JP2017065969A - Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot - Google Patents

Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot Download PDF

Info

Publication number
JP2017065969A
JP2017065969A JP2015193113A JP2015193113A JP2017065969A JP 2017065969 A JP2017065969 A JP 2017065969A JP 2015193113 A JP2015193113 A JP 2015193113A JP 2015193113 A JP2015193113 A JP 2015193113A JP 2017065969 A JP2017065969 A JP 2017065969A
Authority
JP
Japan
Prior art keywords
raw material
silicon carbide
crucible
single crystal
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015193113A
Other languages
Japanese (ja)
Other versions
JP6681687B2 (en
Inventor
弘志 柘植
Hiroshi Tsuge
弘志 柘植
藤本 辰雄
Tatsuo Fujimoto
辰雄 藤本
勝野 正和
Masakazu Katsuno
正和 勝野
正史 中林
Masashi Nakabayashi
正史 中林
佐藤 信也
Shinya Sato
信也 佐藤
昌史 牛尾
Masashi Ushio
昌史 牛尾
小桃 谷
Komomo Tani
小桃 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015193113A priority Critical patent/JP6681687B2/en
Publication of JP2017065969A publication Critical patent/JP2017065969A/en
Application granted granted Critical
Publication of JP6681687B2 publication Critical patent/JP6681687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a graphite crucible for producing a silicon carbide single crystal ingot which can efficiently sublimate a silicon carbide raw material charged into the crucible during the growth of a silicon carbide single crystal and is suitable for producing a large diameter and long silicon carbide single crystal ingot, and to provide a method for producing a silicon carbide single crystal ingot using the graphite crucible.SOLUTION: In a graphite crucible 1 for producing a silicon carbide single crystal ingot 4, a crucible body 1a and a crucible upper lid 1b are provided, a silicon carbide raw material 3 is filled into a raw material filled portion 1c of a crucible body 1a lower part and a seed crystal 2 is disposed on the inner surface of the crucible upper lid 1b, and the silicon carbide single crystal ingot 4 is produced by a sublimation recrystallization method where the silicon carbide raw material 3 is heated and sublimated and the sublimated gas is recrystallized on the surface of the seed crystal 2. In the raw material filled portion 1c, a disk-like graphite partition wall 20 is provided whose peripheral base portion is fixed to the inner surface of the side wall of the raw material filled portion 1c and which has a partition wall opening portion 21 substantially at the center thereof. A method for producing a silicon carbide single crystal ingot uses the graphite crucible 1.SELECTED DRAWING: Figure 2

Description

この発明は、種結晶を用いた昇華再結晶法によって炭化珪素単結晶を成長させ、炭化珪素単結晶インゴットを製造する際に用いられる炭化珪素単結晶インゴット製造用の黒鉛坩堝、及びこの黒鉛坩堝を用いて炭化珪素単結晶インゴットを製造する炭化珪素単結晶インゴットの製造方法に関する。   The present invention relates to a graphite crucible for producing a silicon carbide single crystal ingot used for producing a silicon carbide single crystal ingot by growing a silicon carbide single crystal by a sublimation recrystallization method using a seed crystal, and this graphite crucible. The present invention relates to a method for manufacturing a silicon carbide single crystal ingot, which is used to manufacture a silicon carbide single crystal ingot.

高熱伝導率を持ち、バンドギャップの大きい炭化珪素単結晶は、高温で用いられる電子材料や、高耐圧の求められる電子材料の基板として有用な材料である。
そして、このような炭化珪素単結晶の作製法の一つとして、昇華再結晶法(レーリー法)が知られている。この昇華再結晶法は、2000℃を超える高温において原料の炭化珪素粉末を昇華させ、生成したその昇華ガス(原料ガス)を低温部に再結晶化させることにより、炭化珪素単結晶を製造する方法である。また、このレーリー法において、炭化珪素単結晶からなる種結晶を用いて炭化珪素単結晶を製造する方法は、特に改良レーリー法と呼ばれ(非特許文献1)、バルク状の炭化珪素単結晶インゴットの製造に利用されている。
A silicon carbide single crystal having high thermal conductivity and a large band gap is a useful material as a substrate for electronic materials used at high temperatures and electronic materials that require high breakdown voltage.
As one method for producing such a silicon carbide single crystal, a sublimation recrystallization method (Rayleigh method) is known. In this sublimation recrystallization method, a silicon carbide single crystal is produced by sublimating a raw material silicon carbide powder at a high temperature exceeding 2000 ° C. and recrystallizing the generated sublimation gas (raw material gas) to a low temperature part. It is. Further, in this Rayleigh method, a method of producing a silicon carbide single crystal using a seed crystal composed of a silicon carbide single crystal is called an improved Rayleigh method (Non-patent Document 1), and is a bulk silicon carbide single crystal ingot. It is used for manufacturing.

この改良レーリー法においては、種結晶を用いているために結晶の核形成過程を最適化することができ、また、不活性ガスによる雰囲気圧力を10Paから15kPa程度にすることにより、炭化珪素単結晶の成長速度等の再現性を良くすることができる。このため、一般に、原料と種結晶との間で適切な温度差を設け、種結晶の上に炭化珪素単結晶を成長させることが行われている。また、得られた炭化珪素単結晶(炭化珪素単結晶インゴット)については、電子材料の基板としての規格の形状にするために、研削、切断、研磨といった加工が施されて利用されている。   In this improved Rayleigh method, since a seed crystal is used, the nucleation process of the crystal can be optimized, and by adjusting the atmospheric pressure by an inert gas to about 10 Pa to 15 kPa, a silicon carbide single crystal The reproducibility of the growth rate and the like can be improved. For this reason, generally, an appropriate temperature difference is provided between the raw material and the seed crystal, and a silicon carbide single crystal is grown on the seed crystal. Further, the obtained silicon carbide single crystal (silicon carbide single crystal ingot) is used after being subjected to processing such as grinding, cutting, and polishing in order to obtain a standard shape as a substrate of an electronic material.

ここで、図6を用いて、改良レーリー法の原理を説明する。
昇華再結晶法で用いる炭化珪素原料3として炭化珪素結晶粉末〔通常、アチソン(Acheson)法で作製された炭化珪素結晶粉末を洗浄・前処理したものが使用される。〕が用いられ、また、黒鉛製坩堝1として上端開口筒状の坩堝本体1aとこの坩堝本体1aの上端開口部を閉塞する坩堝上蓋1bとを備えた坩堝が用いられる。そして、前記坩堝本体1a下部の原料充填部1c内に前記炭化珪素原料3が装填され、また、前記坩堝上蓋1bの内面に炭化珪素単結晶からなる種結晶2が設置される。坩堝1内では、前記炭化珪素原料3が、アルゴン等の不活性ガス雰囲気中(10Pa〜15kPa)で2400℃以上に加熱される。この加熱の際に、坩堝1内には炭化珪素原料3側に比べて種結晶2側がやや低温になるように温度勾配が設定され、加熱されて炭化珪素原料3から昇華した炭化珪素の昇華ガスは、温度勾配による流れ、及び、濃度勾配(温度勾配により形成される)による流れにより、種結晶2方向へと拡散・輸送され、この種結晶2の表面で再結晶し、結晶成長が進行して単結晶インゴット4が生成する。なお、図6中、符号5は断熱材である。
Here, the principle of the improved Rayleigh method will be described with reference to FIG.
As the silicon carbide raw material 3 used in the sublimation recrystallization method, a silicon carbide crystal powder [usually, a silicon carbide crystal powder produced by the Acheson method is washed and pretreated is used. As the graphite crucible 1, a crucible provided with a cylindrical crucible main body 1a having an upper end opening and a crucible upper lid 1b for closing the upper end opening of the crucible main body 1a is used. The silicon carbide raw material 3 is loaded into the raw material filling portion 1c below the crucible body 1a, and a seed crystal 2 made of a silicon carbide single crystal is placed on the inner surface of the crucible upper lid 1b. In the crucible 1, the silicon carbide raw material 3 is heated to 2400 ° C. or higher in an inert gas atmosphere such as argon (10 Pa to 15 kPa). During this heating, a temperature gradient is set in the crucible 1 so that the temperature of the seed crystal 2 side is slightly lower than that of the silicon carbide raw material 3 side, and the silicon sublimation gas sublimated from the silicon carbide raw material 3 is heated and sublimated. Is diffused and transported in the direction of the seed crystal 2 by the flow caused by the temperature gradient and the flow caused by the concentration gradient (formed by the temperature gradient), recrystallized on the surface of the seed crystal 2, and crystal growth proceeds. Thus, a single crystal ingot 4 is formed. In addition, the code | symbol 5 is a heat insulating material in FIG.

ところで、炭化珪素単結晶基板の口径については、電子デバイスを作製するための基板として用いる際の製造コストをできるだけ下げるために、大口径化が求められている。そして、このために、炭化珪素単結晶基板を製造するためのインゴットについては、その大口径化と同時に、一つのインゴットから多数の基板を製造することができ、また、切断加工時や研削加工時の生産性をより高めることができるように、結晶成長により得られるインゴットの長尺化も求められている。   By the way, the diameter of the silicon carbide single crystal substrate is required to be increased in order to reduce the manufacturing cost as much as possible when used as a substrate for manufacturing an electronic device. For this reason, with respect to the ingot for manufacturing a silicon carbide single crystal substrate, it is possible to manufacture a large number of substrates from one ingot at the same time as increasing its diameter, and during cutting and grinding. In order to further increase the productivity, it is also required to lengthen the ingot obtained by crystal growth.

しかしながら、改良レーリー法においては、前記のような方法で結晶成長を行っているため、炭化珪素原料を結晶成長の途中で追加することが困難である。そこで、大口径かつ長尺の炭化珪素単結晶インゴットを作製するためには、小口径のインゴットを結晶成長させる場合に比べて、坩堝の原料充填部により多量の炭化珪素原料を装填する必要があり、原料充填部の径及び深さをより大きくする必要が生じるが、このように多量に装填した炭化珪素原料を結晶成長のために有効に利用するためには、原料充填部内の炭化珪素原料全体を昇華温度まで効率良く加熱し、昇華させることが不可欠になる。   However, in the improved Rayleigh method, since the crystal growth is performed by the method as described above, it is difficult to add the silicon carbide raw material during the crystal growth. Therefore, in order to produce a large-diameter and long-sized silicon carbide single crystal ingot, it is necessary to load a larger amount of silicon carbide raw material in the crucible raw material filling portion than in the case of crystal growth of a small-diameter ingot. The diameter and depth of the raw material filling portion need to be increased, but in order to effectively use the silicon carbide raw material loaded in such a large amount for crystal growth, the entire silicon carbide raw material in the raw material filling portion It is indispensable to efficiently heat and sublimate to sublimation temperature.

そして、坩堝内の炭化珪素原料を加熱する方法としては、一般に、高周波誘導加熱を用いて黒鉛製の坩堝を発熱させ、この発熱した坩堝を介して炭化珪素原料を加熱し、坩堝内に前述の温度勾配を形成することが行われている。また、このような高周波誘導加熱においては、誘導される高周波電流の発生が高周波の浸透深さに依存しているため、坩堝の形状によって定まる発熱分布が発生し、坩堝の側壁外周面近傍で強い発熱が生じ、この熱が熱伝導若しくは熱輻射により原料充填部内の炭化珪素原料へと伝達され、これによって炭化珪素原料が加熱される。これを坩堝の原料充填部内に装填された炭化珪素原料に着目してみると、坩堝が円筒状でその原料充填部内に炭化珪素原料が円柱状に装填されていると、誘導加熱により円柱状炭化珪素原料の側面が強く加熱されることから、炭化珪素原料の外周部(坩堝の原料充填部の外周部)近傍がより加熱され易く、炭化珪素原料の中心軸(坩堝の原料充填部の中心軸)近傍に比べてより高温に加熱され、炭化珪素原料に対する加熱温度が炭化珪素原料の外周部から中心軸に向けて低下する温度分布を持つ傾向がある。   And, as a method of heating the silicon carbide raw material in the crucible, generally, the graphite crucible is heated using high frequency induction heating, the silicon carbide raw material is heated through the heated crucible, and the above described crucible is put in the crucible. A temperature gradient is formed. In addition, in such high frequency induction heating, since the generation of the induced high frequency current depends on the penetration depth of the high frequency, a heat generation distribution determined by the shape of the crucible is generated, and is strong near the outer peripheral surface of the crucible side wall. Heat generation occurs, and this heat is transmitted to the silicon carbide raw material in the raw material filling portion by heat conduction or heat radiation, whereby the silicon carbide raw material is heated. Focusing on the silicon carbide raw material charged in the raw material filling portion of the crucible, if the crucible is cylindrical and the silicon carbide raw material is loaded in the cylindrical shape in the raw material filling portion, the cylindrical carbonization is induced by induction heating. Since the side surface of the silicon raw material is strongly heated, the vicinity of the outer peripheral portion of the silicon carbide raw material (the outer peripheral portion of the raw material filling portion of the crucible) is more easily heated, and the central axis of the silicon carbide raw material (the central axis of the raw material filling portion of the crucible) ) There is a tendency that the heating temperature for the silicon carbide raw material is higher than that in the vicinity, and the heating temperature for the silicon carbide raw material decreases from the outer peripheral portion of the silicon carbide raw material toward the central axis.

このように原料充填部が加熱されると、原料充填部内の炭化珪素原料の高温部から昇華ガスが発生し、種結晶上に結晶成長が生じるが、原料充填部内の原料には不可避的に温度分布が生じ、原料充填部の中心軸近傍の原料は低温部となる。そして、この低温部の温度を昇華温度まで上昇させて低温部となる中心軸近傍の原料を昇華させるためには、誘導電流の電流値を大きくして黒鉛坩堝の側壁部分の温度をより高温にする必要がある。一方で、坩堝の側壁部分の温度を高くすると、坩堝全体の温度が高くなり、種結晶や成長中の単結晶の温度も高くなって、種結晶と原料との温度勾配が小さくなるため、温度勾配に基づいた結晶成長の駆動力が小さくなり、結晶成長が途中で停止する結晶成長停止の問題が発生する。   When the raw material filling part is heated in this way, sublimation gas is generated from the high temperature part of the silicon carbide raw material in the raw material filling part and crystal growth occurs on the seed crystal, but the temperature in the raw material in the raw material filling part is unavoidable. Distribution occurs, and the raw material near the central axis of the raw material filling portion becomes a low temperature portion. And in order to raise the temperature of this low temperature part to the sublimation temperature and sublimate the raw material near the central axis that becomes the low temperature part, the current value of the induced current is increased and the temperature of the side wall part of the graphite crucible is made higher. There is a need to. On the other hand, when the temperature of the side wall portion of the crucible is increased, the temperature of the entire crucible is increased, the temperature of the seed crystal and the growing single crystal is also increased, and the temperature gradient between the seed crystal and the raw material is reduced. The driving force of crystal growth based on the gradient is reduced, and there is a problem of crystal growth stop that stops crystal growth in the middle.

そこで、従来においても、原料充填部を加熱する方法について幾つかの提案がされており、例えば、坩堝の原料充填部の底壁部(坩堝底壁部)の温度低下を防ぐために前記坩堝底壁部に断熱材を配置することで、原料充填部の下部における再結晶化を抑制し、効率的に原料を加熱する方法が開示されている(特許文献1)。また、原料充填部の坩堝の側壁の形状を工夫し、原料内部の温度分布を均一化する方法が開示されている(特許文献2)。   Therefore, some proposals have been made in the past regarding methods for heating the raw material filling portion. For example, in order to prevent the temperature of the bottom wall portion (crucible bottom wall portion) of the raw material filling portion of the crucible from decreasing, Disclosed is a method of efficiently heating a raw material by disposing a heat insulating material in the portion to suppress recrystallization in the lower portion of the raw material filling portion (Patent Document 1). Moreover, the method of making the temperature distribution inside a raw material uniform by devising the shape of the side wall of the crucible of a raw material filling part is disclosed (patent document 2).

そして、坩堝の原料充填部の底壁部(坩堝底壁部)を直接加熱する方法として、坩堝底壁部の下に誘導加熱コイルを配置する方法が開示されている(特許文献3)。また、坩堝の原料充填部の底壁部(坩堝底壁部)の電気伝導率を側壁部よりも高くし、坩堝底壁部の発熱を増大させて坩堝底壁部の温度を高くすることにより、坩堝底壁部まで加熱する方法が開示されている(特許文献4)。
更にまた、種結晶に向かうガスの流れを制御するために原料充填部の上部に原料ガス整流ガイドを設ける方法が開示されている(特許文献5)。
And the method of arrange | positioning an induction heating coil under the crucible bottom wall part is disclosed as a method of directly heating the bottom wall part (crucible bottom wall part) of the raw material filling part of a crucible (patent document 3). In addition, by making the electric conductivity of the bottom wall part (crucible bottom wall part) of the raw material filling part of the crucible higher than the side wall part, increasing the heat generation of the crucible bottom wall part and raising the temperature of the crucible bottom wall part A method of heating up to the crucible bottom wall is disclosed (Patent Document 4).
Furthermore, a method of providing a raw material gas rectifying guide at the upper part of the raw material filling part in order to control the flow of gas toward the seed crystal is disclosed (Patent Document 5).

特開2010-76,990号公報JP 2010-76,990 特開2007-230,846号公報JP 2007-230,846 特開2013-216,549号公報JP 2013-216,549 特開2010-206,876号公報JP 2010-206,876 特許5,397,503号公報Japanese Patent No. 5,397,503

Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, 52 (1981) pp.146Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, 52 (1981) pp.146

しかしながら、特許文献1の方法では、発熱部分が坩堝の側壁部分であることから、原料充填部の中心軸近傍の温度が外周部の温度よりも低下するという問題が依然とし残り、大口径化のために坩堝の口径を増大させた場合に、原料充填部の中心軸近傍の原料を効率良く加熱するという目的のためには採用し難い方法である。また、特許文献2の方法では、坩堝側壁の発熱分布が変化することに伴い、種結晶上に成長している結晶部分近傍での発熱分布も変化し、しかも、前記結晶成長は等温線に沿って進むと考えられることから、発熱分布の変化に伴って成長する結晶の成長面形状も影響を受けるので、原料充填部の前記結晶成長部分の温度の最適化とを両立させることが必要となり、これら均温化と最適化の両立が非常に難しい。   However, in the method of Patent Document 1, since the heat generating part is the side wall part of the crucible, the problem that the temperature in the vicinity of the central axis of the raw material filling part is lower than the temperature of the outer peripheral part still remains, Therefore, when the diameter of the crucible is increased, this method is difficult to adopt for the purpose of efficiently heating the raw material in the vicinity of the central axis of the raw material filling portion. In the method of Patent Document 2, the heat generation distribution in the vicinity of the crystal part growing on the seed crystal also changes as the heat generation distribution on the crucible sidewall changes, and the crystal growth follows an isotherm. Since the growth surface shape of the crystal that grows with the change in the heat generation distribution is also affected, it is necessary to achieve both optimization of the temperature of the crystal growth part of the raw material filling part, It is very difficult to achieve both soaking and optimization.

また、特許文献3の方法では、坩堝下部を直接加熱することができるが、装置の構造が複雑になると同時に、側部誘導加熱コイルと下部誘導加熱コイルとの相互作用があるために、それぞれの誘導加熱コイルに流す電流の最適化が非常に難しい。更に、特許文献4の方法では、坩堝側壁に近い部分での発熱を増大させているため、依然として、原料充填部の外周部の温度が高くなるという問題は残り、原料充填部の外周部と原料充填部の中心軸近傍の間に不可避に温度差が発生し、原料充填部の中心軸近傍の原料を効率的に昇華させることが困難である。   Further, in the method of Patent Document 3, the lower part of the crucible can be directly heated. However, since the structure of the apparatus is complicated, the side induction heating coil and the lower induction heating coil interact with each other. It is very difficult to optimize the current flowing through the induction heating coil. Furthermore, in the method of Patent Document 4, since the heat generation near the crucible side wall is increased, there still remains a problem that the temperature of the outer peripheral portion of the raw material filling portion becomes high, and the outer peripheral portion of the raw material filling portion and the raw material A temperature difference inevitably occurs between the vicinity of the central axis of the filling portion, and it is difficult to efficiently sublimate the raw material near the central axis of the raw material filling portion.

更に、特許文献5の方法では、原料充填部内に最初に装填された炭化珪素原料の上面位置から種結晶へ到達するまでの間の昇華ガスの流れを制御することはできるが、原料充填部の内部において昇華ガスの流れの制御することはできず、原料充填部の中心軸近傍の原料を加熱することは困難であり、原料充填部の中心軸近傍の温度を上げるためには坩堝全体の温度を上げる必要がある。坩堝全体の温度を上げた場合には、種結晶の結晶成長部が高温となることで再結晶した炭化珪素が再度昇華する場合があり、その部分に欠陥が発生し、良質の単結晶が得られない問題が有る。このため、この特許文献5の方法においても、原料充填部の中心軸近傍の炭化珪素原料を有効に加熱することは難しく、多量の昇華ガスを必要とするインゴットの大口径化、長尺化には不向きである。   Furthermore, in the method of Patent Document 5, the flow of the sublimation gas from the upper surface position of the silicon carbide raw material initially loaded in the raw material filling portion to the seed crystal can be controlled. The flow of the sublimation gas cannot be controlled inside, and it is difficult to heat the raw material near the central axis of the raw material filling part. In order to increase the temperature near the central axis of the raw material filling part, the temperature of the entire crucible It is necessary to raise. When the temperature of the entire crucible is raised, the recrystallized silicon carbide may sublimate again due to the high temperature of the crystal growth part of the seed crystal, resulting in defects in that part, and obtaining a high-quality single crystal. There is a problem that can not be. For this reason, also in the method of Patent Document 5, it is difficult to effectively heat the silicon carbide raw material in the vicinity of the central axis of the raw material filling portion, and it is necessary to increase the diameter and length of the ingot that requires a large amount of sublimation gas. Is unsuitable.

本発明は、炭化珪素単結晶の成長中に坩堝の原料充填部に装填した炭化珪素原料を効率良く昇華させ、大口径かつ長尺の炭化珪素単結晶インゴットを製造するのに適した炭化珪素単結晶インゴットの製造方法を提供することを目的とする。   The present invention provides a silicon carbide single crystal suitable for producing a large-diameter and long silicon carbide single crystal ingot by efficiently sublimating a silicon carbide raw material loaded in a raw material filling portion of a crucible during the growth of a silicon carbide single crystal. It aims at providing the manufacturing method of a crystal ingot.

本発明者らは、高周波誘導加熱を用いて、大口径かつ長尺の炭化珪素単結晶インゴットを製造する場合に、黒鉛坩堝の原料充填部内に装填した炭化珪素原料を効率良く昇華させることができる方法について鋭意検討した。その結果、高温に加熱されて発生した高温の昇華ガスを熱源として利用すること、すなわち、略々中央部に隔壁開口部を有する隔壁を原料充填部の内部に配置してこの原料充填部内の炭化珪素原料中を流れる昇華ガスの流れを制御し、この高温の昇華ガスの流れを原料充填部内の比較的低温の炭化珪素原料部分に強制的に誘導し、この高温の昇華ガスによって原料充填部の中心軸近傍に位置する比較的低温の炭化珪素原料を加熱する方法に到達した。そして、この方法によれば、従来加熱され難かった坩堝の原料充填部中心軸近傍の原料を昇華させることを可能とし、坩堝内に装填した炭化珪素原料を効率良く昇華させ、大口径かつ長尺の炭化珪素単結晶インゴットを製造することができることを見出し、本発明を完成した。   The present inventors can efficiently sublimate the silicon carbide raw material loaded in the raw material filling portion of the graphite crucible when producing a large-diameter and long silicon carbide single crystal ingot using high-frequency induction heating. The method was studied earnestly. As a result, the high-temperature sublimation gas generated by being heated to a high temperature is used as a heat source, that is, a partition wall having a partition opening portion at a substantially central portion is disposed inside the raw material filling portion, and carbonization in the raw material filling portion is performed. The flow of the sublimation gas flowing in the silicon raw material is controlled, and the flow of this high temperature sublimation gas is forcibly guided to the relatively low temperature silicon carbide raw material portion in the raw material filling portion. A method for heating a relatively low temperature silicon carbide raw material located near the central axis has been reached. According to this method, it is possible to sublimate the raw material in the vicinity of the central axis of the raw material filling portion of the crucible, which has been difficult to be heated, and efficiently sublimate the silicon carbide raw material loaded in the crucible, thereby increasing the diameter and length of the material. The present inventors have found that a silicon carbide single crystal ingot can be produced.

すなわち、本発明の要旨は次の通りである。
〔1〕上端開口筒状に形成された黒鉛製の坩堝本体とこの坩堝本体の上端開口部を閉塞する坩堝上蓋とを備え、また、前記坩堝本体下部には炭化珪素原料を充填する原料充填部を有し、前記原料充填部内に装填された炭化珪素原料を加熱して昇華させ、生成した昇華ガスを前記坩堝上蓋の内面に設置された炭化珪素単結晶からなる種結晶の表面で再結晶化させる昇華再結晶法により炭化珪素単結晶を製造するための黒鉛坩堝において、
前記坩堝本体下部の原料充填部内には、周縁基部が原料充填部の側壁内面に固定され、略々中央部に隔壁開口部を有する円盤状の黒鉛製隔壁が設けられていることを特徴とする炭化珪素単結晶インゴット製造用の黒鉛坩堝。
〔2〕 前記黒鉛製隔壁の隔壁開口部の開口面積が、前記原料充填部内に装填された初期の炭化珪素原料の上面の面積の0.1倍以上0.5倍以下であることを特徴とする前記〔1〕に記載の炭化珪素単結晶インゴット製造用の黒鉛坩堝。
〔3〕 上端開口筒状に形成された黒鉛製の坩堝本体とこの坩堝本体の上端開口部を閉塞する坩堝上蓋とを備え、また、前記坩堝本体下部には炭化珪素原料を充填する原料充填部を有する黒鉛坩堝を用い、この黒鉛坩堝の坩堝本体下部の原料充填部内に炭化珪素原料を装填し、前記坩堝上蓋の内面には炭化珪素単結晶からなる種結晶を設置し、前記坩堝本体の側面を高周波誘導加熱して昇華ガスを発生させ、この発生した昇華ガスを前記種結晶上に再結晶させて炭化珪素単結晶を製造する方法において、
前記坩堝本体下部の原料充填部には周縁基部が坩堝本体内壁面に固定され、かつ、略々中央部に隔壁開口部を有する円盤状の黒鉛製隔壁を設け、この黒鉛製隔壁により隔壁下方で発生する昇華ガスを原料充填部の中心軸へと向う方向に案内し、この原料充填部内の中心軸周辺に位置する炭化珪素原料を昇華温度まで加熱することを特徴とする炭化珪素単結晶インゴットの製造方法。
That is, the gist of the present invention is as follows.
[1] A crucible body made of graphite formed in a cylindrical shape with an upper end opening and a crucible upper lid for closing the upper end opening of the crucible body, and a raw material filling portion for filling a silicon carbide raw material at the lower part of the crucible body The silicon carbide raw material charged in the raw material filling portion is heated and sublimated, and the generated sublimation gas is recrystallized on the surface of a seed crystal made of a silicon carbide single crystal installed on the inner surface of the crucible upper lid In a graphite crucible for producing a silicon carbide single crystal by a sublimation recrystallization method,
In the raw material filling part at the lower part of the crucible body, a peripheral base is fixed to the inner surface of the side wall of the raw material filling part, and a disk-shaped graphite partition wall having a partition opening is provided at a substantially central part. A graphite crucible for producing a silicon carbide single crystal ingot.
[2] The opening area of the partition wall opening portion of the graphite partition wall is 0.1 to 0.5 times the area of the upper surface of the initial silicon carbide raw material charged in the raw material filling portion. A graphite crucible for producing a silicon carbide single crystal ingot according to [1].
[3] A graphite crucible main body formed in a cylindrical shape with an upper end opening, and a crucible upper lid for closing the upper end opening of the crucible main body, and a raw material filling portion for filling a silicon carbide raw material at the lower part of the crucible main body A graphite crucible having a graphite crucible, a silicon carbide raw material is loaded into a raw material filling portion at a lower portion of the crucible body of the graphite crucible, a seed crystal made of a silicon carbide single crystal is placed on the inner surface of the crucible upper lid, and a side surface of the crucible body In a method for producing a silicon carbide single crystal by generating a sublimation gas by high-frequency induction heating and recrystallizing the generated sublimation gas on the seed crystal,
The raw material filling portion at the lower part of the crucible body is provided with a disk-shaped graphite partition wall having a peripheral base fixed to the inner wall surface of the crucible body and having a partition wall opening at a substantially central portion. A silicon carbide single crystal ingot characterized by guiding the generated sublimation gas in a direction toward the central axis of the raw material filling portion and heating the silicon carbide raw material located around the central axis in the raw material filling portion to a sublimation temperature. Production method.

本発明の炭化珪素単結晶インゴット製造用の黒鉛坩堝によれば、この黒鉛坩堝を用いて大口径かつ長尺の炭化珪素単結晶インゴットを成長させる際に、坩堝の原料充填部に装填された炭化珪素原料について、原料充填部の中心軸近傍の温度を外周部の温度と同等に高くすることが可能であり、従来、比較的低温である原料充填部の中心軸近傍での炭化珪素原料の再結晶化を防ぎ、原料充填部に装填した炭化珪素原料を有効に昇華させること、すなわち炭化珪素原料の結晶化率〔=(成長した炭化珪素単結晶インゴットの重量)/(装填した炭化珪素原料の重量)〕を高くすることができる。   According to the graphite crucible for producing a silicon carbide single crystal ingot of the present invention, when growing a large-diameter and long silicon carbide single crystal ingot using the graphite crucible, the carbonization charged in the raw material filling portion of the crucible is performed. With respect to the silicon raw material, the temperature in the vicinity of the central axis of the raw material filling portion can be made as high as the temperature in the outer peripheral portion. It prevents crystallization and effectively sublimates the silicon carbide raw material loaded in the raw material filling portion, that is, the crystallization rate of the silicon carbide raw material [= (weight of grown silicon carbide single crystal ingot) / (of the loaded silicon carbide raw material] Weight)) can be increased.

また、本発明の炭化珪素単結晶インゴットの製造方法によれば、種結晶の結晶成長面に昇華ガスが効率的かつ安定的に供給されるようになり、種結晶の結晶成長面に昇華ガスの供給が変動することに起因する欠陥の発生を抑制することができ、高品質の炭化珪素インゴットを製造することができる。また、本発明の方法で製造された高品質の炭化珪素単結晶インゴットを用いて電子材料用の炭化珪素単結晶基板を製造すれば、炭化珪素原料に対して製造される基板の歩留まりが向上し、炭化珪素単結晶基板のコスト低減を図ることができる。   Further, according to the method for producing a silicon carbide single crystal ingot of the present invention, the sublimation gas is efficiently and stably supplied to the crystal growth surface of the seed crystal, and the sublimation gas is supplied to the crystal growth surface of the seed crystal. It is possible to suppress the occurrence of defects due to fluctuations in supply, and it is possible to manufacture a high-quality silicon carbide ingot. Moreover, if a silicon carbide single crystal substrate for an electronic material is manufactured using a high quality silicon carbide single crystal ingot manufactured by the method of the present invention, the yield of the substrate manufactured with respect to the silicon carbide raw material is improved. In addition, the cost of the silicon carbide single crystal substrate can be reduced.

図1は、本発明の炭化珪素単結晶インゴットの製造方法の実施例1で用いる炭化珪素単結晶インゴットの製造装置全体を示す説明図である。FIG. 1 is an explanatory view showing the entire manufacturing apparatus for a silicon carbide single crystal ingot used in Example 1 of the method for manufacturing a silicon carbide single crystal ingot of the present invention. 図2は、本発明の実施例1で用いられた黒鉛坩堝を説明するための拡大説明図である。FIG. 2 is an enlarged explanatory view for explaining the graphite crucible used in Example 1 of the present invention. 図3は、本発明の実施例2で用いられた黒鉛坩堝を説明するための図2と同様の説明図である。FIG. 3 is an explanatory view similar to FIG. 2 for explaining the graphite crucible used in Example 2 of the present invention. 図4は、本発明の実施例3で用いられた黒鉛坩堝を説明するための図2と同様の説明図である。FIG. 4 is an explanatory view similar to FIG. 2 for explaining the graphite crucible used in Example 3 of the present invention. 図5は、本発明の実施例4で用いられた黒鉛坩堝を説明するための図2と同様の説明図である。FIG. 5 is an explanatory view similar to FIG. 2 for explaining the graphite crucible used in Example 4 of the present invention. 図6は、改良レーリー法の原理を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining the principle of the improved Rayleigh method.

以下、添付図面に示す炭化珪素単結晶インゴットの製造装置を用いて、本発明の炭化珪素単結晶インゴット製造用の黒鉛坩堝、及びこの黒鉛坩堝を用いた本発明の炭化珪素単結晶インゴットの製造方法について、その実施の形態を説明する。   Hereinafter, using a silicon carbide single crystal ingot manufacturing apparatus shown in the accompanying drawings, a graphite crucible for manufacturing a silicon carbide single crystal ingot of the present invention, and a method of manufacturing a silicon carbide single crystal ingot of the present invention using this graphite crucible The embodiment will be described.

図1は、炭化珪素単結晶インゴットの製造装置の全体を説明するためのものであり、この製造装置において、二重石英管13内には黒鉛製の黒鉛坩堝1(以下、「坩堝」と略す。)とこの坩堝1を取り囲むように覆う黒鉛製の断熱材5とが配設されている。そして、前記坩堝1は、上端開口筒状に形成された黒鉛製の坩堝本体1aとその上端開口部を閉塞する黒鉛製の坩堝上蓋1bとで構成されており、また、前記坩堝本体1a下部には炭化珪素原料(以下、単に「原料」という。)3を充填する原料充填部1cが位置しており、更に、前記坩堝上蓋1bの内面には炭化珪素単結晶からなる種結晶2が取り付けられている。   FIG. 1 is a diagram for explaining an entire manufacturing apparatus for a silicon carbide single crystal ingot. In this manufacturing apparatus, a graphite crucible 1 made of graphite (hereinafter abbreviated as “crucible”) is placed in a double quartz tube 13. And a heat insulating material 5 made of graphite covering the crucible 1 so as to surround the crucible 1. The crucible 1 is composed of a graphite crucible body 1a formed in a cylindrical shape with an upper end opening and a graphite crucible upper lid 1b that closes the upper end opening, and the crucible body 1a has a lower part. Is provided with a raw material filling portion 1c for filling a silicon carbide raw material (hereinafter simply referred to as "raw material") 3, and a seed crystal 2 made of a silicon carbide single crystal is attached to the inner surface of the crucible upper lid 1b. ing.

なお、この図1において、符号6は切欠き孔を示し、符号10は坩堝支持体を示し、符号13は二重石英管を示し、符号14は真空排気装置を示し、符号15はArガス配管を示し、符号16はArガス用マスフローコントローラを示し、符号17は発熱部材として機能する前記坩堝1を発熱させるための高周波誘導加熱用のワークコイルを示し、前記ワークコイル17には高周波電流を流すための図示外の高周波電源が取り付けられている。
また、図1において、符号20は、周縁基部が原料充填部1cの側壁内面に固定されて前記坩堝本体1a下部の原料充填部1c内に位置する本発明の黒鉛製隔壁であり、その略々中央部には隔壁開口部21が形成されている。
In FIG. 1, reference numeral 6 indicates a notch hole, reference numeral 10 indicates a crucible support, reference numeral 13 indicates a double quartz tube, reference numeral 14 indicates a vacuum exhaust device, and reference numeral 15 indicates an Ar gas pipe. Reference numeral 16 denotes a mass flow controller for Ar gas, reference numeral 17 denotes a work coil for high-frequency induction heating for heating the crucible 1 functioning as a heat generating member, and a high-frequency current is passed through the work coil 17 For this purpose, a high-frequency power supply (not shown) is attached.
In FIG. 1, reference numeral 20 denotes a graphite partition wall according to the present invention whose peripheral base is fixed to the inner wall of the side wall of the raw material filling portion 1c and located in the raw material filling portion 1c below the crucible body 1a. A partition opening 21 is formed at the center.

この製造装置において、二重石英管13内部は、真空排気装置14により高真空排気(10-3Pa以下)することができ、かつArガス配管15とArガス用マスフローコントローラ16を用いて、内部雰囲気をArガスにより圧力制御することができるようになっている。そして、坩堝1の温度の計測は、坩堝1の上下部を覆う黒鉛製の断熱材5の中央部にそれぞれ光路を設け、坩堝1の上部(坩堝上蓋1b)及び下部〔坩堝本体1a下部の原料充填部1cの底壁部(坩堝底壁部)〕からの光を取り出して、二色温度計を用いて行い、坩堝1下部の温度から原料温度を判断し、また、坩堝1上部の温度から種結晶2の温度を判断する。
ここで、種結晶2上に炭化珪素単結晶の結晶成長させるためには、坩堝1内部の上下方向に温度勾配を形成し、原料充填部1cの温度を高くし、種結晶2の結晶成長部分の温度を相対的に低くして再結晶させる必要がある。つまり、坩堝1の中では原料充填部1cから種結晶2に向かった熱の流れを形成する必要がある。
In this manufacturing apparatus, the inside of the double quartz tube 13 can be evacuated to a high vacuum (10 −3 Pa or less) by the vacuum exhaust device 14, and the Ar gas pipe 15 and the Ar gas mass flow controller 16 are used to The pressure of the atmosphere can be controlled with Ar gas. The temperature of the crucible 1 is measured by providing an optical path at the center of the graphite heat insulating material 5 covering the upper and lower parts of the crucible 1, and the upper part of the crucible 1 (crucible upper cover 1b) and the lower part The light from the bottom wall portion of the filling portion 1c (crucible bottom wall portion)] is taken out and performed using a two-color thermometer, the raw material temperature is judged from the temperature at the bottom of the crucible 1, and from the temperature at the top of the crucible 1 The temperature of the seed crystal 2 is judged.
Here, in order to grow a silicon carbide single crystal on the seed crystal 2, a temperature gradient is formed in the vertical direction inside the crucible 1, the temperature of the material filling portion 1c is increased, and the crystal growth portion of the seed crystal 2 is increased. It is necessary to recrystallize at a relatively low temperature. That is, in the crucible 1, it is necessary to form a heat flow from the raw material filling portion 1 c toward the seed crystal 2.

しかるに、従来の方法(図1において、隔壁20の無い坩堝を用いた方法)では、坩堝1の側壁で高周波誘導により発生した熱を、原料充填部1c内の原料3から種結晶2を経由させて系外へと放出させている。この結果、原料充填部1c内の原料3の外周部の温度が高く、その中心軸近傍に向かって温度が低下し、更に、種結晶2に向かって温度勾配が発生する。
そして、このような黒鉛製の坩堝1を用いた高周波による誘導加熱では、発熱部材である黒鉛製の坩堝1の側壁は加熱され易いが、原料充填部1c内の原料3の中心軸近傍(坩堝本体1a下部の原料充填部1cの中心軸近傍)は加熱され難い。特に原料充填部1c内の原料3の底部は坩堝1の坩堝本体1a下部の原料充填部の底壁部(以下、単に「坩堝底壁部」ということがある。)と接している部分であって、坩堝1の側壁から原料充填部1c内の原料3に投入された熱が流出する部分であるため、坩堝底壁部の中央近傍を高周波誘導加熱により効果的に加熱することは難しい。また、加熱された原料3から発生する昇華ガスは、鉛直上方に上昇し、種結晶2の結晶成長面で再結晶する流れを生じる。すなわち高温に加熱されやすい側壁近傍の高温の昇華ガスは他の原料部分を加熱することなく種結晶2に向かう。
However, in the conventional method (method using the crucible without the partition 20 in FIG. 1), the heat generated by high frequency induction on the side wall of the crucible 1 is passed through the seed crystal 2 from the raw material 3 in the raw material filling portion 1c. Are released outside the system. As a result, the temperature of the outer peripheral portion of the raw material 3 in the raw material filling portion 1 c is high, the temperature decreases toward the vicinity of the central axis, and a temperature gradient is generated toward the seed crystal 2.
In the induction heating by high frequency using such a graphite crucible 1, the side wall of the graphite crucible 1 which is a heat generating member is easily heated, but in the vicinity of the central axis of the raw material 3 in the raw material filling portion 1c (the crucible The vicinity of the central axis of the raw material filling portion 1c at the bottom of the main body 1a is not easily heated. In particular, the bottom of the raw material 3 in the raw material filling portion 1c is a portion in contact with the bottom wall portion of the raw material filling portion below the crucible body 1a of the crucible 1 (hereinafter sometimes simply referred to as “crucible bottom wall portion”). Since the heat input to the raw material 3 in the raw material filling part 1c flows out from the side wall of the crucible 1, it is difficult to effectively heat the vicinity of the center of the crucible bottom wall part by high frequency induction heating. Further, the sublimation gas generated from the heated raw material 3 rises vertically upward and generates a flow of recrystallization on the crystal growth surface of the seed crystal 2. That is, the high temperature sublimation gas in the vicinity of the side wall that is easily heated to high temperature goes to the seed crystal 2 without heating other raw material portions.

そこで、本発明は、原料充填部1cの外周部の高温に加熱されて発生した高温の昇華ガスを原料充填部1cの中心軸近傍を加熱する熱源として利用すること、すなわち、原料充填部1c内に配置した隔壁開口部21を有する円盤状の隔壁20を用いることで原料充填部1cの外周部の高温の昇華ガスが強制的に原料充填部1cの中心軸近傍を流れるように加熱する方法を用いることであり、種結晶上での結晶成長に必要な温度勾配を維持しつつ、従来は困難であった、坩堝の底面中央部1bの原料3を効率的に昇華させることが特徴である。以下、隔壁20より上の原料充填部1cを原料上室、下の原料充填部1cを原料下室とする。   Therefore, the present invention utilizes the high-temperature sublimation gas generated by being heated to a high temperature at the outer periphery of the raw material filling portion 1c as a heat source for heating the vicinity of the central axis of the raw material filling portion 1c, that is, in the raw material filling portion 1c. A method of heating so that the high-temperature sublimation gas at the outer peripheral portion of the raw material filling portion 1c is forced to flow in the vicinity of the central axis of the raw material filling portion 1c by using the disk-shaped partition wall 20 having the partition wall opening 21 arranged in It is characterized by the fact that the raw material 3 of the bottom center portion 1b of the crucible is efficiently sublimated while maintaining the temperature gradient necessary for crystal growth on the seed crystal. Hereinafter, the raw material filling portion 1c above the partition wall 20 is referred to as a raw material upper chamber, and the lower raw material filling portion 1c is referred to as a raw material lower chamber.

隔壁20は、その機能から特に材質を規定するものではないが、昇華再結晶法を行うために必要な高温で機能する材料であるのがよく、成長する炭化珪素単結晶の不純物とならない材料の視点から、黒鉛材料であることが好ましい。
隔壁20の上面及び/又は下面は坩堝1の坩堝底壁部に対して平行であっても、また、この坩堝底壁部に対して角度をなしていてもよく、原料3の装填量を多くするためには厚さが薄い方が好ましい。一方で、黒鉛材料を用いて隔壁20を作製する場合には、昇華ガスと黒鉛の反応による隔壁20の浸食が起こるため、隔壁20の厚さは5mm以上であることが好ましい。
The partition wall 20 is not particularly defined in terms of its function, but is preferably a material that functions at a high temperature necessary for performing the sublimation recrystallization method, and is a material that does not become an impurity of the growing silicon carbide single crystal. From the viewpoint, a graphite material is preferable.
The upper surface and / or the lower surface of the partition wall 20 may be parallel to the crucible bottom wall portion of the crucible 1 or may be at an angle with respect to the crucible bottom wall portion. In order to achieve this, a thinner thickness is preferable. On the other hand, when the partition wall 20 is produced using a graphite material, the partition wall 20 is eroded by the reaction between the sublimation gas and graphite. Therefore, the thickness of the partition wall 20 is preferably 5 mm or more.

隔壁20について、その原料下室に面する側(下面側)の形状は平面形状でも、曲面形状でもよい。この隔壁20の下面側部分は昇華ガスを効果的に原料3の中心軸近傍に誘導するような曲面形状であることが好ましいが、隔壁20の下面側で昇華ガスの滞留が生じると、その部分で昇華ガスが再結晶を起こし、原料3が有効に利用できない場合があるので、隔壁20の下面側の形状についてはこの点を考慮して設計するのがよい。   The partition 20 may have a planar shape or a curved shape on the side facing the raw material lower chamber (lower surface side). The lower surface portion of the partition wall 20 is preferably curved so as to effectively guide the sublimation gas to the vicinity of the central axis of the raw material 3, but if sublimation gas stays on the lower surface side of the partition wall 20, In this case, the sublimation gas may recrystallize, and the raw material 3 may not be used effectively.

原料充填部1cを原料上室と原料下室とに仕切る隔壁20の開口部の下面の原料充填部1c内部での高さ位置(以下、単に「隔壁高さ位置」という。)は、原料充填部1cの坩堝底壁部内面からの高さ〔すなわち、原料充填部1c内に装填された初期の炭化珪素原料3の中心軸方向の上面高さ(以下、単に「初期装填原料の上面高さ」という。)〕に対して1/3から2/3の高さに配設することが好ましい。また、このとき原料下室に充填された原料は、原料充填部1cに装填された原料に対する体積比が25%から75%の間であることが好ましい。この隔壁20高さ位置が高く、原料下室の体積比が大きい場合には、原料3内部の比較的低温部である中心軸近傍に高温の昇華ガスの流れを誘導する効果が小さくなる虞があり、反対に、隔壁20高さ位置が低く、原料下室の体積比が小さい場合には、原料3内部の比較的低温部である中心軸近傍に高温の昇華ガスの流れを誘導する効果は得易いが、高温の昇華ガスの供給源となる原料下室に装填される原料3の総量が少なくなるために、中心軸近傍の原料3を十分に加熱するだけの昇華ガスが得られ難くなる虞がある。   The height position inside the raw material filling portion 1c on the lower surface of the opening of the partition wall 20 that divides the raw material filling portion 1c into the raw material upper chamber and the raw material lower chamber (hereinafter simply referred to as “partition wall height position”) is the raw material filling. The height from the inner surface of the crucible bottom wall of the portion 1c [that is, the upper surface height in the central axis direction of the initial silicon carbide raw material 3 loaded in the raw material filling portion 1c (hereinafter simply referred to as “the upper surface height of the initial charged raw material”). ”]]] Is preferably disposed at a height of 1/3 to 2/3. At this time, the raw material charged in the raw material lower chamber preferably has a volume ratio of 25% to 75% with respect to the raw material charged in the raw material filling portion 1c. If the height of the partition wall 20 is high and the volume ratio of the raw material lower chamber is large, the effect of inducing the flow of the high temperature sublimation gas in the vicinity of the central axis that is a relatively low temperature portion inside the raw material 3 may be reduced. On the contrary, when the height of the partition wall 20 is low and the volume ratio of the raw material lower chamber is small, the effect of inducing the flow of the high temperature sublimation gas in the vicinity of the central axis which is a relatively low temperature portion inside the raw material 3 is Although it is easy to obtain, since the total amount of the raw material 3 loaded in the raw material lower chamber serving as the supply source of the high-temperature sublimation gas is reduced, it is difficult to obtain a sublimation gas sufficient to sufficiently heat the raw material 3 in the vicinity of the central axis. There is a fear.

隔壁20の隔壁開口部21については、その開口面積が、好ましくは原料充填部内に装填された初期の炭化珪素原料の上面の面積(以下、単に「初期装填原料上面の面積」ということがある。)の0.1倍以上0.5倍以下、より好ましくは0.15倍以上0.4倍以下であることが好ましい。この隔壁開口部の開口面積が初期装填原料上面の面積の0.1倍より小さい場合には、原料充填部1cの中心軸近傍の原料3を加熱する効果は高くなるが、種結晶2に向かう供給口が狭くなり安定した昇華ガスの供給が得られ難くなる虞があり、反対に、0.5倍より大きくなると、供給口は大きく、安定した昇華ガスの供給は可能であるが、原料充填部1cの中心軸近傍の原料3を加熱する効果が得られ難くなる虞がある。   The opening area of the partition wall opening 21 of the partition wall 20 is preferably the area of the upper surface of the initial silicon carbide raw material loaded in the raw material filling portion (hereinafter simply referred to as “the area of the upper surface of the initial charged raw material”). ) To 0.1 times to 0.5 times, more preferably 0.15 times to 0.4 times. When the opening area of the partition wall opening is smaller than 0.1 times the area of the upper surface of the initially loaded raw material, the effect of heating the raw material 3 in the vicinity of the central axis of the raw material filling portion 1c is enhanced, but it goes toward the seed crystal 2 There is a possibility that the supply port becomes narrow and it becomes difficult to obtain a stable supply of sublimation gas. Conversely, if the supply port is larger than 0.5 times, the supply port is large and stable supply of sublimation gas is possible, There is a possibility that the effect of heating the raw material 3 in the vicinity of the central axis of the part 1c may not be obtained.

本発明の製造方法により成長高さが40mm以上200mm以下の炭化珪素単結晶インゴットを製造した場合には、坩堝1内に装填した炭化珪素原料3を有効に利用することができ、また、結晶成長中の結晶成長速度の変動が小さくなって高品質の炭化珪素単結晶を得ることができる。このため、電子材料用の炭化珪素単結晶を効率良く作製することが可能になり、炭化珪素単結晶インゴットをより安価に製造することができる。   When a silicon carbide single crystal ingot having a growth height of 40 mm or more and 200 mm or less is manufactured by the manufacturing method of the present invention, the silicon carbide raw material 3 loaded in the crucible 1 can be used effectively, and crystal growth The fluctuation of the crystal growth rate therein becomes small, and a high-quality silicon carbide single crystal can be obtained. For this reason, it becomes possible to produce the silicon carbide single crystal for electronic materials efficiently, and the silicon carbide single crystal ingot can be manufactured at a lower cost.

〔実施例1〕
実施例1においては、図1に示す製造装置において、図2に示す黒鉛坩堝を用いた。この坩堝の坩堝本体下部の原料充填部内には、隔壁高さ位置が初期装填原料の上面高さの1/2の位置であり、上下面が坩堝底壁部と平行であって、その隔壁開口部の開口面積が原料充填部内に装填された初期装填原料上面の面積の0.35倍である円盤状の黒鉛製隔壁を配設した。
また、坩堝の坩堝本体下部の原料充填部内には、アチソン法により作製された炭化珪素結晶粉末からなる炭化珪素原料を2.3kg装填し、また、坩堝の坩堝上蓋には、種結晶として、口径105mmの(0001)面を有する4Hポリタイプの炭化珪素単結晶ウェハを配置した。
[Example 1]
In Example 1, the graphite crucible shown in FIG. 2 was used in the manufacturing apparatus shown in FIG. In the raw material filling portion at the lower part of the crucible body of this crucible, the height of the partition wall is a half of the height of the top surface of the initially charged raw material, the upper and lower surfaces are parallel to the bottom wall of the crucible, and the partition opening A disc-shaped graphite partition wall having an opening area of 0.35 times as large as the area of the upper surface of the initially loaded raw material loaded in the raw material filling portion was disposed.
In addition, 2.3 kg of silicon carbide raw material made of silicon carbide crystal powder produced by the Atchison method is charged in the raw material filling portion at the bottom of the crucible body, and the crucible upper lid of the crucible has a diameter as a seed crystal. A 4H polytype silicon carbide single crystal wafer having a (0001) plane of 105 mm was placed.

このようにして準備された坩堝等からなる構成部材を前述のように二重石英管の内部に設置し、前記手順で常法に従って炭化珪素単結晶の結晶成長を行った。すなわち、原料温度を目標温度である2300℃まで上昇させた後、二重石英管内のArの圧力を成長圧力1.3kPaまで30分かけて減圧し、炭化珪素単結晶の成長を開始させ、加熱を140時間継続して炭化珪素単結晶を成長させた。   The component member composed of the crucible and the like prepared in this manner was placed inside the double quartz tube as described above, and crystal growth of a silicon carbide single crystal was performed according to a conventional method according to the above procedure. That is, after raising the raw material temperature to the target temperature of 2300 ° C., the pressure of Ar in the double quartz tube is reduced to a growth pressure of 1.3 kPa over 30 minutes to start the growth of the silicon carbide single crystal, Was continued for 140 hours to grow a silicon carbide single crystal.

その結果、成長速度は約0.4mm/時であって、炭化珪素単結晶の口径が105mm程度であり、かつ、高さが55mm程度の単結晶インゴットが得られた。坩堝内の原料の残渣を観察したところ、原料の中心軸近傍においても原料が効率良く昇華したことが認められ、高周波誘導加熱の際に原料に対する加熱温度を効果的に変化させることができ、結果として中心軸近傍の原料も効率良く加熱することができた。また、得られた単結晶インゴットの重量は1.5kg程度であり、結晶化率は68%であった。   As a result, a single crystal ingot having a growth rate of about 0.4 mm / hour, a silicon carbide single crystal diameter of about 105 mm, and a height of about 55 mm was obtained. When the residue of the raw material in the crucible was observed, it was found that the raw material was efficiently sublimated even in the vicinity of the central axis of the raw material, and the heating temperature for the raw material could be effectively changed during high frequency induction heating. As a result, the raw material near the central axis could also be heated efficiently. Further, the weight of the obtained single crystal ingot was about 1.5 kg, and the crystallization rate was 68%.

更に、得られた炭化珪素単結晶インゴットについて、X線回折及びラマン散乱により分析したところ、4Hの単一ポリタイプからなるインゴットであり、また、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。
このインゴットから切り出された炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。
Furthermore, when the obtained silicon carbide single crystal ingot was analyzed by X-ray diffraction and Raman scattering, it was an ingot consisting of a single polytype of 4H, and it was extremely high quality with few crystal defects such as micropipes. It was confirmed.
The silicon carbide single crystal substrate cut out from the ingot is useful as a substrate for manufacturing an electronic device.

〔実施例2〕
実施例2においては、実施例1の図2に示す黒鉛坩堝に代えて、図3に示す黒鉛坩堝を用いた製造装置において、周縁基部が坩堝底壁部から初期装填原料の上面高さの1/3の位置に固定され、また、隔壁開口部側が周縁基部側より少し高くなって全体が坩堝底壁部と角度を有して固定され、上面側が平面状で下面側が凹状を有し、原料下室の昇華ガスの流れが原料中心軸近傍に誘導される形状を持つ円盤状の隔壁を配設した。また、隔壁開口部の開口面積は初期装填原料上面の面積の0.15倍とした。
また、坩堝の坩堝本体下部の原料充填部内には、アチソン法により作製された炭化珪素結晶粉末からなる炭化珪素原料を4.6kg装填し、また、坩堝の坩堝上蓋には、種結晶として、口径155mmの(0001)面を有する4Hポリタイプの炭化珪素単結晶ウェハを配置した。
[Example 2]
In Example 2, in place of the graphite crucible shown in FIG. 2 of Example 1, in the manufacturing apparatus using the graphite crucible shown in FIG. 3, the peripheral base is 1 of the upper surface height of the initial charged raw material from the crucible bottom wall. / 3, the partition opening side is slightly higher than the peripheral base side, and the whole is fixed at an angle with the crucible bottom wall, the upper surface is flat and the lower surface is concave, A disc-shaped partition wall having a shape in which the flow of sublimation gas in the lower chamber is guided near the center axis of the raw material was disposed. Moreover, the opening area of the partition wall opening was set to 0.15 times the area of the upper surface of the initially loaded raw material.
In addition, 4.6 kg of silicon carbide raw material made of silicon carbide crystal powder produced by the Atchison method is loaded in the raw material filling portion at the bottom of the crucible body, and the crucible upper lid of the crucible has a diameter as a seed crystal. A 4H polytype silicon carbide single crystal wafer having a (0001) plane of 155 mm was placed.

このようにして準備された坩堝等からなる構成部材を前述のように二重石英管の内部に設置し、前記手順で常法に従って炭化珪素単結晶の結晶成長を行った。すなわち、原料温度を目標温度である2300℃まで上昇させた後、二重石英管内のArの圧力を成長圧力1.3kPaまで30分かけて減圧し、炭化珪素単結晶の成長を開始させ、加熱を140時間継続して炭化珪素単結晶を成長させた。   The component member composed of the crucible and the like prepared in this manner was placed inside the double quartz tube as described above, and crystal growth of a silicon carbide single crystal was performed according to a conventional method according to the above procedure. That is, after raising the raw material temperature to the target temperature of 2300 ° C., the pressure of Ar in the double quartz tube is reduced to a growth pressure of 1.3 kPa over 30 minutes to start the growth of the silicon carbide single crystal, Was continued for 140 hours to grow a silicon carbide single crystal.

その結果、成長速度は約0.4mm/時であって、炭化珪素単結晶の口径が155mm程度であり、かつ、高さが55mm程度の単結晶インゴットが得られた。坩堝内の原料の残渣を観察したところ、原料の中心軸近傍においても原料が効率良く昇華したことが認められ、高周波誘導加熱の際に原料に対する加熱温度を効果的に変化させることができ、結果として中心軸近傍の原料も効率良く加熱することができた。また、得られた単結晶インゴットの重量は3.3kg程度であり、結晶化率は72%であった。   As a result, a single crystal ingot having a growth rate of about 0.4 mm / hour, a silicon carbide single crystal diameter of about 155 mm, and a height of about 55 mm was obtained. When the residue of the raw material in the crucible was observed, it was found that the raw material was efficiently sublimated even in the vicinity of the central axis of the raw material, and the heating temperature for the raw material could be effectively changed during high frequency induction heating. As a result, the raw material near the central axis could also be heated efficiently. Further, the weight of the obtained single crystal ingot was about 3.3 kg, and the crystallization rate was 72%.

更に、得られた炭化珪素単結晶インゴットについて、X線回折及びラマン散乱により分析したところ、4Hの単一ポリタイプからなるインゴットであり、また、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。
このインゴットから切り出された炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。
Furthermore, when the obtained silicon carbide single crystal ingot was analyzed by X-ray diffraction and Raman scattering, it was an ingot consisting of a single polytype of 4H, and it was extremely high quality with few crystal defects such as micropipes. It was confirmed.
The silicon carbide single crystal substrate cut out from the ingot is useful as a substrate for manufacturing an electronic device.

〔実施例3〕
実施例3においては、実施例1の図2に示す黒鉛坩堝に代えて、図4に示す黒鉛坩堝を用いた製造装置において、周縁基部が坩堝底壁部から初期装填原料の上面高さの2/3の位置に固定され、また、隔壁開口部側が周縁基部上面より少し低くなって上面が坩堝底壁部と角度を有して固定され、上面側が平面状で下面側が凹状を有し、原料下室の昇華ガスの流れが原料中心軸近傍に誘導される形状を持つ円盤状の隔壁を配設した。また、隔壁開口部の開口面積は初期装填原料上面の面積の0.4倍とした。
また、坩堝の坩堝本体下部の原料充填部内には、アチソン法により作製された炭化珪素結晶粉末からなる炭化珪素原料を8.3kg装填し、また、坩堝の坩堝上蓋には、種結晶として、口径155mmの(0001)面を有する4Hポリタイプの炭化珪素単結晶ウェハを配置した。
Example 3
In Example 3, instead of the graphite crucible shown in FIG. 2 of Example 1, in the manufacturing apparatus using the graphite crucible shown in FIG. 4, the peripheral base is 2 from the crucible bottom wall to the upper surface height of the initial charged raw material. / 3, the partition opening side is slightly lower than the peripheral base upper surface, the upper surface is fixed at an angle with the crucible bottom wall, the upper surface is flat and the lower surface is concave, A disc-shaped partition wall having a shape in which the flow of sublimation gas in the lower chamber is guided near the center axis of the raw material was disposed. In addition, the opening area of the partition opening was set to 0.4 times the area of the upper surface of the initially loaded raw material.
Further, 8.3 kg of silicon carbide raw material made of silicon carbide crystal powder produced by the Atchison method is loaded into the raw material filling portion at the lower part of the crucible body of the crucible, and the crucible upper lid of the crucible has a diameter as a seed crystal. A 4H polytype silicon carbide single crystal wafer having a (0001) plane of 155 mm was placed.

このようにして準備された坩堝等からなる構成部材を前述のように二重石英管の内部に設置し、前記手順で常法に従って炭化珪素単結晶の結晶成長を行った。すなわち、原料温度を目標温度である2300℃まで上昇させた後、二重石英管内のArの圧力を成長圧力1.3kPaまで30分かけて減圧し、炭化珪素単結晶の成長を開始させ、加熱を150時間継続して炭化珪素単結晶を成長させた。   The component member composed of the crucible and the like prepared in this manner was placed inside the double quartz tube as described above, and crystal growth of a silicon carbide single crystal was performed according to a conventional method according to the above procedure. That is, after raising the raw material temperature to the target temperature of 2300 ° C., the pressure of Ar in the double quartz tube is reduced to a growth pressure of 1.3 kPa over 30 minutes to start the growth of the silicon carbide single crystal, Was continued for 150 hours to grow a silicon carbide single crystal.

その結果、成長速度は約0.4mm/時であって、炭化珪素単結晶の口径が155mm程度であり、かつ、高さが60mm程度の単結晶インゴットが得られた。坩堝内の原料の残渣を観察したところ、原料の中心軸近傍においても原料が効率良く昇華したことが認められ、高周波誘導加熱の際に原料に対する加熱温度を効果的に変化させることができ、結果として中心軸近傍の原料も効率良く加熱することができた。また、得られた単結晶インゴットの重量は3.7kg程度であり、結晶化率は80%であった。   As a result, a single crystal ingot having a growth rate of about 0.4 mm / hour, a silicon carbide single crystal diameter of about 155 mm, and a height of about 60 mm was obtained. When the residue of the raw material in the crucible was observed, it was found that the raw material was efficiently sublimated even in the vicinity of the central axis of the raw material, and the heating temperature for the raw material could be effectively changed during high frequency induction heating. As a result, the raw material near the central axis could also be heated efficiently. Further, the weight of the obtained single crystal ingot was about 3.7 kg, and the crystallization rate was 80%.

更に、得られた炭化珪素単結晶インゴットについて、X線回折及びラマン散乱により分析したところ、4Hの単一ポリタイプからなるインゴットであり、また、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。
このインゴットから切り出された炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。
Furthermore, when the obtained silicon carbide single crystal ingot was analyzed by X-ray diffraction and Raman scattering, it was an ingot consisting of a single polytype of 4H, and it was extremely high quality with few crystal defects such as micropipes. It was confirmed.
The silicon carbide single crystal substrate cut out from the ingot is useful as a substrate for manufacturing an electronic device.

〔実施例4〕
実施例4においては、実施例1の図2に示す黒鉛坩堝に代えて、図5に示す黒鉛坩堝を用いた製造装置において、周縁基部が坩堝底壁部から初期装填原料の上面高さの1/2の位置に固定され、また、隔壁開口部側が周縁基部側より少し低くなって上面及び下面共に坩堝底壁部と角度を有して固定され、上面及び下面共に平面状の円板状であり、原料下室の昇華ガスの流れが原料中心軸近傍に誘導されるように隔壁を配設した。また、隔壁開口部の開口面積は初期装填原料上面の面積の0.3倍とした。
また、坩堝の坩堝本体下部の原料充填部内には、アチソン法により作製された炭化珪素結晶粉末からなる炭化珪素原料を3.0kg装填し、また、坩堝の坩堝上蓋には、種結晶として、口径105mmの(0001)面を有する4Hポリタイプの炭化珪素単結晶ウェハを配置した。
Example 4
In Example 4, instead of the graphite crucible shown in FIG. 2 of Example 1, in the manufacturing apparatus using the graphite crucible shown in FIG. 5, the peripheral base is 1 of the upper surface height of the initial charged raw material from the crucible bottom wall. / 2, and the partition opening side is slightly lower than the peripheral base side, and the upper surface and the lower surface are fixed at an angle with the crucible bottom wall, and the upper surface and the lower surface are both planar disks. The partition walls were arranged so that the flow of the sublimation gas in the lower chamber of the raw material was guided near the central axis of the raw material. In addition, the opening area of the partition opening was set to 0.3 times the area of the upper surface of the initially loaded raw material.
In addition, in the raw material filling part at the lower part of the crucible body of the crucible, 3.0 kg of silicon carbide raw material made of silicon carbide crystal powder produced by the Atchison method is loaded, and the crucible upper lid of the crucible has a diameter as a seed crystal. A 4H polytype silicon carbide single crystal wafer having a (0001) plane of 105 mm was placed.

このようにして準備された坩堝等からなる構成部材を前述のように二重石英管の内部に設置し、前記手順で常法に従って炭化珪素単結晶の結晶成長を行った。すなわち、原料温度を目標温度である2300℃まで上昇させた後、二重石英管内のArの圧力を成長圧力1.3kPaまで30分かけて減圧し、炭化珪素単結晶の成長を開始させ、加熱を170時間継続して炭化珪素単結晶を成長させた。   The component member composed of the crucible and the like prepared in this manner was placed inside the double quartz tube as described above, and crystal growth of a silicon carbide single crystal was performed according to a conventional method according to the above procedure. That is, after raising the raw material temperature to the target temperature of 2300 ° C., the pressure of Ar in the double quartz tube is reduced to a growth pressure of 1.3 kPa over 30 minutes to start the growth of the silicon carbide single crystal, Was continued for 170 hours to grow a silicon carbide single crystal.

その結果、成長速度は約0.3mm/時であって、炭化珪素単結晶の口径が105mm程度であり、かつ、高さが50mm程度の単結晶インゴットが得られた。坩堝内の原料の残渣を観察したところ、原料の中心軸近傍においても原料が効率良く昇華したことが認められ、高周波誘導加熱の際に原料に対する加熱温度を効果的に変化させることができ、結果として中心軸近傍の原料も効率良く加熱することができた。また、得られた単結晶インゴットの重量は1.4kg程度であり、結晶化率は47%であった。
この実施例4の場合においても本発明の効果は得られるが、隔壁の周縁基部下面側に、原料下室の原料が再結晶していることが観察され、実施例1に比較して結晶化率が低いことが分かった。すなわち、原料を最大限に有効活用するためには、原料下室の周縁基部で昇華ガスの滞留が発生し難い構造であることが好ましい。
As a result, a single crystal ingot having a growth rate of about 0.3 mm / hour, a silicon carbide single crystal diameter of about 105 mm, and a height of about 50 mm was obtained. When the residue of the raw material in the crucible was observed, it was found that the raw material was efficiently sublimated even in the vicinity of the central axis of the raw material, and the heating temperature for the raw material could be effectively changed during high frequency induction heating. As a result, the raw material near the central axis could also be heated efficiently. Further, the weight of the obtained single crystal ingot was about 1.4 kg, and the crystallization rate was 47%.
In the case of Example 4, the effect of the present invention can be obtained. However, it is observed that the raw material in the raw material lower chamber is recrystallized on the lower surface side of the peripheral base of the partition wall. The rate was found to be low. That is, in order to make the most effective use of the raw material, it is preferable that the sublimation gas does not easily stay in the peripheral base of the lower raw material chamber.

更に、得られた炭化珪素単結晶インゴットについて、X線回折及びラマン散乱により分析したところ、4Hの単一ポリタイプからなるインゴットであり、また、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。
このインゴットから切り出された炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。
Furthermore, when the obtained silicon carbide single crystal ingot was analyzed by X-ray diffraction and Raman scattering, it was an ingot consisting of a single polytype of 4H, and it was extremely high quality with few crystal defects such as micropipes. It was confirmed.
The silicon carbide single crystal substrate cut out from the ingot is useful as a substrate for manufacturing an electronic device.

〔比較例1〕
実施例3と比較するために、隔壁20を配置せずに、実施例3と同じ操業条件にて結晶成長を実行した。
その結果、結晶の口径が155mm程度であり、かつ、高さが20mm程度のインゴットが得られた。坩堝内の原料の残渣を観察したところ、原料の中心軸で原料の再結晶が観察された。中心軸近傍の原料が有効に加熱されないため、原料の周辺部で昇華した原料ガスが結晶成長に利用されずに、原料の中心軸近傍で再結晶したものと考えられる。この原料の中心軸近傍での昇華ガスの再結晶のため、結晶成長の途中で原料ガスの供給が途絶え、成長した結晶の成長面が昇華し、成長面が炭化した。そのため、インゴットの結晶化率は15%と低い値であった。
[Comparative Example 1]
For comparison with Example 3, crystal growth was performed under the same operating conditions as in Example 3 without arranging the partition walls 20.
As a result, an ingot having a crystal diameter of about 155 mm and a height of about 20 mm was obtained. When the residue of the raw material in the crucible was observed, recrystallization of the raw material was observed on the central axis of the raw material. Since the raw material in the vicinity of the central axis is not effectively heated, it is considered that the raw material gas sublimated in the peripheral portion of the raw material is recrystallized in the vicinity of the central axis of the raw material without being used for crystal growth. Due to the recrystallization of the sublimation gas in the vicinity of the central axis of the raw material, the supply of the raw material gas was interrupted during the crystal growth, the growth surface of the grown crystal was sublimated, and the growth surface was carbonized. Therefore, the crystallization rate of the ingot was as low as 15%.

得られた炭化珪素単結晶インゴットはインゴット高さが低いため、電子デバイスを作製するための基板切り出す際の歩留まりが低くなるという問題があった。また、装填した原料に対してインゴットの重量が小さく、原料を有効に利用できないという問題があった。   Since the obtained silicon carbide single crystal ingot had a low ingot height, there was a problem that the yield when cutting out a substrate for manufacturing an electronic device was low. In addition, there is a problem that the weight of the ingot is small with respect to the loaded raw material and the raw material cannot be used effectively.

1…坩堝、1a…坩堝本体、1b…坩堝上蓋、1c…原料充填部、2…種結晶、3…炭化珪素原料(原料)、4…単結晶インゴット、5…断熱材、6…切欠き孔、10…坩堝支持体、13…二重石英管、14…真空排気装置、15…Arガス配管、16…Arガス用マスフローコントローラ、17…ワークコイル、20…隔壁、21…隔壁開口部。   DESCRIPTION OF SYMBOLS 1 ... Crucible, 1a ... Crucible body, 1b ... Crucible top cover, 1c ... Raw material filling part, 2 ... Seed crystal, 3 ... Silicon carbide raw material (raw material), 4 ... Single-crystal ingot, 5 ... Thermal insulation, 6 ... Notch hole , 10 ... crucible support, 13 ... double quartz tube, 14 ... vacuum exhaust device, 15 ... Ar gas pipe, 16 ... mass flow controller for Ar gas, 17 ... work coil, 20 ... partition, 21 ... partition opening.

Claims (3)

上端開口筒状に形成された黒鉛製の坩堝本体とこの坩堝本体の上端開口部を閉塞する黒鉛製の坩堝上蓋とを備え、また、前記坩堝本体下部には炭化珪素原料を充填する原料充填部を有し、前記原料充填部内に装填された炭化珪素原料を加熱して昇華させ、生成した昇華ガスを前記坩堝上蓋の内面に設置された炭化珪素単結晶からなる種結晶の表面で再結晶化させる昇華再結晶法により炭化珪素単結晶を製造するための黒鉛坩堝において、
前記坩堝本体下部の原料充填部内には、周縁基部が原料充填部の側壁内面に固定され、略々中央部に隔壁開口部を有する円盤状の黒鉛製隔壁が設けられていることを特徴とする炭化珪素単結晶インゴット製造用の黒鉛坩堝。
A graphite crucible body formed in a cylindrical shape with an upper end opening and a graphite crucible upper lid for closing the upper end opening of the crucible body, and a raw material filling portion for filling a silicon carbide raw material at the lower part of the crucible body The silicon carbide raw material charged in the raw material filling portion is heated and sublimated, and the generated sublimation gas is recrystallized on the surface of a seed crystal made of a silicon carbide single crystal installed on the inner surface of the crucible upper lid In a graphite crucible for producing a silicon carbide single crystal by a sublimation recrystallization method,
In the raw material filling part at the lower part of the crucible body, a peripheral base is fixed to the inner surface of the side wall of the raw material filling part, and a disk-shaped graphite partition wall having a partition opening is provided at a substantially central part. A graphite crucible for producing a silicon carbide single crystal ingot.
前記黒鉛製隔壁の隔壁開口部の開口面積が、前記原料充填部内に装填された初期の炭化珪素原料の上面の面積の0.1倍以上0.5倍以下であることを特徴とする請求項1に記載の炭化珪素単結晶インゴット製造用の黒鉛坩堝。   The opening area of the partition wall opening of the graphite partition wall is 0.1 to 0.5 times the area of the upper surface of the initial silicon carbide raw material loaded in the raw material filling portion. 2. A graphite crucible for producing a silicon carbide single crystal ingot according to 1. 上端開口筒状に形成された黒鉛製の坩堝本体とこの坩堝本体の上端開口部を閉塞する坩堝上蓋とを備え、また、前記坩堝本体下部には炭化珪素原料を充填する原料充填部を有する黒鉛坩堝を用い、この黒鉛坩堝の坩堝本体下部の原料充填部内に炭化珪素原料を装填し、前記坩堝上蓋の内面には炭化珪素単結晶からなる種結晶を設置し、前記坩堝本体の側面を高周波誘導加熱して昇華ガスを発生させ、この発生した昇華ガスを前記種結晶上に再結晶させて炭化珪素単結晶を製造する方法において、
前記坩堝本体下部の原料充填部には周縁基部が坩堝本体内壁面に固定され、かつ、略々中央部に隔壁開口部を有する円盤状の黒鉛製隔壁を設け、この黒鉛製隔壁により隔壁下方で発生する昇華ガスを原料充填部の中心軸へと向う方向に案内し、この原料充填部内の中心軸周辺に位置する炭化珪素原料を昇華温度まで加熱することを特徴とする炭化珪素単結晶インゴットの製造方法。
A graphite crucible body formed in a cylindrical shape with an upper end opening and a crucible upper lid for closing the upper end opening of the crucible body, and a graphite having a raw material filling portion for filling a silicon carbide raw material at the lower part of the crucible body Using a crucible, a silicon carbide raw material is loaded into the raw material filling portion at the bottom of the crucible body of the graphite crucible, a seed crystal made of a silicon carbide single crystal is placed on the inner surface of the crucible upper lid, and the side surface of the crucible body is guided at high frequency. In a method for producing a silicon carbide single crystal by heating to generate a sublimation gas and recrystallizing the generated sublimation gas on the seed crystal,
The raw material filling portion at the lower part of the crucible body is provided with a disk-shaped graphite partition wall having a peripheral base fixed to the inner wall surface of the crucible body and having a partition wall opening at a substantially central portion. A silicon carbide single crystal ingot characterized by guiding the generated sublimation gas in a direction toward the central axis of the raw material filling portion and heating the silicon carbide raw material located around the central axis in the raw material filling portion to a sublimation temperature. Production method.
JP2015193113A 2015-09-30 2015-09-30 Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot Active JP6681687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015193113A JP6681687B2 (en) 2015-09-30 2015-09-30 Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015193113A JP6681687B2 (en) 2015-09-30 2015-09-30 Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot

Publications (2)

Publication Number Publication Date
JP2017065969A true JP2017065969A (en) 2017-04-06
JP6681687B2 JP6681687B2 (en) 2020-04-15

Family

ID=58493848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015193113A Active JP6681687B2 (en) 2015-09-30 2015-09-30 Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot

Country Status (1)

Country Link
JP (1) JP6681687B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019048736A (en) * 2017-09-08 2019-03-28 昭和電工株式会社 Method of manufacturing silicon carbide single crystal
US20210127462A1 (en) * 2019-10-29 2021-04-29 Skc Co., Ltd. Method of mesuring a graphite article, apparatus for a measurment, and ingot growing system
CN115679449A (en) * 2022-12-30 2023-02-03 浙江晶越半导体有限公司 Composite crucible for growing silicon carbide crystals by sublimation method
JP7400450B2 (en) 2019-12-25 2023-12-19 株式会社レゾナック SiC single crystal manufacturing apparatus and SiC single crystal manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220964A (en) * 2012-04-13 2013-10-28 Bridgestone Corp Production apparatus of silicon carbide single crystal
JP2014019608A (en) * 2012-07-18 2014-02-03 Nippon Steel & Sumitomo Metal APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL TO BE USED FOR SOLUTION-GROWTH METHOD, CRUCIBLE TO BE USED FOR THE SAME, AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL USING THE SAME

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220964A (en) * 2012-04-13 2013-10-28 Bridgestone Corp Production apparatus of silicon carbide single crystal
JP2014019608A (en) * 2012-07-18 2014-02-03 Nippon Steel & Sumitomo Metal APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL TO BE USED FOR SOLUTION-GROWTH METHOD, CRUCIBLE TO BE USED FOR THE SAME, AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL USING THE SAME

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019048736A (en) * 2017-09-08 2019-03-28 昭和電工株式会社 Method of manufacturing silicon carbide single crystal
US20210127462A1 (en) * 2019-10-29 2021-04-29 Skc Co., Ltd. Method of mesuring a graphite article, apparatus for a measurment, and ingot growing system
US11856678B2 (en) * 2019-10-29 2023-12-26 Senic Inc. Method of measuring a graphite article, apparatus for a measurement, and ingot growing system
JP7400450B2 (en) 2019-12-25 2023-12-19 株式会社レゾナック SiC single crystal manufacturing apparatus and SiC single crystal manufacturing method
CN115679449A (en) * 2022-12-30 2023-02-03 浙江晶越半导体有限公司 Composite crucible for growing silicon carbide crystals by sublimation method
CN115679449B (en) * 2022-12-30 2023-04-07 浙江晶越半导体有限公司 Composite crucible for growing silicon carbide crystals by sublimation method

Also Published As

Publication number Publication date
JP6681687B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP5560862B2 (en) Silicon carbide single crystal ingot manufacturing equipment
JP6338439B2 (en) Method for producing silicon carbide single crystal ingot
JP6111873B2 (en) Method for producing silicon carbide single crystal ingot
JP4388538B2 (en) Silicon carbide single crystal manufacturing equipment
JP6861555B2 (en) Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Manufacturing Method
JP5402798B2 (en) Method for producing silicon carbide single crystal ingot
JP6681687B2 (en) Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot
JP6015397B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
JP2012131679A (en) Device for producing silicon carbide single crystal ingot
JP6628640B2 (en) Apparatus and method for producing silicon carbide single crystal ingot
JP6910168B2 (en) Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Manufacturing Method
JP2014201498A (en) Method for producing silicon carbide single crystal
JP4833780B2 (en) Lid graphite crucible and silicon carbide single crystal growth apparatus
JP2015040146A (en) Single crystal production device and single crystal production method using the same
JP5375783B2 (en) Method for producing silicon carbide single crystal
JP5761264B2 (en) Method for manufacturing SiC substrate
JP2012254892A (en) Manufacturing method and manufacturing device for single crystal
JP2006096578A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
JP2008280206A (en) Single crystal growing apparatus
JP6501494B2 (en) Method and apparatus for manufacturing silicon carbide single crystal ingot
JP2016011215A (en) Manufacturing apparatus and manufacturing method for single crystal
CN116446046A (en) Device and method for growing silicon carbide crystal by heat exchange physical vapor transport method
KR20170073834A (en) Growth device for silicon carbide single crystal
JPWO2016143398A1 (en) Crystal production method
JP6387895B2 (en) Method for producing silicon carbide single crystal

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200324

R150 Certificate of patent or registration of utility model

Ref document number: 6681687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350