WO2014122768A1 - Single crystal silicon carbide substrate and method for producing same - Google Patents

Single crystal silicon carbide substrate and method for producing same Download PDF

Info

Publication number
WO2014122768A1
WO2014122768A1 PCT/JP2013/053021 JP2013053021W WO2014122768A1 WO 2014122768 A1 WO2014122768 A1 WO 2014122768A1 JP 2013053021 W JP2013053021 W JP 2013053021W WO 2014122768 A1 WO2014122768 A1 WO 2014122768A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
silicon carbide
crystal silicon
substrate
sic
Prior art date
Application number
PCT/JP2013/053021
Other languages
French (fr)
Japanese (ja)
Inventor
佳孝 瀬戸口
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to PCT/JP2013/053021 priority Critical patent/WO2014122768A1/en
Publication of WO2014122768A1 publication Critical patent/WO2014122768A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • SiC silicon carbide
  • MSE method Metal Solvent Epitaxy
  • the single crystal SiC substrate taken out is sent to the device fabrication process after the seed substrate 5 is fixed to a polishing base and the SiC epitaxial film E on the surface is polished.
  • the surface of the SiC sublimation film S having a thickness of about 30 ⁇ m was observed, it was found that a large protrusion Sa having a height of about 50 ⁇ m was formed at a location along the wall surface of the spacer 6 as shown in FIG. It was.
  • the thickness of the SiC sublimation film S and the height of the protrusion Sa are related to each other.
  • the present inventor considered that if the thickness of the formed SiC sublimation film S can be reduced, the height of the protrusion Sa can be suppressed.
  • the first method and the second method suppress the formation of the SiC sublimation film S by lowering the temperature of the weight 7 when the excess Si melt is evaporated and removed.
  • the inside of the container is heated and evacuated to evaporate excess Si melt, At this time, if vacuuming is performed by reducing the temperature inside the entire container from about 1950 ° C. to about 1800 to 1850 ° C., the temperature rise of the weight 7 is suppressed. Sublimated Si and C are reduced. Even if evacuation is performed at 1800 to 1850 ° C., although it takes a little more time than before, it does not hinder the depletion of excess Si melt.
  • the formation of the SiC sublimation film S it is possible to suppress the formation of the SiC sublimation film S to be thick, so that the occurrence of cracks during polishing can be reduced.
  • the height of the protrusion Sa formed on the SiC sublimation film S is also suppressed, so that the concentration of stress on the protrusion Sa during polishing is reduced, and cracking is prevented. Increase in generation can be suppressed.
  • Claim 1 A method of manufacturing a single crystal silicon carbide substrate, wherein a single crystal silicon carbide substrate is manufactured by epitaxially growing a single crystal silicon carbide film on a seed substrate by a metastable solvent epitaxial method, After epitaxially growing a single crystal silicon carbide film having a predetermined thickness on the surface of the seed substrate, A method for producing a single crystal silicon carbide substrate, characterized in that the temperature in the container is set to 1800 to 1850 ° C., and excess Si melt is evaporated and removed.
  • the second method is a method for suppressing the formation of the SiC sublimation film S by blowing a cooling gas to the weight stone 7 and lowering the temperature of the weight stone 7 when the excess Si melt is evaporated and removed. .
  • a pipe that can withstand the high temperature in the container is used, and for example, a carbon pipe, a tantalum carbide (TaC) pipe, a tungsten (W) pipe, or the like is preferably used. be able to.
  • the invention described in claim 2 and claim 3 is based on the above findings. That is, the invention described in claim 2 A method of manufacturing a single crystal silicon carbide substrate, wherein a single crystal silicon carbide substrate is manufactured by epitaxially growing a single crystal silicon carbide film on a seed substrate by a metastable solvent epitaxial method, After epitaxially growing a single crystal silicon carbide film having a predetermined thickness on the surface of the seed substrate, A cooling gas is sprayed on the weight from a pipe disposed on the lid of the container toward the weight, and the excess Si melt is evaporated and removed while lowering the temperature of the weight. A method for manufacturing a single crystal silicon carbide substrate.
  • the distance between the weight 7 and the seed substrate 5 is narrow (about 0.8 mm), and the SiC sublimation film S is formed by proximity sublimation (sublimation in an atmosphere having no temperature gradient).
  • the formed film thickness depends on (in inverse proportion to) the distance between the weight 7 for sublimating Si and C and the seed substrate 5.
  • Invention of Claim 4 is based on said knowledge, A method of manufacturing a single crystal silicon carbide substrate, wherein a single crystal silicon carbide substrate is manufactured by epitaxially growing a single crystal silicon carbide film on a seed substrate by a metastable solvent epitaxial method, A method for producing a single crystal silicon carbide substrate, wherein a distance between the seed substrate and the weight is set to 1.2 to 3.0 mm.
  • the SiC sublimation film S is preferably formed to a certain thickness.
  • a susceptor 1 for a susceptor 1 , a spacer 2, a C atom supply substrate 3, a spacer 4, a seed substrate 5, a spacer 6, Place weight 7 A Si wafer (not shown) is placed between the C atom supply substrate 3 and the seed substrate 5.
  • the inside of the container is heated to about 1950 ° C. and evacuated to evaporate and remove excess Si melt, Si in the container was depleted.
  • the temperature in the container is set to 1800 to 1850 ° C., and excess Si melt is evaporated and removed.
  • the C atom supply substrate 3 has a thickness of 500 ⁇ m
  • the spacer 4 has a thickness of 40 to 100 ⁇ m
  • the seed substrate 5 has a thickness of 250 to 350 ⁇ m
  • the spacer 6 has a thickness of 800 ⁇ m (0.8 mm).
  • the sublimation film S having a thickness of about 30 ⁇ m was formed in the conventional MSE method of evaporating and removing excess Si melt by holding at 1950 ° C. for 30 minutes. When the embodiment was applied and the excess Si melt was evaporated and removed by holding at 1850 ° C.
  • a single crystal SiC substrate is manufactured based on the second method described above.
  • FIG. 1 shows a single crystal SiC growth apparatus used in the present embodiment.
  • this single crystal SiC growth apparatus has a pipe 8 penetrating through a lid of a container such as a heating furnace or a crucible, except that the opening is disposed toward the back surface of the weight 7. It has the same configuration as the single crystal SiC growth apparatus used in the conventional MSE method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Provided is a method for producing a single crystal silicon carbide (SiC) substrate, said method using a metastable solvent epitaxy (MSE) method that is capable of sufficiently reducing the occurrence of cracking during polishing. A method for producing a single crystal silicon carbide substrate through a metastable solvent epitaxy method, in which a single crystal silicon carbide film is epitaxially grown on a seed substrate to produce a single crystal silicon carbide substrate, wherein a single crystal silicon carbide substrate is produced through a metastable solvent epitaxy method, in which a single crystal silicon carbide film is epitaxially grown to a prescribed thickness on a surface of a seed substrate, and the temperature inside a vessel is then set to 1800 - 1850°C and excess Si melt is eliminated by evaporation. A method for producing a single crystal silicon carbide substrate, in which excess Si melt is eliminated by evaporation as the temperature of a weight is lowered. A method for producing a single crystal silicon carbide substrate, wherein the space between a seed substrate and a weight is set to 1.2 - 3.0 mm.

Description

単結晶炭化珪素基板およびその製造方法Single crystal silicon carbide substrate and manufacturing method thereof
 本発明は、単結晶炭化珪素(SiC)基板およびその製造方法に関し、詳しくは、準安定溶媒エピタキシャル法を用いた単結晶SiC基板およびその製造方法に関する。 The present invention relates to a single crystal silicon carbide (SiC) substrate and a method for manufacturing the same, and more particularly to a single crystal SiC substrate using a metastable solvent epitaxial method and a method for manufacturing the same.
 炭化珪素(SiC)半導体デバイスを製造するためには、単結晶SiCからなるSiC半導体薄膜を製造する必要があり、緻密な温度制御を行うことなく、品質の高いSiC半導体薄膜を製造することができるSiC半導体薄膜の製造方法として、準安定溶媒エピタキシャル法(以下、「MSE法」とも言う)(Metastable Solvent Epitaxy)が提案されている(例えば、特許文献1)。 In order to manufacture a silicon carbide (SiC) semiconductor device, it is necessary to manufacture a SiC semiconductor thin film made of single-crystal SiC, and a high-quality SiC semiconductor thin film can be manufactured without performing precise temperature control. As a method for producing an SiC semiconductor thin film, a metastable solvent epitaxial method (hereinafter also referred to as “MSE method”) (Metastable Solvent Epitaxy) has been proposed (for example, Patent Document 1).
 図3に、従来のMSE法に用いられる単結晶SiC成長装置の主要部を模式的に示す。図3に示すように、図示しない容器(加熱炉や坩堝)内に、下から順に、サセプタ1、スペーサ2、炭素原子供給基板(C原子供給基板)3、スペーサ4、種基板5、スペーサ6、重石7が配置されている。そして、C原子供給基板3と種基板5との間には、図示しないSiウエハが配置されており、融点以上に加熱されると、溶融してSi融液層を形成する。なお、5aは種基板5の重石7と対向する側の面(C面)であり、5bは種基板5の単結晶SiCが成長する側の面(Si面)である。 FIG. 3 schematically shows the main part of a single crystal SiC growth apparatus used in the conventional MSE method. As shown in FIG. 3, a susceptor 1, a spacer 2, a carbon atom supply substrate (C atom supply substrate) 3, a spacer 4, a seed substrate 5, and a spacer 6 are sequentially placed in a container (heating furnace or crucible) not shown. The weight 7 is arranged. An Si wafer (not shown) is disposed between the C atom supply substrate 3 and the seed substrate 5, and when heated above the melting point, it melts to form a Si melt layer. In addition, 5a is a surface (C surface) on the side facing the weight 7 of the seed substrate 5, and 5b is a surface (Si surface) on the side of the seed substrate 5 on which single crystal SiC is grown.
 ここで、C原子供給基板3は、単結晶SiCの成長時、Si融液にC原子を供給する。そして、種基板5は、Si融液およびC原子により単結晶SiCをSi面5bにエピタキシャル成長させる。また、重石7(多結晶SiC製)は、単結晶SiCの成長に際して、その加重によりC原子供給基板3と種基板5との間隔を均一に保持する。また、C原子供給基板3と種基板5との間に配置されたスペーサ4は、種基板5のSi面5bにエピタキシャル成長する単結晶SiCの厚みをコントロールする。 Here, the C atom supply substrate 3 supplies C atoms to the Si melt during the growth of single crystal SiC. Then, the seed substrate 5 epitaxially grows single crystal SiC on the Si surface 5b by Si melt and C atoms. Further, the weight 7 (made of polycrystalline SiC) keeps the distance between the C atom supply substrate 3 and the seed substrate 5 uniform by the weight when growing single crystal SiC. The spacer 4 disposed between the C atom supply substrate 3 and the seed substrate 5 controls the thickness of the single crystal SiC that is epitaxially grown on the Si surface 5 b of the seed substrate 5.
 MSE法による単結晶SiCの成長は、高真空雰囲気下で行われ、はじめに、容器内の温度をSi融点(約1400℃)よりも高い所定の温度(SiC成長温度)まで昇温する。この昇温過程において、温度がSi融点を超えるとSiウエハが溶融してSi融液となる。次いで、この温度で、所定の時間保持して、種基板5上に単結晶SiCを所定の厚みまでエピタキシャル成長させる。引き続いて、例えば1950℃程度に昇温して真空引きを行い、余剰のSi融液を蒸発させて除去することにより、容器内のSiを枯渇させる。その後、温度を下げて、単結晶SiC膜(以下、「SiCエピタキシャル膜」ともいう)が形成された種基板5、即ち、単結晶SiC基板を取り出す。 The growth of single crystal SiC by the MSE method is performed in a high vacuum atmosphere. First, the temperature in the container is raised to a predetermined temperature (SiC growth temperature) higher than the Si melting point (about 1400 ° C.). In this temperature raising process, when the temperature exceeds the Si melting point, the Si wafer is melted to become a Si melt. Next, this temperature is maintained for a predetermined time, and single-crystal SiC is epitaxially grown on the seed substrate 5 to a predetermined thickness. Subsequently, for example, the temperature is raised to about 1950 ° C. and evacuation is performed, and excess Si melt is evaporated and removed, thereby depleting Si in the container. Thereafter, the temperature is lowered, and the seed substrate 5 on which the single crystal SiC film (hereinafter also referred to as “SiC epitaxial film”) is formed, that is, the single crystal SiC substrate is taken out.
 取り出された単結晶SiC基板は、種基板5が研磨用の台座に固定されて表面のSiCエピタキシャル膜Eが研磨された後、デバイスの作製工程に送られる。 The single crystal SiC substrate taken out is sent to the device fabrication process after the seed substrate 5 is fixed to a polishing base and the SiC epitaxial film E on the surface is polished.
特開2005-126249号公報JP 2005-126249 A
 しかしながら、従来のMSE法を用いて作製された単結晶SiC基板は、前記した種基板5の研磨用の台座への固定やSiCエピタキシャル膜Eの表面の研磨に際して、単結晶SiC基板に割れが発生する場合があった。 However, the single crystal SiC substrate produced by using the conventional MSE method generates cracks in the single crystal SiC substrate when the seed substrate 5 is fixed to the polishing base or the surface of the SiC epitaxial film E is polished. There was a case.
 このため、研磨時における割れの発生を十分に低減させることができるMSE法を用いた単結晶SiC基板の製造方法が求められていた。 For this reason, a method for producing a single crystal SiC substrate using the MSE method capable of sufficiently reducing the occurrence of cracks during polishing has been demanded.
 本発明者は、上記課題の解決を検討するにあたって、最初に、従来のMSE法を用いて作製されて割れが発生した単結晶SiC基板を詳しく観察したところ、割れが生じやすい単結晶SiC基板には、図4に示すように、種基板5のC面5aに厚み約30μm程度の厚いSiC昇華膜Sが形成されていることが分かった。 When examining the solution of the above-mentioned problem, the present inventor first observed in detail a single crystal SiC substrate produced using the conventional MSE method and causing cracks. As shown in FIG. 4, it was found that a thick SiC sublimation film S having a thickness of about 30 μm was formed on the C surface 5 a of the seed substrate 5.
 さらに、上記した厚み約30μm程度のSiC昇華膜Sの表面を観察したところ、図5に示すように、スペーサ6壁面に沿う箇所に高さ約50μmの大きな突起Saが形成されていることが分かった。そして、SiC昇華膜Sの厚みと突起Saの高さとは相互に関係しており、単結晶SiC基板の種基板5のC面5aを台座に固定してSiCエピタキシャル膜Eを研磨する際、この突起Saが台座に当接して、突起Saに応力が集中することにより、割れの発生をさらに増加させることが分かった。 Furthermore, when the surface of the SiC sublimation film S having a thickness of about 30 μm was observed, it was found that a large protrusion Sa having a height of about 50 μm was formed at a location along the wall surface of the spacer 6 as shown in FIG. It was. The thickness of the SiC sublimation film S and the height of the protrusion Sa are related to each other. When the C surface 5a of the seed substrate 5 of the single crystal SiC substrate is fixed to the base and the SiC epitaxial film E is polished, It has been found that the generation of cracks is further increased by the contact of the protrusion Sa with the pedestal and the concentration of stress on the protrusion Sa.
 以上の知見に基づき、本発明者は、形成されるSiC昇華膜Sの厚みを薄くすることができれば、突起Saの高さを抑制することができると考えた。 Based on the above knowledge, the present inventor considered that if the thickness of the formed SiC sublimation film S can be reduced, the height of the protrusion Sa can be suppressed.
 即ち、SiC昇華膜Sの厚みを抑制して突起Saの高さを抑制することにより、研磨時、これらの突起に応力が集中することが抑制されるため、割れの発生の増加を抑制することができる。 That is, by suppressing the thickness of the SiC sublimation film S and suppressing the height of the protrusions Sa, it is possible to suppress the concentration of stress on these protrusions during polishing, thereby suppressing an increase in the occurrence of cracks. Can do.
 そして、本発明者は、SiC昇華膜Sを薄く形成させることができるMSE法について種々の実験と検討を行った結果、以下に示す3つの方法を採用することにより、SiC昇華膜Sの厚みが抑制された単結晶SiC基板を製造できることを見出し、本発明を完成するに至った。 Then, as a result of various experiments and studies on the MSE method that can form the SiC sublimation film S thinly, the present inventor has adopted the following three methods, thereby reducing the thickness of the SiC sublimation film S. The inventors have found that a suppressed single crystal SiC substrate can be manufactured, and have completed the present invention.
 第1の方法、および第2の方法は、余剰のSi融液を蒸発、除去する際、重石7の温度を低くすることにより、SiC昇華膜Sの形成を抑制する。 The first method and the second method suppress the formation of the SiC sublimation film S by lowering the temperature of the weight 7 when the excess Si melt is evaporated and removed.
 即ち、第1の方法は、余剰のSi融液を蒸発、除去する際、容器内全体の温度が1800~1850℃と低くなるように制御して、重石7の温度も低下させることにより、SiC昇華膜Sの形成を抑制する方法である。 That is, in the first method, when the excess Si melt is evaporated and removed, the temperature inside the container is controlled to be as low as 1800 to 1850 ° C. In this method, the formation of the sublimation film S is suppressed.
 MSE法においては、前記したように、種基板5上に単結晶SiCを所定の厚みまでエピタキシャル成長させた後は、容器内を昇温して真空引きすることにより、余剰のSi融液を蒸発、除去しているが、このとき、容器内全体の温度を従来の1950℃程度から1800~1850℃と低くして真空引きを行うと、重石7の温度の上昇が抑制されるため、重石7から昇華するSiやCが低減する。なお、1800~1850℃で真空引きを行っても、時間は従来より多少多く掛かるものの、余剰のSi融液の枯渇に支障をきたすことはない。 In the MSE method, as described above, after epitaxially growing single crystal SiC to a predetermined thickness on the seed substrate 5, the inside of the container is heated and evacuated to evaporate excess Si melt, At this time, if vacuuming is performed by reducing the temperature inside the entire container from about 1950 ° C. to about 1800 to 1850 ° C., the temperature rise of the weight 7 is suppressed. Sublimated Si and C are reduced. Even if evacuation is performed at 1800 to 1850 ° C., although it takes a little more time than before, it does not hinder the depletion of excess Si melt.
 この結果、SiC昇華膜Sが厚く形成されることを抑制することができるため、研磨時における割れの発生を低減させることができる。また、SiC昇華膜Sの形成が抑制されることにより、SiC昇華膜Sに形成される突起Saの高さも抑制されるため、研磨時、突起Saに応力が集中することが低減され、割れの発生が増加することを抑制することができる。 As a result, it is possible to suppress the formation of the SiC sublimation film S to be thick, so that the occurrence of cracks during polishing can be reduced. In addition, since the formation of the SiC sublimation film S is suppressed, the height of the protrusion Sa formed on the SiC sublimation film S is also suppressed, so that the concentration of stress on the protrusion Sa during polishing is reduced, and cracking is prevented. Increase in generation can be suppressed.
 請求項1に記載の発明は、上記の知見に基づくものであり、
 準安定溶媒エピタキシャル法により、種基板上に単結晶炭化珪素膜をエピタキシャル成長させて単結晶炭化珪素基板を製造する単結晶炭化珪素基板の製造方法であって、
 前記種基板の表面に所定の厚みの単結晶炭化珪素膜をエピタキシャル成長させた後、
 容器内の温度を1800~1850℃にして、余剰のSi融液を蒸発、除去する
ことを特徴とする単結晶炭化珪素基板の製造方法である。
Invention of Claim 1 is based on said knowledge,
A method of manufacturing a single crystal silicon carbide substrate, wherein a single crystal silicon carbide substrate is manufactured by epitaxially growing a single crystal silicon carbide film on a seed substrate by a metastable solvent epitaxial method,
After epitaxially growing a single crystal silicon carbide film having a predetermined thickness on the surface of the seed substrate,
A method for producing a single crystal silicon carbide substrate, characterized in that the temperature in the container is set to 1800 to 1850 ° C., and excess Si melt is evaporated and removed.
 第2の方法は、余剰のSi融液を蒸発、除去する際、重石7に冷却用ガスを吹き付けて、重石7の温度を低下させることにより、SiC昇華膜Sの形成を抑制する方法である。 The second method is a method for suppressing the formation of the SiC sublimation film S by blowing a cooling gas to the weight stone 7 and lowering the temperature of the weight stone 7 when the excess Si melt is evaporated and removed. .
 即ち、加熱炉や坩堝などの容器の蓋部から重石7に向けてパイプを配設して、余剰のSi融液を1950℃程度の温度で蒸発、除去する際に、このパイプから重石7に冷却用ガスとして、例えば、Arガスなどを吹き付けることにより、重石7の温度だけを低下させることができるため、SiC昇華膜Sの形成が抑制される。温度を低下させたときの重石7の好ましい温度は、上記と同様に、1800~1850℃である。 That is, a pipe is arranged from the lid of a container such as a heating furnace or a crucible toward the weight 7 and when the excess Si melt is evaporated and removed at a temperature of about 1950 ° C., the pipe is transferred to the weight 7. For example, by blowing Ar gas or the like as the cooling gas, only the temperature of the weight 7 can be lowered, so that the formation of the SiC sublimation film S is suppressed. The preferable temperature of the weight stone 7 when the temperature is lowered is 1800 to 1850 ° C. as described above.
 このように、重石7のみを冷却するため、従来に劣らないスピードでSi融液を蒸発させながら、SiC昇華膜Sの形成を抑制することができると共に、突起Saの高さも抑制することができ、研磨時における単結晶SiC基板の割れの発生を十分に低減させることができる。 In this way, since only the weight stone 7 is cooled, the formation of the SiC sublimation film S can be suppressed and the height of the protrusion Sa can be suppressed while the Si melt is evaporated at a speed comparable to that of the prior art. The occurrence of cracks in the single crystal SiC substrate during polishing can be sufficiently reduced.
 なお、配設されるパイプとしては、容器内の高温に耐えることができるパイプが使用され、例えば、カーボン製パイプや炭化タンタル(TaC)製パイプ、タングステン(W)製パイプなどを好適に使用することができる。 As the pipe to be disposed, a pipe that can withstand the high temperature in the container is used, and for example, a carbon pipe, a tantalum carbide (TaC) pipe, a tungsten (W) pipe, or the like is preferably used. be able to.
 請求項2および請求項3に記載の発明は、上記の知見に基づくものである。即ち、請求項2に記載の発明は、
 準安定溶媒エピタキシャル法により、種基板上に単結晶炭化珪素膜をエピタキシャル成長させて単結晶炭化珪素基板を製造する単結晶炭化珪素基板の製造方法であって、
 前記種基板の表面に所定の厚みの単結晶炭化珪素膜をエピタキシャル成長させた後、
 容器の蓋部に重石に向けて配設されたパイプから、前記重石に冷却用ガスを吹き付けて、前記重石の温度を低下させながら、余剰のSi融液を蒸発、除去する
ことを特徴とする単結晶炭化珪素基板の製造方法である。
The invention described in claim 2 and claim 3 is based on the above findings. That is, the invention described in claim 2
A method of manufacturing a single crystal silicon carbide substrate, wherein a single crystal silicon carbide substrate is manufactured by epitaxially growing a single crystal silicon carbide film on a seed substrate by a metastable solvent epitaxial method,
After epitaxially growing a single crystal silicon carbide film having a predetermined thickness on the surface of the seed substrate,
A cooling gas is sprayed on the weight from a pipe disposed on the lid of the container toward the weight, and the excess Si melt is evaporated and removed while lowering the temperature of the weight. A method for manufacturing a single crystal silicon carbide substrate.
 そして、請求項3に記載の発明は、
 前記パイプが、カーボン製パイプ、炭化タンタル製パイプ、タングステン製パイプのいずれかであることを特徴とする請求項2に記載の単結晶炭化珪素基板の製造方法である。
And the invention of Claim 3 is
The method for producing a single crystal silicon carbide substrate according to claim 2, wherein the pipe is any one of a carbon pipe, a tantalum carbide pipe, and a tungsten pipe.
 第3の方法は、重石7と種基板5との間隔を拡げることにより、重石7から昇華したSiやCが種基板5のC面5aに到達することを抑制して、SiC昇華膜Sの形成を抑制する方法である。 The third method is to increase the distance between the weight stone 7 and the seed substrate 5, thereby suppressing Si and C sublimated from the weight stone 7 from reaching the C surface 5 a of the seed substrate 5. This is a method of suppressing formation.
 前記した第1の方法を採用した場合には、余剰のSi融液を蒸発、除去する際、容器内の温度を低下させるために、新たな温度プロファイルを設定する手間が掛かり、第2の方法を採用した場合には、加熱炉や坩堝などの容器の蓋部にパイプを配設するために、容器を改造する手間が掛かる。 When the first method described above is employed, when the excess Si melt is evaporated and removed, it takes time to set a new temperature profile in order to lower the temperature in the container. Is used, it takes time and effort to modify the container in order to arrange the pipe in the lid of the container such as a heating furnace or a crucible.
 そこで、本発明者は、このような手間を掛けることなく、SiC昇華膜Sの形成を抑制する方法についても検討を行い、重石7と種基板5との間隔を拡げるだけで、従来のMSE法と同じ温度プロファイルを用いながらも、SiC昇華膜Sの形成が抑制されることに思い至った。 Therefore, the present inventor has also studied a method for suppressing the formation of the SiC sublimation film S without taking such troubles, and only increases the distance between the weight 7 and the seed substrate 5, so that the conventional MSE method is used. It was thought that the formation of the SiC sublimation film S is suppressed while using the same temperature profile.
 具体的には、従来のMSE法においては、重石7と種基板5との間隔が狭く(約0.8mm程度)、近接昇華(温度勾配がない雰囲気下での昇華)によりSiC昇華膜Sが形成され、その膜厚はSiやCを昇華させる重石7と、種基板5との距離に依存(反比例)している。 Specifically, in the conventional MSE method, the distance between the weight 7 and the seed substrate 5 is narrow (about 0.8 mm), and the SiC sublimation film S is formed by proximity sublimation (sublimation in an atmosphere having no temperature gradient). The formed film thickness depends on (in inverse proportion to) the distance between the weight 7 for sublimating Si and C and the seed substrate 5.
 このため、重石7と種基板5との間隔を拡げた場合、SiやCは重石7から従来のMSE法の場合と同様に昇華するものの、重石7と種基板5とが離れているため、種基板5のC面5aにまで到達する量が少なく(余りはスペーサ6の隙間より排出される)、SiC昇華膜Sが厚く形成されることが抑制されると共に、突起Saの高さも抑制され、研磨時における単結晶SiC基板の割れの発生を十分に低減させることができる。 For this reason, when the interval between the weight stone 7 and the seed substrate 5 is expanded, Si and C sublime from the weight stone 7 as in the case of the conventional MSE method, but the weight stone 7 and the seed substrate 5 are separated. The amount reaching the C surface 5a of the seed substrate 5 is small (the remainder is discharged from the gap between the spacers 6), the formation of the SiC sublimation film S is suppressed, and the height of the protrusion Sa is also suppressed. The occurrence of cracks in the single crystal SiC substrate during polishing can be sufficiently reduced.
 そして、種々の実験の結果、重石7と種基板5との間の好ましい間隔は、1.2~3.0mmであることが分かった。 As a result of various experiments, it has been found that a preferable interval between the weight 7 and the seed substrate 5 is 1.2 to 3.0 mm.
 請求項4に記載の発明は、上記の知見に基づくものであり、
 準安定溶媒エピタキシャル法により、種基板上に単結晶炭化珪素膜をエピタキシャル成長させて単結晶炭化珪素基板を製造する単結晶炭化珪素基板の製造方法であって、
 前記種基板と重石との間隔を、1.2~3.0mmに設定する
ことを特徴とする単結晶炭化珪素基板の製造方法である。
Invention of Claim 4 is based on said knowledge,
A method of manufacturing a single crystal silicon carbide substrate, wherein a single crystal silicon carbide substrate is manufactured by epitaxially growing a single crystal silicon carbide film on a seed substrate by a metastable solvent epitaxial method,
A method for producing a single crystal silicon carbide substrate, wherein a distance between the seed substrate and the weight is set to 1.2 to 3.0 mm.
 上記したそれぞれの単結晶炭化珪素基板の製造方法を適用することにより、SiC昇華膜Sの形成を抑制することができると共に、突起Saの高さも抑制することができ、研磨時における単結晶SiC基板の割れの発生を十分に低減させることができる。 By applying each of the above-described methods for manufacturing a single crystal silicon carbide substrate, the formation of the SiC sublimation film S can be suppressed, and the height of the protrusion Sa can also be suppressed. The occurrence of cracks can be sufficiently reduced.
 なお、SiC昇華膜Sが薄すぎる場合には、種基板5のC面5aに荒れが発生して好ましくないため、ある程度の厚みにSiC昇華膜Sが形成されていることが好ましい。 Note that, if the SiC sublimation film S is too thin, the C surface 5a of the seed substrate 5 is undesirably roughened. Therefore, the SiC sublimation film S is preferably formed to a certain thickness.
 実験の結果、本発明において好ましいSiC昇華膜Sの厚みは、1~20μmであることが分かった。 As a result of the experiment, it was found that the preferable thickness of the SiC sublimation film S in the present invention is 1 to 20 μm.
 請求項5および請求項6に記載の発明は、上記の知見に基づくものである。即ち、請求項5に記載の発明は、
 請求項1ないし請求項4のいずれか1項に記載の単結晶炭化珪素基板の製造方法を用いて製造されていることを特徴とする単結晶炭化珪素基板である。
The inventions according to claims 5 and 6 are based on the above findings. That is, the invention described in claim 5
A single crystal silicon carbide substrate manufactured using the method for manufacturing a single crystal silicon carbide substrate according to any one of claims 1 to 4.
 そして、請求項6に記載の発明は、
 前記種基板に形成されている昇華膜の厚みが、1~20μmであることを特徴とする請求項5に記載の単結晶炭化珪素基板である。
And invention of Claim 6 is the following.
6. The single crystal silicon carbide substrate according to claim 5, wherein the sublimation film formed on the seed substrate has a thickness of 1 to 20 μm.
 本発明によれば、突起の高さを十分に抑制すると共に、研磨時における割れの発生を十分に低減させることができるMSE法を用いた単結晶SiC基板の製造方法を提供することができる。 According to the present invention, it is possible to provide a method of manufacturing a single crystal SiC substrate using the MSE method that can sufficiently suppress the height of the protrusions and sufficiently reduce the occurrence of cracks during polishing.
本発明の一実施の形態に係る単結晶SiC基板の製造方法に用いられる単結晶SiC成長装置の主要部を模式的に示す図である。It is a figure which shows typically the principal part of the single crystal SiC growth apparatus used for the manufacturing method of the single crystal SiC substrate which concerns on one embodiment of this invention. 本発明の他の実施の形態に係る単結晶SiC基板の製造方法に用いられる単結晶SiC成長装置の主要部を模式的に示す図である。It is a figure which shows typically the principal part of the single crystal SiC growth apparatus used for the manufacturing method of the single crystal SiC substrate which concerns on other embodiment of this invention. 従来のMSE法に用いられる単結晶SiC成長装置の主要部を模式的に示す図である。It is a figure which shows typically the principal part of the single crystal SiC growth apparatus used for the conventional MSE method. 突起が形成された単結晶SiC基板を説明する図である。It is a figure explaining the single crystal SiC substrate in which the protrusion was formed. 従来のMSE法における昇華膜の形成を説明する図である。It is a figure explaining formation of a sublimation film in the conventional MSE method.
 以下、本発明を実施の形態に基づいて説明する。 Hereinafter, the present invention will be described based on embodiments.
[1]第1の実施の形態
 本実施の形態は、前記した第1の方法に基づいて単結晶SiC基板を製造するものである。
[1] First Embodiment In the present embodiment, a single crystal SiC substrate is manufactured based on the first method described above.
 本実施の形態において、単結晶SiC成長装置としては、図3に示した従来のMSE法と同じ単結晶SiC成長装置が使用され、SiCエピタキシャル膜を形成する工程までは従来のMSE法と同じ工程を経て行われる。 In the present embodiment, as the single crystal SiC growth apparatus, the same single crystal SiC growth apparatus as the conventional MSE method shown in FIG. 3 is used, and the same steps as the conventional MSE method until the step of forming the SiC epitaxial film. It is done through.
 即ち、最初に、図3に示すように、図示しない容器(加熱炉や坩堝)内に、下から順に、サセプタ1、スペーサ2、C原子供給基板3、スペーサ4、種基板5、スペーサ6、重石7を配置する。そして、C原子供給基板3と種基板5との間には、図示しないSiウエハを配置しておく。 That is, first, as shown in FIG. 3, in a container (not shown) (heating furnace or crucible), in order from the bottom, a susceptor 1, a spacer 2, a C atom supply substrate 3, a spacer 4, a seed substrate 5, a spacer 6, Place weight 7 A Si wafer (not shown) is placed between the C atom supply substrate 3 and the seed substrate 5.
 次に、1600~1800℃、9~90kPaの雰囲気下で1~8時間保持することにより、種基板5のSi面5b上に単結晶SiCを所定の厚みまでエピタキシャル成長させる。 Next, the single crystal SiC is epitaxially grown to a predetermined thickness on the Si surface 5b of the seed substrate 5 by holding at 1600 to 1800 ° C. in an atmosphere of 9 to 90 kPa for 1 to 8 hours.
 所定の厚みにSiCエピタキシャル膜を成長させた後、従来のMSE法においては、容器内を1950℃程度に昇温して真空引きを行うことにより、余剰のSi融液を蒸発、除去して、容器内のSiを枯渇させていた。これに対して、本実施の形態においては、容器内の温度を1800~1850℃にして、余剰のSi融液を蒸発、除去する。 After the SiC epitaxial film is grown to a predetermined thickness, in the conventional MSE method, the inside of the container is heated to about 1950 ° C. and evacuated to evaporate and remove excess Si melt, Si in the container was depleted. On the other hand, in the present embodiment, the temperature in the container is set to 1800 to 1850 ° C., and excess Si melt is evaporated and removed.
 このように、余剰のSi融液の蒸発、除去に際して、容器内の温度を従来よりも低くすることにより、重石7の温度の上昇が抑制されるため、重石7から昇華するSiやCの量が低減する。この結果、SiC昇華膜Sの形成を抑制することができると共に、突起Saの高さも抑制することができ、研磨時における単結晶SiC基板の割れの発生を十分に低減させることができる。なお、前記したように、このような温度で真空引きを行っても、従来より多少多く掛かるものの、余剰のSi融液の枯渇に支障をきたすことはない。 As described above, when the excess Si melt is evaporated and removed, the temperature inside the container is made lower than before, so that the rise in the temperature of the weight 7 is suppressed. Therefore, the amount of Si and C sublimated from the weight 7 Is reduced. As a result, formation of SiC sublimation film S can be suppressed, and the height of protrusion Sa can also be suppressed, and the occurrence of cracks in the single crystal SiC substrate during polishing can be sufficiently reduced. As described above, even if evacuation is performed at such a temperature, although it takes a little more than before, it does not hinder the depletion of excess Si melt.
 具体的には、例えば、C原子供給基板3の厚みを500μm、スペーサ4の厚みを40~100μm、種基板5の厚みを250~350μm、スペーサ6の厚みを800μm(0.8mm)として単結晶SiC基板を製造した場合、1950℃で30分保持して余剰のSi融液を蒸発、除去する従来のMSE法においては厚み約30μmの昇華膜Sが形成されていたのに対して、本実施の形態を適用して、1850℃で30分保持して余剰のSi融液の蒸発、除去を行うと、SiC昇華膜Sの厚みは約20μmに留まり、突起Saの高さも10μmに留まっていた。また、1800℃で120分保持した場合には、SiC昇華膜Sの厚みは10μmに留まり、突起Saの高さも6μmに留まっていた。 Specifically, for example, the C atom supply substrate 3 has a thickness of 500 μm, the spacer 4 has a thickness of 40 to 100 μm, the seed substrate 5 has a thickness of 250 to 350 μm, and the spacer 6 has a thickness of 800 μm (0.8 mm). In the case of manufacturing a SiC substrate, the sublimation film S having a thickness of about 30 μm was formed in the conventional MSE method of evaporating and removing excess Si melt by holding at 1950 ° C. for 30 minutes. When the embodiment was applied and the excess Si melt was evaporated and removed by holding at 1850 ° C. for 30 minutes, the thickness of the SiC sublimation film S remained at about 20 μm, and the height of the protrusion Sa also remained at 10 μm. . Further, when kept at 1800 ° C. for 120 minutes, the thickness of the SiC sublimation film S remained at 10 μm, and the height of the protrusion Sa remained at 6 μm.
[2]第2の実施の形態
 本実施の形態は、前記した第2の方法に基づいて単結晶SiC基板を製造するものである。
[2] Second Embodiment In the present embodiment, a single crystal SiC substrate is manufactured based on the second method described above.
 本実施の形態において使用される単結晶SiC成長装置を図1に示す。図1に示すように、この単結晶SiC成長装置は、加熱炉や坩堝などの容器の蓋部を貫通するパイプ8が開口部を重石7の裏面に向けて配設されていること以外は、従来のMSE法に使用される単結晶SiC成長装置と同様の構成を備えている。 FIG. 1 shows a single crystal SiC growth apparatus used in the present embodiment. As shown in FIG. 1, this single crystal SiC growth apparatus has a pipe 8 penetrating through a lid of a container such as a heating furnace or a crucible, except that the opening is disposed toward the back surface of the weight 7. It has the same configuration as the single crystal SiC growth apparatus used in the conventional MSE method.
 本実施の形態においても、従来のMSE法と同様にして、所定の厚みまでSiCエピタキシャル膜を成長させる。そして、その後、容器内を1950℃程度に昇温して30分保持することにより真空引きを行い、余剰のSi融液を蒸発、除去する点でも従来のMSE法と同様である。 Also in the present embodiment, the SiC epitaxial film is grown to a predetermined thickness in the same manner as in the conventional MSE method. Then, the inside of the container is heated to about 1950 ° C. and held for 30 minutes to perform evacuation and evaporate and remove excess Si melt, which is the same as the conventional MSE method.
 但し、本実施の形態においては、この余剰のSi融液を蒸発、除去する際、パイプ8からArガスなどの冷却ガスを重石7の裏面側に吹き付けて、重石7の温度を1800~1850℃に低下させる点で従来のMSE法と異なっている。 However, in this embodiment, when evaporating and removing this excess Si melt, a cooling gas such as Ar gas is blown from the pipe 8 to the back side of the weight 7 so that the temperature of the weight 7 is 1800 to 1850 ° C. This is different from the conventional MSE method in that it is reduced to a low level.
 このように、重石7を低い温度に保つことにより、重石7から昇華するSiやCの量が低減する。この結果、SiC昇華膜Sの形成を抑制することができると共に、突起Saの高さも抑制することができ、研磨時における単結晶SiC基板の割れの発生を十分に低減させることができる。 Thus, by keeping the weight 7 at a low temperature, the amount of Si and C sublimated from the weight 7 is reduced. As a result, formation of SiC sublimation film S can be suppressed, and the height of protrusion Sa can also be suppressed, and the occurrence of cracks in the single crystal SiC substrate during polishing can be sufficiently reduced.
 そして、本実施の形態においては、重石7を除く容器内の温度は従来と同様に1950℃程度に保たれているため、従来のMSE法の場合と殆ど変わらない時間で、余剰のSi融液を蒸発、除去することができる。 In the present embodiment, the temperature inside the container excluding the weight stone 7 is maintained at about 1950 ° C. as in the conventional case, so that the excess Si melt can be obtained in substantially the same time as in the case of the conventional MSE method. Can be evaporated and removed.
[3]第3の実施の形態
 本実施の形態は、前記した第3の方法に基づいて単結晶SiC基板を製造するものである。
[3] Third Embodiment In the present embodiment, a single crystal SiC substrate is manufactured based on the third method described above.
 本実施の形態において使用される単結晶SiC成長装置を図2に示す。図2に示すように、この単結晶SiC成長装置は、スペーサ6として、従来のMSE法において使用されていた図3に示すスペーサ6に比べて厚みがあるスペーサを使用して、重石7と種基板5との間隔dを、従来の約0.8mm程度から1.2~3.0mmに拡げていること以外は、従来のMSE法に使用される単結晶SiC成長装置と同様の構成を備えている。 FIG. 2 shows a single crystal SiC growth apparatus used in the present embodiment. As shown in FIG. 2, this single crystal SiC growth apparatus uses a spacer that is thicker than the spacer 6 shown in FIG. It has the same configuration as the single crystal SiC growth apparatus used in the conventional MSE method except that the distance d with respect to the substrate 5 is increased from about 0.8 mm to 1.2 to 3.0 mm. ing.
 本実施の形態においても、従来のMSE法と同様にして、所定の厚みまでSiCエピタキシャル膜を成長させる。そして、その後、容器内を1950℃程度に昇温して30分保持することにより真空引きを行い、余剰のSi融液を蒸発、除去する点でも従来のMSE法と同様である。 Also in the present embodiment, the SiC epitaxial film is grown to a predetermined thickness in the same manner as in the conventional MSE method. Then, the inside of the container is heated to about 1950 ° C. and held for 30 minutes to perform evacuation and evaporate and remove excess Si melt, which is the same as the conventional MSE method.
 しかし、本実施の形態においては、上記したように、重石7と種基板5との間隔dが拡げられているため、容器内を1950℃程度に昇温して30分保持しても、余剰のSi融液を蒸発、除去する際、重石7から昇華したSiやCが少ししか種基板5のC面5aに到達しない。この結果、SiC昇華膜Sの形成を抑制することができると共に、突起Saの高さも抑制することができ、研磨時における単結晶SiC基板の割れの発生を十分に低減させることができる。 However, in this embodiment, as described above, since the distance d between the weight 7 and the seed substrate 5 is widened, even if the temperature inside the container is raised to about 1950 ° C. and held for 30 minutes, surplus When evaporating and removing the Si melt, little Si or C sublimated from the weight 7 reaches the C surface 5 a of the seed substrate 5. As a result, formation of SiC sublimation film S can be suppressed, and the height of protrusion Sa can also be suppressed, and the occurrence of cracks in the single crystal SiC substrate during polishing can be sufficiently reduced.
 そして、本実施の形態においても、容器内の温度は従来と同様に1950℃程度であるため、従来のMSE法の場合と殆ど変わらない時間で、余剰のSi融液を蒸発、除去することができる。 Also in this embodiment, since the temperature in the container is about 1950 ° C. as in the conventional case, excess Si melt can be evaporated and removed in a time that is almost the same as in the case of the conventional MSE method. it can.
 以上、本発明を実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。 As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.
 1      サセプタ
 2、4、6  スペーサ
 3      C原子供給基板
 5      種基板
 5a     C面
 5b     Si面
 7      重石
 8      パイプ
 E      SiCエピタキシャル膜
 S      SiC昇華膜
 Sa     突起
DESCRIPTION OF SYMBOLS 1 Susceptor 2, 4, 6 Spacer 3 C atom supply board | substrate 5 Seed substrate 5a C surface 5b Si surface 7 Clay stone 8 Pipe E SiC epitaxial film S SiC sublimation film Sa Protrusion

Claims (6)

  1.  準安定溶媒エピタキシャル法により、種基板上に単結晶炭化珪素膜をエピタキシャル成長させて単結晶炭化珪素基板を製造する単結晶炭化珪素基板の製造方法であって、
     前記種基板の表面に所定の厚みの単結晶炭化珪素膜をエピタキシャル成長させた後、
     容器内の温度を1800~1850℃にして、余剰のSi融液を蒸発、除去する
    ことを特徴とする単結晶炭化珪素基板の製造方法。
    A method of manufacturing a single crystal silicon carbide substrate, wherein a single crystal silicon carbide substrate is manufactured by epitaxially growing a single crystal silicon carbide film on a seed substrate by a metastable solvent epitaxial method,
    After epitaxially growing a single crystal silicon carbide film having a predetermined thickness on the surface of the seed substrate,
    A method for producing a single crystal silicon carbide substrate, characterized in that the temperature in the container is set to 1800 to 1850 ° C., and excess Si melt is evaporated and removed.
  2.  準安定溶媒エピタキシャル法により、種基板上に単結晶炭化珪素膜をエピタキシャル成長させて単結晶炭化珪素基板を製造する単結晶炭化珪素基板の製造方法であって、
     前記種基板の表面に所定の厚みの単結晶炭化珪素膜をエピタキシャル成長させた後、
     容器の蓋部に重石に向けて配設されたパイプから、前記重石に冷却用ガスを吹き付けて、前記重石の温度を低下させながら、余剰のSi融液を蒸発、除去する
    ことを特徴とする単結晶炭化珪素基板の製造方法。
    A method of manufacturing a single crystal silicon carbide substrate, wherein a single crystal silicon carbide substrate is manufactured by epitaxially growing a single crystal silicon carbide film on a seed substrate by a metastable solvent epitaxial method,
    After epitaxially growing a single crystal silicon carbide film having a predetermined thickness on the surface of the seed substrate,
    A cooling gas is sprayed on the weight from a pipe disposed on the lid of the container toward the weight, and the excess Si melt is evaporated and removed while lowering the temperature of the weight. A method for producing a single crystal silicon carbide substrate.
  3.  前記パイプが、カーボン製パイプ、炭化タンタル製パイプ、タングステン製パイプのいずれかであることを特徴とする請求項2に記載の単結晶炭化珪素基板の製造方法。 The method for producing a single crystal silicon carbide substrate according to claim 2, wherein the pipe is any one of a carbon pipe, a tantalum carbide pipe, and a tungsten pipe.
  4.  準安定溶媒エピタキシャル法により、種基板上に単結晶炭化珪素膜をエピタキシャル成長させて単結晶炭化珪素基板を製造する単結晶炭化珪素基板の製造方法であって、
     前記種基板と重石との間隔を、1.2~3.0mmに設定する
    ことを特徴とする単結晶炭化珪素基板の製造方法。
    A method of manufacturing a single crystal silicon carbide substrate, wherein a single crystal silicon carbide substrate is manufactured by epitaxially growing a single crystal silicon carbide film on a seed substrate by a metastable solvent epitaxial method,
    A method for producing a single crystal silicon carbide substrate, wherein a distance between the seed substrate and the weight is set to 1.2 to 3.0 mm.
  5.  請求項1ないし請求項4のいずれか1項に記載の単結晶炭化珪素基板の製造方法を用いて製造されていることを特徴とする単結晶炭化珪素基板。 A single crystal silicon carbide substrate manufactured using the method for manufacturing a single crystal silicon carbide substrate according to any one of claims 1 to 4.
  6.  前記種基板に形成されている昇華膜の厚みが、1~20μmであることを特徴とする請求項5に記載の単結晶炭化珪素基板。 6. The single crystal silicon carbide substrate according to claim 5, wherein the sublimation film formed on the seed substrate has a thickness of 1 to 20 μm.
PCT/JP2013/053021 2013-02-08 2013-02-08 Single crystal silicon carbide substrate and method for producing same WO2014122768A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/053021 WO2014122768A1 (en) 2013-02-08 2013-02-08 Single crystal silicon carbide substrate and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/053021 WO2014122768A1 (en) 2013-02-08 2013-02-08 Single crystal silicon carbide substrate and method for producing same

Publications (1)

Publication Number Publication Date
WO2014122768A1 true WO2014122768A1 (en) 2014-08-14

Family

ID=51299380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053021 WO2014122768A1 (en) 2013-02-08 2013-02-08 Single crystal silicon carbide substrate and method for producing same

Country Status (1)

Country Link
WO (1) WO2014122768A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158695A (en) * 1999-11-29 2001-06-12 Denso Corp Method for producing silicon carbide single crystal
WO2005116307A1 (en) * 2004-05-27 2005-12-08 Bridgestone Corporation Process for producing wafer of silicon carbide single-crystal
JP2008016691A (en) * 2006-07-07 2008-01-24 Kwansei Gakuin Method of reforming surface of single crystal silicon carbide substrate, method of forming single crystal silicon carbide thin film, ion implantation and annealing method, and single crystal silicon carbide substrate and single crystal silicon carbide semiconductor substrate
JP2008230946A (en) * 2007-03-23 2008-10-02 Kwansei Gakuin Liquid phase epitaxial growth method of single crystal silicon carbide, method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate
WO2009107188A1 (en) * 2008-02-25 2009-09-03 財団法人地球環境産業技術研究機構 METHOD FOR GROWING SINGLE CRYSTAL SiC
JP2010089983A (en) * 2008-10-07 2010-04-22 Ecotron:Kk METHOD FOR FORMING SiC SINGLE CRYSTAL
WO2011024931A1 (en) * 2009-08-27 2011-03-03 住友金属工業株式会社 Sic single crystal wafer and process for production thereof
JP2011119412A (en) * 2009-12-02 2011-06-16 Kwansei Gakuin Method of manufacturing semiconductor wafer
JP2012020889A (en) * 2010-07-13 2012-02-02 Ecotron:Kk METHOD FOR PRODUCING SiC SEMICONDUCTOR THIN FILM AND DEVICE FOR PRODUCING THE SAME

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158695A (en) * 1999-11-29 2001-06-12 Denso Corp Method for producing silicon carbide single crystal
WO2005116307A1 (en) * 2004-05-27 2005-12-08 Bridgestone Corporation Process for producing wafer of silicon carbide single-crystal
JP2008016691A (en) * 2006-07-07 2008-01-24 Kwansei Gakuin Method of reforming surface of single crystal silicon carbide substrate, method of forming single crystal silicon carbide thin film, ion implantation and annealing method, and single crystal silicon carbide substrate and single crystal silicon carbide semiconductor substrate
JP2008230946A (en) * 2007-03-23 2008-10-02 Kwansei Gakuin Liquid phase epitaxial growth method of single crystal silicon carbide, method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate
WO2009107188A1 (en) * 2008-02-25 2009-09-03 財団法人地球環境産業技術研究機構 METHOD FOR GROWING SINGLE CRYSTAL SiC
JP2010089983A (en) * 2008-10-07 2010-04-22 Ecotron:Kk METHOD FOR FORMING SiC SINGLE CRYSTAL
WO2011024931A1 (en) * 2009-08-27 2011-03-03 住友金属工業株式会社 Sic single crystal wafer and process for production thereof
JP2011119412A (en) * 2009-12-02 2011-06-16 Kwansei Gakuin Method of manufacturing semiconductor wafer
JP2012020889A (en) * 2010-07-13 2012-02-02 Ecotron:Kk METHOD FOR PRODUCING SiC SEMICONDUCTOR THIN FILM AND DEVICE FOR PRODUCING THE SAME

Similar Documents

Publication Publication Date Title
TWI708873B (en) Surface treatment method of silicon carbide substrate
TWI659463B (en) Etching method of silicon carbide substrate and containing container
JP6813779B2 (en) Single crystal manufacturing equipment and single crystal manufacturing method
JP5418385B2 (en) Method for producing silicon carbide single crystal ingot
KR102067313B1 (en) Storing container, storing container manufacturing method, semiconductor manufacturing method, and semiconductor manufacturing apparatus
JP5339239B2 (en) Method for producing SiC substrate
JP5263900B2 (en) Method for growing single crystal SiC
JP5786759B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP2005097040A (en) Surface improvement method of single crystal silicon carbide substrate and improved single crystal silicon carbide substrate, and growing method of single crystal silicon carbide
JP5732288B2 (en) Manufacturing method of free-standing substrate
JP2005126248A (en) Method for growing single crystal silicon carbide
JP5761264B2 (en) Method for manufacturing SiC substrate
JP6335716B2 (en) Method for producing silicon carbide single crystal ingot
JP5375783B2 (en) Method for producing silicon carbide single crystal
WO2014122768A1 (en) Single crystal silicon carbide substrate and method for producing same
JP2005126249A (en) Method for growing single crystal silicon carbide
JP2006096578A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
JP2014024705A (en) Method for producing silicon carbide substrate
WO2020059810A1 (en) Method for manufacturing device fabrication wafer
JP5164121B2 (en) Single crystal silicon carbide growth method
WO2014020694A1 (en) Single crystal silicon carbide substrate and method for manufacturing same
WO2011135669A1 (en) PROCESS FOR PRODUCTION OF SiC SUBSTRATE
JPH1160391A (en) Production of silicon carbide single crystal
JP6628673B2 (en) Manufacturing method of epitaxial silicon carbide single crystal wafer
JP2023501774A (en) A method for reducing structural damage on the surface of a single-crystal aluminum nitride substrate and a single-crystal aluminum nitride substrate manufactured by the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP