WO2014122768A1 - Substrat en carbure de silicium monocristallin et son procédé de production - Google Patents

Substrat en carbure de silicium monocristallin et son procédé de production Download PDF

Info

Publication number
WO2014122768A1
WO2014122768A1 PCT/JP2013/053021 JP2013053021W WO2014122768A1 WO 2014122768 A1 WO2014122768 A1 WO 2014122768A1 JP 2013053021 W JP2013053021 W JP 2013053021W WO 2014122768 A1 WO2014122768 A1 WO 2014122768A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
silicon carbide
crystal silicon
substrate
sic
Prior art date
Application number
PCT/JP2013/053021
Other languages
English (en)
Japanese (ja)
Inventor
佳孝 瀬戸口
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to PCT/JP2013/053021 priority Critical patent/WO2014122768A1/fr
Publication of WO2014122768A1 publication Critical patent/WO2014122768A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • SiC silicon carbide
  • MSE method Metal Solvent Epitaxy
  • the single crystal SiC substrate taken out is sent to the device fabrication process after the seed substrate 5 is fixed to a polishing base and the SiC epitaxial film E on the surface is polished.
  • the surface of the SiC sublimation film S having a thickness of about 30 ⁇ m was observed, it was found that a large protrusion Sa having a height of about 50 ⁇ m was formed at a location along the wall surface of the spacer 6 as shown in FIG. It was.
  • the thickness of the SiC sublimation film S and the height of the protrusion Sa are related to each other.
  • the present inventor considered that if the thickness of the formed SiC sublimation film S can be reduced, the height of the protrusion Sa can be suppressed.
  • the first method and the second method suppress the formation of the SiC sublimation film S by lowering the temperature of the weight 7 when the excess Si melt is evaporated and removed.
  • the inside of the container is heated and evacuated to evaporate excess Si melt, At this time, if vacuuming is performed by reducing the temperature inside the entire container from about 1950 ° C. to about 1800 to 1850 ° C., the temperature rise of the weight 7 is suppressed. Sublimated Si and C are reduced. Even if evacuation is performed at 1800 to 1850 ° C., although it takes a little more time than before, it does not hinder the depletion of excess Si melt.
  • the formation of the SiC sublimation film S it is possible to suppress the formation of the SiC sublimation film S to be thick, so that the occurrence of cracks during polishing can be reduced.
  • the height of the protrusion Sa formed on the SiC sublimation film S is also suppressed, so that the concentration of stress on the protrusion Sa during polishing is reduced, and cracking is prevented. Increase in generation can be suppressed.
  • Claim 1 A method of manufacturing a single crystal silicon carbide substrate, wherein a single crystal silicon carbide substrate is manufactured by epitaxially growing a single crystal silicon carbide film on a seed substrate by a metastable solvent epitaxial method, After epitaxially growing a single crystal silicon carbide film having a predetermined thickness on the surface of the seed substrate, A method for producing a single crystal silicon carbide substrate, characterized in that the temperature in the container is set to 1800 to 1850 ° C., and excess Si melt is evaporated and removed.
  • the second method is a method for suppressing the formation of the SiC sublimation film S by blowing a cooling gas to the weight stone 7 and lowering the temperature of the weight stone 7 when the excess Si melt is evaporated and removed. .
  • a pipe that can withstand the high temperature in the container is used, and for example, a carbon pipe, a tantalum carbide (TaC) pipe, a tungsten (W) pipe, or the like is preferably used. be able to.
  • the invention described in claim 2 and claim 3 is based on the above findings. That is, the invention described in claim 2 A method of manufacturing a single crystal silicon carbide substrate, wherein a single crystal silicon carbide substrate is manufactured by epitaxially growing a single crystal silicon carbide film on a seed substrate by a metastable solvent epitaxial method, After epitaxially growing a single crystal silicon carbide film having a predetermined thickness on the surface of the seed substrate, A cooling gas is sprayed on the weight from a pipe disposed on the lid of the container toward the weight, and the excess Si melt is evaporated and removed while lowering the temperature of the weight. A method for manufacturing a single crystal silicon carbide substrate.
  • the distance between the weight 7 and the seed substrate 5 is narrow (about 0.8 mm), and the SiC sublimation film S is formed by proximity sublimation (sublimation in an atmosphere having no temperature gradient).
  • the formed film thickness depends on (in inverse proportion to) the distance between the weight 7 for sublimating Si and C and the seed substrate 5.
  • Invention of Claim 4 is based on said knowledge, A method of manufacturing a single crystal silicon carbide substrate, wherein a single crystal silicon carbide substrate is manufactured by epitaxially growing a single crystal silicon carbide film on a seed substrate by a metastable solvent epitaxial method, A method for producing a single crystal silicon carbide substrate, wherein a distance between the seed substrate and the weight is set to 1.2 to 3.0 mm.
  • the SiC sublimation film S is preferably formed to a certain thickness.
  • a susceptor 1 for a susceptor 1 , a spacer 2, a C atom supply substrate 3, a spacer 4, a seed substrate 5, a spacer 6, Place weight 7 A Si wafer (not shown) is placed between the C atom supply substrate 3 and the seed substrate 5.
  • the inside of the container is heated to about 1950 ° C. and evacuated to evaporate and remove excess Si melt, Si in the container was depleted.
  • the temperature in the container is set to 1800 to 1850 ° C., and excess Si melt is evaporated and removed.
  • the C atom supply substrate 3 has a thickness of 500 ⁇ m
  • the spacer 4 has a thickness of 40 to 100 ⁇ m
  • the seed substrate 5 has a thickness of 250 to 350 ⁇ m
  • the spacer 6 has a thickness of 800 ⁇ m (0.8 mm).
  • the sublimation film S having a thickness of about 30 ⁇ m was formed in the conventional MSE method of evaporating and removing excess Si melt by holding at 1950 ° C. for 30 minutes. When the embodiment was applied and the excess Si melt was evaporated and removed by holding at 1850 ° C.
  • a single crystal SiC substrate is manufactured based on the second method described above.
  • FIG. 1 shows a single crystal SiC growth apparatus used in the present embodiment.
  • this single crystal SiC growth apparatus has a pipe 8 penetrating through a lid of a container such as a heating furnace or a crucible, except that the opening is disposed toward the back surface of the weight 7. It has the same configuration as the single crystal SiC growth apparatus used in the conventional MSE method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention concerne un procédé de production d'un substrat en carbure de silicium (SiC) monocristallin, ledit procédé utilisant un procédé d'épitaxie en solvant métastable (MSE) apte à suffisamment réduire l'occurrence d'une fissure pendant un polissage. L'invention concerne également un procédé de production d'un substrat en carbure de silicium monocristallin par un procédé d'épitaxie en solvant métastable, au cours duquel un film de carbure de silicium monocristallin est amené à croître de manière épitaxiale sur un substrat d'ensemencement pour produire un substrat en carbure de silicium monocristallin, un substrat en carbure de silicium monocristallin étant produit par un procédé d'épitaxie en solvant métastable, au cours duquel un film de carbure de silicium monocristallin est amené à croître de manière épitaxiale jusqu'à une épaisseur prescrite sur une surface d'un substrat d'ensemencement, et la température à l'intérieur d'un récipient étant ensuite réglée pour atteindre 1 800 - 1 850 °C et l'excédent de masse fondue de Si étant éliminé par évaporation. L'invention concerne également un procédé de production d'un substrat en carbure de silicium monocristallin, au cours duquel l'excédent de masse fondue de Si est éliminé par évaporation à mesure que la température d'un poids est abaissée. L'invention concerne également un procédé de production d'un substrat en carbure de silicium monocristallin, au cours duquel l'espace entre un substrat d'ensemencement et un poids est réglé pour atteindre 1,2 - 3,0 mm.
PCT/JP2013/053021 2013-02-08 2013-02-08 Substrat en carbure de silicium monocristallin et son procédé de production WO2014122768A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/053021 WO2014122768A1 (fr) 2013-02-08 2013-02-08 Substrat en carbure de silicium monocristallin et son procédé de production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/053021 WO2014122768A1 (fr) 2013-02-08 2013-02-08 Substrat en carbure de silicium monocristallin et son procédé de production

