JP6300990B1 - Aluminum nitride single crystal production equipment - Google Patents

Aluminum nitride single crystal production equipment Download PDF

Info

Publication number
JP6300990B1
JP6300990B1 JP2017102154A JP2017102154A JP6300990B1 JP 6300990 B1 JP6300990 B1 JP 6300990B1 JP 2017102154 A JP2017102154 A JP 2017102154A JP 2017102154 A JP2017102154 A JP 2017102154A JP 6300990 B1 JP6300990 B1 JP 6300990B1
Authority
JP
Japan
Prior art keywords
seed crystal
single crystal
aluminum nitride
lid
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017102154A
Other languages
Japanese (ja)
Other versions
JP2018197175A (en
Inventor
啓一郎 中村
啓一郎 中村
洋介 岩▲崎▼
洋介 岩▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2017102154A priority Critical patent/JP6300990B1/en
Application granted granted Critical
Publication of JP6300990B1 publication Critical patent/JP6300990B1/en
Publication of JP2018197175A publication Critical patent/JP2018197175A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】昇華した原料物質が種結晶以外の部位に堆積することによって種結晶上での結晶成長が阻害されるようなことがなく、窒化アルミニウム単結晶を効率よく成長させることができる窒化アルミニウム単結晶の製造装置を提供する。【解決手段】昇華法により窒化アルミニウム単結晶を製造する装置であって、育成坩堝1は、上部が開放し、下部に原料物質が収容される坩堝本体3と、下面に種結晶を保持し、坩堝本体3に対してその開放した上部を塞ぐようにセットされる蓋体4を備え、この蓋体4の下面に種結晶を保持する凸状部40が突設される。種結晶sが凸状部40に保持されることにより、種結晶周囲に原料物質が堆積できるような空間(蓋体面)が存在せず、原料物質は種結晶周囲には堆積できないため、種結晶上で窒化アルミニウム単結晶を効率よく成長させることができる。【選択図】図1An aluminum nitride single crystal capable of efficiently growing an aluminum nitride single crystal without hindering crystal growth on the seed crystal by depositing a sublimated source material on a site other than the seed crystal. An apparatus for producing a crystal is provided. An apparatus for producing an aluminum nitride single crystal by a sublimation method, wherein a growth crucible 1 has an upper part opened and a crucible main body 3 containing a raw material in a lower part, and a seed crystal held on a lower face, The crucible main body 3 is provided with a lid 4 that is set so as to close the open upper portion, and a convex portion 40 that holds the seed crystal is projected on the lower surface of the lid 4. Since the seed crystal s is held by the convex portion 40, there is no space (cover surface) in which the source material can be deposited around the seed crystal, and the source material cannot be deposited around the seed crystal. The aluminum nitride single crystal can be efficiently grown on the above. [Selection] Figure 1

Description

本発明は、窒化アルミニウム単結晶の製造装置であって、加熱して昇華させた原料物質を種結晶に堆積させ、種結晶上に窒化アルミニウム単結晶を成長させる単結晶製造装置に関するものである。   The present invention relates to an apparatus for producing an aluminum nitride single crystal, which relates to an apparatus for producing a single crystal in which a source material heated and sublimated is deposited on a seed crystal and an aluminum nitride single crystal is grown on the seed crystal.

近年、AlN、GaN、InNなどの第13族元素の窒化物からなる単結晶が、広いエネルギーバンドギャップ、高い熱伝導率及び高い電気抵抗を有していることから、種々の光デバイスや電子デバイスなどの半導体デバイス用の基板材料として注目されている。
従来、第13族元素の窒化物である窒化アルミニウム単結晶の製造方法としては、加熱により昇華した原料物質を単結晶として成長させる昇華法が知られている(例えば、特許文献1など)。この昇華法では、通常、坩堝内に入れた原料物質を非酸化性雰囲気中で加熱することにより分解気化させ、この分解気化成分を種結晶上に結晶成長させることにより窒化アルミニウム単結晶を得る。
In recent years, single crystals made of Group 13 element nitrides such as AlN, GaN, and InN have a wide energy band gap, high thermal conductivity, and high electrical resistance. It is attracting attention as a substrate material for semiconductor devices.
Conventionally, as a method for producing an aluminum nitride single crystal that is a nitride of a Group 13 element, a sublimation method is known in which a source material sublimated by heating is grown as a single crystal (for example, Patent Document 1). In this sublimation method, an aluminum nitride single crystal is usually obtained by decomposing and vaporizing a raw material material put in a crucible by heating it in a non-oxidizing atmosphere, and crystallizing this decomposed and vaporized component on a seed crystal.

特開平10−53495号公報Japanese Patent Laid-Open No. 10-53495

昇華法で窒化アルミニウム単結晶を製造する場合、一度に坩堝内に収容できる原料物質の量は限られるため、分解気化させた原料物質を効率よく種結晶上に集めることが重要であるが、従来の製造技術では、昇華した原料物質が種結晶以外にも堆積して多結晶が生成してしまい、種結晶上で効率良く結晶成長させることができないという問題がある。   When producing an aluminum nitride single crystal by the sublimation method, since the amount of raw material that can be accommodated in the crucible at a time is limited, it is important to efficiently collect the decomposed and vaporized raw material on the seed crystal. In this manufacturing technique, there is a problem that the sublimated source material is deposited in addition to the seed crystal and a polycrystal is formed, and the crystal cannot be efficiently grown on the seed crystal.

また、大径サイズの窒化アルミニウム単結晶を製造するためには、繰り返し育成を行うことで結晶を径方向で成長させる必要があるが(例えば、特許文献1参照)、種結晶の周囲に多結晶が生成すると、単結晶が径方向で成長するための物理的スペースがなくなるため、単結晶の径方向での成長が阻害されるという問題がある。また、窒化アルミニウム単結晶は、その結晶成長過程において径方向の成長によりドメインの収斂が起こり、結晶性が向上するが、上記のように径方向の成長が阻害されると、そのドメインの収斂が起こりにくいため、結晶性の向上も阻害されることになる。   In order to produce a large-diameter size aluminum nitride single crystal, it is necessary to grow the crystal in the radial direction by repeated growth (see, for example, Patent Document 1). When this is generated, there is no physical space for the single crystal to grow in the radial direction, and there is a problem that the growth of the single crystal in the radial direction is hindered. In addition, in the aluminum nitride single crystal, domain convergence occurs due to radial growth during the crystal growth process, and crystallinity is improved. However, when radial growth is inhibited as described above, the domain convergence is reduced. Since it hardly occurs, the improvement in crystallinity is also inhibited.

したがって本発明の目的は、以上のような従来技術の課題を解決し、昇華した原料物質が種結晶以外の部位に堆積することによって種結晶上での結晶成長が阻害されるようなことがなく、窒化アルミニウム単結晶を効率よく成長させることができるとともに、種結晶径方向への単結晶の成長が促進され、ドメインの収斂による結晶性の向上を図ることができる窒化アルミニウム単結晶製造装置及びその部品である育成坩堝用の蓋体を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art and prevent the growth of crystals on the seed crystal from being hindered by the deposition of the sublimated source material on a site other than the seed crystal. An aluminum nitride single crystal manufacturing apparatus capable of efficiently growing an aluminum nitride single crystal, promoting the growth of the single crystal in the seed crystal diameter direction, and improving the crystallinity due to domain convergence The object is to provide a lid for a growing crucible which is a part.

昇華法による窒化アルミニウム単結晶の製造では、原料物質を収容するとともに、この原料物質の上方に種結晶が保持された育成坩堝が用いられる。この育成坩堝は、上部が開放し、下部に原料物質が収容される坩堝本体と、下面中央部に種結晶を保持し、坩堝本体に対してその開放した上部を塞ぐようにセットされる蓋体を備えている。従来技術では、昇華した原料物質が種結晶周囲の部位(蓋体)にも堆積して多結晶が生成してしまい、上述したように、種結晶上で効率よく結晶成長させることができなかった。   In the production of an aluminum nitride single crystal by the sublimation method, a growth crucible in which a raw material is accommodated and a seed crystal is held above the raw material is used. This growing crucible has a crucible main body in which the upper part is opened and a raw material is accommodated in the lower part, and a lid body that holds the seed crystal in the central part of the lower surface and is set so as to close the opened upper part with respect to the crucible main body. It has. In the prior art, the sublimated source material is deposited also on the portion around the seed crystal (lid) and a polycrystal is generated, and as described above, the crystal cannot be efficiently grown on the seed crystal. .

