット面が形成
されていた。このファセット面は、炭化珪素単結晶4の
成長表面のうちの6割以上を占めており、このファセッ
ト面となった部分には亀裂欠陥が発生していなかった。
Further, in silicon carbide single crystal 4, a facet surface extending in a ripple shape from substantially the center of the growth surface was formed. This facet surface occupies 60% or more of the growth surface of silicon carbide single crystal 4, and no crack defect has occurred in the portion serving as the facet surface.

【0037】このように、炭化珪素単結晶4及び多結晶
6を、略同等の高さの隣接する異なる成長面(本実施形
態の場合には、種結晶3の成長表面と多結晶成長部材1
3の表面13c)に成長させると、炭化珪素単結晶4と
多結晶6が所定間隔隔てた状態で共に成長させることが
できる。そして、種結晶3の成長表面及び炭化珪素単結
晶4の成長表面の温度分布がほぼ均一となるようにでき
るため、炭化珪素単結晶4の成長表面がフラットとなる
ようにすることができると共に、炭化珪素単結晶4の亀
裂欠陥を無くすことができる。
As described above, the silicon carbide single crystal 4 and the polycrystal 6 are placed on adjacent growth surfaces having substantially the same height (in this embodiment, the growth surface of the seed crystal 3 and the growth surface of the polycrystal growth member 1).
When the silicon carbide single crystal 4 and the polycrystal 6 are grown on the surface 13c) of the third crystal 3, they can be grown together at a predetermined interval. Since the temperature distribution on the growth surface of seed crystal 3 and the growth surface of silicon carbide single crystal 4 can be made substantially uniform, the growth surface of silicon carbide single crystal 4 can be made flat, and Crack defects in silicon carbide single crystal 4 can be eliminated.

【0038】また、炭化珪素単結晶4の成長表面をフラ
ットにできるため、ウェハとしての切り出しを行う際に
ウェハの取り数を多くすることができ、また、ドーピン
グ技術においても不純物の取り込みを均一にすることが
できる。 (第2実施形態)図4に、本発明の第2実施形態として
用いる黒鉛製るつぼ1の断面構成を示す。なお、本実施
形態の黒鉛製るつぼ1は、第1実施形態で用いた黒鉛製
るつぼ1とほぼ同様の構成であるため、図1と同等の構
成については同じ符号を付し、異なる部分についてのみ
説明する。
Further, since the growth surface of silicon carbide single crystal 4 can be made flat, the number of wafers can be increased when the wafer is cut out, and even in the doping technique, the incorporation of impurities can be made uniform. can do. (Second Embodiment) FIG. 4 shows a cross-sectional configuration of a graphite crucible 1 used as a second embodiment of the present invention. Since the graphite crucible 1 of the present embodiment has substantially the same configuration as the graphite crucible 1 used in the first embodiment, the same reference numerals are given to the same components as those in FIG. explain.

【0039】図4に示すように、黒鉛製るつぼ1のるつ
ぼ本体10は、種結晶貼付部材12及び多結晶成長部材
13が配置されている部位よりも上方向(炭化珪素原料
2が配置されている側から離れる方向)に向けて延設さ
れており、上方向に向けて種結晶貼付部材12及び多結
晶成長部材13が引き上げられるように構成されてい
る。なお、種結晶貼付部材12及び多結晶成長部材13
は、これらが互いに接触している部位にて連結されてお
り、種結晶貼付部材12に設けられた支持部材14にて
引き上げられるように構成されている。
As shown in FIG. 4, the crucible body 10 of the graphite crucible 1 is located above the portion where the seed crystal sticking member 12 and the polycrystalline growth member 13 are arranged (the silicon carbide raw material 2 is arranged). (In a direction away from the side where it is located), so that the seed crystal sticking member 12 and the polycrystalline growth member 13 are pulled upward. The seed crystal sticking member 12 and the polycrystal growth member 13
Are connected at a portion where they are in contact with each other, and are configured to be pulled up by a support member 14 provided on the seed crystal attaching member 12.

【0040】このように構成された黒鉛製るつぼ1を用
いて、上記した第1実施形態と同様に種結晶3の成長表
面に炭化珪素単結晶4を成長させると共に、多結晶成長
部材13の表面13cに多結晶6を成長させた。このと
き、炭化珪素単結晶4の成長速度と同等になるように、
種結晶貼付部材12及び多結晶成長部材13を上方向に
引き上げ、炭化珪素単結晶4の成長表面及び多結晶6の
成長表面から炭化珪素原料2までの距離が一定となるよ
うにした。具体的には、種結晶貼付部材12及び多結晶
成長部材13の引き上げ速度を0.2〜mm/hとし
た。
Using the graphite crucible 1 configured as described above, the silicon carbide single crystal 4 is grown on the growth surface of the seed crystal 3 and the surface of the polycrystal growth member 13 as in the first embodiment. Polycrystalline 6 was grown on 13c. At this time, the growth rate is made equal to the growth rate of silicon carbide single crystal 4.
Seed crystal sticking member 12 and polycrystalline growth member 13 were pulled upward so that the distance from the growth surface of silicon carbide single crystal 4 and the growth surface of polycrystal 6 to silicon carbide raw material 2 was constant. Specifically, the pulling speed of the seed crystal sticking member 12 and the polycrystalline growth member 13 was set to 0.2 to mm / h.

【0041】このように、炭化珪素単結晶4の成長表面
及び多結晶6の成長表面から炭化珪素原料2までの距離
が一定となるようにすることで、炭化珪素単結晶4を成
長させる際において、炭化珪素単結晶4の成長表面及び
多結晶6の成長表面の温度が経時的にあまり変化しない
ようにできる。このため、さらに炭化珪素単結晶4の結
晶性を良好にすることができる。
As described above, by making the distance from the growth surface of silicon carbide single crystal 4 and the growth surface of polycrystal 6 to silicon carbide raw material 2 constant, the growth of silicon carbide single crystal 4 can be improved. In addition, the temperature of the growth surface of silicon carbide single crystal 4 and the growth surface of polycrystal 6 can be prevented from changing much with time. Therefore, the crystallinity of silicon carbide single crystal 4 can be further improved.

【0042】(第3実施形態)図5に、本発明の第3実
施形態として用いる黒鉛製るつぼ1の断面構成を示す。
なお、本実施形態の黒鉛製るつぼ1は、第1実施形態で
用いた黒鉛製るつぼ1とほぼ同様の構成であるため、図
1と同等の構成については同じ符号を付し、異なる部分
についてのみ説明する。
(Third Embodiment) FIG. 5 shows a cross-sectional structure of a graphite crucible 1 used as a third embodiment of the present invention.
Since the graphite crucible 1 of the present embodiment has substantially the same configuration as the graphite crucible 1 used in the first embodiment, the same reference numerals are given to the same components as those in FIG. explain.

【0043】図5に示すように、種結晶貼付部材12
は、多結晶成長部材13に形成された空洞部13a内に
配置されている。そして、種結晶貼付部材12及び多結
晶成長部材13がそれぞれ支持部材15、16によって
支持されていると共に、これらそれぞれが支持部材1
5、16を中心軸として互いに逆方向に回転するように
構成されている。ただし、支持部材16は円筒形状を成
しており、その中心が支持部材15の中心と一致してい
る。なお、本実施形態では、種結晶貼付部材12が種結
晶貼付部を構成し、多結晶成長部材13が周縁部を構成
する。
As shown in FIG. 5, the seed crystal sticking member 12
Are arranged in a cavity 13 a formed in the polycrystalline growth member 13. The seed crystal sticking member 12 and the polycrystalline growth member 13 are supported by support members 15 and 16, respectively.
It is configured to rotate in opposite directions about 5, 16 as a central axis. However, the support member 16 has a cylindrical shape, and the center thereof coincides with the center of the support member 15. In this embodiment, the seed crystal sticking member 12 forms a seed crystal sticking portion, and the polycrystalline growth member 13 forms a peripheral portion.

【0044】このように構成された黒鉛製るつぼ1を用
いて、上記した第1実施形態と同様に種結晶3の成長表
面に炭化珪素単結晶4を成長させると共に、多結晶成長
部材13の表面13cに多結晶6を成長させた。このと
き、種結晶貼付部材12と多結晶成長部材13とを互い
に逆方向に回転させた。
Using the graphite crucible 1 configured as described above, the silicon carbide single crystal 4 is grown on the growth surface of the seed crystal 3 and the surface of the polycrystal growth member 13 in the same manner as in the first embodiment. Polycrystalline 6 was grown on 13c. At this time, the seed crystal sticking member 12 and the polycrystal growth member 13 were rotated in opposite directions.

【0045】このように、炭化珪素単結晶4や多結晶6
の成長に伴って、種結晶貼付部材12及び多結晶成長部
材13を互いに逆方向に回転させることにより、炭化珪
素単結晶4や多結晶6の成長が進んでも、これらを確実
に分離でき、これらが付着してしまうことを防止するこ
とができる。すなわち、炭化珪素単結晶4と多結晶6の
成長量がほぼ一定のため、成長面がフラットに保たれる
が、それぞれの横方向成長のために長尺になると炭化珪
素単結晶4が多結晶6との温度差がなくなり、両者が一
体化してしまう可能性がある。このため、種結晶貼付部
材12及び多結晶成長部材13を互いに逆方向に回転さ
せることによって、炭化珪素単結晶4と多結晶6とが一
体化することを防止でき、長尺な炭化珪素単結晶4を結
晶性良く形成することを可能にすることができる。
As described above, silicon carbide single crystal 4 and polycrystal 6
By rotating seed crystal applying member 12 and polycrystalline growth member 13 in directions opposite to each other with the growth of silicon carbide single crystal 4 and polycrystal 6, even if growth proceeds, they can be reliably separated. Can be prevented from adhering. That is, the growth amount of silicon carbide single crystal 4 and polycrystal 6 is almost constant, so that the growth surface is kept flat. There is a possibility that the temperature difference between the two will disappear and the two will be integrated. Therefore, by rotating seed crystal attaching member 12 and polycrystalline growth member 13 in opposite directions, silicon carbide single crystal 4 and polycrystal 6 can be prevented from being integrated, and a long silicon carbide single crystal can be prevented. 4 can be formed with good crystallinity.

【0046】(第4実施形態)図6に、本発明の第4実
施形態として用いる黒鉛製るつぼ1の断面構成を示す。
なお、本実施形態の黒鉛製るつぼ1は、第3実施形態で
用いた黒鉛製るつぼとほぼ同様の構成であるため、図1
と同等の構成については同じ符号を付し、異なる部分に
ついてのみ説明する。
(Fourth Embodiment) FIG. 6 shows a sectional configuration of a graphite crucible 1 used as a fourth embodiment of the present invention.
Since the graphite crucible 1 of the present embodiment has substantially the same configuration as the graphite crucible used in the third embodiment, FIG.
The same reference numerals are given to the same configurations as those described above, and only different portions will be described.

【0047】図6に示すように、本実施形態における黒
鉛製るつぼ1は、第3実施形態における図5で示した黒
鉛製るつぼ1に対して、るつぼ本体10が上方向に向け
て延設された構成となっている点が異なる。これによ
り、上方向に向けて種結晶貼付部材12及び多結晶成長
部材13が引き上げられるように構成されている。すな
わち、本実施形態では、第3実施形態と同様に種結晶貼
付部材12及び多結晶成長部材13を互いに逆方向に回
転させられるように構成していると共に、第2実施形態
と同様に種結晶貼付部材12及び多結晶成長部材13を
引き上げられるように構成している。
As shown in FIG. 6, the graphite crucible 1 of the present embodiment has a crucible body 10 extending upward from the graphite crucible 1 of the third embodiment shown in FIG. The difference is that it has a different configuration. Thereby, the seed crystal sticking member 12 and the polycrystalline growth member 13 are configured to be pulled upward. That is, in the present embodiment, the seed crystal sticking member 12 and the polycrystalline growth member 13 are configured to be able to rotate in opposite directions to each other, as in the third embodiment, and the seed crystal is rotated in the The bonding member 12 and the polycrystalline growth member 13 are configured to be lifted.

【0048】このように構成された黒鉛製るつぼ1を用
いて、上記した第1実施形態と同様に種結晶3の成長表
面に炭化珪素単結晶4を成長させると共に、多結晶成長
部材13の表面に多結晶6を成長させた。このとき、種
結晶貼付部材12と多結晶成長部材13とを互いに逆方
向に回転させ、かつ種結晶貼付部材12及び多結晶成長
部材13を炭化珪素単結晶4と多結晶の成長と同等の速
度で上方向に引き上げた。
Using the graphite crucible 1 thus configured, a silicon carbide single crystal 4 is grown on the growth surface of the seed crystal 3 in the same manner as in the first embodiment, and the surface of the polycrystal growth member 13 is formed. A polycrystal 6 was grown. At this time, seed crystal attaching member 12 and polycrystalline growing member 13 are rotated in opposite directions to each other, and seed crystal attaching member 12 and polycrystalline growing member 13 are rotated at the same speed as silicon carbide single crystal 4 and polycrystalline growth. And lifted up.

【0049】このように、種結晶貼付部材12と多結晶
成長部材13とを互いに逆方向に回転させることによ
り、炭化珪素単結晶4と多結晶6とを確実に分離でき、
さらに、種結晶貼付部材12及び多結晶成長部材13を
上方向に引き上げることにより、炭化珪素単結晶4の成
長表面及び多結晶6の成長表面の温度が経時的にあまり
変化しないようにできる。このため、さらに炭化珪素単
結晶4の結晶性を良好にすることができると共に、炭化
珪素単結晶4の長尺化を図ることができる。
As described above, by rotating seed crystal applying member 12 and polycrystalline growth member 13 in opposite directions, silicon carbide single crystal 4 and polycrystal 6 can be reliably separated.
Further, by pulling up seed crystal attaching member 12 and polycrystalline growth member 13 in the upward direction, the temperature of the growth surface of silicon carbide single crystal 4 and the growth surface of polycrystal 6 can be prevented from changing with time. Therefore, the crystallinity of silicon carbide single crystal 4 can be further improved, and silicon carbide single crystal 4 can be made longer.

【0050】(他の実施形態)上記第1〜第4実施形態
では、種結晶貼付部材12の突出部12aの厚みCと、
その周囲における厚みA及び厚みBとの関係によって、
種結晶3や炭化珪素単結晶4の成長表面が多結晶6の成
長表面よりも温度が低くなるようにしているが、他の構
成によって上記温度関係となるようにしてもよい。
(Other Embodiments) In the first to fourth embodiments, the thickness C of the projecting portion 12a of the seed crystal attaching member 12
According to the relationship between the thickness A and the thickness B around the periphery,
Although the temperature of the growth surface of seed crystal 3 and silicon carbide single crystal 4 is lower than the growth surface of polycrystal 6, the temperature relationship may be established by another configuration.

【0051】また、上記3、第4実施形態では、種結晶
貼付部材12と多結晶成長部材13とを互いに逆方向に
回転させているが、これらが相対的に回転すればよく、
必ずしも双方共に回転させる必要はない。例えば、種結
晶貼付部材12のみを回転させるようにしてもよい。さ
らに、種結晶貼付部材12や多結晶成長部材13に加え
て、るつぼ本体10を回転させてもよい。なお、この場
合、るつぼ本体10は多結晶成長部材13とは相対的に
逆方向に回転させることになる。
In the third and fourth embodiments, the seed crystal sticking member 12 and the polycrystalline growth member 13 are rotated in directions opposite to each other.
It is not necessary to rotate both. For example, only the seed crystal attaching member 12 may be rotated. Further, the crucible body 10 may be rotated in addition to the seed crystal attaching member 12 and the polycrystalline growth member 13. In this case, the crucible body 10 is rotated in a direction opposite to that of the polycrystalline growth member 13.

【0052】また、上記第2、第4実施形態では、種結
晶貼付部材12と多結晶成長部材13とを共に上方向に
引き上げるようにしているが、種結晶貼付部材12のみ
を引き上げるようにしてもよい。この場合、多結晶6の
成長表面が炭化珪素単結晶4の成長表面よりも下方に位
置する場合があるが、炭化珪素単結晶4の温度は多結晶
6よりも低くなるため、炭化珪素単結晶4のみが成長す
るようになり、成長表面はほぼフラットのまま保たれ
る。また、炭化珪素単結晶4の成長表面の周囲がSi/
C比の安定した多結晶6で囲まれた状態で成長が進むた
め、炭化珪素単結晶4を結晶性が良好な状態で形成する
ことができる。また、引き上げによる炭化珪素単結晶4
と多結晶6の成長表面のズレを多結晶6が昇華、再結晶
化することによって自動的に補正することができる。
In the second and fourth embodiments, the seed crystal sticking member 12 and the polycrystalline growth member 13 are both pulled up. However, only the seed crystal sticking member 12 is pulled up. Is also good. In this case, the growth surface of polycrystal 6 may be located lower than the growth surface of silicon carbide single crystal 4. However, since the temperature of silicon carbide single crystal 4 is lower than that of polycrystal 6, silicon carbide single crystal Only 4 grows and the growth surface remains almost flat. The periphery of the growth surface of silicon carbide single crystal 4 is Si /
Since growth proceeds in a state surrounded by polycrystal 6 having a stable C ratio, silicon carbide single crystal 4 can be formed with good crystallinity. In addition, silicon carbide single crystal 4
And the growth surface of the polycrystal 6 can be automatically corrected by sublimation and recrystallization of the polycrystal 6.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態における黒鉛製るつぼ1
の断面構成を示す図である。
FIG. 1 is a graphite crucible 1 according to a first embodiment of the present invention.
FIG. 3 is a diagram showing a cross-sectional configuration of FIG.

【図2】図1に示す黒鉛製るつぼ1の蓋材11の各部位
の厚みを説明するための図である。
FIG. 2 is a view for explaining the thickness of each part of a lid material 11 of the graphite crucible 1 shown in FIG.

【図3】図1に示す黒鉛製るつぼ1を用いた場合におけ
る種結晶3の成長表面の温度分部をシミュレーションに
よって求めた結果を示す図である。
FIG. 3 is a diagram showing a result obtained by simulation of a temperature portion on a growth surface of a seed crystal 3 when the graphite crucible 1 shown in FIG. 1 is used.

【図4】本発明の第2実施形態における黒鉛製るつぼ1
の断面構成を示す図である。
FIG. 4 is a graphite crucible 1 according to a second embodiment of the present invention.
FIG. 3 is a diagram showing a cross-sectional configuration of FIG.

【図5】本発明の第3実施形態における黒鉛製るつぼ1
の断面構成を示す図である。
FIG. 5 is a graphite crucible 1 according to a third embodiment of the present invention.
FIG. 3 is a diagram showing a cross-sectional configuration of FIG.

【図6】本発明の第4実施形態における黒鉛製るつぼ1
の断面構成を示す図である。
FIG. 6 is a graphite crucible 1 according to a fourth embodiment of the present invention.
FIG. 3 is a diagram showing a cross-sectional configuration of FIG.

【図7】本発明者らの試作した黒鉛製るつぼ101の断
面構成を示す図である。
FIG. 7 is a diagram showing a cross-sectional configuration of a graphite crucible 101 prototyped by the present inventors.

【図8】図7に示す黒鉛製るつぼ101を用いた場合に
おける種結晶103の成長表面尾温度分布をシミュレー
ションによって求めた結果を示す図である。
8 is a diagram showing a result obtained by simulation of a growth surface tail temperature distribution of a seed crystal 103 in a case where the graphite crucible 101 shown in FIG. 7 is used.

【符号の説明】[Explanation of symbols]

1…黒鉛製るつぼ、2…炭化珪素原料、3…種結晶、4
…炭化珪素単結晶、6…多結晶、10…るつぼ本体、1
1…蓋材、12…種結晶貼付部材、12a…突出部、1
2b…先端面、13…多結晶成長部材、13a…空洞
部、13b…ガイド、13c…表面、14〜16…支持
部材、d…隙間。
1 ... graphite crucible, 2 ... silicon carbide raw material, 3 ... seed crystal, 4
... silicon carbide single crystal, 6 ... polycrystal, 10 ... crucible body, 1
DESCRIPTION OF SYMBOLS 1 ... Lid material, 12 ... Seed crystal sticking member, 12a ... Projection part, 1
2b: tip surface, 13: polycrystalline growth member, 13a: cavity, 13b: guide, 13c: surface, 14-16: support member, d: gap.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 二ツ山 幸樹 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 恩田 正一 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 廣瀬 富佐雄 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 小栗 英美 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 杉山 尚宏 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 4G077 AA02 BE08 DA02 ED01 EG02 EG11 EG20 EG25 HA12  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yuki Futyama 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside DENSO Corporation (72) Inventor Shoichi Onda 1-1-1, Showa-cho, Kariya-shi, Aichi Co., Ltd. Inside DENSO (72) Inventor Tomisao Hirose 1-1-1, Showa-cho, Kariya, Aichi Prefecture Inside Denso Corporation (72) Inventor Hidemi Oguri 1-1-1, Showa-cho, Kariya City, Aichi Prefecture Inside DENSO Corporation (72) Inventor Naohiro Sugiyama 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture F-term in Toyota Central R & D Laboratories, Inc. (reference) 4G077 AA02 BE08 DA02 ED01 EG02 EG11 EG20 EG25 HA12

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 種結晶貼付部(12a)と該種結晶貼付
部の周囲を囲む周縁部(12c、13)とが所定面に配
設されてなるるつぼ(1)を用意し、前記種結晶貼付部
の表面(12b)に種結晶(3)を取付ける工程と、 前記るつぼ内の成長空間に炭化珪素原料ガスを導入し、
前記種結晶の成長表面上に炭化珪素単結晶(4)を成長
させると共に、前記周縁部の表面(13c)に前記炭化
珪素単結晶と同等の高さとなるように多結晶(6)を成
長させ、前記多結晶に囲まれて埋め込まれた状態で前記
炭化珪素単結晶を成長させることを特徴とする炭化珪素
単結晶の製造方法。
1. A crucible (1) having a seed crystal sticking portion (12a) and peripheral portions (12c, 13) surrounding the seed crystal sticking portion arranged on a predetermined surface is prepared. Attaching a seed crystal (3) to the surface (12b) of the attaching section; introducing a silicon carbide source gas into a growth space in the crucible;
A silicon carbide single crystal (4) is grown on the growth surface of the seed crystal, and a polycrystal (6) is grown on the peripheral surface (13c) so as to have the same height as the silicon carbide single crystal. Growing the silicon carbide single crystal in a state of being buried surrounded by the polycrystal.
【請求項2】 種結晶貼付部(12a)と該種結晶貼付
部の周囲を囲む周縁部(12c、13)とが所定面に配
設されてなるるつぼ(1)を用意し、前記種結晶貼付部
の表面(12b)に種結晶(3)を取付ける工程と、 前記るつぼ内の成長空間に炭化珪素原料ガスを導入し、
前記種結晶の成長表面上に炭化珪素単結晶を成長させる
と共に、前記周縁部の表面に前記炭化珪素単結晶の成長
表面とほぼフラットになる成長表面を有する多結晶
(6)を成長させることを特徴とする炭化珪素単結晶の
製造方法。
2. A crucible (1) having a seed crystal sticking portion (12a) and peripheral portions (12c, 13) surrounding the seed crystal sticking portion arranged on a predetermined surface is prepared. Attaching a seed crystal (3) to the surface (12b) of the attaching section; introducing a silicon carbide source gas into a growth space in the crucible;
Growing a silicon carbide single crystal on the growth surface of the seed crystal and growing a polycrystal (6) having a growth surface substantially flat with the growth surface of the silicon carbide single crystal on the surface of the peripheral portion. A method for producing a silicon carbide single crystal, which is characterized by the following.
【請求項3】 種結晶貼付部(12a)と該種結晶貼付
部の周囲を囲む周縁部(12c、13)とが所定面に配
設されてなるるつぼ(1)を用意し、前記種結晶貼付部
の表面(12b)に種結晶(3)を取付ける工程と、 前記るつぼ内の成長空間に炭化珪素原料ガスを導入し、
前記周縁部の表面(13c)の温度よりも前記種結晶の
成長表面の温度が低温になるようにして、前記種結晶の
成長表面上に炭化珪素単結晶(4)を成長させると共
に、前記周縁部の表面に前記炭化珪素単結晶と同等の高
さの多結晶(6)を成長させることを特徴とする炭化珪
素単結晶の製造方法。
3. A crucible (1) having a seed crystal sticking part (12a) and a peripheral part (12c, 13) surrounding the seed crystal sticking part disposed on a predetermined surface is prepared. Attaching a seed crystal (3) to the surface (12b) of the attaching section; introducing a silicon carbide source gas into a growth space in the crucible;
The silicon carbide single crystal (4) is grown on the seed crystal growth surface such that the temperature of the seed crystal growth surface is lower than the temperature of the peripheral edge surface (13c). A method for producing a silicon carbide single crystal, comprising growing a polycrystal (6) having a height equal to that of the silicon carbide single crystal on the surface of the portion.
【請求項4】 種結晶貼付部(12a)と該種結晶貼付
部の周囲を囲む周縁部(12c、13)とが所定面に配
設されてなるるつぼ(1)を用意し、前記種結晶貼付部
の表面(12b)に種結晶(3)を取付ける工程と、 前記るつぼ内の成長空間に炭化珪素原料ガスを導入し、
前記周縁部の厚み(A+B)が前記種結晶貼付部の厚み
よりも厚くなるようにし、前記種結晶の成長表面上に炭
化珪素単結晶(4)を成長させると共に、前記周縁部の
表面(13c)に前記炭化珪素単結晶と同等の高さの多
結晶(6)を成長させることを特徴とする炭化珪素単結
晶の製造方法。
4. A crucible (1) having a seed crystal sticking part (12a) and a peripheral part (12c, 13) surrounding the seed crystal sticking part arranged on a predetermined surface is prepared. Attaching a seed crystal (3) to the surface (12b) of the attaching section; introducing a silicon carbide source gas into a growth space in the crucible;
The thickness (A + B) of the peripheral portion is made larger than the thickness of the seed crystal attaching portion, and a silicon carbide single crystal (4) is grown on the growth surface of the seed crystal, and the surface (13c) of the peripheral portion is formed. A) growing a polycrystal (6) having the same height as the silicon carbide single crystal.
【請求項5】 前記種結晶貼付部と前記周縁部のうち前
記種結晶貼付部を囲む内周壁との間に、所定間隔の隙間
を設けることを特徴とする請求項1乃至4のいずれか1
つに記載の炭化珪素単結晶の製造方法。
5. A predetermined gap is provided between the seed crystal sticking portion and an inner peripheral wall of the peripheral portion surrounding the seed crystal sticking portion.
5. A method for producing a silicon carbide single crystal according to any one of the above.
【請求項6】 前記隙間を0.5〜3mmとすることを
特徴とする請求項5に記載の炭化珪素単結晶の製造方
法。
6. The method for producing a silicon carbide single crystal according to claim 5, wherein the gap is set to 0.5 to 3 mm.
【請求項7】 前記種結晶貼付部と前記周縁部とを、相
対的に逆回転させることを特徴とする請求項1乃至6の
いずれか1つに記載の炭化珪素単結晶の製造方法。
7. The method for producing a silicon carbide single crystal according to claim 1, wherein the seed crystal attachment portion and the peripheral portion are relatively reversely rotated.
【請求項8】 前記るつぼのうち前記種結晶貼付部及び
前記周縁部が配設された前記所定面と対向する面に炭化
珪素原料(2)を備え、前記炭化珪素単結晶の成長中に
前記種結晶貼付部を前記炭化珪素原料から離れる方向に
移動させることを特徴とする請求項1乃至7のいずれか
1つに記載の炭化珪素単結晶の製造方法。
8. A silicon carbide raw material (2) is provided on a surface of the crucible opposite to the predetermined surface on which the seed crystal attachment portion and the peripheral portion are provided, and the silicon carbide single crystal is grown during growth. The method for producing a silicon carbide single crystal according to any one of claims 1 to 7, wherein the seed crystal attaching section is moved in a direction away from the silicon carbide raw material.
【請求項9】 前記種結晶貼付部の移動速度を、前記炭
化珪素単結晶の成長速度と同等にすることを特徴とする
請求項8に記載の炭化珪素単結晶の製造方法。
9. The method for producing a silicon carbide single crystal according to claim 8, wherein a moving speed of the seed crystal attaching portion is made equal to a growth speed of the silicon carbide single crystal.
【請求項10】 前記周縁部のうち、前記多結晶が成長
する表面を構成している部材(13)の厚み(B)を5
mm以上とすることを特徴とする請求項1乃至6のいず
れか1つに記載の炭化珪素単結晶の製造方法。
10. A thickness (B) of a member (13) constituting a surface on which the polycrystal grows in the peripheral portion is set to 5%.
The method for producing a silicon carbide single crystal according to any one of claims 1 to 6, wherein the thickness is not less than mm.
【請求項11】 種結晶貼付部(12a)と該種結晶貼
付部の周囲を囲む周縁部(12c、13)とが所定面に
配設されてなるるつぼ(1)を有し、前記種結晶貼付部
の表面に種結晶(3)を取付けると共に、前記るつぼ内
の成長空間に炭化珪素原料ガスを導入することにより、
該種結晶の成長表面に炭化珪素単結晶(4)を成長させ
るようになっており、 前記種結晶の成長表面上に前記炭化珪素単結晶を成長さ
せると共に、前記周縁部の表面(13c)に前記炭化珪
素単結晶と同等の高さとなるように多結晶(6)を成長
させ、前記多結晶に囲まれて埋め込まれた状態で前記炭
化珪素単結晶を成長させられるように構成されているこ
とを特徴とする炭化珪素単結晶の製造装置。
11. A crucible (1) having a seed crystal sticking part (12a) and a peripheral part (12c, 13) surrounding the seed crystal sticking part disposed on a predetermined surface, wherein the seed crystal is provided. By attaching the seed crystal (3) to the surface of the attaching portion and introducing a silicon carbide source gas into the growth space in the crucible,
A silicon carbide single crystal (4) is grown on the growth surface of the seed crystal. The silicon carbide single crystal is grown on the growth surface of the seed crystal, and the silicon carbide single crystal is grown on the peripheral surface (13c). It is configured to grow a polycrystal (6) so as to have a height equivalent to that of the silicon carbide single crystal, and to grow the silicon carbide single crystal in a state of being buried surrounded by the polycrystal. An apparatus for producing a silicon carbide single crystal.
【請求項12】 種結晶貼付部(12a)と該種結晶貼
付部の周囲を囲む周縁部(12c、13)とが所定面に
配設されてなるるつぼ(1)を有し、前記種結晶貼付部
の表面に種結晶(3)を取付けると共に、前記るつぼ内
の成長空間に炭化珪素原料ガスを導入することにより、
該種結晶の成長表面に炭化珪素単結晶(4)を成長させ
るようになっており、 前記種結晶貼付部及び前記周縁部は、前記種結晶貼付部
に取付けられた前記種結晶の成長表面温度が前記周縁部
の表面温度より低くなるように構成されていることを特
徴とする炭化珪素単結晶の製造装置。
12. A crucible (1) having a seed crystal sticking part (12a) and a peripheral part (12c, 13) surrounding the seed crystal sticking part arranged on a predetermined surface, wherein the seed crystal is provided. By attaching the seed crystal (3) to the surface of the attaching portion and introducing a silicon carbide source gas into the growth space in the crucible,
A silicon carbide single crystal (4) is grown on the growth surface of the seed crystal, and the seed crystal sticking portion and the peripheral portion have a growth surface temperature of the seed crystal attached to the seed crystal sticking portion. Is configured to be lower than the surface temperature of the peripheral portion.
【請求項13】 種結晶貼付部(12a)と該種結晶貼
付部の周囲を囲む周縁部(12c、13)とが所定面に
配設されてなるるつぼ(1)を有し、前記種結晶貼付部
の表面に種結晶(3)を取付けると共に、前記るつぼ内
の成長空間に炭化珪素原料ガスを導入することにより、
該種結晶の成長表面に炭化珪素単結晶(4)を成長させ
るようになっており、 前記炭化珪素単結晶の成長方向において、前記種結晶貼
付部の厚み(C)が、前記周縁部の厚み(A+B)より
も薄くされていることを特徴とする炭化珪素単結晶の製
造装置。
13. A crucible (1) having a seed crystal sticking portion (12a) and a peripheral portion (12c, 13) surrounding the seed crystal sticking portion disposed on a predetermined surface, wherein the seed crystal is provided. By attaching the seed crystal (3) to the surface of the attaching portion and introducing a silicon carbide source gas into the growth space in the crucible,
A silicon carbide single crystal (4) is grown on the growth surface of the seed crystal, and in the growth direction of the silicon carbide single crystal, the thickness (C) of the seed crystal attachment portion is equal to the thickness of the peripheral portion. An apparatus for producing a silicon carbide single crystal, wherein the apparatus is thinner than (A + B).
【請求項14】 前記種結晶貼付部と前記周縁部のうち
前記種結晶貼付部を囲む内周壁との間に、所定間隔の隙
間が設けられていることを特徴とする請求項11乃至1
3のいずれか1つに記載の炭化珪素単結晶の製造装置。
14. A predetermined gap is provided between the seed crystal sticking portion and an inner peripheral wall of the peripheral portion surrounding the seed crystal sticking portion.
3. The apparatus for producing a silicon carbide single crystal according to any one of 3.
【請求項15】 前記隙間を0.5〜3mmとすること
を特徴とする請求項14に記載の炭化珪素単結晶の製造
装置。
15. The apparatus according to claim 14, wherein the gap is set to 0.5 to 3 mm.
【請求項16】 前記種結晶貼付部と前記周縁部とが、
相対的に逆回転させられるように構成されていることを
特徴とする請求項11乃至15のいずれか1つに記載の
炭化珪素単結晶の製造装置。
16. The method according to claim 16, wherein the seed crystal attachment portion and the peripheral portion are
The apparatus for producing a silicon carbide single crystal according to any one of claims 11 to 15, wherein the apparatus is configured to be relatively rotated in the reverse direction.
【請求項17】 前記るつぼのうち前記種結晶貼付部及
び前記周縁部が配設された前記所定面と対向する面に炭
化珪素原料(2)が備えられるように構成されており、 前記種結晶貼付部を前記炭化珪素原料から離れる方向に
移動させられるようになっていることを特徴とする請求
項11乃至16のいずれか1つに記載の炭化珪素単結晶
の製造装置。
17. A structure in which a silicon carbide raw material (2) is provided on a surface of the crucible facing the predetermined surface on which the seed crystal attaching portion and the peripheral portion are provided, and wherein the seed crystal is provided. The apparatus for producing a silicon carbide single crystal according to any one of claims 11 to 16, wherein an attaching part is moved in a direction away from the silicon carbide raw material.
JP29446899A 1999-10-15 1999-10-15 Method for producing silicon carbide single crystal Expired - Lifetime JP4450118B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29446899A JP4450118B2 (en) 1999-10-15 1999-10-15 Method for producing silicon carbide single crystal
US09/686,232 US6451112B1 (en) 1999-10-15 2000-10-12 Method and apparatus for fabricating high quality single crystal
DE10050767A DE10050767B4 (en) 1999-10-15 2000-10-13 Device for producing single crystals of high quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29446899A JP4450118B2 (en) 1999-10-15 1999-10-15 Method for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2001114598A true JP2001114598A (en) 2001-04-24
JP4450118B2 JP4450118B2 (en) 2010-04-14

Family

ID=17808177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29446899A Expired - Lifetime JP4450118B2 (en) 1999-10-15 1999-10-15 Method for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP4450118B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002794A (en) * 2001-06-15 2003-01-08 Bridgestone Corp Silicon carbide single crystal and method for producing the same
JP2007290880A (en) * 2006-04-21 2007-11-08 Nippon Steel Corp Silicon carbide single crystal ingot and method for manufacturing the same
JP2009018957A (en) * 2007-07-11 2009-01-29 Denso Corp Method and apparatus for producing silicon carbide monocrystal
JP2009078929A (en) * 2007-09-25 2009-04-16 Denso Corp Manufacturing method and apparatus of silicon carbide single crystal
JP2009091173A (en) * 2007-10-04 2009-04-30 Denso Corp Manufacturing apparatus for silicon carbide single crystal
KR200447834Y1 (en) 2008-01-11 2010-02-24 동의대학교 산학협력단 Tube guide for single crystal growing of large caliber silicon carbide
JP2013100217A (en) * 2011-10-17 2013-05-23 Sumitomo Electric Ind Ltd Silicon carbide ingot and silicon carbide substrate, and method for producing them
JP2014101252A (en) * 2012-11-20 2014-06-05 Sumitomo Electric Ind Ltd Silicon carbide substrate, silicon carbide ingot, and production methods thereof
US9422639B2 (en) 2014-03-06 2016-08-23 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot
JP2016531837A (en) * 2013-09-06 2016-10-13 ジーティーエイティー コーポレーションGtat Corporation Bulk silicon carbide with low defect density
JP2016532630A (en) * 2013-09-06 2016-10-20 ジーティーエイティー コーポレーションGtat Corporation Equipment for producing bulk silicon carbide

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002794A (en) * 2001-06-15 2003-01-08 Bridgestone Corp Silicon carbide single crystal and method for producing the same
JP2007290880A (en) * 2006-04-21 2007-11-08 Nippon Steel Corp Silicon carbide single crystal ingot and method for manufacturing the same
JP2009018957A (en) * 2007-07-11 2009-01-29 Denso Corp Method and apparatus for producing silicon carbide monocrystal
JP2009078929A (en) * 2007-09-25 2009-04-16 Denso Corp Manufacturing method and apparatus of silicon carbide single crystal
JP2009091173A (en) * 2007-10-04 2009-04-30 Denso Corp Manufacturing apparatus for silicon carbide single crystal
KR200447834Y1 (en) 2008-01-11 2010-02-24 동의대학교 산학협력단 Tube guide for single crystal growing of large caliber silicon carbide
JP2013100217A (en) * 2011-10-17 2013-05-23 Sumitomo Electric Ind Ltd Silicon carbide ingot and silicon carbide substrate, and method for producing them
JP2014101252A (en) * 2012-11-20 2014-06-05 Sumitomo Electric Ind Ltd Silicon carbide substrate, silicon carbide ingot, and production methods thereof
JP2016531837A (en) * 2013-09-06 2016-10-13 ジーティーエイティー コーポレーションGtat Corporation Bulk silicon carbide with low defect density
JP2016532630A (en) * 2013-09-06 2016-10-20 ジーティーエイティー コーポレーションGtat Corporation Equipment for producing bulk silicon carbide
JP2019163206A (en) * 2013-09-06 2019-09-26 ジーティーエイティー コーポレーションGtat Corporation Apparatus for producing bulk silicon carbide
JP2019214512A (en) * 2013-09-06 2019-12-19 ジーティーエイティー コーポレーションGtat Corporation Bulky silicon carbide having low defect density
JP7054934B2 (en) 2013-09-06 2022-04-15 ジーティーエイティー コーポレーション Bulk Silicon Carbide with Low Defect Density
US9422639B2 (en) 2014-03-06 2016-08-23 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot
US9605358B2 (en) 2014-03-06 2017-03-28 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot

Also Published As

Publication number Publication date
JP4450118B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
US6786969B2 (en) Method and apparatus for producing single crystal, substrate for growing single crystal and method for heating single crystal
TW494147B (en) Method of making GaN single crystal and apparatus for making GaN single crystal
JP4174847B2 (en) Single crystal manufacturing method
JP4288792B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
US6110279A (en) Method of producing single-crystal silicon carbide
JP3419144B2 (en) Single crystal growth equipment
TWI704253B (en) Method for depositing an epitaxial layer on a front side of a semiconductor wafer and apparatus for carrying out the method
JP2001114598A (en) Method of and device for producing silicon carbide single crystal
JPH09268096A (en) Production of single crystal and seed crystal
US6451112B1 (en) Method and apparatus for fabricating high quality single crystal
US20140216348A1 (en) Apparatus for fabricating ingot
JPH11268990A (en) Production of single crystal and production device
JPH09263497A (en) Production of silicon carbide single crystal
JP4054197B2 (en) Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal ingot
US20140158042A1 (en) Apparatus for fabricating ingot
JP2001226197A (en) Method and device for producing silicon carbide single crystal
JP2004224663A (en) Apparatus for growing single crystal
JPH09221397A (en) Production of silicon carbide single crystal
KR20130083653A (en) Growing apparatus for single crystal
JP5516167B2 (en) Silicon carbide single crystal manufacturing equipment
JP2000044383A (en) Growth unit for single crystal
JPH0977595A (en) Production of silicon carbide single crystal
TWI802616B (en) Manufacturing method of silicon carbide single crystal
JPH11255597A (en) Apparatus for producing single crystal
JPH09263498A (en) Production of silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4450118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term