Publications (1)

Publication Number Publication Date
WO2014122768A1 true WO2014122768A1 (fr) 2014-08-14

Family

ID=51299380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053021 WO2014122768A1 (fr) 2013-02-08 2013-02-08 Substrat en carbure de silicium monocristallin et son procédé de production

Country Status (1)

Country Link
WO (1) WO2014122768A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158695A (ja) * 1999-11-29 2001-06-12 Denso Corp 炭化珪素単結晶の製造方法
WO2005116307A1 (fr) * 2004-05-27 2005-12-08 Bridgestone Corporation Procédé de fabrication d’une plaquette de simple cristal en carbure de silicium
JP2008016691A (ja) * 2006-07-07 2008-01-24 Kwansei Gakuin 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
JP2008230946A (ja) * 2007-03-23 2008-10-02 Kwansei Gakuin 単結晶炭化ケイ素の液相エピタキシャル成長方法、単結晶炭化ケイ素基板の製造方法、及び単結晶炭化ケイ素基板
WO2009107188A1 (fr) * 2008-02-25 2009-09-03 財団法人地球環境産業技術研究機構 PROCÉDÉ DE CROISSANCE DE SiC MONOCRISTALLIN
JP2010089983A (ja) * 2008-10-07 2010-04-22 Ecotron:Kk SiC単結晶の形成方法
WO2011024931A1 (fr) * 2009-08-27 2011-03-03 住友金属工業株式会社 Tranche de monocristal de sic et son procédé de fabrication
JP2011119412A (ja) * 2009-12-02 2011-06-16 Kwansei Gakuin 半導体ウエハの製造方法
JP2012020889A (ja) * 2010-07-13 2012-02-02 Ecotron:Kk SiC半導体薄膜の作製方法および作製装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158695A (ja) * 1999-11-29 2001-06-12 Denso Corp 炭化珪素単結晶の製造方法
WO2005116307A1 (fr) * 2004-05-27 2005-12-08 Bridgestone Corporation Procédé de fabrication d’une plaquette de simple cristal en carbure de silicium
JP2008016691A (ja) * 2006-07-07 2008-01-24 Kwansei Gakuin 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
JP2008230946A (ja) * 2007-03-23 2008-10-02 Kwansei Gakuin 単結晶炭化ケイ素の液相エピタキシャル成長方法、単結晶炭化ケイ素基板の製造方法、及び単結晶炭化ケイ素基板
WO2009107188A1 (fr) * 2008-02-25 2009-09-03 財団法人地球環境産業技術研究機構 PROCÉDÉ DE CROISSANCE DE SiC MONOCRISTALLIN
JP2010089983A (ja) * 2008-10-07 2010-04-22 Ecotron:Kk SiC単結晶の形成方法
WO2011024931A1 (fr) * 2009-08-27 2011-03-03 住友金属工業株式会社 Tranche de monocristal de sic et son procédé de fabrication
JP2011119412A (ja) * 2009-12-02 2011-06-16 Kwansei Gakuin 半導体ウエハの製造方法
JP2012020889A (ja) * 2010-07-13 2012-02-02 Ecotron:Kk SiC半導体薄膜の作製方法および作製装置

Similar Documents

Publication Publication Date Title
JP6813779B2 (ja) 単結晶製造装置及び単結晶製造方法
TWI708873B (zh) 碳化矽基板之表面處理方法
TWI659463B (zh) 碳化矽基板之蝕刻方法及收容容器
JP5418385B2 (ja) 炭化珪素単結晶インゴットの製造方法
KR102067313B1 (ko) 수용 용기, 수용 용기의 제조 방법, 반도체의 제조 방법, 및 반도체 제조 장치
JP5339239B2 (ja) SiC基板の作製方法
JP5263900B2 (ja) 単結晶SiCの成長方法
JP5786759B2 (ja) エピタキシャル炭化珪素ウエハの製造方法
JP2005097040A (ja) 単結晶炭化ケイ素基板の表面改良方法及びその改良された単結晶炭化ケイ素基板、並びに、単結晶炭化ケイ素成長方法
JP5732288B2 (ja) 自立基板の製造方法
JP2005126248A (ja) 単結晶炭化ケイ素成長方法
JP6335716B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP5375783B2 (ja) 炭化珪素単結晶の製造方法
JP5761264B2 (ja) SiC基板の製造方法
WO2014122768A1 (fr) Substrat en carbure de silicium monocristallin et son procédé de production
JP2005126249A (ja) 単結晶炭化ケイ素成長方法
JP2006096578A (ja) 炭化珪素単結晶の製造方法及び炭化珪素単結晶インゴット
JP2014024705A (ja) 炭化珪素基板の製造方法
WO2020059810A1 (fr) Procédé de fabrication d'une tranche de fabrication d'un dispositif
JP5164121B2 (ja) 単結晶炭化ケイ素成長方法
WO2014020694A1 (fr) Substrat de carbure de silicium monocristallin et son procédé de fabrication
WO2011135669A1 (fr) PROCESSUS DE PRODUCTION D'UN SUBSTRAT EN SiC
JPH1160391A (ja) 炭化珪素単結晶の製造方法
JP6628673B2 (ja) エピタキシャル炭化珪素単結晶ウェハの製造方法
JP2023501774A (ja) 単結晶窒化アルミニウム基板の表面の構造的損傷を低減させる方法およびその方法によって製造される単結晶窒化アルミニウム基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP