JP2009018957A - Method and apparatus for producing silicon carbide monocrystal - Google Patents

Method and apparatus for producing silicon carbide monocrystal Download PDF

Info

Publication number
JP2009018957A
JP2009018957A JP2007181964A JP2007181964A JP2009018957A JP 2009018957 A JP2009018957 A JP 2009018957A JP 2007181964 A JP2007181964 A JP 2007181964A JP 2007181964 A JP2007181964 A JP 2007181964A JP 2009018957 A JP2009018957 A JP 2009018957A
Authority
JP
Japan
Prior art keywords
silicon carbide
crucible
cylindrical portion
single crystal
covering member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007181964A
Other languages
Japanese (ja)
Other versions
JP4924253B2 (en
Inventor
Masanori Yamada
正徳 山田
Yasushi Uragami
泰 浦上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007181964A priority Critical patent/JP4924253B2/en
Publication of JP2009018957A publication Critical patent/JP2009018957A/en
Application granted granted Critical
Publication of JP4924253B2 publication Critical patent/JP4924253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method, in an embedded growth process, capable of preventing the loss of the uniformity of the temperature in the growth space region by thermal radiation, to thereby prevent a crack of silicon carbide monocrystal. <P>SOLUTION: In a cylinder covering member 23c arranged in the hollow section of a cylinder 23b, the shape of inner wall surfaces 23e vertical to the central axis of a crucible is polygonal. Thereby, the thermal energy emitted from the inner wall surfaces 23e of the cylinder covering member 23c in the diameter direction of the crucible is reflected at the angle of reflection according to the angle of incidence entering each side of the polygonal, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、パワーMOSFET等の素材に利用することができる炭化珪素(以下、SiCという)単結晶の製造方法および装置に関するものである。   The present invention relates to a method and an apparatus for producing silicon carbide (hereinafter referred to as SiC) single crystal that can be used as a material for a power MOSFET or the like.

従来より、坩堝の外周に配置させた抵抗加熱ヒータで坩堝を加熱することによって坩堝内にSiC単結晶を成長させる方法が提案されている(例えば、特許文献1参照)。具体的に、特許文献1では、黒鉛製の坩堝内に種結晶を接合すると共に、坩堝底部に配したSiC粉末原料を例えば2300℃に加熱することで、SiC粉末原料を昇華させ、その昇華させたガスを原料温度よりも低い温度に設定された種結晶上に結晶化させる手法が提案されている。   Conventionally, a method of growing a SiC single crystal in a crucible by heating the crucible with a resistance heater arranged on the outer periphery of the crucible has been proposed (for example, see Patent Document 1). Specifically, in patent document 1, while joining a seed crystal in a graphite crucible and heating the SiC powder raw material arranged at the bottom of the crucible to 2300 ° C., for example, the SiC powder raw material is sublimated and sublimated. There has been proposed a method of crystallizing a gas on a seed crystal set at a temperature lower than the raw material temperature.

図3は、この昇華再析出法に用いられるSiC単結晶製造装置の模式的な断面構造を示した図である。この図に示されるように、黒鉛製の坩堝J1の蓋材J2の内壁に円筒状の突起部J3を設け、この突起部J3の端面に種結晶J4を貼り付けるようにしている。さらに、種結晶J4の成長表面に対向する面を有すると共に、種結晶J4との間に成長空間領域J5を形成する遮蔽板J6を設けている。   FIG. 3 is a diagram showing a schematic cross-sectional structure of a SiC single crystal manufacturing apparatus used for the sublimation reprecipitation method. As shown in this figure, a cylindrical projection J3 is provided on the inner wall of a lid member J2 of a graphite crucible J1, and a seed crystal J4 is attached to the end face of the projection J3. Further, a shielding plate J6 is provided which has a surface facing the growth surface of the seed crystal J4 and forms a growth space region J5 with the seed crystal J4.

また、蓋材J2に種結晶J4を囲うように黒鉛で形成されたスカート状の円筒部J7を設け、当該円筒部J7および遮蔽板J6により、坩堝J1のうち種結晶J4側の径方向温度分布を小さくしている。このようにして、成長空間領域J5の均熱を保つようにして、種結晶J4の上にSiC単結晶J8を成長させる。この場合、SiC単結晶J8の周辺に多結晶を伴う埋め込み成長も起こる。   In addition, a skirt-like cylindrical portion J7 formed of graphite is provided on the cover material J2 so as to surround the seed crystal J4, and the radial temperature distribution on the seed crystal J4 side of the crucible J1 is provided by the cylindrical portion J7 and the shielding plate J6. Is made smaller. In this way, the SiC single crystal J8 is grown on the seed crystal J4 so as to keep the soaking in the growth space region J5. In this case, buried growth accompanied by polycrystal also occurs around the SiC single crystal J8.

しかしながら、このような装置においては、坩堝J1が加熱されることで円筒部J7から黒鉛の微粒子が成長空間領域J5に飛び出し、SiC単結晶J8に不純物として混入してしまうという問題がある。   However, in such an apparatus, there is a problem that when the crucible J1 is heated, graphite fine particles jump out from the cylindrical portion J7 into the growth space region J5 and are mixed as impurities into the SiC single crystal J8.

そこで、SiC単結晶J8への黒鉛の微粒子の混入を防止するため、円筒部J7の内壁を覆うように円筒状のTaC部材J9を設けたものが提案されている(例えば、特許文献2参照)。図4は、図3に示される蓋材J2を遮蔽板J6側から見た図である。この図に示されるように、TaC部材J9によって円筒部J7の内壁が覆われているため、円筒部J7の内壁から黒鉛の微粒子がSiC単結晶J8側に飛び出したとしても、TaC部材J9によって黒鉛の微粒子がせき止められる。このようにして、成長中のSiC単結晶J8に黒鉛の微粒子を混入させないようにしている。   Therefore, in order to prevent the inclusion of graphite fine particles into the SiC single crystal J8, there has been proposed one provided with a cylindrical TaC member J9 so as to cover the inner wall of the cylindrical portion J7 (see, for example, Patent Document 2). . FIG. 4 is a view of the lid member J2 shown in FIG. 3 as viewed from the shielding plate J6 side. As shown in this figure, since the inner wall of the cylindrical portion J7 is covered by the TaC member J9, even if graphite fine particles jump out of the inner wall of the cylindrical portion J7 toward the SiC single crystal J8, the TaC member J9 Of fine particles. In this way, graphite fine particles are prevented from being mixed into the growing SiC single crystal J8.

なお、上記遮蔽板J6も黒鉛で形成されている。この場合、遮蔽板J6に図示しないTaCのコーティング膜を形成し、遮蔽板J6から成長空間領域J5に黒鉛の微粒子が飛び出さないようにしている。
特開2001−114598号公報 特開2005−225710号公報
The shielding plate J6 is also made of graphite. In this case, a TaC coating film (not shown) is formed on the shielding plate J6 so that graphite fine particles do not protrude from the shielding plate J6 to the growth space region J5.
JP 2001-114598 A JP 2005-225710 A

しかしながら、上記従来の技術では、図4に示されるように、TaC部材J9において坩堝J1の中心軸に垂直方向の内壁面J10の断面形状が真円になっている。このため、加熱された坩堝J1の熱がTaC部材J9に与えられると、TaC部材J9の内壁から生じた熱輻射がTaC部材J9に最大に作用してしまう。   However, in the above conventional technique, as shown in FIG. 4, in the TaC member J9, the cross-sectional shape of the inner wall surface J10 perpendicular to the central axis of the crucible J1 is a perfect circle. For this reason, when the heat of the heated crucible J1 is given to the TaC member J9, the thermal radiation generated from the inner wall of the TaC member J9 acts on the TaC member J9 to the maximum.

具体的には、坩堝J1が加熱されることでTaC部材J9が加熱されると、当該TaC部材J9の内壁面J10から熱エネルギーが発せられる。上述のように、TaC部材J9において坩堝J1の中心軸に垂直方向の内壁面J10の形状は真円であるので、熱エネルギーは内壁面J10から坩堝J1の径方向に発せられ、真円の中心すなわち坩堝J1の中心軸を経由して反対側の内壁面J10に達し、当該内壁面J10の加熱に寄与することとなる。この場合、TaC部材J9の内壁面J10すべてで発せられた熱エネルギーが、坩堝J1の中心軸を中心に対称の内壁面J10すべてに達し、各場所の加熱に寄与すると共に反射して再び元の場所に戻ってきてしまう。このため、TaC部材J9の内壁面J10全体が繰り返し何度も熱輻射によって加熱され、TaC部材J9の中空部分である成長空間領域J5の均熱が維持できなくなって高温になってしまう。   Specifically, when the TaC member J9 is heated by heating the crucible J1, thermal energy is emitted from the inner wall surface J10 of the TaC member J9. As described above, since the shape of the inner wall surface J10 perpendicular to the central axis of the crucible J1 in the TaC member J9 is a perfect circle, the heat energy is emitted from the inner wall surface J10 in the radial direction of the crucible J1, and the center of the perfect circle That is, it reaches the opposite inner wall surface J10 via the central axis of the crucible J1, and contributes to heating of the inner wall surface J10. In this case, the thermal energy emitted from all the inner wall surfaces J10 of the TaC member J9 reaches all the symmetric inner wall surfaces J10 around the central axis of the crucible J1, contributes to the heating of each place, and is reflected and reflected again. I will return to the place. For this reason, the entire inner wall surface J10 of the TaC member J9 is repeatedly heated by thermal radiation, and the soaking of the growth space region J5 that is the hollow portion of the TaC member J9 cannot be maintained, resulting in a high temperature.

このように、成長空間領域J5において、坩堝J1の中心軸付近における温度よりもTaC部材J9の内壁面J10の温度が高くなってしまうと、温度が低い坩堝J1の中心軸付近の結晶成長が加速することによってSiC単結晶J8の口径拡大と凸成長が急速に進行してしまう。特に、SiC単結晶J8のc面オフ成長では成長表面に形成されるファセットと呼ばれる(0001)の平らな面が坩堝J1の中心軸に移動しやすくなるという問題点と、SiC単結晶J8に大きな歪みが生じ、SiC単結晶J8が割れてしまうという問題が生じる。   Thus, in the growth space region J5, if the temperature of the inner wall surface J10 of the TaC member J9 becomes higher than the temperature in the vicinity of the central axis of the crucible J1, the crystal growth in the vicinity of the central axis of the crucible J1 having a low temperature is accelerated. By doing so, the diameter expansion and the convex growth of the SiC single crystal J8 proceed rapidly. In particular, in the c-plane off-growth of the SiC single crystal J8, the problem is that a flat surface of (0001) called facet formed on the growth surface easily moves to the central axis of the crucible J1, and the SiC single crystal J8 has a big problem. There arises a problem that distortion occurs and the SiC single crystal J8 breaks.

なお、円筒部J7において坩堝J1の中心軸に垂直方向の内壁面J10の断面形状は真円であるので、円筒部J7の内壁面J10にTaCをコーティングした場合にも熱輻射による上記と同様の問題が生じる。   In addition, since the cross-sectional shape of the inner wall surface J10 perpendicular to the central axis of the crucible J1 in the cylindrical portion J7 is a perfect circle, even when TaC is coated on the inner wall surface J10 of the cylindrical portion J7, the same as described above due to thermal radiation. Problems arise.

本発明は、上記点に鑑み、埋め込み成長において、熱輻射によって成長空間領域の均熱が保たれなくなることを防止し、ひいては炭化珪素単結晶の割れを防止することができる製造装置および製造方法を提供することを目的とする。   In view of the above points, the present invention provides a manufacturing apparatus and a manufacturing method capable of preventing the soaking of the growth space region from being maintained due to thermal radiation in embedded growth, and thus preventing the silicon carbide single crystal from cracking. The purpose is to provide.

上記目的を達成するため、本発明は、蓋体(20)は、板状であって、当該板の面が坩堝(1)の中心軸に対して垂直に配置される支持板(23a)と、円筒状をなしており、支持板(23a)の一面に円筒の開口端の一方が一体化されることで支持板(23a)から炭化珪素原料(50)側に突出した形態とされる円筒部(23b)と、円筒部(23b)の中空部分に配置される筒形状のものであって、当該筒の中空部分が成長空間領域(60)とされて昇華ガスが供給される円筒部被覆部材(23c)とを備え、円筒部被覆部材(23c)は、坩堝(1)の中心軸を中心にして、当該中心軸から坩堝(1)の径方向に異なる距離の面を有し構成される内壁面(23e)を備えていることを特徴とする。   In order to achieve the above object, according to the present invention, the lid (20) is plate-shaped, and the surface of the plate is arranged perpendicular to the central axis of the crucible (1). The cylinder is formed in a cylindrical shape and protrudes from the support plate (23a) to the silicon carbide raw material (50) side by integrating one of the open ends of the cylinder with one surface of the support plate (23a). A cylindrical portion covering a portion (23b) and a cylindrical portion disposed in a hollow portion of the cylindrical portion (23b), wherein the hollow portion of the tube is used as a growth space region (60) and sublimation gas is supplied The cylindrical portion covering member (23c) is configured to have a surface with a different distance from the central axis in the radial direction of the crucible (1) with the central axis of the crucible (1) as a center. And an inner wall surface (23e).

これによると、坩堝(1)の中心軸を中心に坩堝(1)の径方向に広がる熱エネルギーのうち、一定範囲の内壁面(23e)で反射して再び坩堝(1)の中心軸に戻ってくる内壁面(23e)の場所が一点あったとしても、一定範囲の内壁面(23e)のうち他の場所では内壁面(23e)に対する入射角に従った反射角で反射する。このため、坩堝(1)の中心軸から坩堝(1)の径方向に進む熱エネルギーを分散することができ、円筒部被覆部材(23c)の内壁面(23e)が受ける熱輻射による影響を低減することができる。したがって、円筒部(23b)の中空部分における温度勾配を小さくすることができ、炭化珪素単結晶(70)が成長する成長空間領域(60)を均熱に保つことができる。以上により、炭化珪素単結晶(70)の口径拡大や凸成長を防止することができ、ひいては炭化珪素単結晶(70)の割れを防止することができる。   According to this, out of the thermal energy spreading in the radial direction of the crucible (1) around the central axis of the crucible (1), it is reflected by the inner wall surface (23e) within a certain range and returns to the central axis of the crucible (1) again. Even if there is one place of the incoming inner wall surface (23e), reflection is performed at a reflection angle according to the incident angle with respect to the inner wall surface (23e) at the other place of the inner wall surface (23e) within a certain range. For this reason, it is possible to disperse the thermal energy that travels from the central axis of the crucible (1) in the radial direction of the crucible (1), reducing the influence of the thermal radiation received on the inner wall surface (23e) of the cylindrical portion covering member (23c). can do. Therefore, the temperature gradient in the hollow part of cylindrical part (23b) can be made small, and the growth space area | region (60) in which a silicon carbide single crystal (70) grows can be maintained at soaking | uniform_heating. By the above, the diameter expansion and convex growth of the silicon carbide single crystal (70) can be prevented, and cracking of the silicon carbide single crystal (70) can be prevented.

この場合、当該円筒部被覆部材(23c)において、坩堝(1)の中心軸に対して垂直方向の内壁面(23e)の形状が多角形になっていることを特徴とする。   In this case, in the cylindrical portion covering member (23c), the shape of the inner wall surface (23e) in the direction perpendicular to the central axis of the crucible (1) is a polygon.

これにより、円筒部被覆部材(23c)の内壁面(23e)から坩堝(1)の径方向に発せられる熱エネルギーを多角形の各辺に入射する入射角に従った反射角でそれぞれ反射させることができ、熱エネルギーを分散させることができる。   Thereby, the thermal energy emitted from the inner wall surface (23e) of the cylindrical portion covering member (23c) in the radial direction of the crucible (1) is reflected at a reflection angle according to the incident angle incident on each side of the polygon. And heat energy can be dispersed.

また、円筒部被覆部材(23c)を、複数の板材を筒状に組み合わせて構成することができる。これにより、坩堝(1)の中心軸に対して垂直方向の内壁面(23e)の断面形状が多角形となる円筒部被覆部材(23c)を容易に構成することができる。   Further, the cylindrical portion covering member (23c) can be configured by combining a plurality of plate materials into a cylindrical shape. Thereby, the cylindrical part covering member (23c) in which the cross-sectional shape of the inner wall surface (23e) in the direction perpendicular to the central axis of the crucible (1) is a polygon can be easily configured.

上記では、炭化珪素単結晶の製造装置について述べたが、炭化珪素単結晶の製造方法についても同様のことが言える。すなわち、円筒部被覆部材(23c)として、坩堝(1)の中心軸を中心にして、当該中心軸から坩堝(1)の径方向に異なる距離の面を有し構成される内壁面(23e)を備えたものを用いることができる。これにより、熱エネルギーを内壁面(23e)の各点に対する入射角に従った反射角で反射させて分散させることができるので、円筒部被覆部材(23c)の内壁面(23e)における熱輻射の影響を低減することができる。   In the above description, the silicon carbide single crystal manufacturing apparatus has been described, but the same can be said for the silicon carbide single crystal manufacturing method. That is, as the cylindrical portion covering member (23c), an inner wall surface (23e) having a surface with a different distance from the central axis in the radial direction of the crucible (1) around the central axis of the crucible (1). The thing provided with can be used. Thereby, since heat energy can be reflected and dispersed at a reflection angle according to the incident angle with respect to each point of the inner wall surface (23e), the heat radiation of the inner wall surface (23e) of the cylindrical portion covering member (23c) is reduced. The influence can be reduced.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
以下、本発明の第1実施形態について図を参照して説明する。図1は、本発明の第1実施形態に係るSiC単結晶製造装置の断面構成を示したものである。この図に示されるように、SiC単結晶製造装置は、有底円筒状の容器本体10と、円形状の蓋体20とによって構成されたグラファイト製の坩堝1を備えている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional configuration of the SiC single crystal manufacturing apparatus according to the first embodiment of the present invention. As shown in this figure, the SiC single crystal manufacturing apparatus includes a graphite crucible 1 including a bottomed cylindrical container body 10 and a circular lid body 20.

坩堝1のうち容器本体10の底部には、台座11が配置され、この台座11にシャフト12が立てられている。当該シャフト12の先端には、種結晶40の成長表面に対向する面を有する遮蔽板13が取り付けられている。   A pedestal 11 is disposed on the bottom of the container body 10 in the crucible 1, and a shaft 12 is erected on the pedestal 11. A shield plate 13 having a surface facing the growth surface of the seed crystal 40 is attached to the tip of the shaft 12.

さらに、容器本体10には、昇華ガスの供給源となるSiCの粉末原料50が配置されている。そして、坩堝1内の空間のうち種結晶40と遮蔽板13との間を成長空間領域60として、粉末原料50からの昇華ガスが種結晶40の表面上に再結晶化して、種結晶40の表面にSiC単結晶70が成長させられる構成とされている。   Furthermore, a SiC powder raw material 50 serving as a sublimation gas supply source is disposed in the container body 10. The sublimation gas from the powder raw material 50 is recrystallized on the surface of the seed crystal 40 using the space between the seed crystal 40 and the shielding plate 13 in the space in the crucible 1 as a growth space region 60. The SiC single crystal 70 is grown on the surface.

蓋体20は、円筒状の側壁部21と、側壁部21の開口部の一方を塞ぐ円板状の蓋材22と、側壁部21に収納される遮蔽部23とを備えて構成されている。蓋材22には円筒状の突起部22aが設けられ、当該突起部22aの開口端に当該開口端を閉じるように例えば円形状のSiCの種結晶40が貼り付けられている。また、遮蔽板13には図示しないTaC材がコーティングされており、坩堝1の加熱によって遮蔽板13から生じる粉が不純物としてSiC単結晶70の成長に寄与しないようにしている。   The lid 20 includes a cylindrical side wall portion 21, a disk-shaped lid member 22 that closes one of the openings of the side wall portion 21, and a shielding portion 23 that is accommodated in the side wall portion 21. . The lid member 22 is provided with a cylindrical protrusion 22a, and, for example, a circular SiC seed crystal 40 is attached to the opening end of the protrusion 22a so as to close the opening end. The shielding plate 13 is coated with a TaC material (not shown) so that powder generated from the shielding plate 13 by heating the crucible 1 does not contribute to the growth of the SiC single crystal 70 as an impurity.

遮蔽部23は、支持板23aと、円筒部23bと、円筒部被覆部材23cとを有している。支持板23aは、当該板が貫通する窓部23dが設けられたものであり、蓋材22の突起部22aが窓部23dに差し込まれた状態で側面が側壁部21の内壁に固定されている。円筒部23bは、スカート状、すなわち筒状をなしており、筒の一端側が支持板23aの一面に一体化されている。この円筒部23bは、種結晶40周辺の径方向温度分布を小さくする、すなわち成長空間領域60を均熱にする役割を果たす。また、この円筒部23bにより、種結晶40の成長表面が他の部位よりも低温となる。   The shielding part 23 includes a support plate 23a, a cylindrical part 23b, and a cylindrical part covering member 23c. The support plate 23a is provided with a window portion 23d through which the plate penetrates, and the side surface is fixed to the inner wall of the side wall portion 21 in a state where the projection portion 22a of the lid member 22 is inserted into the window portion 23d. . The cylindrical portion 23b has a skirt shape, that is, a cylindrical shape, and one end side of the cylindrical portion is integrated with one surface of the support plate 23a. The cylindrical portion 23b serves to reduce the radial temperature distribution around the seed crystal 40, that is, to soak the growth space region 60. In addition, the growth surface of the seed crystal 40 becomes lower in temperature than other portions by the cylindrical portion 23b.

また、円筒部被覆部材23cは、坩堝1が加熱されることで円筒部23bから黒鉛の微粒子が成長空間領域60に飛び出し、SiC単結晶70に不純物として混入することを防止する役割を果たすものである。円筒部被覆部材23cは筒状をなしており、一端側が支持板23aの一面に一体化されている。この場合、円筒部被覆部材23cの他端側が円筒部23bの他端側よりも粉末原料50側に突出している。これにより、円筒部23bの内壁すべてが円筒部被覆部材23cに覆われ、SiC単結晶70への黒鉛の微粒子の移動を阻止できるようになっている。   The cylindrical portion covering member 23c plays a role of preventing graphite fine particles from jumping out of the cylindrical portion 23b into the growth space region 60 and being mixed into the SiC single crystal 70 as impurities when the crucible 1 is heated. is there. The cylindrical portion covering member 23c has a cylindrical shape, and one end side is integrated with one surface of the support plate 23a. In this case, the other end side of the cylindrical portion covering member 23c protrudes closer to the powder raw material 50 than the other end side of the cylindrical portion 23b. Thereby, all the inner walls of the cylindrical portion 23 b are covered with the cylindrical portion covering member 23 c, and the movement of the graphite fine particles to the SiC single crystal 70 can be prevented.

図2は、図1に示される蓋体20を遮蔽板13側から見た図である。図2では、SiC単結晶70等を省略してある。本実施形態では、円筒部被覆部材23cは、坩堝1の中心軸を中心にして、当該中心軸から坩堝1の径方向に異なる距離の面を有し構成される内壁面23eを備えている。具体的には、図2に示されるように、円筒部被覆部材23cにおいて、坩堝1の中心軸に対して垂直方向の内壁面23eの断面形状が真円ではなく、多角形になっている。これにより、坩堝1の中心軸に対して面する入射角が内壁面23eの場所によって異なっている。   FIG. 2 is a view of the lid 20 shown in FIG. 1 as viewed from the shielding plate 13 side. In FIG. 2, the SiC single crystal 70 and the like are omitted. In the present embodiment, the cylindrical portion covering member 23 c includes an inner wall surface 23 e having a surface with a different distance from the central axis in the radial direction of the crucible 1 around the central axis of the crucible 1. Specifically, as shown in FIG. 2, in the cylindrical portion covering member 23 c, the cross-sectional shape of the inner wall surface 23 e perpendicular to the central axis of the crucible 1 is not a perfect circle but a polygon. Thereby, the incident angle which faces the central axis of the crucible 1 differs depending on the location of the inner wall surface 23e.

上記円筒部被覆部材23cとして、TaC材が採用される。円筒部被覆部材23cの材質としては、Taを含んだものであれば良く、例えばTaの炭化品やTa材を採用することができる。Ta材は、SiC単結晶70の成長中に加熱されてTaCとなる。   A TaC material is employed as the cylindrical portion covering member 23c. As the material of the cylindrical portion covering member 23c, any material containing Ta may be used. For example, a carbide of Ta or a Ta material can be employed. The Ta material is heated during the growth of the SiC single crystal 70 to become TaC.

このような円筒部被覆部材23cの中空部分が埋め込み成長空間、すなわち成長空間領域60とされ、昇華ガスが供給される。   The hollow portion of the cylindrical portion covering member 23c is used as a buried growth space, that is, a growth space region 60, and sublimation gas is supplied.

そして、坩堝1の外周を囲むように図示しない抵抗加熱ヒータが配置されている。以上が、本実施形態に係るSiC単結晶製造装置の構成である。   And the resistance heater which is not illustrated is arrange | positioned so that the outer periphery of the crucible 1 may be enclosed. The above is the configuration of the SiC single crystal manufacturing apparatus according to the present embodiment.

次に、上記SiC単結晶製造装置を用いてSiC単結晶を製造する方法について、図を参照して説明する。まず、図1に示されるように、蓋材22の突起部22aの開口端に種結晶40を貼り付け、遮蔽部23が取り付けられた側壁部21に当該蓋材22を取り付ける。他方、容器本体10に台座11を配置してシャフト12を介して遮蔽板13を取り付け、容器本体10に粉末原料50を配置する。   Next, a method for manufacturing a SiC single crystal using the SiC single crystal manufacturing apparatus will be described with reference to the drawings. First, as shown in FIG. 1, the seed crystal 40 is attached to the opening end of the protrusion 22 a of the lid member 22, and the lid member 22 is attached to the side wall portion 21 to which the shielding portion 23 is attached. On the other hand, the pedestal 11 is disposed on the container body 10, the shielding plate 13 is attached via the shaft 12, and the powder material 50 is disposed on the container body 10.

なお、遮蔽板13にTaCをコーティングしておき、遮蔽板13から粉が発生してSiC単結晶70に混入しないようにする。   The shielding plate 13 is coated with TaC so that powder is not generated from the shielding plate 13 and mixed into the SiC single crystal 70.

続いて、坩堝1を図示しない加熱チャンバに設置し、図示しない排気機構を用いてガス排出を行うことで、坩堝1内を含めた外部チャンバ内を真空にし、抵抗加熱ヒータに通電することで位置が固定されたヒータを加熱し、その輻射熱により坩堝1を加熱することで坩堝1内を所定温度にする。このとき、各ヒータへの通電のパワーを異ならせることにより、ヒータで温度差を発生させられるようにしている。   Subsequently, the crucible 1 is placed in a heating chamber (not shown), and gas is discharged using an exhaust mechanism (not shown), whereby the inside of the external chamber including the inside of the crucible 1 is evacuated and the resistance heater is energized. Is heated, and the crucible 1 is heated by the radiant heat to bring the inside of the crucible 1 to a predetermined temperature. At this time, a temperature difference is generated by the heater by changing the power of energization to each heater.

加熱チャンバ内には例えば不活性ガス(Arガス等)や水素、結晶へのドーパントとなる窒素などの混入ガスを流入させる。この不活性ガスは排気配管を介して排出される。種結晶40の成長面の温度およびSiC粉末原料50の温度を目標温度まで上昇させるまでは、加熱チャンバ内は大気圧に近い雰囲気圧力にして粉末原料50からの昇華を抑制し、目標温度になったところで、減圧し所定の雰囲気圧力とする。例えば、成長結晶を4H−SiCとする場合、粉末原料50の温度を2100〜2300℃とし、成長結晶表面の温度をそれよりも10〜200℃程度低くして、雰囲気圧力は0.1〜20Torrとする。   For example, an inert gas (Ar gas or the like), hydrogen, or a mixed gas such as nitrogen serving as a dopant to the crystal flows into the heating chamber. This inert gas is discharged via the exhaust pipe. Until the temperature of the growth surface of the seed crystal 40 and the temperature of the SiC powder raw material 50 are raised to the target temperature, the atmosphere in the heating chamber is set to an atmospheric pressure close to atmospheric pressure to suppress sublimation from the powder raw material 50 and reach the target temperature. The pressure is reduced to a predetermined atmospheric pressure. For example, when the growth crystal is 4H—SiC, the temperature of the powder raw material 50 is 2100 to 2300 ° C., the temperature of the growth crystal surface is lower by about 10 to 200 ° C., and the atmospheric pressure is 0.1 to 20 Torr. And

このようにして、粉末原料50を加熱することで粉末原料50が昇華し、粉末原料50から昇華ガスが発生する。この昇華ガスは、成長空間領域60内を通過して種結晶40に供給され、SiC単結晶70が成長する。なお、この場合、SiC単結晶70の周辺に多結晶45を伴う埋め込み成長も起こる。   Thus, the powder raw material 50 is sublimated by heating the powder raw material 50, and sublimation gas is generated from the powder raw material 50. The sublimation gas passes through the growth space region 60 and is supplied to the seed crystal 40, and the SiC single crystal 70 grows. In this case, buried growth involving the polycrystal 45 also occurs around the SiC single crystal 70.

上記のようにしてSiC単結晶70を成長させるに際し、坩堝1を加熱すると、円筒部被覆部材23cも加熱されるため、当該円筒部被覆部材23cの内壁面23eから熱エネルギーが発せられる熱輻射が生じる。当該熱エネルギーが坩堝1の中心軸を経由して反対側の内壁面23eに達すると、当該内壁面23eの加熱に少なからず寄与する。   When growing the SiC single crystal 70 as described above, when the crucible 1 is heated, the cylindrical portion covering member 23c is also heated, so that heat radiation is generated from the inner wall surface 23e of the cylindrical portion covering member 23c. Arise. When the thermal energy reaches the inner wall surface 23e on the opposite side via the central axis of the crucible 1, it contributes to the heating of the inner wall surface 23e.

しかしながら、円筒部被覆部材23cにおいて、坩堝1の中心軸に対して垂直方向の内壁面23eは多角形状になっているため、坩堝1の中心軸を中心に坩堝1の径方向に広がる放射線つまり熱エネルギーのうち、多角形の一辺で反射して再び坩堝1の中心軸に戻ってくる場所は一辺のうち一点しかない。すなわち、当該多角形の各辺の一点を除いた場所では、熱エネルギーは各辺に対する入射角に従った反射角で反射するため、坩堝1の中心軸から坩堝1の径方向に進む熱エネルギーは多角形の各辺で分散される。こうして、熱エネルギーが発せられた場所に当該熱エネルギーが再び戻ってくることはなく、各一辺における熱輻射の効果が弱められる。つまり、円筒部被覆部材23cの内壁面23eにおける熱輻射の影響が低減され、熱輻射による円筒部被覆部材23cの内壁面23eの温度上昇を防止することができる。   However, in the cylindrical portion covering member 23c, the inner wall surface 23e perpendicular to the central axis of the crucible 1 has a polygonal shape, so that radiation that spreads in the radial direction of the crucible 1 around the central axis of the crucible 1, that is, heat Of the energy, there is only one point on one side that is reflected by one side of the polygon and returns to the central axis of the crucible 1 again. That is, in a place excluding one point on each side of the polygon, the thermal energy is reflected at a reflection angle according to the incident angle with respect to each side, so that the thermal energy traveling in the radial direction of the crucible 1 from the central axis of the crucible 1 is Distributed on each side of the polygon. Thus, the thermal energy does not return to the place where the thermal energy is emitted, and the effect of thermal radiation on each side is weakened. That is, the influence of heat radiation on the inner wall surface 23e of the cylindrical portion covering member 23c is reduced, and the temperature rise of the inner wall surface 23e of the cylindrical portion covering member 23c due to heat radiation can be prevented.

もちろん、多角形の一辺から発せられた熱エネルギーが坩堝1の中心軸を経由して坩堝1の径方向に進み、円筒部被覆部材23cの内壁面23eで反射して再び坩堝1の中心軸に戻ってくる経路もあるが、当該経路の数は少なく、円筒部被覆部材23cの内壁面23eの温度上昇を抑制することができる。   Of course, the thermal energy emitted from one side of the polygon proceeds in the radial direction of the crucible 1 via the central axis of the crucible 1 and is reflected by the inner wall surface 23e of the cylindrical portion covering member 23c to be reflected on the central axis of the crucible 1 again. Although there are paths returning, the number of the paths is small, and the temperature rise of the inner wall surface 23e of the cylindrical portion covering member 23c can be suppressed.

以上のように、円筒部被覆部材23cにおいて、坩堝1の中心軸に対して垂直方向の内壁面23eを多角形状とすることで、円筒部被覆部材23cの内壁面23eに対する熱輻射の影響を低減できることから、円筒部被覆部材23cで囲まれた成長空間領域60が均熱に保たれる。これにより、SiC単結晶70の口径拡大および凸成長の進行が抑制され、SiC単結晶70に歪みが生じず、SiC単結晶70の割れを防止することができる。この場合、SiC単結晶70のc面オフ成長においては、ファセットが坩堝1の中心軸への移動することも抑制できる。   As described above, in the cylindrical portion covering member 23c, the influence of thermal radiation on the inner wall surface 23e of the cylindrical portion covering member 23c is reduced by making the inner wall surface 23e perpendicular to the central axis of the crucible 1 into a polygonal shape. Therefore, the growth space region 60 surrounded by the cylindrical portion covering member 23c is kept soaked. Thereby, the expansion of the diameter of SiC single crystal 70 and the progress of convex growth are suppressed, SiC single crystal 70 is not distorted, and cracking of SiC single crystal 70 can be prevented. In this case, in the c-plane off-growth of the SiC single crystal 70, the facet can be suppressed from moving to the central axis of the crucible 1.

以上説明したように、本実施形態では、円筒部23bの中空部分に配置した円筒部被覆部材23cにおいて、坩堝1の中心軸に対して垂直方向の内壁面23eの断面形状を多角形状としたことが特徴となっている。   As described above, in the present embodiment, in the cylindrical portion covering member 23c disposed in the hollow portion of the cylindrical portion 23b, the cross-sectional shape of the inner wall surface 23e perpendicular to the central axis of the crucible 1 is a polygonal shape. Is a feature.

これにより、円筒部被覆部材23cの内壁面23eから坩堝1の径方向に発せられる熱エネルギーを多角形の各辺に入射する入射角に従った反射角でそれぞれ反射させることができる。これにより、円筒部被覆部材23cの内壁面23eを構成する各面で熱エネルギーを分散させることができ、内壁面23e全体が熱輻射による影響を何度も受けないようにすることができる。このようにして、熱輻射の効果を低減することができる。つまり、成長空間領域60において、坩堝1の径方向の温度勾配の拡大を抑制することができ、成長空間領域60を均熱に維持することが可能となる。   Thereby, the thermal energy emitted in the radial direction of the crucible 1 from the inner wall surface 23e of the cylindrical portion covering member 23c can be reflected at a reflection angle according to the incident angle incident on each side of the polygon. Thereby, thermal energy can be dispersed on each surface constituting the inner wall surface 23e of the cylindrical portion covering member 23c, and the entire inner wall surface 23e can be prevented from being affected repeatedly by heat radiation. In this way, the effect of heat radiation can be reduced. That is, in the growth space region 60, the expansion of the temperature gradient in the radial direction of the crucible 1 can be suppressed, and the growth space region 60 can be maintained soaking.

この結果、坩堝1の径方向に温度差が小さくされた状態でSiC単結晶70は成長するため、SiC単結晶70内の応力を小さくでき、SiC単結晶70の凸成長を抑制することができる。したがって、SiC単結晶70の歪みを抑制することができ、ひいてはSiC単結晶70の割れを防止することができる。   As a result, since the SiC single crystal 70 grows in a state where the temperature difference is reduced in the radial direction of the crucible 1, the stress in the SiC single crystal 70 can be reduced, and the convex growth of the SiC single crystal 70 can be suppressed. . Therefore, distortion of SiC single crystal 70 can be suppressed, and as a result, cracking of SiC single crystal 70 can be prevented.

(他の実施形態)
上記実施形態では、円筒部被覆部材23cをTaC材で構成しているが、板材にTaCをコーティングしたもので円筒部被覆部材23cを構成することもできる。また、TaC材で構成された板を複数組み合わせることで円筒部被覆部材23cを構成しても良い。さらに、円筒部被覆部材23cとして、耐熱性が高い板を複数組み合わせてTaCをコーティングしたものでも良い。
(Other embodiments)
In the above embodiment, the cylindrical portion covering member 23c is made of TaC material. However, the cylindrical portion covering member 23c can be made of a plate material coated with TaC. Further, the cylindrical portion covering member 23c may be configured by combining a plurality of plates made of TaC material. Further, as the cylindrical portion covering member 23c, a TaC coating may be used by combining a plurality of plates having high heat resistance.

上記実施形態では、円筒部被覆部材23cにおける坩堝1の中心軸に対して垂直方向の内壁面23eの形状を多角形とすることで熱輻射の効果を低減しているが、内壁面23eが粗面になっていても良い。この場合、熱エネルギーは粗面によって乱反射するため、熱輻射の効果を低減することができ、円筒部被覆部材23cの内壁の高温化を抑制することができる。   In the above embodiment, the effect of heat radiation is reduced by making the shape of the inner wall surface 23e perpendicular to the central axis of the crucible 1 in the cylindrical portion covering member 23c into a polygon, but the inner wall surface 23e is rough. It may be a surface. In this case, since heat energy is irregularly reflected by the rough surface, the effect of heat radiation can be reduced, and the high temperature of the inner wall of the cylindrical portion covering member 23c can be suppressed.

本発明の第1実施形態に係るSiC単結晶製造装置の断面構成図である。It is a section lineblock diagram of a SiC single crystal manufacturing device concerning a 1st embodiment of the present invention. 図1に示される蓋体を遮蔽板側から見た図である。It is the figure which looked at the cover body shown by FIG. 1 from the shielding board side. 従来のSiC単結晶製造装置の模式的な断面構造図である。It is a typical cross-section figure of the conventional SiC single crystal manufacturing apparatus. 図3に示される蓋材を遮蔽板側から見た図である。It is the figure which looked at the cover material shown by FIG. 3 from the shielding board side.

符号の説明Explanation of symbols

1…坩堝、10…容器本体、20…蓋体、23…遮蔽部、23a…支持板、23b…円筒部、23c…円筒部被覆部材、23e…内壁面、40…種結晶、50…粉末原料、60…成長空間領域、70…SiC単結晶。   DESCRIPTION OF SYMBOLS 1 ... Crucible, 10 ... Container main body, 20 ... Cover body, 23 ... Shielding part, 23a ... Supporting plate, 23b ... Cylindrical part, 23c ... Cylindrical part covering member, 23e ... Inner wall surface, 40 ... Seed crystal, 50 ... Powder raw material 60 ... Growth space region, 70 ... SiC single crystal.

Claims (6)

有底円筒状の容器本体(10)と当該容器本体(10)を蓋閉めするための蓋体(20)とを有した中空状の円柱形状をなす坩堝(1)を有し、前記蓋体(20)に炭化珪素基板からなる種結晶(40)を配置すると共に前記容器本体(10)に炭化珪素原料(50)を配置し、前記炭化珪素原料(50)の昇華ガスを供給することにより、前記種結晶(40)上に炭化珪素単結晶(70)を成長させる炭化珪素単結晶の製造装置において、
前記蓋体(20)は、
板状であって、当該板の面が前記坩堝(1)の中心軸に対して垂直に配置される支持板(23a)と、
円筒状をなしており、前記支持板(23a)の一面に前記円筒の開口端の一方が一体化されることで前記支持板(23a)から前記炭化珪素原料(50)側に突出した形態とされる円筒部(23b)と、
前記円筒部(23b)の中空部分に配置される筒形状のものであって、当該筒の中空部分が成長空間領域(60)とされて前記昇華ガスが供給される円筒部被覆部材(23c)とを備え、
前記円筒部被覆部材(23c)は、前記坩堝(1)の中心軸を中心にして、当該中心軸から前記坩堝(1)の径方向に異なる距離の面を有し構成される内壁面(23e)を備えていることを特徴とする炭化珪素単結晶の製造装置。
A hollow cylindrical crucible (1) having a bottomed cylindrical container body (10) and a lid (20) for closing the container body (10); By disposing a seed crystal (40) made of a silicon carbide substrate in (20) and disposing a silicon carbide raw material (50) in the container body (10) and supplying a sublimation gas of the silicon carbide raw material (50). In the silicon carbide single crystal manufacturing apparatus for growing the silicon carbide single crystal (70) on the seed crystal (40),
The lid (20)
A support plate (23a) which is plate-shaped and whose surface is disposed perpendicular to the central axis of the crucible (1);
It has a cylindrical shape, and one side of the opening end of the cylinder is integrated with one surface of the support plate (23a), thereby protruding from the support plate (23a) to the silicon carbide raw material (50) side. A cylindrical portion (23b),
Cylindrical portion covering member (23c) which is disposed in a hollow portion of the cylindrical portion (23b), and in which the hollow portion of the tube is used as a growth space region (60) and the sublimation gas is supplied. And
The cylindrical portion covering member (23c) has an inner wall surface (23e) having a surface with a different distance from the central axis in the radial direction of the crucible (1) around the central axis of the crucible (1). And a silicon carbide single crystal manufacturing apparatus.
前記円筒部被覆部材(23c)の内壁面(23e)は、前記坩堝(1)の中心軸に対して垂直方向の断面形状が多角形になっていることを特徴とする請求項1に記載の炭化珪素単結晶の製造装置。 The inner wall surface (23e) of the cylindrical portion covering member (23c) has a polygonal cross-sectional shape perpendicular to the central axis of the crucible (1). Silicon carbide single crystal production equipment. 前記円筒部被覆部材(23c)は、複数の板材が筒状に組み合わされて構成されていることを特徴とする請求項1または2に記載の炭化珪素単結晶の製造装置。 The said cylindrical part coating | coated member (23c) is a manufacturing apparatus of the silicon carbide single crystal of Claim 1 or 2 comprised by combining several board | plate materials in the cylinder shape. 有底円筒状の容器本体(10)と当該容器本体(10)を蓋閉めするための蓋体(20)とを有した中空状の円柱形状をなす坩堝(1)を有し、前記蓋体(20)に炭化珪素基板からなる種結晶(40)を配置すると共に前記容器本体(10)に炭化珪素原料(50)を配置し、前記炭化珪素原料(50)の昇華ガスを供給することにより、前記種結晶(40)上に炭化珪素単結晶(70)を成長させる炭化珪素単結晶の製造方法において、
前記蓋体(20)として、
板状であって、当該板の面が前記坩堝(1)の中心軸に対して垂直に配置される支持板(23a)と、
円筒状をなしており、前記支持板(23a)の一面に前記円筒の開口端の一方が一体化されることで前記支持板(23a)から前記炭化珪素原料(50)側に突出した形態とされる円筒部(23b)と、
前記円筒部(23b)の中空部分に配置される筒形状のものであって、当該筒の中空部分が成長空間領域(60)とされて前記昇華ガスが供給される円筒部被覆部材(23c)とを備え、
前記円筒部被覆部材(23c)は、前記坩堝(1)の中心軸を中心にして、当該中心軸から前記坩堝(1)の径方向に異なる距離の面を有し構成される内壁面(23e)を備えたものを用意し、
前記容器本体(10)に前記炭化珪素原料(50)を配置させて前記蓋体(20)にて前記容器本体(10)を蓋閉めして前記坩堝(1)を構成した後、前記坩堝(1)を加熱することで、前記炭化珪素原料(50)から前記昇華ガスを発生させ、当該昇華ガスを前記成長空間領域(60)に供給することにより前記種結晶(40)に前記炭化珪素単結晶(70)を成長させることを特徴とする炭化珪素単結晶の製造方法。
A hollow cylindrical crucible (1) having a bottomed cylindrical container body (10) and a lid (20) for closing the container body (10); By disposing a seed crystal (40) made of a silicon carbide substrate in (20) and disposing a silicon carbide raw material (50) in the container body (10) and supplying a sublimation gas of the silicon carbide raw material (50). In the method for producing a silicon carbide single crystal, the silicon carbide single crystal (70) is grown on the seed crystal (40).
As the lid (20),
A support plate (23a) which is plate-shaped and whose surface is disposed perpendicular to the central axis of the crucible (1);
It has a cylindrical shape, and one side of the opening end of the cylinder is integrated with one surface of the support plate (23a), thereby protruding from the support plate (23a) to the silicon carbide raw material (50) side. A cylindrical portion (23b),
Cylindrical portion covering member (23c) which is disposed in a hollow portion of the cylindrical portion (23b), and in which the hollow portion of the tube is used as a growth space region (60) and the sublimation gas is supplied. And
The cylindrical portion covering member (23c) has an inner wall surface (23e) having a surface with a different distance from the central axis in the radial direction of the crucible (1) around the central axis of the crucible (1). )
After the silicon carbide raw material (50) is arranged in the container body (10) and the container body (10) is closed with the lid body (20) to form the crucible (1), the crucible ( 1) is heated to generate the sublimation gas from the silicon carbide raw material (50), and the sublimation gas is supplied to the growth space region (60), whereby the silicon carbide single crystal is added to the seed crystal (40). A method for producing a silicon carbide single crystal, comprising growing a crystal (70).
前記円筒部被覆部材(23c)として、当該円筒部被覆部材(23c)の内壁面(23e)は、前記坩堝(1)の中心軸に対して垂直方向の断面形状が多角形になっていることを特徴とする請求項4に記載の炭化珪素単結晶の製造方法。 As the cylindrical portion covering member (23c), the inner wall surface (23e) of the cylindrical portion covering member (23c) has a polygonal cross-sectional shape perpendicular to the central axis of the crucible (1). The method for producing a silicon carbide single crystal according to claim 4. 前記円筒部被覆部材(23c)は、複数の板材が筒状に組み合わされて構成されていることを特徴とする請求項4または5に記載の炭化珪素単結晶の製造方法。 The method for producing a silicon carbide single crystal according to claim 4 or 5, wherein the cylindrical portion covering member (23c) is configured by combining a plurality of plate members into a cylindrical shape.
JP2007181964A 2007-07-11 2007-07-11 Method and apparatus for producing silicon carbide single crystal Active JP4924253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181964A JP4924253B2 (en) 2007-07-11 2007-07-11 Method and apparatus for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181964A JP4924253B2 (en) 2007-07-11 2007-07-11 Method and apparatus for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2009018957A true JP2009018957A (en) 2009-01-29
JP4924253B2 JP4924253B2 (en) 2012-04-25

Family

ID=40358928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181964A Active JP4924253B2 (en) 2007-07-11 2007-07-11 Method and apparatus for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP4924253B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11453958B2 (en) 2018-04-26 2022-09-27 Showa Denko K.K. Heat-insulating shield member and single crystal manufacturing apparatus having the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114598A (en) * 1999-10-15 2001-04-24 Denso Corp Method of and device for producing silicon carbide single crystal
JP2005225710A (en) * 2004-02-12 2005-08-25 Denso Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL AND MANUFACTURING APPARATUS FOR SiC SINGLE CRYSTAL

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114598A (en) * 1999-10-15 2001-04-24 Denso Corp Method of and device for producing silicon carbide single crystal
JP2005225710A (en) * 2004-02-12 2005-08-25 Denso Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL AND MANUFACTURING APPARATUS FOR SiC SINGLE CRYSTAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11453958B2 (en) 2018-04-26 2022-09-27 Showa Denko K.K. Heat-insulating shield member and single crystal manufacturing apparatus having the same
DE102019109551B4 (en) 2018-04-26 2024-05-02 Resonac Corporation HEAT-INSULATING SHIELDING ELEMENT AND SINGLE CRYSTAL MANUFACTURING DEVICE COMPRISING THE SAME

Also Published As

Publication number Publication date
JP4924253B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
CN108140597B (en) Diode laser for wafer heating of EPI processes
US6786969B2 (en) Method and apparatus for producing single crystal, substrate for growing single crystal and method for heating single crystal
JP5392169B2 (en) Method for producing silicon carbide single crystal
JP2007063663A (en) Fan-shaped evaporation source
KR102370949B1 (en) Method for depositing an epitaxial layer on the front surface of a semiconductor wafer and apparatus for performing the method
JP2012030994A (en) Apparatus and method for producing silicon carbide single crystal
US9228782B2 (en) Microwave oven
JP4924253B2 (en) Method and apparatus for producing silicon carbide single crystal
JP2009071210A (en) Susceptor and epitaxial growth system
JP5292963B2 (en) Film forming apparatus and manufacturing method using the same
US20200248307A1 (en) Rotating Disk Reactor with Self-Locking Carrier-to-Support Interface for Chemical Vapor Deposition
KR101724291B1 (en) Apparatus for growing silicon carbide single crystal using the method of reversal of Physical Vapor Transport
JP5602093B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP4962186B2 (en) Method and apparatus for producing silicon carbide single crystal
KR100940544B1 (en) Unit for supporting a substrate
JP2020093975A (en) Crystal growth apparatus and crucible
JP2007096280A (en) Vapor-phase growth apparatus
US6670282B2 (en) Method and apparatus for producing silicon carbide crystal
JP3070021B2 (en) Molecular beam cell and molecular beam epitaxy equipment for Si
JPH09245957A (en) High frequency induction heating furnace
JP4766022B2 (en) Method and apparatus for producing silicon carbide single crystal
KR100990746B1 (en) Apparatus for processing a substrate
JP4735622B2 (en) Silicon carbide single crystal manufacturing equipment
JP4831041B2 (en) Silicon carbide single crystal manufacturing equipment
CN112011826A (en) Method for depositing an epitaxial layer on the front side of a wafer and device for carrying out said method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4924253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250