JP2005126249A - Method for growing single crystal silicon carbide - Google Patents

Method for growing single crystal silicon carbide Download PDF

Info

Publication number
JP2005126249A
JP2005126249A JP2003360477A JP2003360477A JP2005126249A JP 2005126249 A JP2005126249 A JP 2005126249A JP 2003360477 A JP2003360477 A JP 2003360477A JP 2003360477 A JP2003360477 A JP 2003360477A JP 2005126249 A JP2005126249 A JP 2005126249A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
silicon carbide
crystal silicon
atom supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003360477A
Other languages
Japanese (ja)
Other versions
JP4482642B2 (en
Inventor
Naokatsu Sano
直克 佐野
Tadaaki Kaneko
忠昭 金子
Yasushi Asaoka
康 浅岡
Kimito Nishikawa
西川公人
Keiji Wada
和田圭司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Industry Research Organization NIRO
Ecotron Co Ltd
Original Assignee
New Industry Research Organization NIRO
Ecotron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Industry Research Organization NIRO, Ecotron Co Ltd filed Critical New Industry Research Organization NIRO
Priority to JP2003360477A priority Critical patent/JP4482642B2/en
Publication of JP2005126249A publication Critical patent/JP2005126249A/en
Application granted granted Critical
Publication of JP4482642B2 publication Critical patent/JP4482642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide high-quality, high-performance single crystal SiC which has a wide terrace and high smoothness and forms few micropipe defect, interface defect, etc., by controlling the film thickness of the single crystal SiC at growth. <P>SOLUTION: In a method for growing the single crystal silicon carbide, a C atom-supplying substrate 17 for supplying carbon atoms is stacked on a single crystal SiC substrate 5 which serves as a seed crystal, an ultra-thin metallic Si melt layer 18 is interposed between the single crystal SiC substrate 5 and the C atom-supplying substrate 17, and heat-treatment is performed at a prescribed temperature of about ≥1,400°C for a prescribed time to grow the single crystal SiC on the single crystal SiC substrate 5 which serves as the seed crystal through liquid phase epitaxial growth. As the C atom-supplying substrate 17, at least one substrate chosen from the group consisting of a carbon substrate, a porous SiC substrate, a sintered SiC substrate and an amorphous SiC substrate is used. A spacer 19 with a thickness of about ≤50 μm is installed between the single crystal SiC substrate 5 and the C atom-supplying substrate 17 to control the thickness of the single crystal SiC grown between the single crystal SiC substrate 5 and the C atom-supplying substrate 17. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マイクロパイプ欠陥や界面欠陥等の発生が少ないとともに、幅広なテラスを有し表面の平坦度の高い、高品質、高性能な単結晶炭化ケイ素の提供を可能とする単結晶炭化ケイ素成長方法に関する。   The present invention is a single crystal silicon carbide that is capable of providing a high-quality, high-performance single crystal silicon carbide that has a wide terrace and high surface flatness while generating less micropipe defects and interface defects. It relates to the growth method.

炭化ケイ素(以下、SiCという)は、耐熱性及び機械的強度に優れている。更に、放射線にも強く、不純物の添加によって電子や正孔の価電子制御が容易である。加えて、広い禁制帯幅を持つ。因みに、6H型の単結晶SiCで約3.0eV、4H型の単結晶SiCで3.3eVである。そのため、Si(以下、Siという。)やガリウムヒ素(以下、GaAsという。)などの既存の半導体材料では実現することができない高温、高周波、耐電圧・耐環境性を実現することが可能である。それ故、次世代のパワーデバイス、高周波デバイス用半導体材料として注目され、かつ期待されている。また、六方晶SiCは、窒化ガリウム(以下、GaNという。)と格子定数が近く、GaNの基板として期待されている。   Silicon carbide (hereinafter referred to as SiC) is excellent in heat resistance and mechanical strength. Furthermore, it is resistant to radiation, and valence electron control of electrons and holes is easy by adding impurities. In addition, it has a wide forbidden bandwidth. Incidentally, it is about 3.0 eV for 6H type single crystal SiC and 3.3 eV for 4H type single crystal SiC. Therefore, it is possible to realize high temperature, high frequency, withstand voltage / environment resistance that cannot be realized with existing semiconductor materials such as Si (hereinafter referred to as Si) and gallium arsenide (hereinafter referred to as GaAs). . Therefore, it attracts attention and is expected as a semiconductor material for next-generation power devices and high-frequency devices. Further, hexagonal SiC has a lattice constant close to that of gallium nitride (hereinafter referred to as GaN), and is expected as a GaN substrate.

この種の単結晶SiCを製造する方法として次のようなものがある。
例えば、昇華再結晶法(改良レーリー法)によると、ルツボ内の低温側に単結晶SiC基板を種結晶として固定配置する。高温側に原料となるSiを含む粉末を配置する。ルツボを不活性雰囲気中で1450以上2400℃の高温に加熱する。それによって、Siを含む粉末を昇華させて低温側の種結晶の表面上でSiCを再結晶させる。このようにして、単結晶SiCの育成を行なう。
There are the following methods for producing this type of single crystal SiC.
For example, according to the sublimation recrystallization method (modified Rayleigh method), a single crystal SiC substrate is fixedly arranged as a seed crystal on the low temperature side in the crucible. A powder containing Si as a raw material is placed on the high temperature side. Heat the crucible to a high temperature between 1450 and 2400 ° C in an inert atmosphere. Thereby, the powder containing Si is sublimated and SiC is recrystallized on the surface of the seed crystal on the low temperature side. In this way, single crystal SiC is grown.

また、例えば、特許文献1によると、単結晶SiC基板とSi原子及びC原子により構成された板材とを微小隙間を隔てて互いに平行に対峙さる。その状態で大気圧以下の不活性ガス雰囲気、且つ、SiC飽和蒸気雰囲気下で単結晶SiC基板側が板材よりも低温となるように温度傾斜を持たせる。そして、熱処理することにより、微小隙間内でSi原子及びC原子を昇華再結晶させる。このようにして、単結晶SiC基板上に単結晶を析出させる。
更にまた、例えば、特許文献2によると、液相エピタキシャル成長法(以下、LPE法という。)によって単結晶SiC上に第1のエピタキシャル層を形成する。その後に、CVD法によって表面に第2のエピタキシャル層を形成して、マイクロパイプ欠陥を除去する。
For example, according to Patent Document 1, a single crystal SiC substrate and a plate material composed of Si atoms and C atoms face each other in parallel with a small gap therebetween. In that state, a temperature gradient is provided so that the single crystal SiC substrate side is at a lower temperature than the plate material in an inert gas atmosphere at atmospheric pressure or lower and a SiC saturated vapor atmosphere. Then, by performing heat treatment, Si atoms and C atoms are sublimated and recrystallized in the minute gaps. In this way, a single crystal is deposited on the single crystal SiC substrate.
Furthermore, for example, according to Patent Document 2, a first epitaxial layer is formed on single-crystal SiC by a liquid phase epitaxial growth method (hereinafter referred to as LPE method). Thereafter, a second epitaxial layer is formed on the surface by a CVD method to remove micropipe defects.

特開平11−315000号公報JP-A-11-315000 特表平10−509943号公報Japanese National Patent Publication No. 10-509943

しかしながら、これら単結晶SiCの形成方法のうち、例えば、特許文献1等に記載の昇華再結晶法の場合は、成長速度が数100μm/hrと非常に早い反面、昇華の際にSiC粉末がいったんSi, SiC2、Si2Cに分解されて気化し、さらにルツボの一部と反応する。このために、温度変化によって種結晶の表面に到達するガスの種類が異なり、これらの分圧を化学量論的に正確に制御することが技術的に非常に困難である。また、不純物も混入しやすく、その混入した不純物や熱に起因する歪みの影響で結晶欠陥やマイクロパイプ欠陥等を発生しやすく、また、多くの核生成に起因する結晶粒界の発生など、性能的、品質的に安定した単結晶SiCが得られないという問題がある。 However, among the methods for forming single-crystal SiC, for example, in the case of the sublimation recrystallization method described in Patent Document 1, etc., the growth rate is very fast as several hundred μm / hr. It is decomposed and vaporized into Si, SiC 2 and Si 2 C and further reacts with a part of the crucible. For this reason, the types of gases that reach the surface of the seed crystal differ depending on the temperature change, and it is technically very difficult to control these partial pressures stoichiometrically accurately. Impurities are also likely to be mixed in, and crystal defects and micropipe defects are likely to occur due to the influence of the mixed impurities and strain caused by heat. In addition, performance such as generation of crystal grain boundaries due to many nucleation There is a problem that single crystal SiC stable in quality and quality cannot be obtained.

一方、特許文献2に記載のLPE法の場合は、昇華再結晶法で見られるようなマイクロパイプ欠陥や結晶欠陥などの発生が少なく、昇華再結晶法で製造されるものに比べて品質的に優れた単結晶SiCが得られる。その反面、成長過程が、Si融液中へのCの溶解度によって律速されるために、成長速度が10μm/hr以下と非常に遅くて単結晶SiCの生産性が低く、製造装置内の液相を精密に温度制御しなくてはならない。また、工程が複雑となり、単結晶SiCの製造コストが非常に高価なものになる。   On the other hand, in the case of the LPE method described in Patent Document 2, the occurrence of micropipe defects and crystal defects as seen in the sublimation recrystallization method is small, and the quality is higher than that produced by the sublimation recrystallization method. Excellent single crystal SiC can be obtained. On the other hand, since the growth process is limited by the solubility of C in the Si melt, the growth rate is very slow, 10 μm / hr or less, and the productivity of single-crystal SiC is low. The temperature must be precisely controlled. In addition, the process becomes complicated, and the manufacturing cost of single crystal SiC becomes very expensive.

本発明は前記問題に鑑みてなされたもので、マイクロパイプ欠陥や界面欠陥等の発生が少ないとともに、幅広なテラスを有し表面の平坦度の高い、高品質、高性能な単結晶SiCの提供を目的とする。
特に、成長する単結晶SiCの膜厚を制御することにより、高品質、高性能な単結晶SiCの提供可能とする単結晶SiC成長方法の提供を目的とする。
The present invention has been made in view of the above problems, and provides a high-quality, high-performance single-crystal SiC having a wide terrace and high surface flatness, with few occurrences of micropipe defects and interface defects. With the goal.
In particular, an object of the present invention is to provide a single-crystal SiC growth method that can provide high-quality and high-performance single-crystal SiC by controlling the film thickness of the growing single-crystal SiC.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明は、種結晶となる単結晶SiC基板上に、C原子を供給するためのC原子供給基板を重ね、前記単結晶SiC基板と前記C原子を供給基板との間に極薄金属Si融液層を介在させ、約1400℃以上の所定の温度で所定の時間加熱処理を行うことによって前記種結晶となる単結晶SiC基板上に単結晶SiCを液相エピタキシャル成長させる単結晶炭化ケイ素の成長方法に関する。
本発明は、上記目的を達成するために以下のような幾つかの特徴を有している。本発明において、以下の特徴は単独で、若しくは、適宜組合わされて備えられている。
In the present invention, a C atom supply substrate for supplying C atoms is superposed on a single crystal SiC substrate to be a seed crystal, and an ultrathin metal Si fusion is provided between the single crystal SiC substrate and the supply substrate. A method for growing single-crystal silicon carbide, comprising liquid-phase epitaxial growth of single-crystal SiC on a single-crystal SiC substrate serving as the seed crystal by performing a heat treatment for a predetermined time at a predetermined temperature of about 1400 ° C. or more with a liquid layer interposed About.
In order to achieve the above object, the present invention has several features as follows. In the present invention, the following features are provided alone or in combination as appropriate.

上記目的を達成するための本発明の第1 の特徴は、前記C原子供給基板として多結晶SiC素基板を除くC原子供給基板を用いることである。
例えば、前記C原子供給基板として、カーボン基板、ポーラスSiC基板、焼結SiC基板、非晶質SiC基板からなる群から選ばれた少なくとも一種の基板を用いることが好ましい。
多結晶SiC基板を除く前記C原子供給基板は、多結晶SiC基板に比べて表面エネルギーが大きく、中でもカーボンはC原子供給量も増やせるため成長速度を速くできる。更に、多結晶SiC基板を除く前記C原子供給基板は、多結晶SiC基板に比べて加工性に極めて優れており、また安価であるため製造コストを抑制できる。
In order to achieve the above object, the first feature of the present invention is that a C atom supply substrate excluding a polycrystalline SiC base substrate is used as the C atom supply substrate.
For example, as the C atom supply substrate, at least one substrate selected from the group consisting of a carbon substrate, a porous SiC substrate, a sintered SiC substrate, and an amorphous SiC substrate is preferably used.
The C atom supply substrate excluding the polycrystalline SiC substrate has a larger surface energy than the polycrystalline SiC substrate. In particular, carbon can increase the supply amount of C atoms, so that the growth rate can be increased. Further, the C atom supply substrate excluding the polycrystalline SiC substrate is extremely excellent in workability as compared with the polycrystalline SiC substrate, and can be manufactured at a low cost, thereby reducing the manufacturing cost.

上記目的を達成するための本発明の第2の特徴は、前記単結晶SiC基板と前記C原子供給基板との間に約50μm以下の厚さのスペーサを設け、前記単結晶SiC基板と前記C原子供給基板との間に成長される単結晶SiCの厚みを制御することである。
例えば、少なくとも1箇所にスペーサを設置して、前記単結晶炭化ケイ素基板と前記C原子供給基板との間の厚みを均一にすることが好ましい。これにより、前記単結晶SiC基板と前記C原子供給基板との間で成長する単結晶SiCの厚みを成長面全面に亘って均一にする事ができる。
The second feature of the present invention for achieving the above object is that a spacer having a thickness of about 50 μm or less is provided between the single crystal SiC substrate and the C atom supply substrate, and the single crystal SiC substrate and the C It is to control the thickness of single crystal SiC grown between the atomic supply substrate.
For example, it is preferable to provide a spacer at least at one location so that the thickness between the single crystal silicon carbide substrate and the C atom supply substrate is uniform. Thereby, the thickness of the single crystal SiC grown between the single crystal SiC substrate and the C atom supply substrate can be made uniform over the entire growth surface.

前記スペーサの例として、前記金属Si融液層側に突出するように、前記C原子供給基板及び前記単結晶SiC基板のうち少なくとも一方に、機械加工により設けられた凸部が挙げられる。
また、前記スペーサの他の例として、前記金属Si融液層側に突出するように、前記C原子供給基板及び前記単結晶SiC基板のうち少なくとも一方に、固相反応によって接着された凸部が挙げられる。
As an example of the spacer, at least one of the C atom supply substrate and the single crystal SiC substrate may be a convex portion provided by machining so as to protrude toward the metal Si melt layer side.
Further, as another example of the spacer, there is a protrusion bonded to at least one of the C atom supply substrate and the single crystal SiC substrate by a solid phase reaction so as to protrude toward the metal Si melt layer side. Can be mentioned.

上記目的を達成するための本発明の第3の特徴は、前記C原子供給基板の上面に適当な加圧を行なう事である。これにより、成長する単結晶SiCの全面に亘り均一な厚みに出来る。   In order to achieve the above object, the third feature of the present invention is that an appropriate pressure is applied to the upper surface of the C atom supply substrate. Thereby, it is possible to make the thickness uniform over the entire surface of the growing single crystal SiC.

上記第2,第3に記載の単結晶炭化ケイ素の成長方法によれば、成長速度に影響を与える金属Si融液層の厚さを成長過程で一定に保つ事ができ、単結晶SiC基板と前記C原子供給素基板との間に介在する金属Si融液層の厚みを適切に制御できる。それによって、成長する単結晶SiC基板の膜厚が制御される。
前記多結晶SiC基板から金属Si融液層へ溶け出すSiC分子は金属Si融液層の厚みが厚いほど水平方向に拡散できる。
According to the growth method of the single crystal silicon carbide described in the second and third above, the thickness of the metal Si melt layer that affects the growth rate can be kept constant during the growth process, and the single crystal SiC substrate and It is possible to appropriately control the thickness of the metal Si melt layer interposed between the C atom supply element substrate. Thereby, the film thickness of the growing single crystal SiC substrate is controlled.
SiC molecules that dissolve from the polycrystalline SiC substrate into the metal Si melt layer can diffuse in the horizontal direction as the thickness of the metal Si melt layer increases.

従って、前記金属Si融液層の厚みを適切に制御できると、前記種結晶となる単結晶SiC基板表面上に、単結晶SiCが液相エピタキシャル成長する均一性が飛躍的に向上する。
そのため、上記方法によって、成長した単結晶SiCの表面のステツプバンチのテラス巾を100μmオーダーに、ステップ高さを結晶単位格子の半分の高さを最小単位とする高さに、マイクロパイプ欠陥の密度を1/cm2以下に制御することができる。その結果、平坦で欠陥の少ない高品質の単結晶炭化ケイ素が製作可能となる。
Therefore, if the thickness of the metal Si melt layer can be appropriately controlled, the uniformity of the liquid crystal epitaxial growth of the single crystal SiC on the surface of the single crystal SiC substrate serving as the seed crystal is dramatically improved.
Therefore, according to the above method, the density of micropipe defects is set so that the step width of the step bunches on the surface of the grown single crystal SiC is on the order of 100 μm, and the step height is set to the minimum unit of half the height of the crystal unit cell. Can be controlled to 1 / cm 2 or less. As a result, it is possible to produce a high-quality single crystal silicon carbide that is flat and has few defects.

以下、本発明の実施形態を図面に基づいて説明する。
まず、本実施形態を実施するための熱処理装置の一例を説明する。
図1は、本実施形態の単結晶SiC成長方法を実施するための熱処理装置の一例を示す断面概略図である。
図1において、熱処理装置1は、本加熱室2と、予備加熱室3と、予備加熱室3から本加熱室2に続く前室4とで構成されている。そして、単結晶SiC基板5等が収納された密閉容器16が予備加熱室3から前室4、本加熱室2へと順次移動することで、単結晶SiC基板5等を短時間で約1400℃以上の所定の温度で加熱することができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, an example of the heat processing apparatus for implementing this embodiment is demonstrated.
FIG. 1 is a schematic cross-sectional view showing an example of a heat treatment apparatus for carrying out the single crystal SiC growth method of the present embodiment.
In FIG. 1, the heat treatment apparatus 1 includes a main heating chamber 2, a preheating chamber 3, and a front chamber 4 that extends from the preheating chamber 3 to the main heating chamber 2. Then, the hermetically sealed container 16 containing the single crystal SiC substrate 5 and the like sequentially moves from the preheating chamber 3 to the front chamber 4 and the main heating chamber 2 so that the single crystal SiC substrate 5 and the like can be moved to about 1400 ° C. in a short time. It can heat at the above predetermined temperature.

図1に示すように、熱処理装置1において、本加熱室2、予備加熱室3、前室4は連通部を有して仕切られていている。このため、各室を予め所定の圧力下に制御することが可能となる。また、各室毎にゲートバルブ7等を設けることによって、各室毎に圧力調整をすることも可能である。これによって単結晶SiC基板5等を収納した密閉容器16の移動時においても、外気に触れることなく、所定圧力下の炉内を図示しない移動手段によって移動させることができるため、不純物の混入等を抑制することができる。   As shown in FIG. 1, in the heat treatment apparatus 1, the main heating chamber 2, the preheating chamber 3, and the front chamber 4 have a communication portion and are partitioned. For this reason, it becomes possible to control each chamber under a predetermined pressure in advance. Further, it is possible to adjust the pressure for each chamber by providing a gate valve 7 or the like for each chamber. As a result, even when the closed container 16 containing the single crystal SiC substrate 5 or the like is moved, the inside of the furnace under a predetermined pressure can be moved by a moving means (not shown) without touching the outside air. Can be suppressed.

予備加熱室3には、ランプ又はロッドヒータ等の加熱手段6が設けられている。本実施形態においては、ハロゲンランプ6が設けられている。約10-5Pa以下の減圧下で急速に約800℃以上にまで加熱が可能である。また、予備加熱室3と前室4との接続部分には、ゲートバルブ7が設けられており、予備加熱室3及び前室4の圧力制御を容易なものとしている。
単結晶SiC基板5等が収納された密閉容器16は、この予備加熱室3で、テーブル8に載置された状態で約800℃以上に予め加熱される。その後、予備加熱室3と前室4との圧力調整が済み次第、前室4に設けられている昇降式のサセプタ9に設置するように移動させられる。
The preheating chamber 3 is provided with heating means 6 such as a lamp or a rod heater. In the present embodiment, a halogen lamp 6 is provided. It can be rapidly heated to about 800 ° C. or higher under a reduced pressure of about 10 −5 Pa or less. In addition, a gate valve 7 is provided at a connection portion between the preheating chamber 3 and the front chamber 4, and pressure control of the preheating chamber 3 and the front chamber 4 is facilitated.
The sealed container 16 in which the single crystal SiC substrate 5 or the like is stored is preheated to about 800 ° C. or higher in the preheating chamber 3 while being placed on the table 8. After that, as soon as the pressure adjustment between the preheating chamber 3 and the front chamber 4 is completed, the preheating chamber 3 and the front chamber 4 are moved so as to be installed on the liftable susceptor 9 provided in the front chamber 4.

前室4に移動させられた密閉容器16は、一部図示している昇降式の移動手段10によって前室4から本加熱室2に移動させられる。本加熱室2は、図示しない真空ポンプによって予め約10-1Pa以下の減圧下に調整することができ、加熱ヒータ11によって約1400℃以上に加熱することが可能である。本実施形態では、予め、約10-2Pa以下、好ましくは、約10-5Pa以下の減圧下で、約1400℃以上の所定温度に設定されている。尚、前記本加熱室2内の圧力環境は、約10-2Pa以下、好ましくは、約10-5Pa以下にした後に若干の不活性ガスが導入された希薄ガス雰囲気下であってもよい。
本加熱室2内の状態をこのように設定しておき、密閉容器16を前室4から本加熱室2内に移動すると、密閉容器16を約約1400℃以上に急速に短時間で加熱することができる。
The sealed container 16 moved to the front chamber 4 is moved from the front chamber 4 to the main heating chamber 2 by the lifting / lowering moving means 10 partially shown. The main heating chamber 2 can be adjusted in advance under a reduced pressure of about 10 −1 Pa or less by a vacuum pump (not shown), and can be heated to about 1400 ° C. or more by the heater 11. In this embodiment, a predetermined temperature of about 1400 ° C. or higher is set in advance under a reduced pressure of about 10 −2 Pa or less, preferably about 10 −5 Pa or less. Note that the pressure environment in the main heating chamber 2 may be a rare gas atmosphere in which some inert gas is introduced after the pressure environment is about 10 −2 Pa or less, preferably about 10 −5 Pa or less. .
If the state in the main heating chamber 2 is set in this way, and the sealed container 16 is moved from the front chamber 4 into the main heating chamber 2, the sealed container 16 is rapidly heated to about 1400 ° C. or more rapidly in a short time. be able to.

また、本加熱室2には、加熱ヒータ11が配置されている。
移動手段10と本加熱室2との嵌合部25は、移動手段10に設けられている凸状の段付き部21と、本加熱室2に形成されている凹状の段付き部22とで構成されている。そして、移動手段10の段付き部21の各段部に設けられている図示しないOリング等のシール部材によって、本加熱室2は密閉された状態となる。
Further, a heater 11 is disposed in the main heating chamber 2.
The fitting portion 25 between the moving means 10 and the main heating chamber 2 includes a convex stepped portion 21 provided in the moving means 10 and a concave stepped portion 22 formed in the main heating chamber 2. It is configured. The main heating chamber 2 is hermetically sealed by a seal member such as an O-ring (not shown) provided at each step portion of the stepped portion 21 of the moving means 10.

加熱ヒータ11は、ベースヒータ11aと、上部ヒータ11bとで構成されている。前記ベースヒータ11aは、サセプタ9に設置されている。上部ヒータ11bは、筒状側面及びその上端を塞ぐ上面とで一体的に形成されている。このように、密閉容器16を覆うように加熱ヒータ11が配置されているため、密閉容器16を均等に加熱することが可能となる。なお、本加熱室2の加熱方式は、本実施形態に示す抵抗加熱ヒータに限定されるものではなく、例えば、高周波誘導加熱式であっても構わない。   The heater 11 includes a base heater 11a and an upper heater 11b. The base heater 11a is installed on the susceptor 9. The upper heater 11b is integrally formed with a cylindrical side surface and an upper surface that closes the upper end thereof. Thus, since the heater 11 is disposed so as to cover the sealed container 16, the sealed container 16 can be heated evenly. The heating method of the main heating chamber 2 is not limited to the resistance heater shown in the present embodiment, and may be a high frequency induction heating method, for example.

図2乃至図4を参照しつつ、密閉容器16及びその内部に配置される基板等について説明する。図2は、密閉容器16の斜視図を示しており、前記密閉容器16の上容器16aと下容器16bが離れた状態である。図3は、上面側からみた単結晶SiC基板5上のスペーサ19の配置を示す図であり、下容器16bの上面側に設けられた開口から内部をみた図である。図4は、前記密閉容器16の上容器16aと下容器16bが嵌合した状態の断面図であり、単結晶SiCを成長させるための単結晶SiC基板5やC原子供給基板17等の基板とスペーサ19の配置を示している。   With reference to FIGS. 2 to 4, the sealed container 16 and the substrate disposed therein will be described. FIG. 2 shows a perspective view of the sealed container 16, in which the upper container 16a and the lower container 16b are separated from each other. FIG. 3 is a diagram showing the arrangement of the spacers 19 on the single crystal SiC substrate 5 as seen from the upper surface side, and is a diagram showing the inside from the opening provided on the upper surface side of the lower container 16b. FIG. 4 is a cross-sectional view showing a state where the upper container 16a and the lower container 16b of the sealed container 16 are fitted, and a substrate such as the single crystal SiC substrate 5 or the C atom supply substrate 17 for growing single crystal SiC. The arrangement of the spacers 19 is shown.

図4に示された密閉容器16の内部では、支持基板24、単結晶SiC基板5、少なくとも1つのスペーサ19、C原子供給基板17、少なくとも一つのSi基板14、少なくとも一つ重石23の順に下から上へと積層されている。前記支持基板24は前記C原子供給基板17と同様な基板によって形成されている。
図4は密閉容器16に納められた単結晶SiC基板5と前記C原子供給基板17との間に、熱処理時、スペーサ19の厚みに極薄金属Si融液層18が形成される状態を示す。
この極薄金属Si融液層18のSi材料供給源として、Si粉末等が挙げられる。
金属Si融液層18のSi厚みが、前記単結晶炭化ケイ素基板5と前記C原子供給基板17との間にスペーサ19を介在する事で金属SiC融液層18の厚みを制御することができる。
In the sealed container 16 shown in FIG. 4, the support substrate 24, the single crystal SiC substrate 5, at least one spacer 19, the C atom supply substrate 17, at least one Si substrate 14, and at least one weight stone 23 are arranged in this order. Are stacked from top to bottom. The support substrate 24 is formed of a substrate similar to the C atom supply substrate 17.
FIG. 4 shows a state in which an ultrathin metal Si melt layer 18 is formed in the thickness of the spacer 19 during heat treatment between the single crystal SiC substrate 5 housed in the sealed container 16 and the C atom supply substrate 17. .
Examples of the Si material supply source of the ultrathin metal Si melt layer 18 include Si powder.
The Si thickness of the metal Si melt layer 18 can be controlled by interposing a spacer 19 between the single crystal silicon carbide substrate 5 and the C atom supply substrate 17. .

前記C原子供給基板17や支持基板24として、多結晶SiC基板を用いることができる。しかしながら、カーボン基板、ポーラスSiC基板、焼結SiC基板、非晶質SiC基板からなる群から選ばれた少なくとも一種の基板を前記C原子供給基板17や支持基板24として用いることが好ましい。
前記カーボン基板、ポーラスSiC基板、焼結SiC基板、非晶質SiC基板は、多結晶SiC基板に比べて表面エネルギーが大きく、中でもカーボン基板はC原子供給量も増やせるため成長速度を速くできる。更に、カーボン基板、ポーラスSiC基板、焼結SiC基板、非晶質SiC基板は、多結晶SiC基板に比べて加工性に極めて優れており、また安価であるため製造コストを抑制できる。
ここで、最下部側に位置する支持基板24は単結晶SiC基板5の密閉容器16からの侵食を防止するもので、単結晶SiC基板5上に液相エピタキシャル成長する単結晶SiCの品質向上に寄与する。
As the C atom supply substrate 17 and the support substrate 24, a polycrystalline SiC substrate can be used. However, it is preferable to use as the C atom supply substrate 17 or the support substrate 24 at least one substrate selected from the group consisting of a carbon substrate, a porous SiC substrate, a sintered SiC substrate, and an amorphous SiC substrate.
The carbon substrate, the porous SiC substrate, the sintered SiC substrate, and the amorphous SiC substrate have a larger surface energy than the polycrystalline SiC substrate. In particular, the carbon substrate can increase the supply amount of C atoms, so that the growth rate can be increased. Furthermore, the carbon substrate, porous SiC substrate, sintered SiC substrate, and amorphous SiC substrate are extremely excellent in workability as compared with the polycrystalline SiC substrate, and the manufacturing cost can be suppressed because they are inexpensive.
Here, the support substrate 24 located on the lowermost side prevents erosion of the single crystal SiC substrate 5 from the sealed container 16 and contributes to the quality improvement of the single crystal SiC that is liquid phase epitaxially grown on the single crystal SiC substrate 5. To do.

多結晶SiC基板を前記C原子供給基板17及び支持基板24として用いる場合、CVD法で作製されたSi半導体製造工程でダミーウェハーとして使用されるSiCから所望の大きさに切り出されたものを使用することができる。多結晶SiC基板17,24は表面が鏡面に研磨加工され、表面に付着した油類、酸化膜、金属等が洗浄等によって除去されている。多結晶SiC基板17,24には、平均粒子径が5μm以上10μmで、粒子径が略均一なものが好ましい。このため、多結晶SiCの結晶構造には特に限定はなく、3C-SiC、4H-SiC、6H-SiCのいずれをも使用することができる。   When a polycrystalline SiC substrate is used as the C atom supply substrate 17 and the support substrate 24, a SiC substrate cut into a desired size from a SiC used as a dummy wafer in a Si semiconductor manufacturing process manufactured by a CVD method is used. be able to. The surfaces of the polycrystalline SiC substrates 17 and 24 are polished to a mirror surface, and oils, oxide films, metals, etc. adhering to the surfaces are removed by washing or the like. The polycrystalline SiC substrates 17 and 24 preferably have an average particle diameter of 5 μm to 10 μm and a substantially uniform particle diameter. Therefore, there is no particular limitation on the crystal structure of polycrystalline SiC, and any of 3C—SiC, 4H—SiC, and 6H—SiC can be used.

また、前記C原子供給基板17の上に積層された少なくとも一つのSi基板14は、熱処理時における密閉容器16内のSiCの昇華、Siの蒸発を制御するために設けられている。Si基板14を設置することによって、熱処理時に溶融昇華して密閉容器16内のSiC分圧及びSi分圧を高め、単結晶SiC基板5及びC原子供給基板17及び支持基板24、極薄金属Si融液18の昇華の防止に寄与するようになる。また、密閉容器16内の圧力を予備加熱室3や本加熱室2内の圧力よりも高くなるように調整でき、これによって、上容器16aと下容器16bとの嵌合部から常にSi蒸気を放出でき、不純物の密閉容器16内への侵入を防止できる。
このように、前記密閉容器内に不純物が混入するのを抑制すると、バッググランド5×1015/cm3の高純度の単結晶SiCを生成することが可能となる。
尚、Si基板14の数や量は、昇華の防止及び圧力調整の程度によって適宜定められる。
Further, at least one Si substrate 14 laminated on the C atom supply substrate 17 is provided to control the sublimation of SiC and the evaporation of Si in the sealed container 16 during the heat treatment. By installing the Si substrate 14, it is melted and sublimated during the heat treatment to increase the SiC partial pressure and the Si partial pressure in the sealed container 16, and the single crystal SiC substrate 5, the C atom supply substrate 17, the support substrate 24, and the ultrathin metal Si This contributes to prevention of sublimation of the melt 18. In addition, the pressure in the sealed container 16 can be adjusted to be higher than the pressure in the preheating chamber 3 and the main heating chamber 2, so that Si vapor can always be supplied from the fitting portion between the upper container 16a and the lower container 16b. It is possible to release the impurities and prevent the impurities from entering the sealed container 16.
Thus, if impurities are prevented from being mixed into the sealed container, single-crystal SiC having a high purity of 5 × 10 15 / cm 3 can be produced.
The number and amount of the Si substrates 14 are appropriately determined depending on the degree of sublimation prevention and pressure adjustment.

前記単結晶SiC基板5と前記C原子供給基板17との間に、約50μm以下の範囲の所定の厚みのスペーサ19を設置する。それによって、前記単結晶炭化ケイ素基板5と前記C原子供給基板17との間に介在する金属SiC融液層18の厚みを制御することができる。前記スペーサ19によって、単結晶SiCの成長過程で金属SiC融液層18の厚みを一定に保つ事ができる。
少なくとも1箇所、好ましくは3箇所に略同じ厚みのスペーサ19を設置する。それによって、前記単結晶炭化ケイ素基板5と前記C原子供給基板17との間に介在する金属シリコン融液層18の厚みを略均一にすることができる。それによって、得られた成長膜の厚さを成長面全面に亘って均一にする事ができる。
Between the single crystal SiC substrate 5 and the C atom supply substrate 17, a spacer 19 having a predetermined thickness in a range of about 50 μm or less is provided. Thereby, the thickness of the metal SiC melt layer 18 interposed between the single crystal silicon carbide substrate 5 and the C atom supply substrate 17 can be controlled. The spacer 19 makes it possible to keep the thickness of the metal SiC melt layer 18 constant during the growth of single crystal SiC.
Spacers 19 having substantially the same thickness are installed at least at one place, preferably at three places. Thereby, the thickness of the metal silicon melt layer 18 interposed between the single crystal silicon carbide substrate 5 and the C atom supply substrate 17 can be made substantially uniform. Thereby, the thickness of the obtained growth film can be made uniform over the entire growth surface.

前記スペーサ19の数は、前記単結晶炭化ケイ素基板5と前記C原子供給基板17等の大きさに合わせて適宜定められる。前記スペーサ19の形状に関して、前記単結晶炭化ケイ素基板5と前記C原子供給基板17との距離を単結晶SiCの成長過程で一定に保つ事ができるものであれば、円柱形のもの、直方体等種々の形状が適用され得る。円柱形の場合、前記スペーサ19の直径は前記単結晶炭化ケイ素基板5と前記C原子供給基板17等の大きさに合わせて適宜定められる。本実施形態においては約3mmΦ程度である。   The number of the spacers 19 is appropriately determined according to the size of the single crystal silicon carbide substrate 5, the C atom supply substrate 17, and the like. As for the shape of the spacer 19, as long as the distance between the single crystal silicon carbide substrate 5 and the C atom supply substrate 17 can be kept constant during the growth process of the single crystal SiC, a cylindrical shape, a rectangular parallelepiped, etc. Various shapes can be applied. In the case of a cylindrical shape, the diameter of the spacer 19 is appropriately determined according to the size of the single crystal silicon carbide substrate 5, the C atom supply substrate 17, and the like. In this embodiment, it is about 3 mmΦ.

前記スペーサ19は、C原子供給基板17等を単結晶SiC基板5から持ち上げる為にC原子供給基板17等の下に挟み込まれている。
また、前記スペーサ19は、前記金属Si融液層18側に突出するように、前記C原子供給基板17及び前記単結晶SiC基板5のうち少なくとも一方に、機械加工により設けられた凸部であてもよい。
更にまた、前記スペーサ19は、前記金属Si融液層18側に突出するように、前記C原子供給基板17及び前記単結晶SiC基板5のうち少なくとも一方に、固相反応によって接着された凸部であってもよい。
The spacer 19 is sandwiched under the C atom supply substrate 17 and the like in order to lift the C atom supply substrate 17 and the like from the single crystal SiC substrate 5.
Further, the spacer 19 is a convex portion provided by machining on at least one of the C atom supply substrate 17 and the single crystal SiC substrate 5 so as to protrude toward the metal Si melt layer 18 side. Also good.
Furthermore, the spacer 19 is a convex portion bonded to at least one of the C atom supply substrate 17 and the single crystal SiC substrate 5 by a solid phase reaction so as to protrude toward the metal Si melt layer 18 side. It may be.

前記Si基板14の上に積層された少なくとも重石23は必要に応じて設けられる。前記重石23は前記C原子供給基板17の上面全体に亘り等しく重力による適当な加圧を行なうために設けられている。重石23の数及び重量は加圧の程度によって、適宜定められる。前記加圧によって、前記単結晶炭化ケイ素基板5と前記C原子供給基板17との間に介在する金属SiC融液層18の厚みをスペーサの厚みで制御することができる。尚、前記C原子供給基板17の上面への適当な加圧方法はこれに限られない。   At least the weight 23 laminated on the Si substrate 14 is provided as necessary. The cobble stone 23 is provided to perform an appropriate pressurization by gravity equally over the entire upper surface of the C atom supply substrate 17. The number and weight of the weights 23 are appropriately determined depending on the degree of pressurization. By the pressurization, the thickness of the metal SiC melt layer 18 interposed between the single crystal silicon carbide substrate 5 and the C atom supply substrate 17 can be controlled by the thickness of the spacer. Note that an appropriate method of pressurizing the upper surface of the C atom supply substrate 17 is not limited thereto.

上記前記Si材料供給源の厚み、スペーサ19の厚み、前記C原子供給基板17の上面への適当な加圧等を調整することにより、単結晶炭化ケイ素基板5と前記C原子供給基板17との間に介在する金属シリコン融液層18の厚みをスペーサの厚みで制御することができる。
さらに、前記Si材料供給源の厚み、スペーサ19の厚み、前記C原子供給基板17の上面への適当な加圧等を調整して、液相エピタキシャル成長で得られる単結晶SiCの所望の厚みより厚い金属Si融液層18により液相エピタキシャル成長を行うようにすることが好ましい。
By adjusting the thickness of the Si material supply source, the thickness of the spacer 19, the appropriate pressure on the upper surface of the C atom supply substrate 17, etc., the single crystal silicon carbide substrate 5 and the C atom supply substrate 17 The thickness of the metal silicon melt layer 18 interposed therebetween can be controlled by the thickness of the spacer.
Further, by adjusting the thickness of the Si material supply source, the thickness of the spacer 19, the appropriate pressure on the upper surface of the C atom supply substrate 17, etc., it is thicker than the desired thickness of single crystal SiC obtained by liquid phase epitaxial growth It is preferable to perform liquid phase epitaxial growth with the metal Si melt layer 18.

前記C原子供給基板17から金属Si融液層18へ溶け出すSiC分子は金属Si融液層18の厚みが厚いほど水平方向に拡散できる。
前記単結晶SiC基板5と前記C原子供給基板17との間に介在する金属Si融液層18の厚みが、成長させる単結晶SiCの所望の厚みより厚いと、好ましくは、1400℃以上に加熱する所定の温度と雰囲気の条件の範囲内において可能な限り厚いと、
前記種結晶となる単結晶SiC基板5表面上に、単結晶SiCが液相エピタキシャル成長する均一性が飛躍的に向上し、更に、液相エピタキシャル成長で得られる単結晶SiCの厚みが加熱室の温度・時間・雰囲気圧力で制御できる。
そのため、上記金属Si融液層18の厚みの制御方法によって、成長した単結晶炭化ケイ素の表面のステツプバンチのテラス巾を100μmオーダーに、ステップ高さを結晶単位格子の半分の高さを最小単位とする高さに、マイクロパイプ欠陥の密度を1/cm2以下に制御することができる。その結果、平坦で欠陥の少ない高品質の単結晶炭化ケイ素が製作可能となる。
尚、前記テラスとは複数のステップの中で広い幅を有するステップを指している。
The SiC molecules dissolved from the C atom supply substrate 17 into the metal Si melt layer 18 can diffuse in the horizontal direction as the thickness of the metal Si melt layer 18 increases.
When the thickness of the metal Si melt layer 18 interposed between the single crystal SiC substrate 5 and the C atom supply substrate 17 is larger than the desired thickness of the single crystal SiC to be grown, it is preferably heated to 1400 ° C. or higher. When it is as thick as possible within the prescribed temperature and atmosphere conditions,
On the surface of the single crystal SiC substrate 5 serving as the seed crystal, the uniformity of the single crystal SiC growing in the liquid phase epitaxially improves dramatically, and the thickness of the single crystal SiC obtained by the liquid phase epitaxial growth depends on the temperature of the heating chamber. Can be controlled by time and atmospheric pressure.
Therefore, according to the method of controlling the thickness of the metal Si melt layer 18, the step bunch terrace width on the surface of the grown single crystal silicon carbide is set to the order of 100 μm, and the step height is the minimum unit of the half height of the crystal unit cell. The density of micropipe defects can be controlled to 1 / cm 2 or less. As a result, it is possible to produce a high-quality single crystal silicon carbide that is flat and has few defects.
The terrace refers to a step having a wide width among a plurality of steps.

また、このような本実施形態に係る単結晶SiC成長方法によって得た単結晶SiCは、結晶欠陥等が少ないために、発光ダイオードや、各種半導体ダイオード、電子デバイスとして使用することが可能となる。加えて、結晶の成長が種結晶及びCの供給源の結晶の温度差に依存せず、種結晶及びCの供給源の結晶の表面エネルギーに依存することから、処理炉内の厳密な温度制御の必要性がなくなり、製造コストの大幅な低減化が可能となる。さらに、種結晶となる単結晶SiC及びC原子供給基板との間隔が非常に小さことから、熱処理時の熱対流を抑制することができる。また種結晶となる単結晶SiC及びC原子供給基板との間に温度差が形成されにくいことから、熱平衡状態で熱処理することができる。   In addition, since single crystal SiC obtained by the single crystal SiC growth method according to the present embodiment has few crystal defects and the like, it can be used as a light emitting diode, various semiconductor diodes, and electronic devices. In addition, strict temperature control in the processing furnace because crystal growth does not depend on the temperature difference between the seed crystal and the C source crystal, but depends on the surface energy of the seed crystal and the C source crystal. Therefore, the manufacturing cost can be greatly reduced. Furthermore, since the distance from the single crystal SiC and C atom supply substrate to be the seed crystal is very small, thermal convection during heat treatment can be suppressed. In addition, since a temperature difference is hardly formed between the single crystal SiC and C atom supply substrate to be a seed crystal, the heat treatment can be performed in a thermal equilibrium state.

なお、本実施形態では、種結晶として、4H-SiCを用いたが、6H-SiCを使用することも可能である。更に、本実施形態では、種結晶として、(0001)Si面を用いたが、(0001)C面、(11-20)などのその他の面方位のものを使用することも可能である。
また、本発明に係る単結晶SiCは、種結晶となる単結晶SiC及びC原子供給基板の大きさを適宜選択することによって形成される単結晶SiCの大きさを制御することができる。また、形成される単結晶SiCと種結晶との間に歪みが形成されることもないため、非常に平滑な表面の単結晶SiCとできる。そのため、表面の改質膜として適用することも可能である。
In this embodiment, 4H—SiC is used as a seed crystal, but 6H—SiC can also be used. Furthermore, in the present embodiment, the (0001) Si plane is used as the seed crystal, but it is also possible to use other plane orientations such as the (0001) C plane and (11-20).
In addition, the single crystal SiC according to the present invention can control the size of the single crystal SiC formed as a seed crystal by appropriately selecting the size of the single crystal SiC and the C atom supply substrate. In addition, since no distortion is formed between the single crystal SiC to be formed and the seed crystal, single crystal SiC having a very smooth surface can be obtained. Therefore, it can be applied as a modified film on the surface.

本実施形態を実施するための熱処理装置の一例を示す断面概略図Schematic sectional view showing an example of a heat treatment apparatus for carrying out the present embodiment 図1の熱処理装置における密閉容器の構成を示す図The figure which shows the structure of the airtight container in the heat processing apparatus of FIG. 図2の密閉容器内の単結晶SiC基板上のスペーサの配置の例を示す平面図FIG. 2 is a plan view showing an example of spacer arrangement on a single crystal SiC substrate in the sealed container of FIG. 図2の密閉容器内の単結晶SiC基板上のスペーサやSiC基板等の配置の例を示す断面図Sectional drawing which shows the example of arrangement | positioning of the spacer, SiC substrate, etc. on the single crystal SiC substrate in the airtight container of FIG.

符号の説明Explanation of symbols

1 熱処理装置
2 本加熱室
3 予備加熱室
4 前室
5 単結晶SiC基板
6 ハロゲンランプ
7 ゲートバルブ
8 テーブル
9 サセプタ
10 移動手段
11 加熱ヒータ
14 高温時は溶融Si(低温時は金属 Si基板)
16 密閉容器
17 C原子供給基板
18 高温時はSi融液層(低温時はSi粉末)
19 スペーサ
23 重石
24 支持基板
25 嵌合部
1 Heat treatment equipment
2 heating chambers
3 Preheating chamber
4 Front room
5 Single crystal SiC substrate
6 Halogen lamp
7 Gate valve
8 tables
9 Susceptor
10 Means of transportation
11 Heating heater
14 Molten Si at high temperature (Metal Si substrate at low temperature)
16 Airtight container
17 C atom supply substrate
18 Si melt layer at high temperature (Si powder at low temperature)
19 Spacer
23 Cobblestone
24 Support substrate
25 Mating part

Claims (7)

種結晶となる単結晶炭化ケイ素基板上に、炭素原子を供給するための炭素原子供給基板を重ね、前記単結晶炭化ケイ素基板と前記炭素原子を供給基板との間に極薄金属シリコン融液層を介在させ、約1400℃以上の所定の温度で所定の時間加熱処理を行うことによって前記種結晶となる単結晶炭化ケイ素基板上に単結晶炭化ケイ素を液相エピタキシャル成長させる単結晶炭化ケイ素の成長方法であって、
前記炭素原子供給基板として多結晶炭化ケイ素基板を除く炭素原子供給基板を用いる単結晶炭化ケイ素成長方法。
A carbon atom supply substrate for supplying carbon atoms is stacked on a single crystal silicon carbide substrate to be a seed crystal, and an ultrathin metal silicon melt layer is provided between the single crystal silicon carbide substrate and the carbon atom supply substrate. A method of growing single crystal silicon carbide by liquid phase epitaxial growth of single crystal silicon carbide on the single crystal silicon carbide substrate serving as the seed crystal by performing heat treatment for a predetermined time at a predetermined temperature of about 1400 ° C. Because
A single crystal silicon carbide growth method using a carbon atom supply substrate excluding a polycrystalline silicon carbide substrate as the carbon atom supply substrate.
前記炭素原子供給基板として、カーボン基板、ポーラス炭化ケイ素基板、焼結炭化ケイ素基板、非晶質炭化ケイ素C基板からなる群から選ばれた少なくとも一種の基板を用いる請求項1に記載の単結晶炭化ケイ素成長方法。   The single crystal carbonization according to claim 1, wherein at least one substrate selected from the group consisting of a carbon substrate, a porous silicon carbide substrate, a sintered silicon carbide substrate, and an amorphous silicon carbide C substrate is used as the carbon atom supply substrate. Silicon growth method. 種結晶となる単結晶炭化ケイ素基板の上に、炭素原子を供給するための炭素原子供給基板を重ね、前記単結晶炭化ケイ素基板と前記炭素原子供給基板との間に極薄金属シリコン融液層を介在させ、約1400℃以上の所定の温度で所定の時間加熱処理を行うことによって前記種結晶となる単結晶炭化ケイ素基板上に単結晶炭化ケイ素を液相エピタキシャル成長させる単結晶炭化ケイ素の成長方法であって、
単結晶炭化ケイ素基板と多結晶炭化ケイ素基板との間に約50μm以下の厚さのスペーサを設け、
前記単結晶炭化ケイ素基板と前記炭素原子供給基板との間に成長される単結晶炭化ケイ素の厚みを制御する単結晶炭化ケイ素の成長方法。
A carbon atom supply substrate for supplying carbon atoms is stacked on a single crystal silicon carbide substrate to be a seed crystal, and an ultrathin metal silicon melt layer is disposed between the single crystal silicon carbide substrate and the carbon atom supply substrate. A method of growing single crystal silicon carbide by liquid phase epitaxial growth of single crystal silicon carbide on the single crystal silicon carbide substrate serving as the seed crystal by performing heat treatment for a predetermined time at a predetermined temperature of about 1400 ° C. Because
A spacer having a thickness of about 50 μm or less is provided between the single crystal silicon carbide substrate and the polycrystalline silicon carbide substrate,
A method for growing a single crystal silicon carbide, wherein the thickness of the single crystal silicon carbide grown between the single crystal silicon carbide substrate and the carbon atom supply substrate is controlled.
少なくとも1箇所にスペーサを設置して、前記単結晶炭化ケイ素基板と前記炭素原子供給基板との間の厚みを略均一にする請求項3に記載の単結晶炭化ケイ素の成長方法。   The method for growing single crystal silicon carbide according to claim 3, wherein a spacer is provided in at least one place so that the thickness between the single crystal silicon carbide substrate and the carbon atom supply substrate is substantially uniform. 前記スペーサは、前記金属シリコン融液層側に突出するように、前記炭素原子供給基板及び前記単結晶炭化ケイ素基板のうち少なくとも一方に、機械加工により設けられた凸部である請求項3乃至4のいずれかに記載の単結晶炭化ケイ素の成長方法。   The spacer is a protrusion provided by machining on at least one of the carbon atom supply substrate and the single crystal silicon carbide substrate so as to protrude toward the metal silicon melt layer side. The method for growing single crystal silicon carbide according to any one of the above. 前記スペーサは、前記金属シリコン融液層側に突出するように、前記炭素原子供給基板及び前記単結晶炭化ケイ素基板のうち少なくとも一方に、固相反応によって接着された凸部である請求項3乃至4のいずれかに記載の単結晶炭化ケイ素の成長方法。   The spacer is a protrusion bonded to at least one of the carbon atom supply substrate and the single crystal silicon carbide substrate by a solid phase reaction so as to protrude toward the metal silicon melt layer side. 5. The method for growing single crystal silicon carbide according to any one of 4 above. 前記炭素原子供給基板の上面に適当な加圧を行なって前記単結晶炭化ケイ素基板と前記炭素原子供給基板との間に成長される単結晶炭化ケイ素の厚みを制御する請求項1乃至6のいずれかに記載の単結晶炭化ケイ素の成長方法。


7. The thickness of the single crystal silicon carbide grown between the single crystal silicon carbide substrate and the carbon atom supply substrate is controlled by applying an appropriate pressure to the upper surface of the carbon atom supply substrate. A method for growing single crystal silicon carbide according to claim 1.


JP2003360477A 2003-10-21 2003-10-21 Single crystal silicon carbide growth method Expired - Lifetime JP4482642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003360477A JP4482642B2 (en) 2003-10-21 2003-10-21 Single crystal silicon carbide growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360477A JP4482642B2 (en) 2003-10-21 2003-10-21 Single crystal silicon carbide growth method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009067377A Division JP5164121B2 (en) 2009-03-19 2009-03-19 Single crystal silicon carbide growth method

Publications (2)

Publication Number Publication Date
JP2005126249A true JP2005126249A (en) 2005-05-19
JP4482642B2 JP4482642B2 (en) 2010-06-16

Family

ID=34640780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360477A Expired - Lifetime JP4482642B2 (en) 2003-10-21 2003-10-21 Single crystal silicon carbide growth method

Country Status (1)

Country Link
JP (1) JP4482642B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013914A1 (en) * 2007-07-26 2009-01-29 Ecotron Co., Ltd. Sic epitaxial substrate and process for producing the same
JP2009029656A (en) * 2007-07-26 2009-02-12 Ecotron:Kk METHOD FOR PRODUCING SiC EPITAXIAL FILM AND METHOD FOR FORMING SPACER
JP2009155201A (en) * 2009-03-19 2009-07-16 Kwansei Gakuin Method for growing single crystal silicon carbide
JP2010228937A (en) * 2009-03-26 2010-10-14 Mitsui Eng & Shipbuild Co Ltd Raw material for manufacturing single crystal silicon carbide
WO2010125674A1 (en) * 2009-04-30 2010-11-04 株式会社エコトロン METHOD FOR FABRICATING SiC SUBSTRATE
WO2014020694A1 (en) * 2012-07-31 2014-02-06 株式会社エコトロン Single crystal silicon carbide substrate and method for manufacturing same
JP2017071519A (en) * 2015-10-06 2017-04-13 東洋炭素株式会社 Liquid-phase epitaxial growth method and crucible used therefor
CN109072478A (en) * 2016-04-28 2018-12-21 学校法人关西学院 The preparation method of vapor phase epitaxy method and the substrate with epitaxial layer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013914A1 (en) * 2007-07-26 2009-01-29 Ecotron Co., Ltd. Sic epitaxial substrate and process for producing the same
JP2009029656A (en) * 2007-07-26 2009-02-12 Ecotron:Kk METHOD FOR PRODUCING SiC EPITAXIAL FILM AND METHOD FOR FORMING SPACER
EP2385159A1 (en) 2007-07-26 2011-11-09 Ecotron Co., Ltd. Method for producing sic epitaxial substrate
JP5130468B2 (en) * 2007-07-26 2013-01-30 株式会社エコトロン Method for manufacturing SiC epitaxial substrate
JP2009155201A (en) * 2009-03-19 2009-07-16 Kwansei Gakuin Method for growing single crystal silicon carbide
JP2010228937A (en) * 2009-03-26 2010-10-14 Mitsui Eng & Shipbuild Co Ltd Raw material for manufacturing single crystal silicon carbide
WO2010125674A1 (en) * 2009-04-30 2010-11-04 株式会社エコトロン METHOD FOR FABRICATING SiC SUBSTRATE
JP5339239B2 (en) * 2009-04-30 2013-11-13 株式会社エコトロン Method for producing SiC substrate
WO2014020694A1 (en) * 2012-07-31 2014-02-06 株式会社エコトロン Single crystal silicon carbide substrate and method for manufacturing same
JP2017071519A (en) * 2015-10-06 2017-04-13 東洋炭素株式会社 Liquid-phase epitaxial growth method and crucible used therefor
CN109072478A (en) * 2016-04-28 2018-12-21 学校法人关西学院 The preparation method of vapor phase epitaxy method and the substrate with epitaxial layer
CN109072478B (en) * 2016-04-28 2021-12-03 学校法人关西学院 Vapor phase epitaxial growth method and preparation method of substrate with epitaxial layer

Also Published As

Publication number Publication date
JP4482642B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP7244116B2 (en) nitride semiconductor substrate
US7678195B2 (en) Seeded growth process for preparing aluminum nitride single crystals
JP4593099B2 (en) Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor
JP2020169120A (en) SiC container
JP4848495B2 (en) Single crystal silicon carbide and method for producing the same
JP2014221711A (en) Micropipe-free silicon carbide and method for producing the same
JP4431647B2 (en) Method for improving surface of single crystal silicon carbide substrate and method for growing single crystal silicon carbide
JP4431643B2 (en) Single crystal silicon carbide growth method
JP3741283B2 (en) Heat treatment apparatus and heat treatment method using the same
JP4840841B2 (en) Method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate produced by this method
JP4482642B2 (en) Single crystal silicon carbide growth method
TW201314839A (en) Semiconductor wafer manufacturing method, and semiconductor wafer
JP5164121B2 (en) Single crystal silicon carbide growth method
KR20230169109A (en) How to Grow High-Quality Single Crystal Silicon Carbide
JP4418879B2 (en) Heat treatment apparatus and heat treatment method
JP2006041544A5 (en)
JP2019156708A (en) Production method and production device of silicon carbide single crystal
WO2004088734A1 (en) Method of heat treatment and heat treatment apparatus
JP5545268B2 (en) SiC multichip substrate
KR20190134325A (en) Silicon based melting composition and manufacturing method for silicon carbide single crystal using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100218

R150 Certificate of patent or registration of utility model

Ref document number: 4482642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160402

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term