そこで本発明では、下面に種結晶を保持する蓋体を、物理的に種結晶周囲に原料物質が堆積できないような構造とすること、具体的には、種結晶が固定される蓋体の下面部分を凸状にして、種結晶周囲に原料物質が堆積できるような空間(蓋体面)を無くすことにより、原料物質が種結晶周囲に堆積できないようにし、種結晶s上での結晶成長が阻害されないようにしたものである。すなわち、本発明の要旨は以下の通りである。   Therefore, in the present invention, the lid that holds the seed crystal on the lower surface is structured such that the source material cannot be physically deposited around the seed crystal, specifically, the lower surface of the lid on which the seed crystal is fixed. By making the portion convex and eliminating the space (cover body surface) where the source material can be deposited around the seed crystal, the source material cannot be deposited around the seed crystal and the crystal growth on the seed crystal s is inhibited. It is not to be done. That is, the gist of the present invention is as follows.

[1]育成坩堝(1)と、該育成坩堝(1)を外側から加熱する加熱手段(2)を備え、昇華法により窒化アルミニウム単結晶を製造する装置であって、
育成坩堝(1)は、上部が開放し、下部に原料物質が収容される坩堝本体(3)と、下面に種結晶を保持した状態で、坩堝本体(3)に対してその開放した上部を塞ぐようにセットされる蓋体(4)を備え、
該蓋体(4)の下面に、種結晶を保持する凸状部(40)が突設されたことを特徴とする窒化アルミニウム単結晶製造装置。
[2]上記[1]の単結晶製造装置において、凸状部(40)が円錐台又は逆円錐台形状であることを特徴とする窒化アルミニウム単結晶製造装置。
[1] An apparatus for producing an aluminum nitride single crystal by a sublimation method, comprising a growing crucible (1) and heating means (2) for heating the growing crucible (1) from the outside,
The growing crucible (1) has an upper part opened and a crucible body (3) containing raw material in the lower part, and the opened upper part with respect to the crucible body (3) with the seed crystal held on the lower surface. It has a lid (4) that is set to close,
An apparatus for producing an aluminum nitride single crystal, wherein a projecting portion (40) for holding a seed crystal protrudes from the lower surface of the lid (4).
[2] The aluminum nitride single crystal manufacturing apparatus according to [1], wherein the convex portion (40) has a truncated cone shape or an inverted truncated cone shape.

[3]上記[1]又は[2]の単結晶製造装置において、種結晶が固定される凸状部(40)の下面(41)の外径が、固定される種結晶の外径と略同一であることを特徴とする窒化アルミニウム単結晶製造装置。
[4]上記[1]〜[3]のいずれかの単結晶製造装置において、凸状部(40)の高さhが0.1〜15mmであることを特徴とする窒化アルミニウム単結晶製造装置。
[5]上記[1]〜[4]のいずれかの単結晶製造装置において、雰囲気ガスの導入口と排出口を備えた炉体(A)内に育成坩堝(1)と加熱手段(2)が収納され、加熱手段(2)と炉体(A)の内壁面との間に遮熱体(5)が設けられることを特徴とする窒化アルミニウム単結晶製造装置。
[3] In the single crystal manufacturing apparatus of [1] or [2] above, the outer diameter of the lower surface (41) of the convex portion (40) to which the seed crystal is fixed is substantially equal to the outer diameter of the seed crystal to be fixed. An aluminum nitride single crystal manufacturing apparatus characterized by being identical.
[4] The single crystal manufacturing apparatus according to any one of [1] to [3], wherein the height h of the convex portion (40) is 0.1 to 15 mm. .
[5] In the single crystal manufacturing apparatus according to any one of [1] to [4], the growth crucible (1) and the heating means (2) are provided in a furnace body (A) having an inlet and an outlet for atmospheric gas. And a heat shield (5) is provided between the heating means (2) and the inner wall surface of the furnace body (A).

[6]昇華法により窒化アルミニウム単結晶を製造する装置において、下面に種結晶を保持した状態で、育成坩堝を構成する坩堝本体に対してその開放した上部を塞ぐようにセットされる蓋体であって、
下面に種結晶を保持する凸状部(40)が突設されたことを特徴とする窒化アルミニウム単結晶製造装置における育成坩堝の蓋体。
[7]上記[6]の蓋体において、凸状部(40)が円錐台又は逆円錐台形状であることを特徴とする窒化アルミニウム単結晶製造装置における育成坩堝の蓋体。
[8]上記[6]又は[7]の蓋体において、種結晶が固定される凸状部(40)の下面(41)の外径が、固定される種結晶の外径と略同一であることを特徴とする窒化アルミニウム単結晶製造装置における育成坩堝の蓋体。
[9]上記[6]〜[8]のいずれかの蓋体において、凸状部(40)の高さhが0.1〜15mmであることを特徴とする窒化アルミニウム単結晶製造装置における育成坩堝の蓋体。
[6] In an apparatus for producing an aluminum nitride single crystal by a sublimation method, a lid body set so as to close an open upper portion with respect to a crucible body constituting a growth crucible while holding a seed crystal on a lower surface. There,
A growth crucible lid in an aluminum nitride single crystal manufacturing apparatus, wherein a convex portion (40) for holding a seed crystal is provided on the lower surface.
[7] A lid for a growing crucible in an aluminum nitride single crystal production apparatus, wherein the convex portion (40) has a truncated cone shape or an inverted truncated cone shape.
[8] In the lid of [6] or [7] above, the outer diameter of the lower surface (41) of the convex portion (40) to which the seed crystal is fixed is substantially the same as the outer diameter of the seed crystal to be fixed. A growing crucible lid in an aluminum nitride single crystal production apparatus, characterized in that:
[9] Growing in an aluminum nitride single crystal production apparatus, wherein the height h of the convex portion (40) is 0.1 to 15 mm in the lid body according to any one of [6] to [8] above A crucible lid.

本発明の窒化アルミニウム単結晶製造装置及びその部品である育成坩堝用の蓋体は、種結晶周囲に原料物質が堆積できるような空間(蓋体面)が存在しないため、原料物質が種結晶周囲に堆積することがない。このため、種結晶周囲に原料物質が堆積して種結晶上での結晶成長が阻害されるようなことがなく、種結晶上で窒化アルミニウム単結晶を効率よく成長させることができる。また、種結晶周囲に原料物質が堆積しないため、種結晶径方向での結晶成長を阻害するものがなくなり、これにより種結晶径方向での結晶成長が促進され、ドメインの収斂による結晶性の向上を図ることができる。このため、半導体デバイス用の基板材料などに適した高品質の窒化アルミニウム単結晶を効率的且つ低コストに製造することができる。   The aluminum nitride single crystal manufacturing apparatus of the present invention and the lid for the growth crucible which is a part thereof do not have a space (cover body surface) in which the source material can be deposited around the seed crystal. There is no accumulation. Therefore, the source material is not deposited around the seed crystal and the crystal growth on the seed crystal is not hindered, and the aluminum nitride single crystal can be efficiently grown on the seed crystal. In addition, since no source material is deposited around the seed crystal, there is no obstacle to the crystal growth in the seed crystal diameter direction, which promotes crystal growth in the seed crystal diameter direction and improves crystallinity by domain convergence. Can be achieved. For this reason, a high-quality aluminum nitride single crystal suitable for a substrate material for a semiconductor device can be manufactured efficiently and at low cost.

本発明の窒化アルミニウム単結晶製造装置の一実施形態を示す縦断面図The longitudinal cross-sectional view which shows one Embodiment of the aluminum nitride single crystal manufacturing apparatus of this invention 図1のII-II線に沿う断面図Sectional view along the line II-II in FIG. 本発明の窒化アルミニウム単結晶製造装置に用いる蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は底面図The other embodiment of the cover body used for the aluminum nitride single crystal manufacturing apparatus of this invention is shown, A figure (a) is a longitudinal cross-sectional view, A figure (b) is a bottom view. 本発明の窒化アルミニウム単結晶製造装置に用いる蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は底面図The other embodiment of the cover body used for the aluminum nitride single crystal manufacturing apparatus of this invention is shown, A figure (a) is a longitudinal cross-sectional view, A figure (b) is a bottom view. 本発明の窒化アルミニウム単結晶製造装置に用いる蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は底面図、図(c)は平面図The other embodiment of the cover body used for the aluminum nitride single crystal manufacturing apparatus of this invention is shown, A figure (a) is a longitudinal cross-sectional view, A figure (b) is a bottom view, A figure (c) is a top view. 本発明の窒化アルミニウム単結晶製造装置に用いる蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は底面図The other embodiment of the cover body used for the aluminum nitride single crystal manufacturing apparatus of this invention is shown, A figure (a) is a longitudinal cross-sectional view, A figure (b) is a bottom view.

本発明の単結晶製造装置は、昇華法により窒化アルミニウム単結晶を製造する装置である。図1及び図2は、本発明の単結晶製造装置の一実施形態を示すもので、図1は縦断面図、図2は図1のII-II線に沿う断面図である。
図において、1は育成坩堝、2はこの育成坩堝1を外側から加熱する加熱手段であり、これらは炉体A(結晶成長炉)内に収納されている。
育成坩堝1は、上部が開放し、下部に原料物質xが収容される円筒状で有底の坩堝本体3と、下面中央部に種結晶を保持した状態で、この坩堝本体3に対してその開放した上部を塞ぐようにセットされる蓋体4を備えている。
The single crystal production apparatus of the present invention is an apparatus for producing an aluminum nitride single crystal by a sublimation method. 1 and 2 show an embodiment of the single crystal production apparatus of the present invention. FIG. 1 is a longitudinal sectional view, and FIG. 2 is a sectional view taken along line II-II in FIG.
In the figure, 1 is a growth crucible, 2 is a heating means for heating the growth crucible 1 from the outside, and these are housed in a furnace body A (crystal growth furnace).
The growing crucible 1 has a cylindrical bottomed crucible main body 3 with an upper part opened and a raw material x stored in the lower part, and a seed crystal held in the center of the lower surface. A lid 4 is provided so as to close the opened upper portion.

坩堝本体3は、原料物質xのセットを容易にするため上下2分割されており、原料物質xが収容される有底の下部坩堝本体3aと、その上に置かれる筒状の上部坩堝本体3bで構成されている。なお、本実施形態では、下部坩堝本体3aと上部坩堝本体3bは同径としてあるが、例えば、結晶成長部である上部坩堝本体3bの方を下部坩堝本体3aより大径に構成してもよい。また、坩堝本体3は、本実施形態のように上下2分割された構造ではなく、一体型の構造としてもよい。   The crucible body 3 is divided into an upper part and a lower part in order to facilitate the setting of the raw material x, a bottomed lower crucible main body 3a in which the raw material x is accommodated, and a cylindrical upper crucible main body 3b placed thereon. It consists of In the present embodiment, the lower crucible body 3a and the upper crucible body 3b have the same diameter. For example, the upper crucible body 3b, which is a crystal growth portion, may be configured to have a larger diameter than the lower crucible body 3a. . Further, the crucible body 3 may have an integral structure instead of the vertically divided structure as in the present embodiment.

蓋体4は、下面中央部に種結晶sを保持(密着状態で保持)しており、坩堝本体3の上部にセット(載置)された状態で、保持した種結晶sが下向きとなり、坩堝本体3の下部に収容された原料物質xと対向する。
本発明装置の蓋体4は、その下面(下面中央領域)に種結晶を保持する凸状部40が突設されることを特徴とするが、これについては後に詳述する。
蓋体4の径は、坩堝本体3(本実施形態では上部坩堝本体3b)の外径とほぼ同じであり、特に制限はないが、一般には10〜150mm程度である。また、蓋体4の厚みも特に制限はないが、一般には、凸状部40の形成部位及びそれ以外の部位を含めて0.2〜20mm程度の範囲とする。
The lid 4 holds the seed crystal s at the center of the lower surface (holds in close contact), and the held seed crystal s faces downward while being set (placed) on the upper part of the crucible body 3. Opposite to the source material x housed in the lower part of the main body 3.
The lid 4 of the device of the present invention is characterized in that a convex portion 40 that holds the seed crystal protrudes on the lower surface (lower surface central region), which will be described in detail later.
The diameter of the lid body 4 is substantially the same as the outer diameter of the crucible body 3 (in this embodiment, the upper crucible body 3b), and is not particularly limited, but is generally about 10 to 150 mm. Further, the thickness of the lid 4 is not particularly limited, but is generally in the range of about 0.2 to 20 mm including the formation portion of the convex portion 40 and other portions.

育成坩堝1は、下部坩堝本体3aの上に上部坩堝本体3bを重ね置いて坩堝本体3を構成し、この坩堝本体3の上に、下面中央部に種結晶sを保持した蓋体4を置くだけで組み立てられる。このように育成坩堝1は、原料物質xや種結晶sのセッティングの都合上、分解・組立式としてあるが、昇華した原料物質が育成坩堝1から漏出しないようにするため、育成坩堝1を構成する各部材間になるべく隙間が生じないように組み立てられることが好ましい。このため、例えば、隙間を生じやすい部分にシール材を巻き付けるようにしてもよい。
加熱手段2(ヒーター)は、例えば、抵抗加熱式ヒーター、高周波加熱装置、高周波誘導加熱装置などで構成される。加熱手段2は、育成坩堝1を所定の間隔で外囲するように配置される。この加熱手段2は、種結晶s上で結晶成長させるのに最適な温度と、原料物質xを昇華させるのに最適な温度となるように、育成坩堝1を加熱する。
In the growing crucible 1, the upper crucible body 3b is placed on the lower crucible body 3a to form the crucible body 3, and the lid 4 holding the seed crystal s is placed on the lower surface center part on the crucible body 3. Only assembled. In this way, the growing crucible 1 is disassembled and assembled for the convenience of setting the raw material x and seed crystal s. However, the growing crucible 1 is configured to prevent the sublimated raw material from leaking out of the growing crucible 1. It is preferable to assemble so that a gap is not generated as much as possible between each member. For this reason, for example, a sealing material may be wound around a portion where a gap is likely to occur.
The heating means 2 (heater) is composed of, for example, a resistance heating heater, a high frequency heating device, a high frequency induction heating device, or the like. The heating means 2 is arranged so as to surround the growing crucible 1 at a predetermined interval. The heating means 2 heats the growth crucible 1 so that the temperature is optimal for crystal growth on the seed crystal s and the optimal temperature for sublimating the source material x.

炉体Aは、雰囲気ガスの導入口6と排気口7を備えている。導入口6にはガス供給管8が接続され、図示しないガス供給源から雰囲気ガスが供給される。また、排気口7には排気管9が接続され、この排気管9には排気ポンプ(図示せず)が設けられる。
この炉体A内に収納された加熱手段2と炉体Aの内壁面との間には、加熱手段2の熱から炉体Aを保護するための遮熱体5が設けられている。本実施形態の遮熱体5は、上部及び下部に開口部50、51を有する筒体であり、炉体Aの底部に置かれ、その内部に育成坩堝1と加熱手段2が収納されている。遮熱体5の下端には内フランジ52が形成され、この内フランジ52の上面に支持台11がその外縁部を介して支持されるとともに、この支持台11上に育成坩堝1と加熱手段2が支持されている。なお、遮熱体5は、複数のリング状部材を重ねて構成してもよいし、一体型に構成してもよい。
炉体Aの上部中央部には石英ガラス板が嵌め込まれた窓12が設けられ、この窓12に面して放射温度計10が配置され、この放射温度計10により遮熱体5の開口部50を通して蓋体4の温度が測定できるようになっている。
The furnace body A includes an atmosphere gas inlet 6 and an exhaust 7. A gas supply pipe 8 is connected to the introduction port 6 and atmospheric gas is supplied from a gas supply source (not shown). An exhaust pipe 9 is connected to the exhaust port 7, and an exhaust pump (not shown) is provided in the exhaust pipe 9.
Between the heating means 2 accommodated in the furnace body A and the inner wall surface of the furnace body A, a heat shield 5 for protecting the furnace body A from the heat of the heating means 2 is provided. The heat shield 5 of the present embodiment is a cylindrical body having openings 50 and 51 at the top and bottom, and is placed at the bottom of the furnace body A, in which the growth crucible 1 and the heating means 2 are housed. . An inner flange 52 is formed at the lower end of the heat shield 5, and the support base 11 is supported on the upper surface of the inner flange 52 via the outer edge portion. The growth crucible 1 and the heating means 2 are supported on the support base 11. Is supported. In addition, the heat shield 5 may be configured by stacking a plurality of ring-shaped members, or may be configured as an integral type.
A window 12 in which a quartz glass plate is fitted is provided in the upper central portion of the furnace body A, and a radiation thermometer 10 is disposed facing the window 12. The radiation thermometer 10 opens the opening of the heat shield 5. 50, the temperature of the lid 4 can be measured.

育成坩堝1を構成する坩堝本体3(下部坩堝本体3a、上部坩堝本体3b)と蓋体4は、窒化アルミニウム単結晶よりも高い融点を有する材料で構成される。例えば、窒化アルミニウム単結晶の融点よりも高い融点を有する金属、窒化物、炭化物などの中から選ばれる1種以上で構成することができる。また、金属などの適当な母材に窒化アルミニウム単結晶の融点よりも高い融点を有する金属、窒化物、炭化物などの中から選ばれる1種以上からなるコーティングを施したもので構成してもよい。また、窒化アルミニウム単結晶の融点よりも高い融点を有する金属、窒化物、炭化物としては、特に、タンタル(Ta)、タングステン(W)、これらの各金属の合金、炭化タンタル(TaC)、炭化タングステン(WC)、窒化ホウ素(BN)が好ましい。これらの材料は、窒化アルミニウム単結晶との反応性が低く、且つ高温での耐熱性に優れているため特に好適な材料である。   The crucible main body 3 (the lower crucible main body 3a and the upper crucible main body 3b) and the lid 4 constituting the growth crucible 1 are made of a material having a melting point higher than that of the aluminum nitride single crystal. For example, it can be composed of one or more selected from metals, nitrides, carbides and the like having a melting point higher than that of the aluminum nitride single crystal. In addition, a suitable base material such as metal may be formed by coating with one or more kinds selected from metals, nitrides, carbides and the like having a melting point higher than that of the aluminum nitride single crystal. . In addition, as metals, nitrides, and carbides having a melting point higher than that of the aluminum nitride single crystal, tantalum (Ta), tungsten (W), alloys of these metals, tantalum carbide (TaC), tungsten carbide, among others. (WC) and boron nitride (BN) are preferable. These materials are particularly suitable because of their low reactivity with aluminum nitride single crystals and excellent heat resistance at high temperatures.

蓋体4の下面(下面中央領域)には、種結晶を保持(固定)する凸状部40が突設されている。種結晶が固定される凸状部40の下面41は、その外径D1が固定される種結晶sの外径Dsと略同一であり、且つその下面41は平坦面で構成されている。
蓋体4の下面に上記のような凸状部40を設ける狙いは、次の通りである。育成坩堝1内で昇華した原料物質は、温度が低い部位ほど堆積しやすい。そのため通常は加熱部から離れた蓋体4の中央領域(種結晶sが保持される領域)に堆積が起こりやすい。しかし、種結晶s上への堆積が増えると種結晶周囲との温度差が少なくなり、種結晶周囲にも堆積が起こりやすくなる。このため、蓋体4の下面が本発明のような凸状部40を有しない平坦面である場合には、原料物質が種結晶周囲の部位(蓋体下面)にも堆積して多結晶が生成してしまい、種結晶上で効率よく結晶成長させることができない。これに対して、蓋体4の下面に凸状部40を突設し、この凸状部40に種結晶sを保持させることにより、種結晶周囲に原料物質が堆積できるような空間(蓋体面)が存在しないため、原料物質が種結晶周囲に堆積することがない。すなわち、原料物質は凸状部40の周囲(外側)の蓋体下面には堆積するが、凸状部40に保持された種結晶周囲に原料物質が堆積する訳ではないので、種結晶s上での結晶成長には影響せず、結晶成長は阻害されない。このため、種結晶上で窒化アルミニウム単結晶を効率よく成長させることができる。
A projecting portion 40 that holds (fixes) the seed crystal protrudes from the lower surface (lower surface central region) of the lid 4. The lower surface 41 of the convex portion 40 to which the seed crystal is fixed is substantially the same as the outer diameter Ds of the seed crystal s to which the outer diameter D1 is fixed, and the lower surface 41 is a flat surface.
The aim of providing the convex portion 40 as described above on the lower surface of the lid 4 is as follows. The source material sublimated in the growth crucible 1 is more likely to be deposited at a lower temperature. Therefore, usually, deposition tends to occur in the central region (region where the seed crystal s is held) of the lid 4 away from the heating unit. However, when the deposition on the seed crystal s increases, the temperature difference from the seed crystal periphery decreases, and deposition also easily occurs around the seed crystal. For this reason, when the lower surface of the lid 4 is a flat surface that does not have the convex portion 40 as in the present invention, the source material is deposited also on the portion around the seed crystal (the lower surface of the lid), and the polycrystal is formed. Thus, the crystal cannot be efficiently grown on the seed crystal. On the other hand, by projecting a convex portion 40 on the lower surface of the lid 4 and holding the seed crystal s in the convex portion 40, a space (cover body surface) in which the source material can be deposited around the seed crystal. ) Does not exist, the source material is not deposited around the seed crystal. That is, although the source material is deposited on the lower surface of the lid around the convex portion 40 (outside), the source material is not deposited around the seed crystal held by the convex portion 40, so The crystal growth is not affected, and the crystal growth is not inhibited. For this reason, the aluminum nitride single crystal can be efficiently grown on the seed crystal.

以上のように、蓋体4の下面に凸状部40を突設し、この凸状部40に種結晶sを保持させるのは、種結晶周囲に原料物質が堆積できるような空間(蓋体面)を無くすためであり、したがって、種結晶sが固定される凸状部40の下面41の外径D1と種結晶sの外径DsはD1≒Dsであることが好ましいが、一般には、D1/Ds=0.9〜1.1程度であればよい。
また、凸状部40は、種結晶周囲に原料物質が堆積できないような高さ(すなわち、凸状部40の外側の蓋体下面に原料物質が堆積しても、その堆積物が種結晶の高さ位置まで達しないような高さ)とするのが特に好ましいが、要は、種結晶周囲に堆積した原料物質によって種結晶面での結晶成長が阻害されなければよく、このような効果は、凸状部40に上記のような高さがなくても、ある程度の高さがあれば得られる。一方、凸状部40が高すぎると、種結晶sを保持する部位での蓋体4の厚みが大きすぎ、抜熱効果が低下して種結晶面の温度が低下しないため、結晶成長速度が低下するおそれがある。このため、一般には、凸状部40の高さhは0.1〜15mm程度が好ましい。
As described above, the convex portion 40 is provided on the lower surface of the lid body 4 and the seed crystal s is held on the convex portion 40 because the source material is deposited around the seed crystal (the lid body surface). Therefore, the outer diameter D1 of the lower surface 41 of the convex portion 40 to which the seed crystal s is fixed and the outer diameter Ds of the seed crystal s are preferably D1≈Ds. /Ds=0.9 to 1.1 is sufficient.
Further, the convex portion 40 has such a height that the raw material cannot be deposited around the seed crystal (that is, even if the raw material is deposited on the lower surface of the lid outside the convex portion 40, the deposit is formed of the seed crystal. It is particularly preferable that the height does not reach the height position), but the point is that the crystal growth on the seed crystal plane is not hindered by the source material deposited around the seed crystal. Even if the convex portion 40 does not have the above height, it can be obtained if it has a certain height. On the other hand, if the convex portion 40 is too high, the thickness of the lid 4 at the portion that holds the seed crystal s is too large, the heat removal effect is reduced, and the temperature of the seed crystal surface is not lowered. May decrease. For this reason, generally, the height h of the convex portion 40 is preferably about 0.1 to 15 mm.

種結晶sは、任意の形状を有することができるが、本実施形態では円板状であり、蓋体4の凸状部40の下面41に密着した状態で固定される。固定方法としては、例えば、熱融着による固定、固定具を用いた機械的な固定など、適宜な方法を採ることができる。
通常、種結晶sは、窒化アルミニウム単結晶を結晶成長させ得るような方位を持った単結晶であって、表面(下面)が化学機械的研磨(CMP)された窒化アルミニウム単結晶である。なお、種結晶sは、表面(下面)だけでなく、裏面についてもCMPなどにより処理されていてもよい。
The seed crystal s can have an arbitrary shape, but in the present embodiment, the seed crystal s has a disk shape, and is fixed in close contact with the lower surface 41 of the convex portion 40 of the lid 4. As a fixing method, for example, an appropriate method such as fixing by heat fusion or mechanical fixing using a fixing tool can be employed.
Usually, the seed crystal s is a single crystal having an orientation capable of growing an aluminum nitride single crystal, and is an aluminum nitride single crystal whose surface (lower surface) is subjected to chemical mechanical polishing (CMP). The seed crystal s may be processed not only on the front surface (lower surface) but also on the back surface by CMP or the like.

図1及び図2の実施形態では、蓋体4の凸状部40は、下面41がフラットで外周縁が垂直に形成されているが、これに限らず種々の形態で形成することができる。
図3、図4は、それぞれ蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は底面図である。
図3の蓋体4は、凸状部40が蓋体下面側から見て円錐台形状に構成されており(すなわち、凸状部40の外周縁がテーパー状(傾斜面)に構成されている)、その下面41が種結晶の固定面を構成している。このように凸状部40の外周縁がテーパー状(傾斜面)に構成されることにより、凸状部40(種結晶固定面)の外周部と中心部との温度差が小さくなるので、種結晶周囲への原料物質の堆積を防止しつつ、結晶性の向上を図ることができる。
In the embodiment of FIGS. 1 and 2, the convex portion 40 of the lid body 4 has a lower surface 41 that is flat and an outer peripheral edge that is vertical, but is not limited thereto, and can be formed in various forms.
FIG. 3 and FIG. 4 show other embodiments of the lid, respectively. FIG. 3 (a) is a longitudinal sectional view and FIG. 3 (b) is a bottom view.
In the lid body 4 of FIG. 3, the convex portion 40 is configured in a truncated cone shape when viewed from the lower surface side of the lid body (that is, the outer peripheral edge of the convex portion 40 is configured in a tapered shape (inclined surface). ), And its lower surface 41 constitutes a fixed surface of the seed crystal. Since the outer peripheral edge of the convex portion 40 is thus tapered (inclined surface), the temperature difference between the outer peripheral portion and the central portion of the convex portion 40 (seed crystal fixing surface) is reduced. The crystallinity can be improved while preventing the deposition of the source material around the crystal.

また、図4の蓋体4は、凸状部40が蓋体下面側から見て逆円錐台形状に構成されており(すなわち、凸状部40の外周縁が逆テーパー状(傾斜面)に構成されている)、その下面41が種結晶の固定面を構成している。この実施形態では、凸状部40の周囲において原料物質の堆積スペースが増えるため、原料物質の堆積による影響がより小さくなる利点がある。   Moreover, the cover body 4 of FIG. 4 is configured such that the convex portion 40 has an inverted frustoconical shape when viewed from the lower surface side of the cover body (that is, the outer peripheral edge of the convex portion 40 has a reverse tapered shape (inclined surface). The lower surface 41 forms a fixed surface of the seed crystal. In this embodiment, since the deposition space for the source material increases around the convex portion 40, there is an advantage that the influence of the deposition of the source material becomes smaller.

以上述べた各実施形態では、凸状部40が形成された蓋体4の部位(領域)は厚みが一定であるが、凸状部40が設けられた蓋体4の部位(領域)を、その上面側又は/及び下面側に凹凸42を形成することにより、厚みが一定でない構造(部位により厚みが異なる不均一な厚みを有する構造)としてもよく、このような構造とすることにより、次のような作用効果も得られる。種結晶sの表面は、温度が低い部位ほど原料物質が堆積しやすい(結晶成長がしやすい)。凸状部40が形成された蓋体4の部位(領域)に凹凸42を形成して厚みが一定でない構造とすると、蓋体4の抜熱効果が面内で不均一になるため、種結晶sの面内に温度が高い部位と低い部位が生じ、種結晶面内の温度分布が不均一となる。これにより、種結晶面内におけるドメイン領域ごとの結晶成長速度に差が生じて、種結晶面内において温度が低い部位のドメイン領域に堆積が起こりやすくなり(すなわち結晶成長速度が大きくなる)、当該ドメイン領域の優先的な成長が起こり、成長速度の遅いドメインを覆いこむように結晶成長が生じる。このためドメインの収斂が効率的に起こり、窒化アルミニウム単結晶の結晶性を向上させることができる。   In each embodiment described above, the portion (region) of the lid body 4 where the convex portion 40 is formed has a constant thickness, but the portion (region) of the lid body 4 provided with the convex portion 40 is By forming the unevenness 42 on the upper surface side and / or the lower surface side, a structure having a non-uniform thickness (a structure having a non-uniform thickness that varies depending on the part) may be used. The following effects can also be obtained. On the surface of the seed crystal s, the lower the temperature, the easier the source material is deposited (the crystal is more likely to grow). If the unevenness 42 is formed in the part (region) of the lid 4 where the convex portion 40 is formed to have a structure with a non-uniform thickness, the heat removal effect of the lid 4 becomes non-uniform in the plane. Sites with high and low temperatures are generated in the plane of s, and the temperature distribution in the seed crystal plane becomes non-uniform. As a result, a difference occurs in the crystal growth rate for each domain region in the seed crystal plane, and deposition tends to occur in the domain region at a low temperature in the seed crystal plane (that is, the crystal growth rate increases). Preferential growth of the domain region occurs, and crystal growth occurs so as to cover the slow growth domain. Therefore, domain convergence occurs efficiently, and the crystallinity of the aluminum nitride single crystal can be improved.

図5及び図6は、それぞれそのような蓋体の実施形態を示している。図5において、図(a)は縦断面図、図(b)は底面図、図(c)は平面図であり、図6において、図(a)は縦断面図、図(b)は底面図である。
図5の蓋体4は、図3と同様の形態の凸状部40を有するとともに、蓋体4の上面に同心円状の複数の環状溝420を設けることで凹凸42を形成し、凸状部40が設けられた蓋体4の部位(領域)を厚みが一定でない構造としたものである。
一方、図6の蓋体4は、図3と同様の形態の凸状部40を有するとともに、この凸状部40の下面41に同心円状の複数の環状溝420を設けることで凹凸42を形成し、凸状部40が設けられた蓋体4の部位(領域)を厚みが一定でない構造としたものである。
5 and 6 each show an embodiment of such a lid. 5A is a longitudinal sectional view, FIG. 5B is a bottom view, FIG. 5C is a plan view, FIG. 6A is a longitudinal sectional view, and FIG. FIG.
The lid body 4 in FIG. 5 has a convex portion 40 having the same form as that in FIG. 3, and a plurality of concentric annular grooves 420 are provided on the upper surface of the lid body 4 to form the concave and convex portions 42. The part (region) of the lid 4 provided with 40 has a structure in which the thickness is not constant.
On the other hand, the lid body 4 in FIG. 6 has the convex portion 40 having the same form as that in FIG. 3, and the concave and convex portions 42 are formed by providing a plurality of concentric annular grooves 420 on the lower surface 41 of the convex portion 40. And the site | part (area | region) of the cover body 4 in which the convex-shaped part 40 was provided is made into the structure where thickness is not constant.

なお、一般に、凹凸42は、凸状部40が設けられた蓋体4の部位(領域)の上面側又は/及び下面側に複数の溝又は/及び穴を設けることにより形成されるが、溝や穴の形態、設け方などは任意である。
また、図1や図4に示すような凸状部40を有する蓋体4についても、同様に、凸状部40が設けられた蓋体4の部位(領域)を、その上面側又は/及び下面側に凹凸42を形成することにより、厚みが一定でない構造としてもよい。
In general, the unevenness 42 is formed by providing a plurality of grooves or / and holes on the upper surface side and / or lower surface side of the portion (region) of the lid body 4 provided with the convex portion 40. The form of the holes, the way of providing the holes, etc. are arbitrary.
Similarly, for the lid 4 having the convex portion 40 as shown in FIG. 1 or FIG. 4, the portion (region) of the lid body 4 provided with the convex portion 40 is the upper surface side and / or By forming the unevenness 42 on the lower surface side, the thickness may not be constant.

次に、本実施形態の単結晶製造装置を使用した単結晶の製造方法について説明する。
原料物質xとしては、例えば、市販のAlN粉末を1800〜2300℃程度で加熱処理し、凝集体としたものを使用する。
原料物質xを収容した坩堝本体3(下部坩堝本体3a及び上部坩堝本体3b)と、下面の凸状部40に種結晶sを保持した蓋体4を図1のような育成坩堝1に組み立て、この育成坩堝1と加熱手段2と遮熱体5を図1のように炉体A内にセットする。
製造開始に当たり、炉体Aの排出口7に接続された排気管9の排気ポンプにより炉体A内を減圧し、ガス供給源から供給される雰囲気ガス(窒素ガスなどの非酸化性ガス)をガス供給管8及び導入口6を通じて炉体A内に導入し、炉体A内を非酸化性ガス雰囲気とする。
Next, the manufacturing method of the single crystal using the single crystal manufacturing apparatus of this embodiment is demonstrated.
As the raw material x, for example, a commercially available AlN powder is heat-treated at about 1800 to 2300 ° C. to obtain an aggregate.
Assembling the crucible main body 3 (the lower crucible main body 3a and the upper crucible main body 3b) containing the source material x and the lid 4 holding the seed crystal s in the convex portion 40 on the lower surface into the growing crucible 1 as shown in FIG. The growing crucible 1, the heating means 2, and the heat shield 5 are set in the furnace body A as shown in FIG.
At the start of production, the inside of the furnace body A is depressurized by the exhaust pump of the exhaust pipe 9 connected to the discharge port 7 of the furnace body A, and the atmospheric gas (non-oxidizing gas such as nitrogen gas) supplied from the gas supply source is supplied. It introduce | transduces in the furnace body A through the gas supply pipe | tube 8 and the inlet port 6, and the inside of the furnace body A is made into a non-oxidizing gas atmosphere.

次いで、加熱手段2による加熱を開始し、種結晶sの表面を昇温させるとともに、原料物質xを昇温させる。この時、蓋体4からの抜熱の影響により、育成坩堝1内では、上部側ほど温度が低く、下部側ほど温度が高くなるような温度勾配が形成される。原料物質xが一定温度まで加熱されると、原料物質xの昇華が始まる。昇華した原料物質xは、上記のような温度勾配に従い低温側である育成坩堝1の上部側に移動する。昇華した原料物質xは、温度が低い部位ほど堆積しやすいが、坩堝本体3の上部坩堝本体3bは加熱手段2による加熱の影響を大きく受けるために、種結晶sや蓋体4よりも高温状態となっているため、その内面には原料物質xの堆積は生じにくい。   Next, heating by the heating unit 2 is started to raise the temperature of the surface of the seed crystal s and raise the temperature of the source material x. At this time, due to the effect of heat removal from the lid 4, a temperature gradient is formed in the growth crucible 1 such that the temperature is lower on the upper side and higher on the lower side. When the raw material x is heated to a certain temperature, sublimation of the raw material x begins. The sublimated source material x moves to the upper side of the growth crucible 1 which is the low temperature side according to the temperature gradient as described above. The sublimated source material x is more likely to be deposited at lower temperatures, but the upper crucible body 3b of the crucible body 3 is greatly affected by the heating by the heating means 2, so that it is at a higher temperature than the seed crystal s and the lid 4 Therefore, the deposition of the raw material x is unlikely to occur on the inner surface.

育成坩堝1の外側の炉内雰囲気ガス温度(一般に1500〜2000℃程度)は、加熱手段2で加熱されている種結晶sや蓋体4の温度(一般に1800〜2300℃程度)よりも低く、このため蓋体4から炉内雰囲気ガス中に抜熱が生じるが、上部加熱手段2bから離れている蓋体中央領域(種結晶sが保持された領域)ほど抜熱効果が大きく、その外側領域よりも温度が低くなる。昇華した原料物質は、温度が低い部位ほど堆積しやすいため、蓋体中央領域に保持された温度が低い種結晶s上に優先的に堆積する。種結晶s上への堆積が増えると種結晶周囲との温度差が少なくなり、種結晶sの外側の領域にも堆積が起こりやすくなるが、種結晶sが凸状部40に保持されているため、種結晶周囲に原料物質が堆積できるような空間(蓋体面)が存在せず、原料物質が種結晶周囲に堆積することはない。すなわち、原料物質は凸状部40の周囲(外側)の蓋体下面には堆積するが、凸状部40に保持された種結晶周囲に原料物質が堆積する訳ではないので、種結晶s上での結晶成長には影響せず、結晶成長は阻害されない。このため、種結晶s上で窒化アルミニウム単結晶を効率よく成長させることができる。また、種結晶周囲に原料物質が堆積しないため、種結晶径方向での結晶成長を阻害するものがなく、このため種結晶径方向での結晶成長が促進され、ドメインの収斂による結晶性の向上を図ることが可能となる。   The furnace atmosphere gas temperature outside the growth crucible 1 (generally about 1500 to 2000 ° C.) is lower than the temperature of the seed crystal s heated by the heating means 2 and the temperature of the lid 4 (generally about 1800 to 2300 ° C.), Therefore, heat is removed from the lid 4 in the atmosphere gas in the furnace, but the heat removal effect is larger in the lid central region (region where the seed crystal s is held) farther from the upper heating means 2b. The temperature becomes lower than. Since the sublimated source material is more likely to be deposited at a lower temperature portion, it is preferentially deposited on the seed crystal s having a lower temperature held in the central region of the lid. As the deposition on the seed crystal s increases, the temperature difference from the periphery of the seed crystal decreases, and deposition also tends to occur in the region outside the seed crystal s, but the seed crystal s is held by the convex portion 40. Therefore, there is no space (cover surface) in which the source material can be deposited around the seed crystal, and the source material is not deposited around the seed crystal. That is, although the source material is deposited on the lower surface of the lid around the convex portion 40 (outside), the source material is not deposited around the seed crystal held by the convex portion 40, so The crystal growth is not affected, and the crystal growth is not inhibited. For this reason, the aluminum nitride single crystal can be efficiently grown on the seed crystal s. In addition, since no source material is deposited around the seed crystal, there is nothing that hinders crystal growth in the seed crystal diameter direction, which promotes crystal growth in the seed crystal diameter direction and improves crystallinity by domain convergence. Can be achieved.

なお、以上のような窒化アルミニウム単結晶の製造中、炉体A内にはガス供給管8及び導入口6を通じて雰囲気ガスが導入されるとともに、排気ポンプにより排気口7及び排気管9を通じて炉体A内の雰囲気ガスが排出され、且つ炉内圧力が一定に保たれる。このようなガスの給排気と炉内圧力のコントロールにより、炉体Aや育成坩堝1内に酸素を浸入させることなく、安定した操業を行うことができる。
また、放射温度計10で蓋体4の温度を測定し、例えば、加熱手段2の不具合による蓋体4の温度異常などを検知する。
During the production of the aluminum nitride single crystal as described above, atmospheric gas is introduced into the furnace body A through the gas supply pipe 8 and the introduction port 6, and the furnace body through the exhaust port 7 and the exhaust pipe 9 by an exhaust pump. The atmospheric gas in A is discharged, and the furnace pressure is kept constant. By controlling the supply and exhaust of gas and the pressure in the furnace, stable operation can be performed without allowing oxygen to enter the furnace body A and the growth crucible 1.
Further, the temperature of the lid body 4 is measured by the radiation thermometer 10 to detect, for example, an abnormal temperature of the lid body 4 due to a malfunction of the heating means 2.

また、窒化アルミニウム単結晶製造装置の部品である本発明に係る育成坩堝用の蓋体は、昇華法により窒化アルミニウム単結晶を製造する装置において、下面に種結晶を保持した状態で、育成坩堝を構成する坩堝本体に対してその開放した上部を塞ぐようにセットされる蓋体であって、下面(下面中央領域)に種結晶を保持する凸状部40が突設されたものであり、その構成及び実施形態は、上述した通りである。   Moreover, the lid for a growth crucible according to the present invention, which is a part of an aluminum nitride single crystal manufacturing apparatus, is a device for manufacturing an aluminum nitride single crystal by a sublimation method. It is a lid that is set so as to close the open upper part with respect to the crucible main body, and has a convex part 40 that holds the seed crystal on the lower surface (lower surface central region). The configuration and the embodiment are as described above.

[窒化アルミニウム単結晶の製造例]
図1及び図2に示す本発明の単結晶製造装置を用い、窒化アルミニウム単結晶を製造した。装置の仕様は以下の通りである。
(1)坩堝本体3
・高さ:100mm
・内径D2:65mm
(2)蓋体4
・凸状部40の高さh:5mm
・凸状部40が形成された部分の蓋体4の厚さ:10mm
・凸状部40以外の部分(外側領域)の蓋体4の厚さ:5mm
・凸状部40の下面41の外径D1:41mm
(3)加熱手段2
・加熱方式:高周波誘導加熱式ヒーター
(4)種結晶s
・(0001)方位を有し、表面がCMPで表面処理されたAlN単結晶板
・外径Ds:40mm
・厚さ:1.0mm
[Production example of aluminum nitride single crystal]
An aluminum nitride single crystal was manufactured using the single crystal manufacturing apparatus of the present invention shown in FIGS. The specifications of the device are as follows.
(1) Crucible body 3
・ Height: 100mm
・ Inner diameter D2: 65mm
(2) Lid 4
-Height h of the convex portion 40: 5 mm
-Thickness of the lid 4 at the portion where the convex portion 40 is formed: 10 mm
-Thickness of the lid 4 in the portion (outer region) other than the convex portion 40: 5 mm
-Outer diameter D1 of the lower surface 41 of the convex portion 40: 41 mm
(3) Heating means 2
・ Heating system: High frequency induction heating heater (4) Seed crystal
-AlN single crystal plate with (0001) orientation and surface treated by CMP-Outer diameter Ds: 40 mm
・ Thickness: 1.0mm

原料物質としては、市販のAlN粉末(平均粒径1.2μm)を予め窒素雰囲気中で約1500〜2000℃で加熱処理し、凝集させて得られたAlN凝集体を用いた。この原料物質を坩堝本体3に収容した後、装置を構成する各部材を組み立て、図1及び図2に示すような装置とした。
製造開始に当たり、排気管9に設けられた排気ポンプを用いて、炉体A内の空気を1.0×10−3Pa以下となるまで排気した後、原料物質x中の吸着酸素の蒸発を容易にするために、坩堝本体3を加熱手段2により下部坩堝本体3aが約400℃になるまで加熱した。その後、前記排気ポンプで炉体A内を5.0×10−4Pa以下まで排気した後、窒素ガスを導入し、炉体A内が所定圧力(300kPa)に到達したところで、加熱手段2によるさらなる加熱を行い、種結晶sの温度が1800〜2000℃、原料物質xの温度が2000〜2300℃になるまで昇温を行いながら(蓋体4からの抜熱の影響によってこのような温度勾配となる)、前記排気ポンプで炉体A内を100kPaまで排気し、原料物質xを昇華させ、種結晶sの方位(0001)でAlN単結晶の育成を100時間行った。育成後、育成坩堝1を取り出し、種結晶s及びその周囲を確認したところ、凸状部40の周囲の蓋体下面へのAlN多結晶の堆積は認められたが、凸状部40に保持された種結晶s上へのAlNの堆積には影響せず(すなわち種結晶sの周囲にはAlN多結晶の堆積がない)、このため種結晶s上にAlNが適切に堆積し、AlN単結晶が成長しているのが確認できた。AlNの堆積している範囲の直径は約40mmであった。
As a raw material, an AlN aggregate obtained by agglomerating commercially available AlN powder (average particle size 1.2 μm) in advance in a nitrogen atmosphere at about 1500 to 2000 ° C. was used. After this raw material was accommodated in the crucible body 3, the members constituting the apparatus were assembled to obtain an apparatus as shown in FIGS.
At the start of production, the air in the furnace body A is exhausted to 1.0 × 10 −3 Pa or less using an exhaust pump provided in the exhaust pipe 9, and then the adsorbed oxygen in the raw material x is evaporated. In order to facilitate, the crucible body 3 was heated by the heating means 2 until the lower crucible body 3a reached about 400 ° C. Thereafter, the inside of the furnace body A is evacuated to 5.0 × 10 −4 Pa or less by the exhaust pump, nitrogen gas is introduced, and when the inside of the furnace body A reaches a predetermined pressure (300 kPa), the heating means 2 Further heating is performed until the temperature of the seed crystal s reaches 1800 to 2000 ° C. and the temperature of the raw material x reaches 2000 to 2300 ° C. (Such temperature gradient is caused by the effect of heat removal from the lid 4). Then, the inside of the furnace body A was exhausted to 100 kPa with the exhaust pump, the raw material x was sublimated, and the AlN single crystal was grown for 100 hours in the orientation (0001) of the seed crystal s. After the growth, the growth crucible 1 was taken out and the seed crystal s and its surroundings were confirmed. As a result, deposition of AlN polycrystal on the lower surface of the cover around the convex portion 40 was observed, but it was held by the convex portion 40. AlN deposition on the seed crystal s is not affected (that is, there is no AlN polycrystal deposition around the seed crystal s), so that AlN is appropriately deposited on the seed crystal s, and an AlN single crystal Was growing. The diameter of the area where AlN was deposited was about 40 mm.

比較例の製造装置として、蓋体4のみを凸状部40がない平坦な蓋体(厚さ5mm)に変更した製造装置を用い、AlN単結晶を製造した。その結果、種結晶sの周囲の蓋体面にAlN多結晶の堆積が多く確認された。AlNの堆積している範囲の直径は約65mmであり、坩堝本体の内径と同等の範囲にAlNの堆積が見られた。   As a manufacturing apparatus of the comparative example, an AlN single crystal was manufactured using a manufacturing apparatus in which only the lid 4 was changed to a flat lid (thickness 5 mm) without the convex portion 40. As a result, many deposits of AlN polycrystals were confirmed on the lid surface around the seed crystal s. The diameter of the AlN deposition range was about 65 mm, and AlN deposition was observed in a range equivalent to the inner diameter of the crucible body.

上述した本発明の製造装置と比較例の製造装置でそれぞれ製造されたAlN単結晶の結晶性を以下のように評価した。製造されたAlN単結晶から所定の面方位に切り出し、外形を整えたAlN単結晶基板を、遊離砥粒にて両面ラッピング加工した後、化学機械的研磨(CMP)を実施した。このようにして得られたAlN単結晶基板のロッキングカーブ測定を行い、半値全幅(FWHM:Full Width at Half Maximum)を求めた。
その結果、比較例の製造装置で製造されたAlN単結晶基板は147arcsecであったのに対して、本発明の製造装置で製造されたAlN単結晶基板は90arcsecであり、本発明の製造装置で製造されたAlN単結晶は、比較例の製造装置で製造されたAlN単結晶に較べて結晶性の面でも優れていることが確認できた。
The crystallinity of the AlN single crystal produced by the production apparatus of the present invention described above and the production apparatus of the comparative example was evaluated as follows. An AlN single crystal substrate cut out from the manufactured AlN single crystal in a predetermined plane orientation and trimmed in shape was subjected to double-side lapping with loose abrasive grains, and then chemical mechanical polishing (CMP) was performed. The rocking curve of the AlN single crystal substrate thus obtained was measured to determine the full width at half maximum (FWHM).
As a result, the AlN single crystal substrate manufactured by the manufacturing apparatus of the comparative example was 147 arcsec, whereas the AlN single crystal substrate manufactured by the manufacturing apparatus of the present invention was 90 arcsec. It was confirmed that the produced AlN single crystal was superior in terms of crystallinity as compared with the AlN single crystal produced by the production apparatus of the comparative example.

1 育成坩堝
2 加熱手段
3 坩堝本体
3a 下部坩堝本体
3b 上部坩堝本体
4 蓋体
5 遮熱体
6 導入口
7 排気口
8 ガス供給管
9 排気管
10 放射温度計
11 支持台
12 窓
40 凸状部
41 下面
42 凹凸
50,51 開口部
52 内フランジ
420 環状溝
A 炉体
a 炉内空間
DESCRIPTION OF SYMBOLS 1 Growing crucible 2 Heating means 3 Crucible body 3a Lower crucible body 3b Upper crucible body 4 Lid body 5 Heat shield 6 Inlet 7 Exhaust port 8 Gas supply pipe 9 Exhaust pipe 10 Radiation thermometer 11 Support base 12 Window 40 Convex part 41 Lower surface 42 Concavity and convexity 50, 51 Opening 52 Inner flange 420 Annular groove A Furnace body a Furnace space

Claims (7)

育成坩堝(1)と、該育成坩堝(1)を外側から加熱する加熱手段(2)を備え、昇華法により窒化アルミニウム単結晶を製造する装置であって、
育成坩堝(1)は、上部が開放し、下部に原料物質が収容される坩堝本体(3)と、下面に種結晶を保持した状態で、坩堝本体(3)に対してその開放した上部を塞ぐようにセットされる蓋体(4)を備え、
該蓋体(4)の下面に、種結晶を保持する凸状部(40)が突設され、該凸状部(40)が逆円錐台形状(但し、蓋体下面側を底面とする逆円錐台形状)であることを特徴とする請求項1に記載の窒化アルミニウム単結晶製造装置。
An apparatus for producing an aluminum nitride single crystal by a sublimation method, comprising a growth crucible (1) and heating means (2) for heating the growth crucible (1) from the outside,
The growing crucible (1) has an upper part opened and a crucible body (3) containing raw material in the lower part, and the opened upper part with respect to the crucible body (3) with the seed crystal held on the lower surface. It has a lid (4) that is set to close,
A convex portion (40) for holding the seed crystal is projected on the lower surface of the lid (4), and the convex portion (40) has an inverted frustoconical shape (provided that the lower surface of the lid is the bottom surface). The aluminum nitride single crystal manufacturing apparatus according to claim 1, wherein the apparatus has a truncated cone shape .
種結晶が固定される凸状部(40)の下面(41)の外径が、固定される種結晶の外径と略同一であることを特徴とする請求項1に記載の窒化アルミニウム単結晶製造装置。 The aluminum nitride single crystal according to claim 1, wherein the outer diameter of the lower surface (41) of the convex portion (40) to which the seed crystal is fixed is substantially the same as the outer diameter of the seed crystal to be fixed. manufacturing device. 凸状部(40)の高さhが0.1〜15mmであることを特徴とする請求項1又は2に記載の窒化アルミニウム単結晶製造装置。 The height h of the convex part (40) is 0.1 to 15 mm, and the aluminum nitride single crystal manufacturing apparatus according to claim 1 or 2 . 雰囲気ガスの導入口と排出口を備えた炉体(A)内に育成坩堝(1)と加熱手段(2)が収納され、加熱手段(2)と炉体(A)の内壁面との間に遮熱体(5)が設けられることを特徴とする請求項1〜のいずれかに記載の窒化アルミニウム単結晶製造装置。 A growth crucible (1) and heating means (2) are housed in a furnace body (A) having an inlet and an outlet for atmospheric gas, and between the heating means (2) and the inner wall surface of the furnace body (A). The aluminum nitride single crystal manufacturing apparatus according to any one of claims 1 to 3 , wherein a heat shield (5) is provided on the aluminum nitride single crystal manufacturing apparatus. 昇華法により窒化アルミニウム単結晶を製造する装置において、下面に種結晶を保持した状態で、育成坩堝を構成する坩堝本体に対してその開放した上部を塞ぐようにセットされる蓋体であって、
下面に種結晶を保持する凸状部(40)が突設され、該凸状部(40)が逆円錐台形状(但し、蓋体下面側を底面とする逆円錐台形状)であることを特徴とする窒化アルミニウム単結晶製造装置における育成坩堝の蓋体。
In an apparatus for producing an aluminum nitride single crystal by a sublimation method, a lid body that is set so as to close an open upper portion with respect to a crucible body constituting a growth crucible while holding a seed crystal on a lower surface,
A convex part (40) for holding the seed crystal is projected on the lower surface, and the convex part (40) has an inverted frustoconical shape (however, an inverted frustoconical shape with the lower surface of the lid body as the bottom surface). A growing crucible lid in an aluminum nitride single crystal production apparatus.
種結晶が固定される凸状部(40)の下面(41)の外径が、固定される種結晶の外径と略同一であることを特徴とする請求項に記載の窒化アルミニウム単結晶製造装置における育成坩堝の蓋体。 The aluminum nitride single crystal according to claim 5 , wherein the outer diameter of the lower surface (41) of the convex portion (40) to which the seed crystal is fixed is substantially the same as the outer diameter of the seed crystal to be fixed. The lid of the growing crucible in the manufacturing apparatus. 凸状部(40)の高さhが0.1〜15mmであることを特徴とする請求項5又は6に記載の窒化アルミニウム単結晶製造装置における育成坩堝の蓋体。 The height h of the convex portion (40) is 0.1 to 15 mm, and the lid of the growing crucible in the aluminum nitride single crystal production apparatus according to claim 5 or 6 .
JP2017102154A 2017-05-23 2017-05-23 Aluminum nitride single crystal production equipment Expired - Fee Related JP6300990B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017102154A JP6300990B1 (en) 2017-05-23 2017-05-23 Aluminum nitride single crystal production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017102154A JP6300990B1 (en) 2017-05-23 2017-05-23 Aluminum nitride single crystal production equipment

Publications (2)

Publication Number Publication Date
JP6300990B1 true JP6300990B1 (en) 2018-03-28
JP2018197175A JP2018197175A (en) 2018-12-13

Family

ID=61756570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017102154A Expired - Fee Related JP6300990B1 (en) 2017-05-23 2017-05-23 Aluminum nitride single crystal production equipment

Country Status (1)

Country Link
JP (1) JP6300990B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116427035A (en) * 2023-03-10 2023-07-14 中国电子科技集团公司第四十六研究所 Raw material loading and unloading method suitable for large-size aluminum nitride crystal growth

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072490A (en) * 1999-08-30 2001-03-21 Agency Of Ind Science & Technol Growing apparatus for single crystal and production method
JP2009280463A (en) * 2008-05-26 2009-12-03 Panasonic Corp Crucible for crystal growth
JP2011144082A (en) * 2010-01-15 2011-07-28 Bridgestone Corp Apparatus for producing silicon carbide single crystal
JP2011251884A (en) * 2010-06-03 2011-12-15 Bridgestone Corp Apparatus for producing silicon carbide single crystal
JP2013071855A (en) * 2011-09-27 2013-04-22 Fujikura Ltd Method for fixing aluminum nitride seed crystal, pedestal-seed crystal fixed body, method for producing aluminum nitride single crystal, and aluminum nitride single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072490A (en) * 1999-08-30 2001-03-21 Agency Of Ind Science & Technol Growing apparatus for single crystal and production method
JP2009280463A (en) * 2008-05-26 2009-12-03 Panasonic Corp Crucible for crystal growth
JP2011144082A (en) * 2010-01-15 2011-07-28 Bridgestone Corp Apparatus for producing silicon carbide single crystal
JP2011251884A (en) * 2010-06-03 2011-12-15 Bridgestone Corp Apparatus for producing silicon carbide single crystal
JP2013071855A (en) * 2011-09-27 2013-04-22 Fujikura Ltd Method for fixing aluminum nitride seed crystal, pedestal-seed crystal fixed body, method for producing aluminum nitride single crystal, and aluminum nitride single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116427035A (en) * 2023-03-10 2023-07-14 中国电子科技集团公司第四十六研究所 Raw material loading and unloading method suitable for large-size aluminum nitride crystal growth
CN116427035B (en) * 2023-03-10 2024-05-17 中国电子科技集团公司第四十六研究所 Raw material loading and unloading method suitable for large-size aluminum nitride crystal growth

Also Published As

Publication number Publication date
JP2018197175A (en) 2018-12-13

Similar Documents

Publication Publication Date Title
JP4275308B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
KR20120082873A (en) Sublimation growth of sic single crystals
US9376764B2 (en) Physical vapor transport growth system for simultaneously growing more than one SiC single crystal and method of growing
WO2009139447A1 (en) Single crystal manufacturing device and manufacturing method
US20210140067A1 (en) Tantalum carbide coated carbon material, manufacturing method thereof, and member for apparatus for manufacturing semiconductor single crystal
JP2018030773A (en) Apparatus used for single crystal growth
KR102107626B1 (en) Apparatus for growing silicon carbide single cryatal and method for growing silicon carbide single cryatal
KR101458183B1 (en) An apparatus and method for growing silicon carbide single crystal
US20160002820A1 (en) Crucible and method for producing single crystal
JP2000264795A (en) Apparatus and method for producing silicon carbide single crystal
JP6300990B1 (en) Aluminum nitride single crystal production equipment
JP6317868B1 (en) Aluminum nitride single crystal production equipment
JP6291615B1 (en) Aluminum nitride single crystal production equipment
CN112334607B (en) Silicon carbide single crystal and method for producing same
JP4197178B2 (en) Single crystal manufacturing method
EP2465980B1 (en) Apparatus and method for manufacturing silicon carbide single crystal
JP2009102196A (en) Method for manufacturing silicon carbide single crystal substrate
JP2020040845A (en) SiC SINGLE CRYSTAL MANUFACTURING APPARATUS
JP2014084240A (en) Apparatus for producing single crystal of aluminum nitride
JP5376477B2 (en) Single crystal silicon carbide substrate
US20240052520A1 (en) System and method of producing monocrystalline layers on a substrate
WO2022004703A1 (en) METHOD FOR PRODUCING SiC CRYSTALS
JP2010150109A (en) Nitride single crystal and method for producing the same
JP2024509228A (en) Simultaneous growth of two silicon carbide layers
JP2013133273A (en) Single crystal production apparatus and single crystal production method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180227

R150 Certificate of patent or registration of utility model

Ref document number: 6300990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees