WO2014020694A1 - Single crystal silicon carbide substrate and method for manufacturing same - Google Patents

Single crystal silicon carbide substrate and method for manufacturing same Download PDF

Info

Publication number
WO2014020694A1
WO2014020694A1 PCT/JP2012/069442 JP2012069442W WO2014020694A1 WO 2014020694 A1 WO2014020694 A1 WO 2014020694A1 JP 2012069442 W JP2012069442 W JP 2012069442W WO 2014020694 A1 WO2014020694 A1 WO 2014020694A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
crystal silicon
single crystal
substrate
carbide substrate
Prior art date
Application number
PCT/JP2012/069442
Other languages
French (fr)
Japanese (ja)
Inventor
中村 信彦
Original Assignee
株式会社エコトロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エコトロン filed Critical 株式会社エコトロン
Priority to PCT/JP2012/069442 priority Critical patent/WO2014020694A1/en
Priority to JP2014527866A priority patent/JPWO2014020694A1/en
Publication of WO2014020694A1 publication Critical patent/WO2014020694A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide

Definitions

  • the present invention relates to a single crystal silicon carbide substrate and a manufacturing method thereof, and more particularly to a single crystal silicon carbide substrate using a metastable solvent epitaxial method and a manufacturing method thereof.
  • MSE method Metal Organic Chemical Vapor Deposition
  • FIG. 5 schematically shows the main part of a single-crystal silicon carbide growth apparatus used in the conventional MSE method.
  • a susceptor 1 a spacer 2, a raw material substrate (carbon atom supply substrate) 3, a spacer 4, a seed substrate 5, a spacer 6, and a carbon barite 7 a are arranged in this order from the bottom in a heating furnace (not shown).
  • a Si (silicon) wafer (not shown) is disposed between the raw material substrate 3 and the seed substrate 5, and when heated to a melting point or higher, it melts to form a Si melt layer.
  • 5a is the surface (C surface) of the seed substrate 5 on the side facing the carbon barite 7a
  • 5b is the surface (Si surface) of the seed substrate 5 on which single crystal silicon carbide is grown.
  • the raw material substrate 3 serves as a carbon atom supply substrate and supplies carbon atoms to the Si melt during the growth of single crystal silicon carbide.
  • seed substrate 5 grows single crystal silicon carbide formed by Si melt and carbon atoms on Si surface 5b.
  • the carbon barite 7a keeps the distance between the raw material substrate 3 and the seed substrate 5 uniform by its weight.
  • the spacer 4 disposed between the raw material substrate 3 and the seed substrate 5 controls the thickness of the single crystal silicon carbide that grows on the Si surface 5 b of the seed substrate 5.
  • the temperature in the heating furnace is set to a predetermined temperature (silicon carbide) higher than the Si melting point (about 1400 ° C.). The temperature is raised to the growth temperature. In this temperature raising process, when the temperature exceeds the Si melting point, the Si wafer is melted to become a Si melt.
  • the Si in the container is removed. Deplete. Thereafter, the temperature is lowered, and seed substrate 5 on which single crystal silicon carbide is grown, that is, single crystal silicon carbide substrate is taken out.
  • the taken out single crystal silicon carbide substrate is pasted or fixed to a processing jig in a later step (hereinafter, this step is referred to as “sticking step”). Since the seed substrate 5 is warped, a method is often used in which a load is applied to the seed substrate 5 to correct the shape and the shape is fixed to a processing jig using vacuum suction or an adhesive. .
  • the warp was 91.1 ⁇ m. It turned out to be very big. If such a large warp has occurred, the probability of cracking in the above-described attaching step becomes extremely high.
  • the present inventor considered that these silicon carbide crystals were formed by supplying a raw material by a gas phase, and Si in the atmosphere immediately above the C-plane of the seed substrate. It was speculated that the partial pressure of C vapor and the temperature at the time of depletion of Si melt were related.
  • the present inventor involves the formation of the ungrown portion as described above when the Si raw material and the C raw material are supplied at a ratio close to 1: 1 in the space immediately above the C surface of the seed substrate. Therefore, it was thought that silicon carbide could grow and the occurrence of C-plane roughness could be suppressed, and the inventors came up with the idea of using silicon carbide weight stone instead of conventional carbon weight stone.
  • the invention according to claim 3 2.
  • the surface facing the seed substrate is formed of silicon carbide, even if it is not silicon carbide heavy stone, the occurrence of roughening of the C surface can be extremely reduced, and the warpage that occurs is also caused. It can be made extremely small.
  • the seed in the subsequent step of attaching to the jig is a seed.
  • substrate is fully suppressed.
  • FIG. 1 is a diagram schematically showing a main part of a single crystal silicon carbide growth apparatus used in the method for manufacturing a single crystal silicon carbide substrate according to the first embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing main parts of a single crystal silicon carbide growth apparatus used in the method for manufacturing a single crystal silicon carbide substrate according to the second embodiment of the present invention.
  • each member was placed as shown in FIG. 1 and then placed in a heating furnace (not shown). A Si wafer was disposed between the raw material substrate 3 and the seed substrate 5.
  • the temperature was lowered from 1950 ° C. to room temperature at a rate of 5 ° C./min, and the single crystal silicon carbide substrate on which single crystal silicon carbide was grown on the seed substrate 5 was taken out and collected.
  • the warpage of this seed substrate was 21.1 ⁇ m. This value is much smaller than the warpage of 91.1 ⁇ m in the seed substrate of the single crystal silicon carbide substrate manufactured by the conventional MSE method described above.
  • the degree of warping is sufficiently small compared to a warp size of 30 ⁇ m, which is generally said to have a higher probability of cracking the seed substrate in the pasting process to the jig in the subsequent process. When pasted on, the probability of cracking is greatly reduced.

Abstract

Provided are: a method for manufacturing a single crystal silicon carbide substrate, whereby generation of breakage of a single crystal silicon carbide substrate in a bonding step in a post process is suppressed by sufficiently suppressing warpage generated in a seed substrate at the time of manufacturing the single crystal silicon carbide substrate using an MSE method; and a single crystal silicon carbide substrate. Disclosed is a method for manufacturing a single crystal silicon carbide substrate using metastable solvent epitaxy, specifically: a method for manufacturing a single crystal silicon carbide substrate using, as a weight, a weight having the surface facing a seed substrate formed of silicon carbide; and a method for manufacturing a single crystal silicon carbide substrate using, as a weight, a weight formed of silicon carbide or a weight having a silicon carbide layer formed at least on a surface on the side facing the seed substrate. Also disclosed is a single crystal silicon carbide substrate manufactured by means of the method for manufacturing a single crystal silicon carbide substrate.

Description

単結晶炭化珪素基板およびその作製方法Single crystal silicon carbide substrate and manufacturing method thereof
 本発明は、単結晶炭化珪素基板およびその作製方法に関し、詳しくは、準安定溶媒エピタキシャル法を用いた単結晶炭化珪素基板およびその作製方法に関する。 The present invention relates to a single crystal silicon carbide substrate and a manufacturing method thereof, and more particularly to a single crystal silicon carbide substrate using a metastable solvent epitaxial method and a manufacturing method thereof.
 炭化珪素半導体デバイスを作製するためには、単結晶炭化珪素からなる炭化珪素半導体薄膜を作製する必要があり、緻密な温度制御を行うことなく、品質の高い炭化珪素半導体薄膜を作製することができる炭化珪素半導体薄膜の作製方法として、準安定溶媒エピタキシャル法(以下、「MSE法」とも言う)(Metastable Solvent Epitaxy)が提案されている(例えば、特許文献1)。 In order to produce a silicon carbide semiconductor device, it is necessary to produce a silicon carbide semiconductor thin film made of single crystal silicon carbide, and a high-quality silicon carbide semiconductor thin film can be produced without precise temperature control. As a method for producing a silicon carbide semiconductor thin film, a metastable solvent epitaxial method (hereinafter also referred to as “MSE method”) (Metastable Solvent Epitaxy) has been proposed (for example, Patent Document 1).
 図5に、従来のMSE法に用いられる単結晶炭化珪素成長装置の主要部を模式的に示す。図5に示すように、図示しない加熱炉内に、下から順に、サセプタ1、スペーサ2、原料基板(炭素原子供給基板)3、スペーサ4、種基板5、スペーサ6、カーボン重石7aが配置されている。そして、原料基板3と種基板5との間には、図示しないSi(珪素)ウエハが配置されており、融点以上に加熱されると、溶融してSi融液層を形成する。なお、5aは種基板5のカーボン重石7aと対向する側の面(C面)であり、5bは種基板5の単結晶炭化珪素が成長する側の面(Si面)である。 FIG. 5 schematically shows the main part of a single-crystal silicon carbide growth apparatus used in the conventional MSE method. As shown in FIG. 5, a susceptor 1, a spacer 2, a raw material substrate (carbon atom supply substrate) 3, a spacer 4, a seed substrate 5, a spacer 6, and a carbon barite 7 a are arranged in this order from the bottom in a heating furnace (not shown). ing. A Si (silicon) wafer (not shown) is disposed between the raw material substrate 3 and the seed substrate 5, and when heated to a melting point or higher, it melts to form a Si melt layer. In addition, 5a is the surface (C surface) of the seed substrate 5 on the side facing the carbon barite 7a, and 5b is the surface (Si surface) of the seed substrate 5 on which single crystal silicon carbide is grown.
 ここで、原料基板3は、炭素原子供給基板として、単結晶炭化珪素の成長時、Si融液に炭素原子を供給する。そして、種基板5は、Si融液および炭素原子により形成される単結晶炭化珪素をSi面5bに成長させる。また、カーボン重石7aは、単結晶炭化珪素の成長に際して、その加重により原料基板3と種基板5との間隔を均一に保持する。また、原料基板3と種基板5との間に配置されたスペーサ4は、種基板5のSi面5bに成長する単結晶炭化珪素の厚みをコントロールする。 Here, the raw material substrate 3 serves as a carbon atom supply substrate and supplies carbon atoms to the Si melt during the growth of single crystal silicon carbide. Then, seed substrate 5 grows single crystal silicon carbide formed by Si melt and carbon atoms on Si surface 5b. Further, when the single crystal silicon carbide is grown, the carbon barite 7a keeps the distance between the raw material substrate 3 and the seed substrate 5 uniform by its weight. The spacer 4 disposed between the raw material substrate 3 and the seed substrate 5 controls the thickness of the single crystal silicon carbide that grows on the Si surface 5 b of the seed substrate 5.
 MSE法による単結晶炭化珪素の成長は、高真空雰囲気下で行われ、はじめに、図示しない加熱手段を用いて加熱炉内の温度をSi融点(約1400℃)よりも高い所定の温度(炭化珪素成長温度)まで昇温する。この昇温過程において、温度がSi融点を超えるとSiウエハが溶融してSi融液となる。次いで、この温度で、所定の時間保持して、種基板5上に単結晶炭化珪素を所定の厚みまで成長させると共に、余剰のSi融液を蒸発させて除去することにより、容器内のSiを枯渇させる。その後、温度を下げて、単結晶炭化珪素が成長した種基板5、即ち、単結晶炭化珪素基板を取り出す。 Growth of single crystal silicon carbide by the MSE method is performed in a high vacuum atmosphere. First, using a heating means (not shown), the temperature in the heating furnace is set to a predetermined temperature (silicon carbide) higher than the Si melting point (about 1400 ° C.). The temperature is raised to the growth temperature. In this temperature raising process, when the temperature exceeds the Si melting point, the Si wafer is melted to become a Si melt. Next, by holding at this temperature for a predetermined time to grow single crystal silicon carbide to a predetermined thickness on the seed substrate 5, by removing the excess Si melt by evaporating, the Si in the container is removed. Deplete. Thereafter, the temperature is lowered, and seed substrate 5 on which single crystal silicon carbide is grown, that is, single crystal silicon carbide substrate is taken out.
特開2005-126249号公報JP 2005-126249 A
 取り出された単結晶炭化珪素基板は、後工程で加工用の治具に貼り付けられたり固定されたりする(以下、この工程を「貼り付け工程」という)が、取り出された単結晶炭化珪素基板の種基板5に反りが生じているため、種基板5に荷重をかけて形状を矯正した上で、真空吸着や接着剤を用いて加工用の治具に固定する方法が多く用いられている。 The taken out single crystal silicon carbide substrate is pasted or fixed to a processing jig in a later step (hereinafter, this step is referred to as “sticking step”). Since the seed substrate 5 is warped, a method is often used in which a load is applied to the seed substrate 5 to correct the shape and the shape is fixed to a processing jig using vacuum suction or an adhesive. .
 しかしながら、従来のMSE法により単結晶炭化珪素基板を作製した場合、種基板5に生じた反りが非常に大きいため、貼り付け工程において、この単結晶炭化珪素基板が割れる確率が高かった。 However, when a single crystal silicon carbide substrate is produced by the conventional MSE method, the warp generated in the seed substrate 5 is very large, and thus there is a high probability that the single crystal silicon carbide substrate will break in the attaching step.
 そして、従来のMSE法により作製された単結晶炭化珪素基板について、斜入射式干渉計を用いて種基板のC面に発生した反り(平坦度)を測定した結果、反りは91.1μmであり、極めて大きいことが分かった。このような大きな反りが発生していると、上記の貼り付け工程において割れる確率が極めて高くなる。 And about the single crystal silicon carbide substrate produced by the conventional MSE method, as a result of measuring the warp (flatness) generated on the C-plane of the seed substrate using a grazing incidence interferometer, the warp was 91.1 μm. It turned out to be very big. If such a large warp has occurred, the probability of cracking in the above-described attaching step becomes extremely high.
 そこで、本発明は、MSE法を用いて単結晶炭化珪素基板を作製する際、種基板に生じる反りを十分に抑制して、後工程の貼り付け工程における単結晶炭化珪素基板の割れの発生を抑制することができる単結晶炭化珪素基板の作製方法および単結晶炭化珪素基板を提供することを課題とする。 Therefore, the present invention sufficiently suppresses the warpage generated in the seed substrate when producing a single crystal silicon carbide substrate using the MSE method, and prevents the single crystal silicon carbide substrate from cracking in the subsequent bonding process. It is an object to provide a method for manufacturing a single crystal silicon carbide substrate and a single crystal silicon carbide substrate that can be suppressed.
 本発明者は、上記課題を解決する手段について検討を進めるに当たって、まず、従来のMSE法を用いて種基板上に単結晶炭化珪素を形成した場合、何故、上記のような大きな反りが種基板に発生するのか、その原因について鋭意検討を行った。 When the present inventor proceeds to study the means for solving the above problems, first, when the single crystal silicon carbide is formed on the seed substrate using the conventional MSE method, the large warp as described above is caused by the seed substrate. We have eagerly investigated the cause of this.
 その結果、図5に示すように、この種基板5のC面5aには荒れ(C面荒れ5c)が生じていることが分かった。本発明者は、このC面荒れ5cが種基板5に大きな反りを生じさせていると推測した。 As a result, as shown in FIG. 5, it was found that the C surface 5a of the seed substrate 5 was rough (C surface roughness 5c). The inventor presumed that the C-surface roughness 5 c caused a large warp in the seed substrate 5.
 具体的には、反りを測定した前記種基板のC面を観察したところ、図6に示すように、中央部近傍の破線で囲まれた部分にC面荒れが発生していることが分かった。なお、図6に示した画像は種基板の1/4を観察した画像である。 Specifically, when the C-plane of the seed substrate where the warpage was measured was observed, as shown in FIG. 6, it was found that the C-plane roughness occurred in the portion surrounded by the broken line near the center. . The image shown in FIG. 6 is an image obtained by observing 1/4 of the seed substrate.
 そして、このC面荒れが発生している箇所の断面を観察したところ、図7に示すように、C面には、種基板領域に接して炭化珪素結晶が十分に成長しているC面成長領域と、炭化珪素結晶が十分には成長していない未成長部とが混在しており、これが、前記したC面荒れを発生させていることが分かった。 Then, when the cross section of the portion where the C-plane roughness occurs is observed, as shown in FIG. 7, C-plane growth in which silicon carbide crystals are sufficiently grown on the C-plane in contact with the seed substrate region. It was found that the region and the ungrown portion where the silicon carbide crystal was not sufficiently grown were mixed, and this caused the aforementioned C-plane roughness.
 このようなC面成長領域および未成長部の混在の発生につき、本発明者は、これらの炭化珪素結晶が気相による原料の供給により形成されたと考え、種基板のC面直上雰囲気中のSi、C蒸気の分圧、Si融液枯渇時の温度が関連していると推測した。 Regarding the occurrence of such a mixture of the C-plane growth region and the ungrown portion, the present inventor considered that these silicon carbide crystals were formed by supplying a raw material by a gas phase, and Si in the atmosphere immediately above the C-plane of the seed substrate. It was speculated that the partial pressure of C vapor and the temperature at the time of depletion of Si melt were related.
 即ち、種基板のC面上に形成される炭化珪素結晶は、Si融液から蒸発したSi蒸気とカーボン重石から昇華により発生するC蒸気により形成される。しかし、Si融液から蒸発したSi蒸気は種基板のSi面側外周部から種基板の外の空間に向けて拡散し、種基板C面とカーボン重石の隙間を経て種基板C面面中心部領域までは行き渡りにくい。さらに、温度が高いとカーボン重石からのC蒸気発生量が増えるため、種基板のC面直上雰囲気中のSi、C蒸気の分圧が1:1の比率より大きくずれ、未成長部を伴う領域を増加させると共に、荒れの程度を大きくすると推測した。 That is, the silicon carbide crystal formed on the C surface of the seed substrate is formed by Si vapor evaporated from the Si melt and C vapor generated by sublimation from the carbon barite. However, the Si vapor evaporated from the Si melt diffuses from the Si surface side outer peripheral portion of the seed substrate toward the space outside the seed substrate, and passes through the gap between the seed substrate C surface and the carbon weight, and the center portion of the seed substrate C surface. It is difficult to reach the area. Furthermore, since the amount of C vapor generated from the carbon barite increases when the temperature is high, the partial pressure of Si and C vapor in the atmosphere immediately above the C surface of the seed substrate deviates from a ratio of 1: 1, and there is a region with an ungrown portion. And increased the degree of roughness.
 本発明者は、これらの推測に基づき、種基板のC面直上の空間にSi原料とC原料とを1:1に近い比率で供給した場合、上記のような未成長部の形成を伴うことなく炭化珪素が成長して、C面荒れの発生を抑制することができると考え、従来のカーボン重石に替えて炭化珪素重石を用いることに思い至った。 Based on these assumptions, the present inventor involves the formation of the ungrown portion as described above when the Si raw material and the C raw material are supplied at a ratio close to 1: 1 in the space immediately above the C surface of the seed substrate. Therefore, it was thought that silicon carbide could grow and the occurrence of C-plane roughness could be suppressed, and the inventors came up with the idea of using silicon carbide weight stone instead of conventional carbon weight stone.
 そして、炭化珪素重石を用いてMSE法により単結晶炭化珪素基板を作製した場合、種基板におけるC面荒れの発生を極めて小さくすることができ、発生する反りも極めて小さくできることを実験により確認した。 Then, when a single crystal silicon carbide substrate was produced by MSE method using silicon carbide barite, it was confirmed by experiments that the occurrence of C-plane roughness on the seed substrate can be extremely reduced and the generated warpage can be extremely reduced.
 そして、さらに実験と検討を重ねた結果、炭化珪素重石でなくとも、種基板と対向する側の面が炭化珪素により形成されていれば、同様に、C面荒れの発生を極めて小さくすることができ、発生する反りも極めて小さくできることを確認した。 As a result of further experiments and studies, if the surface on the side facing the seed substrate is formed of silicon carbide, even if it is not silicon carbide barite, the occurrence of C-plane roughness can be made extremely small as well. It was confirmed that the generated warpage can be made extremely small.
 本発明は上記の知見に基づくものであり、請求項1に記載の発明は、
 準安定溶媒エピタキシャル法を用いた単結晶炭化珪素基板の作製方法であって、
 重石として、種基板と対向する側の面が炭化珪素により形成されている重石を用いて、単結晶炭化珪素基板を作製することを特徴とする単結晶炭化珪素基板の作製方法である。
The present invention is based on the above findings, and the invention according to claim 1
A method for producing a single crystal silicon carbide substrate using a metastable solvent epitaxial method,
A method for manufacturing a single crystal silicon carbide substrate, wherein a single crystal silicon carbide substrate is manufactured by using, as the weight stone, a weight stone whose surface facing the seed substrate is formed of silicon carbide.
 本請求項の発明によれば、上記したように、種基板に発生する反りを極めて小さくすることができるため、後工程の貼り付け工程において単結晶炭化珪素基板の割れの発生を十分に抑制することができる。 According to the invention of this claim, as described above, since the warp generated in the seed substrate can be extremely reduced, the occurrence of cracks in the single crystal silicon carbide substrate is sufficiently suppressed in the subsequent bonding step. be able to.
 請求項2に記載の発明は、
 前記重石が、炭化珪素により形成された重石であることを特徴とする請求項1に記載の単結晶炭化珪素基板の作製方法である。
The invention described in claim 2
The method for producing a single crystal silicon carbide substrate according to claim 1, wherein the weight stone is a weight stone formed of silicon carbide.
 炭化珪素により形成されている重石(炭化珪素重石)を用いることにより、容易に、種基板のC面直上の空間にSi原料とC原料とを1:1に近い比率で供給することができる。また、重石全体が炭化珪素により形成されているため、長期間の使用に耐えることができる。 By using the weight stone (silicon carbide weight stone) formed of silicon carbide, the Si raw material and the C raw material can be easily supplied to the space immediately above the C surface of the seed substrate at a ratio close to 1: 1. Moreover, since the entire weight is made of silicon carbide, it can withstand long-term use.
 請求項3に記載の発明は、
 前記重石が、少なくとも、前記種基板と対向する側の面に、炭化珪素の層が形成された重石であることを特徴とする請求項1に記載の単結晶炭化珪素基板の作製方法である。
The invention according to claim 3
2. The method for producing a single-crystal silicon carbide substrate according to claim 1, wherein the weight stone is a weight stone having a silicon carbide layer formed on at least a surface facing the seed substrate.
 前記したように、炭化珪素重石でなくとも、種基板と対向する側の面が炭化珪素により形成されている重石であれば、C面荒れの発生を極めて小さくすることができ、発生する反りも極めて小さくすることができる。 As described above, if the surface facing the seed substrate is formed of silicon carbide, even if it is not silicon carbide heavy stone, the occurrence of roughening of the C surface can be extremely reduced, and the warpage that occurs is also caused. It can be made extremely small.
 このような炭化珪素の層は、例えば、従来より使用していたカーボン重石などの、種基板と対向する側の表面に炭化珪素をコーティングすることにより、容易に形成することができ、重石の製造コストを低減することができる。 Such a silicon carbide layer can be easily formed by coating silicon carbide on the surface of the side facing the seed substrate, such as carbon weight stone, which has been conventionally used. Cost can be reduced.
 コーティングに替えて、種基板と対向させて炭化珪素の薄板を配置し、その上に従来より使用していたカーボン重石などを載置して重石とすることもでき、単に2枚の板を載置するだけで重石とすることができるため、コーティングのような加工を施す必要がないため、重石の製造コストを低減することができる。 Instead of coating, a thin plate of silicon carbide can be placed facing the seed substrate, and a carbon weight, which has been used in the past, can be placed on it as a weight, or simply two plates are placed. Since it can be made into a heavy stone simply by placing it, it is not necessary to apply a process such as coating, so the manufacturing cost of the heavy stone can be reduced.
 請求項4に記載の発明は、
 1400~2000℃での使用に耐える素材から形成された部材の表面に、前記炭化珪素の層が設けられていることを特徴とする請求項3に記載の単結晶炭化珪素基板の作製方法である。
The invention according to claim 4
4. The method for producing a single crystal silicon carbide substrate according to claim 3, wherein the silicon carbide layer is provided on a surface of a member formed of a material that can withstand use at 1400 to 2000 ° C. .
 前記したように、炭化珪素の層は、従来より使用していたカーボン重石などの表面に炭化珪素をコーティングしたり、カーボン重石などの下に炭化珪素の板を配置したりすることにより設けることができるが、コーティングを施す素材や炭化珪素の板の上に載置する素材は、MSE法における温度変化(1400~2000℃)に耐える素材から形成された部材であれば用いることができ、カーボン重石に限定されない。このため、素材の選択の自由度が大きくなり好ましい。 As described above, the silicon carbide layer may be provided by coating silicon carbide on the surface of conventionally used carbon barite or the like, or disposing a silicon carbide plate under the carbon barite or the like. However, the material to be coated or placed on the silicon carbide plate can be any member made of a material that can withstand temperature changes (1400-2000 ° C) in the MSE method. It is not limited to. For this reason, the freedom degree of selection of a material becomes large and is preferable.
 請求項5に記載の発明は、
 前記1400~2000℃での使用に耐える素材が、金属、カーボン(C)、半導体、セラミックスのいずれかであることを特徴とする請求項4に記載の単結晶炭化珪素基板の作製方法である。
The invention described in claim 5
5. The method for producing a single crystal silicon carbide substrate according to claim 4, wherein the material that can withstand use at 1400 to 2000 ° C. is any one of metal, carbon (C), a semiconductor, and ceramics.
 これらの素材は、1400℃~2000℃での使用に十分耐えることができる耐熱性に加えて、入手の容易性、コスト、機械加工性などに優れているため好ましい。 These materials are preferable because they are excellent in availability, cost, machinability, etc. in addition to heat resistance that can sufficiently withstand use at 1400 ° C. to 2000 ° C.
 なお、金属については、例えば、タングステン(W)、タンタル(Ta)、モリブデン(Mo)、ニオブ(Nb)、イリジウム(Ir)や、これらの金属の合金が挙げられる。 As for the metal, for example, tungsten (W), tantalum (Ta), molybdenum (Mo), niobium (Nb), iridium (Ir), and alloys of these metals can be cited.
 これらの金属は、融点が2400℃以上であり十分な耐熱性を有している。また、これらの金属は、MSE法に使用する重石に適した素材サイズで市場に流通しており、機械加工も容易である。 These metals have a melting point of 2400 ° C. or higher and sufficient heat resistance. Further, these metals are distributed in the market with a material size suitable for the weight used in the MSE method, and are easy to machine.
 請求項6に記載の発明は、
 請求項1ないし請求項5のいずれか1項に記載の単結晶炭化珪素基板の作製方法により作製されていることを特徴とする単結晶炭化珪素基板である。
The invention described in claim 6
A single crystal silicon carbide substrate produced by the method for producing a single crystal silicon carbide substrate according to any one of claims 1 to 5.
 上記した単結晶炭化珪素基板の作製方法により作製された単結晶炭化珪素基板は、前記したように、種基板に発生する反りが極めて小さいため、後工程である治具への貼り付け工程における種基板の割れの発生が十分に抑制される。 As described above, since the single crystal silicon carbide substrate manufactured by the above-described method for manufacturing a single crystal silicon carbide substrate has very little warpage generated on the seed substrate, the seed in the subsequent step of attaching to the jig is a seed. Generation | occurrence | production of the crack of a board | substrate is fully suppressed.
 本発明によれば、MSE法を用いて単結晶炭化珪素基板を作製する際、種基板に生じる反りを十分に抑制して、後工程の貼り付け工程における単結晶炭化珪素基板の割れの発生を抑制することができる単結晶炭化珪素基板の作製方法および単結晶炭化珪素基板を提供することができる。 According to the present invention, when a single crystal silicon carbide substrate is manufactured using the MSE method, the warpage generated in the seed substrate is sufficiently suppressed, and the occurrence of cracks in the single crystal silicon carbide substrate in the pasting step is prevented. A method for manufacturing a single crystal silicon carbide substrate that can be suppressed and a single crystal silicon carbide substrate can be provided.
本発明の一実施の形態に係る単結晶炭化珪素基板の作製方法において用いられる単結晶炭化珪素成長装置の主要部を模式的に示す図である。It is a figure which shows typically the principal part of the single crystal silicon carbide growth apparatus used in the manufacturing method of the single crystal silicon carbide substrate which concerns on one embodiment of this invention. 本発明に係る単結晶炭化珪素基板の作製方法を用いて単結晶炭化珪素が形成された種基板のC面を撮影した画像の一例である。It is an example of the image which image | photographed C surface of the seed substrate in which the single crystal silicon carbide was formed using the manufacturing method of the single crystal silicon carbide substrate which concerns on this invention. 本発明に係る単結晶炭化珪素基板の作製方法を用いて単結晶炭化珪素が形成された種基板の断面のC面側を拡大して撮影した画像の一例である。It is an example of the image which expanded and image | photographed the C surface side of the cross section of the seed substrate in which the single crystal silicon carbide was formed using the manufacturing method of the single crystal silicon carbide substrate which concerns on this invention. 本発明の他の実施の形態に係る単結晶炭化珪素基板の作製方法において用いられる単結晶炭化珪素成長装置の主要部を模式的に示す図である。It is a figure which shows typically the principal part of the single crystal silicon carbide growth apparatus used in the manufacturing method of the single crystal silicon carbide substrate which concerns on other embodiment of this invention. 従来のMSE法において用いられる単結晶炭化珪素成長装置の主要部を模式的に示す図である。It is a figure which shows typically the principal part of the single crystal silicon carbide growth apparatus used in the conventional MSE method. 従来のMSE法を用いて単結晶炭化珪素が形成された種基板のC面を撮影した画像の一例である。It is an example of the image which image | photographed C surface of the seed substrate in which the single crystal silicon carbide was formed using the conventional MSE method. 従来のMSE法を用いて単結晶炭化珪素が形成された種基板の断面のC面側を拡大して撮影した画像の一例である。It is an example of the image which expanded and image | photographed the C surface side of the cross section of the seed substrate in which the single crystal silicon carbide was formed using the conventional MSE method.
 以下、本発明を実施の形態に基づいて説明する。 Hereinafter, the present invention will be described based on embodiments.
(第1の実施の形態)
 図1は、本発明の第1の実施の形態に係る単結晶炭化珪素基板の作製方法において用いられる単結晶炭化珪素成長装置の主要部を模式的に示す図である。
(First embodiment)
FIG. 1 is a diagram schematically showing a main part of a single crystal silicon carbide growth apparatus used in the method for manufacturing a single crystal silicon carbide substrate according to the first embodiment of the present invention.
 本実施の形態における単結晶炭化珪素成長装置は、図5で示した従来のMSE法において用いられる単結晶炭化珪素成長装置と、基本的には同様の構成を有しているが、重石として、図5に示すカーボン重石7aに替えて、炭化珪素から形成された炭化珪素重石7bを用いている点が異なる。 The single crystal silicon carbide growth apparatus in the present embodiment has basically the same configuration as the single crystal silicon carbide growth apparatus used in the conventional MSE method shown in FIG. The difference is that silicon carbide weight stone 7b made of silicon carbide is used instead of carbon weight stone 7a shown in FIG.
 このように、炭化珪素重石7bを種基板5のC面5aと対向して配置することにより、加熱昇温時、炭化珪素重石7bから種基板5のC面5a上の空間にSi原料とC原料とが1:1に近い比率で十分に供給される。この結果、C面5a側における炭化珪素の成長が不均一とならないため、従来のような未成長部の形成を伴った炭化珪素の成長が抑制されて、C面荒れの発生が抑制される。 In this way, by arranging silicon carbide heavy stone 7b so as to face C surface 5a of seed substrate 5, Si raw material and C are introduced from silicon carbide heavy stone 7b to the space on C surface 5a of seed substrate 5 during heating and heating. The raw material is sufficiently supplied at a ratio close to 1: 1. As a result, silicon carbide does not grow unevenly on the C-plane 5a side, so that the growth of silicon carbide accompanied by the formation of an ungrown portion as in the conventional case is suppressed, and the occurrence of C-plane roughness is suppressed.
 そして、従来のMSE法と同様にして、温度1600~1800℃、圧力9~90kPaの炉内雰囲気下に1~8時間保持する単結晶炭化珪素の成長工程と、その後の温度1600~2000℃、真空雰囲気下に1~10時間保持するSi融液の枯渇工程を経た後、室温まで降温して、種基板5上に単結晶炭化珪素が形成された単結晶炭化珪素基板を取り出しても、種基板5の反りの発生が充分に抑制された単結晶炭化珪素基板を得ることができる。 Then, in the same manner as in the conventional MSE method, a single crystal silicon carbide growth step that is maintained in a furnace atmosphere at a temperature of 1600 to 1800 ° C. and a pressure of 9 to 90 kPa for 1 to 8 hours, and a subsequent temperature of 1600 to 2000 ° C. After passing through the Si melt depletion step of holding for 1 to 10 hours in a vacuum atmosphere, the temperature is lowered to room temperature, and the single crystal silicon carbide substrate on which the single crystal silicon carbide is formed on the seed substrate 5 is taken out. A single crystal silicon carbide substrate in which the occurrence of warpage of substrate 5 is sufficiently suppressed can be obtained.
 炭化珪素重石7bとしては、多結晶炭化珪素、単結晶炭化珪素、アモルファス炭化珪素など種類は問わないが、コストおよび円板形状での入手のし易さの点から、多結晶炭化珪素から形成された炭化珪素重石が好ましい。そして、この多結晶炭化珪素は、気相成長法で作製されていることが好ましい。 The silicon carbide barite 7b may be of any type such as polycrystalline silicon carbide, single crystal silicon carbide, amorphous silicon carbide, but is formed from polycrystalline silicon carbide from the viewpoint of cost and availability in a disk shape. Silicon carbide barite is preferred. The polycrystalline silicon carbide is preferably produced by a vapor phase growth method.
 (第2の実施の形態)
 図4は、本発明の第2の実施の形態に係る単結晶炭化珪素基板の作製方法において用いられる単結晶炭化珪素成長装置の主要部を模式的に示す図である。
(Second Embodiment)
FIG. 4 is a diagram schematically showing main parts of a single crystal silicon carbide growth apparatus used in the method for manufacturing a single crystal silicon carbide substrate according to the second embodiment of the present invention.
 本実施の形態における単結晶炭化珪素成長装置は、上記の第1の実施の形態で用いた炭化珪素重石に替えて、重石として、炭化珪素板11の上に従来と同様のカーボン重石12が載置された重石7cを用いている点で、第1の実施の形態と異なる。 The single-crystal silicon carbide growth apparatus in the present embodiment replaces the silicon carbide barite used in the first embodiment with a carbon barite 12 similar to the conventional one placed on the silicon carbide plate 11 as a barite. This is different from the first embodiment in that the placed weight 7c is used.
 このような重石7cを用いる場合であっても、炭化珪素板11が種基板5のC面5aと対向して配置されているため、第1の実施の形態の場合と同様に、加熱昇温時、炭化珪素板11から種基板5のC面5a上の空間にSi原料とC原料とを1:1に近い比率で十分に供給することができる。この結果、第1の実施の形態と同様に、C面荒れの発生を抑制して、反りの発生が充分に抑制された単結晶炭化珪素基板を得ることができる。 Even in the case where such a weight 7c is used, since the silicon carbide plate 11 is disposed to face the C surface 5a of the seed substrate 5, the heating temperature rise is performed as in the case of the first embodiment. At this time, the Si raw material and the C raw material can be sufficiently supplied from the silicon carbide plate 11 to the space on the C surface 5a of the seed substrate 5 at a ratio close to 1: 1. As a result, similarly to the first embodiment, it is possible to obtain a single crystal silicon carbide substrate in which the occurrence of C-plane roughness is suppressed and the occurrence of warpage is sufficiently suppressed.
 なお、本実施の形態における炭化珪素板11としては、第1の実施の形態と同様に、多結晶炭化珪素、単結晶炭化珪素、アモルファス炭化珪素など種類は問わないが、同様に、多結晶炭化珪素から形成されていることが好ましい。なお、本実施の形態においては、多結晶炭化珪素板は、気相成長法、焼結法のいずれの方法で作製されていてもよい。 The silicon carbide plate 11 in the present embodiment may be of any kind such as polycrystalline silicon carbide, single crystal silicon carbide, and amorphous silicon carbide, as in the first embodiment, but similarly, polycrystalline carbide. It is preferably formed from silicon. In the present embodiment, the polycrystalline silicon carbide plate may be produced by either a vapor phase growth method or a sintering method.
 そして、本実施の形態においては、重石として、炭化珪素板11とカーボン重石12とが載置された重石7cを用いているが、炭化珪素板11を載置することに換えて、カーボン重石の表面に炭化珪素がコーティングされた重石を用いることもできる。 And in this Embodiment, although the weight stone 7c in which the silicon carbide board 11 and the carbon weight stone 12 were mounted is used as a weight stone, it replaces with mounting the silicon carbide board 11, and a carbon weight stone is used. A weight stone whose surface is coated with silicon carbide can also be used.
 また、カーボン重石に替えて、1400℃~2000℃での使用に耐える金属、即ち、タングステン(W)、タンタル(Ta)、モリブデン(Mo)、ニオブ(Nb)、イリジウム(Ir)やこれらの合金、あるいはカーボン、半導体、セラミックスを用いて形成された重石を用いることもできる。 Further, instead of carbon barite, metals that can withstand use at 1400 ° C. to 2000 ° C., that is, tungsten (W), tantalum (Ta), molybdenum (Mo), niobium (Nb), iridium (Ir), and alloys thereof. Or, a weight formed using carbon, semiconductor, or ceramics can be used.
 以下の実施例においては、上記した第1の実施の形態に基づき、種基板上に単結晶炭化珪素が形成された単結晶炭化珪素基板(3インチφ)を作製した。 In the following examples, a single crystal silicon carbide substrate (3 inches φ) in which single crystal silicon carbide was formed on a seed substrate was fabricated based on the first embodiment described above.
1.単結晶炭化珪素の形成
 最初に、図1に示すように各部材を配置し、その後、図示しない加熱炉内に設置した。なお、原料基板3と種基板5との間にはSiウエハを配置した。
1. Formation of Single Crystal Silicon Carbide First, each member was placed as shown in FIG. 1 and then placed in a heating furnace (not shown). A Si wafer was disposed between the raw material substrate 3 and the seed substrate 5.
 次に、加熱炉内を圧力70kPaの雰囲気に設定し、10℃/minの昇温速度で室温から1800℃まで昇温した。途中、Si融点(約1400℃)を超えた時点でSiが溶融してSi融液層が形成される。 Next, the inside of the heating furnace was set to an atmosphere with a pressure of 70 kPa, and the temperature was increased from room temperature to 1800 ° C. at a temperature increase rate of 10 ° C./min. In the middle, when the Si melting point (about 1400 ° C.) is exceeded, Si melts and a Si melt layer is formed.
 次に、圧力70kPaの雰囲気下で、そのまま1800℃の温度を6時間保持し、種基板5上に単結晶炭化珪素を成長させた。 Next, in an atmosphere with a pressure of 70 kPa, the temperature of 1800 ° C. was maintained as it was for 6 hours to grow single crystal silicon carbide on the seed substrate 5.
 次に、5℃/minの昇温速度で1800℃から1950℃まで昇温させ、さらにそのまま、1950℃の温度を30分保持し、残っていたSi融液を全て蒸発させ、加熱炉内のSiを枯渇させた。 Next, the temperature is raised from 1800 ° C. to 1950 ° C. at a rate of 5 ° C./min. Further, the temperature of 1950 ° C. is maintained for 30 minutes, and all the remaining Si melt is evaporated, Si was depleted.
 次に、5℃/minの降温速度で1950℃から室温まで降温させて、種基板5上に単結晶炭化珪素が成長した単結晶炭化珪素基板を取り出し、回収した。 Next, the temperature was lowered from 1950 ° C. to room temperature at a rate of 5 ° C./min, and the single crystal silicon carbide substrate on which single crystal silicon carbide was grown on the seed substrate 5 was taken out and collected.
2.C面荒れの評価
 取り出し、回収された単結晶炭化珪素基板の種基板の表面を観察し、C面荒れの発生を評価した。図2に種基板の1/4についてC面を撮影した画像を、また、図3に種基板の断面のC面側を拡大して撮影した画像を示す。
2. Evaluation of C-plane roughness The surface of the seed substrate of the single crystal silicon carbide substrate taken out and collected was observed to evaluate the occurrence of C-plane roughness. FIG. 2 shows an image obtained by photographing the C plane for ¼ of the seed substrate, and FIG. 3 shows an image obtained by enlarging the C plane side of the cross section of the seed substrate.
 図2に示すように、この種基板では、中央部近傍まで荒れが発生していなかった。 As shown in FIG. 2, the seed substrate was not roughened to the vicinity of the central portion.
 そして、図3に示すように、この種基板のC面上では、未成長部が形成されておらず、未成長部の成長を伴うことなく、炭化珪素の均一な成長が行われていることが確認できた。 As shown in FIG. 3, no ungrown portion is formed on the C-plane of this seed substrate, and silicon carbide is uniformly grown without growth of the ungrown portion. Was confirmed.
3.反りの評価
 次に、この種基板について、斜入射式干渉計を用いてC面5aの平坦度を測定し、反りを評価した。
3. Evaluation of Warpage Next, for this type of substrate, the flatness of the C surface 5a was measured using a grazing incidence interferometer to evaluate the warpage.
 測定の結果、この種基板においては、反りが21.1μmであった。この値は、前記した従来のMSE法により作製された単結晶炭化珪素基板の種基板における反り91.1μmに比べて、遙かに小さい。そしてこの反りの程度は、後工程の治具への貼り付け工程において、従来より、種基板が割れる確率が高くなると一般に言われている反りの大きさ30μmに比べても十分小さいため、治具への貼り付け時、割れが発生する確率が大きく低下する。 As a result of measurement, the warpage of this seed substrate was 21.1 μm. This value is much smaller than the warpage of 91.1 μm in the seed substrate of the single crystal silicon carbide substrate manufactured by the conventional MSE method described above. The degree of warping is sufficiently small compared to a warp size of 30 μm, which is generally said to have a higher probability of cracking the seed substrate in the pasting process to the jig in the subsequent process. When pasted on, the probability of cracking is greatly reduced.
 以上の結果より、本発明に従うことにより、C面荒れを小さくすることができ、その結果、単結晶炭化珪素基板の種基板の反りを小さくできることが確認できた。 From the above results, it was confirmed that according to the present invention, the C-plane roughness can be reduced, and as a result, the warpage of the seed substrate of the single crystal silicon carbide substrate can be reduced.
 このように、本発明においては、MSE法を用いて種基板に単結晶炭化珪素を形成する際、C面に形成される炭化珪素が均一に成長するように、種基板のC面に対向設置する重石の材質を適切に選択しているため、単結晶炭化珪素基板の種基板に発生する反りが大幅に低減する。そして、反りが大幅に低減することにより、治具への貼り付け工程における単結晶炭化珪素基板の割れの発生を大幅に低減することができる。 As described above, in the present invention, when single crystal silicon carbide is formed on the seed substrate using the MSE method, the silicon carbide formed on the C plane is uniformly grown on the C plane of the seed substrate. Since the material of the weight is appropriately selected, the warp generated on the seed substrate of the single crystal silicon carbide substrate is greatly reduced. And by significantly reducing the warpage, the occurrence of cracks in the single crystal silicon carbide substrate in the step of attaching to the jig can be greatly reduced.
 以上、本発明を実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。 As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.
 1     サセプタ
 2、4、6 スペーサ
 3     原料基板
 5     種基板
 5a    C面
 5b    Si面
 5c    C面荒れ
 7a、12 カーボン重石
 7b    炭化珪素重石
 7c    重石
11     炭化珪素板
DESCRIPTION OF SYMBOLS 1 Susceptor 2, 4, 6 Spacer 3 Raw material substrate 5 Type substrate 5a C surface 5b Si surface 5c C surface roughening 7a, 12 Carbon weight stone 7b Silicon carbide weight stone 7c Weight stone 11 Silicon carbide plate

Claims (6)

  1.  準安定溶媒エピタキシャル法を用いた単結晶炭化珪素基板の作製方法であって、
     重石として、種基板と対向する側の面が炭化珪素により形成されている重石を用いて、単結晶炭化珪素基板を作製することを特徴とする単結晶炭化珪素基板の作製方法。
    A method for producing a single crystal silicon carbide substrate using a metastable solvent epitaxial method,
    A method for manufacturing a single-crystal silicon carbide substrate, wherein a single-crystal silicon carbide substrate is manufactured using, as the weight stone, a weight stone whose surface facing the seed substrate is formed of silicon carbide.
  2.  前記重石が、炭化珪素により形成された重石であることを特徴とする請求項1に記載の単結晶炭化珪素基板の作製方法。 2. The method for producing a single crystal silicon carbide substrate according to claim 1, wherein the weight is a weight made of silicon carbide.
  3.  前記重石が、少なくとも、前記種基板と対向する側の面に、炭化珪素の層が形成された重石であることを特徴とする請求項1に記載の単結晶炭化珪素基板の作製方法。 2. The method for producing a single-crystal silicon carbide substrate according to claim 1, wherein the weight stone is a weight stone having a silicon carbide layer formed on at least a surface facing the seed substrate.
  4.  1400~2000℃での使用に耐える素材から形成された部材の表面に、前記炭化珪素の層が設けられていることを特徴とする請求項3に記載の単結晶炭化珪素基板の作製方法。 The method for producing a single crystal silicon carbide substrate according to claim 3, wherein the silicon carbide layer is provided on a surface of a member formed of a material that can withstand use at 1400 to 2000 ° C.
  5.  前記1400~2000℃での使用に耐える素材が、金属、カーボン(C)、半導体、セラミックスのいずれかであることを特徴とする請求項4に記載の単結晶炭化珪素基板の作製方法。 5. The method for producing a single-crystal silicon carbide substrate according to claim 4, wherein the material that can withstand use at 1400 to 2000 ° C. is any one of metal, carbon (C), semiconductor, and ceramics.
  6.  請求項1ないし請求項5のいずれか1項に記載の単結晶炭化珪素基板の作製方法により作製されていることを特徴とする単結晶炭化珪素基板。 A single crystal silicon carbide substrate produced by the method for producing a single crystal silicon carbide substrate according to any one of claims 1 to 5.
PCT/JP2012/069442 2012-07-31 2012-07-31 Single crystal silicon carbide substrate and method for manufacturing same WO2014020694A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/069442 WO2014020694A1 (en) 2012-07-31 2012-07-31 Single crystal silicon carbide substrate and method for manufacturing same
JP2014527866A JPWO2014020694A1 (en) 2012-07-31 2012-07-31 Single crystal silicon carbide substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/069442 WO2014020694A1 (en) 2012-07-31 2012-07-31 Single crystal silicon carbide substrate and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2014020694A1 true WO2014020694A1 (en) 2014-02-06

Family

ID=50027425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069442 WO2014020694A1 (en) 2012-07-31 2012-07-31 Single crystal silicon carbide substrate and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2014020694A1 (en)
WO (1) WO2014020694A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047509A1 (en) * 2015-09-15 2017-03-23 信越化学工業株式会社 MANUFACTURING METHOD OF SiC COMPOSITE SUBSTRATE
WO2020218482A1 (en) * 2019-04-26 2020-10-29 学校法人関西学院 Method for manufacturing sic substrate, manufacturing device for same, and method for epitaxial growth

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126249A (en) * 2003-10-21 2005-05-19 New Industry Research Organization Method for growing single crystal silicon carbide
WO2009013914A1 (en) * 2007-07-26 2009-01-29 Ecotron Co., Ltd. Sic epitaxial substrate and process for producing the same
JP2009155140A (en) * 2007-12-25 2009-07-16 Ecotron:Kk METHOD FOR MANUFACTURING SINGLE CRYSTAL SiC FILM

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126249A (en) * 2003-10-21 2005-05-19 New Industry Research Organization Method for growing single crystal silicon carbide
WO2009013914A1 (en) * 2007-07-26 2009-01-29 Ecotron Co., Ltd. Sic epitaxial substrate and process for producing the same
JP2009155140A (en) * 2007-12-25 2009-07-16 Ecotron:Kk METHOD FOR MANUFACTURING SINGLE CRYSTAL SiC FILM

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047509A1 (en) * 2015-09-15 2017-03-23 信越化学工業株式会社 MANUFACTURING METHOD OF SiC COMPOSITE SUBSTRATE
JP2017057102A (en) * 2015-09-15 2017-03-23 信越化学工業株式会社 PRODUCTION OF SiC COMPOSITE SUBSTRATE
RU2728484C2 (en) * 2015-09-15 2020-07-29 Син-Эцу Кемикал Ко., Лтд. Method of making composite substrate from sic
US10829868B2 (en) 2015-09-15 2020-11-10 Shin-Etsu Chemical Co., Ltd. Manufacturing method of SiC composite substrate
WO2020218482A1 (en) * 2019-04-26 2020-10-29 学校法人関西学院 Method for manufacturing sic substrate, manufacturing device for same, and method for epitaxial growth
US11952678B2 (en) 2019-04-26 2024-04-09 Kwansei Gakuin Educational Foundation Method for manufacturing etched SiC substrate and grown SiC substrate by material tranportation and method for epitaxial growth by material transportation

Also Published As

Publication number Publication date
JPWO2014020694A1 (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP6232329B2 (en) Method for removing work-affected layer of SiC seed crystal, method for producing SiC seed crystal and SiC substrate
US10590563B2 (en) Method of fabricating a plurality of single crystal CVD synthetic diamonds
WO2015182246A1 (en) Silicon-carbide-ingot manufacturing method, silicon-carbide seed substrate, and silicon-carbide substrate
JP5569112B2 (en) Method for manufacturing silicon carbide single crystal wafer and silicon carbide single crystal wafer obtained by this method
CN105780107A (en) Seed crystal processing method for improving growth quality of silicon carbide crystals, and method for growing silicon carbide crystals
JP4844470B2 (en) Seed crystal fixation method
JP5339239B2 (en) Method for producing SiC substrate
JP5732288B2 (en) Manufacturing method of free-standing substrate
JP5517123B2 (en) Aluminum nitride single crystal and method and apparatus for manufacturing the same
JP5263900B2 (en) Method for growing single crystal SiC
WO2014020694A1 (en) Single crystal silicon carbide substrate and method for manufacturing same
JP2014024703A (en) Method of producing silicon carbide single crystal
JP2013237592A (en) Method for producing silicon carbide single crystal
JP5447206B2 (en) Method for manufacturing silicon carbide single crystal and silicon carbide substrate
JP4661039B2 (en) Method for manufacturing silicon carbide substrate
JP2005314167A (en) Seed crystal for use in silicon carbide single crystal growth, manufacturing method thereof, and method for growing crystal using it
WO2016163157A1 (en) Method for producing silicon carbide single crystal
JP4774537B2 (en) SiC epitaxial film manufacturing method and spacer forming method
RU2633909C1 (en) METHOD OF PRODUCING MONOCRYSTALLINE SiC
JP2013071855A (en) Method for fixing aluminum nitride seed crystal, pedestal-seed crystal fixed body, method for producing aluminum nitride single crystal, and aluminum nitride single crystal
JP6317868B1 (en) Aluminum nitride single crystal production equipment
WO2014122768A1 (en) Single crystal silicon carbide substrate and method for producing same
JP2015193494A (en) Method of producing silicon carbide ingot
JP2014084240A (en) Apparatus for producing single crystal of aluminum nitride
JP2012046425A (en) Apparatus for manufacturing silicon carbide single crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014527866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882283

Country of ref document: EP

Kind code of ref document: A1