JP5263900B2 - Method for growing single crystal SiC - Google Patents

Method for growing single crystal SiC Download PDF

Info

Publication number
JP5263900B2
JP5263900B2 JP2010500465A JP2010500465A JP5263900B2 JP 5263900 B2 JP5263900 B2 JP 5263900B2 JP 2010500465 A JP2010500465 A JP 2010500465A JP 2010500465 A JP2010500465 A JP 2010500465A JP 5263900 B2 JP5263900 B2 JP 5263900B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal sic
temperature
substrate
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010500465A
Other languages
Japanese (ja)
Other versions
JPWO2009107188A1 (en
Inventor
信彦 中村
徹 松浪
浩 川見
信吉 浜田
公人 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Ecotron Co Ltd
Original Assignee
Research Institute of Innovative Technology for Earth
Ecotron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth, Ecotron Co Ltd filed Critical Research Institute of Innovative Technology for Earth
Publication of JPWO2009107188A1 publication Critical patent/JPWO2009107188A1/en
Application granted granted Critical
Publication of JP5263900B2 publication Critical patent/JP5263900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/02Zone-melting with a solvent, e.g. travelling solvent process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、単結晶SiC基板上に単結晶SiCをエピタキシャル成長させる単結晶SiCの成長方法に関する。   The present invention relates to a method for growing single crystal SiC by epitaxially growing single crystal SiC on a single crystal SiC substrate.

SiCは、耐熱性、機械的強度に優れており、放射線に強く、不純物の添加によって電子や正孔の価電子制御を容易に行うことができ、さらに禁制帯幅が広い等といった特性を備えていることから、次世代のパワーデバイス、高周波デバイス用の半導体材料として期待されている。   SiC is superior in heat resistance and mechanical strength, is resistant to radiation, can easily control valence electrons of electrons and holes by adding impurities, and has a wide band gap. Therefore, it is expected as a semiconductor material for next-generation power devices and high-frequency devices.

しかし、単結晶SiCは、熱の影響によって基底面転位、螺旋転位、マイクロパイプ等の結晶欠陥が発生しやすく、また核生成に起因する結晶粒界が発生しやすい等、性能的、品質的に安定した単結晶SiCを得ることが難しいという問題がある。   However, single crystal SiC is susceptible to crystal defects such as basal plane dislocations, screw dislocations, and micropipes due to the effects of heat, and crystal grain boundaries due to nucleation are likely to occur. There is a problem that it is difficult to obtain stable single crystal SiC.

これらの問題を解決する手段として、特許文献1〜3において、単結晶SiC基板と炭素原子供給基板との間に所定の厚さのSi融液層を介在させた状態で熱処理を行うことによって単結晶SiC基板上に単結晶SiCをエピタキシャル成長させる準安定溶媒エピタキシャル法(MSE法)が提案されている。このMSE法は、マイクロパイプ欠陥が抑制され、平坦度が高い単結晶SiCを実現できるという利点を有しており、しかも成長速度が速いという利点も有している。   As means for solving these problems, in Patent Documents 1 to 3, a single heat treatment is performed by interposing a Si melt layer having a predetermined thickness between a single crystal SiC substrate and a carbon atom supply substrate. A metastable solvent epitaxial method (MSE method) for epitaxially growing single crystal SiC on a crystalline SiC substrate has been proposed. This MSE method has the advantage that micro-pipe defects are suppressed and single crystal SiC having a high flatness can be realized, and also has the advantage of a high growth rate.

WO2002/099169号公報WO2002 / 099169 特開2005−126248号公報JP 2005-126248 A 特開2005−126249号公報JP 2005-126249 A

しかし、特許文献1〜3に示された技術は、マイクロパイプ欠陥の発生は抑制することができるものの、マイクロパイプ以外の基底面転位や螺旋転位等の結晶欠陥の発生を十分に抑制しているとまでは言えなかった。   However, although the techniques disclosed in Patent Documents 1 to 3 can suppress the occurrence of micropipe defects, they sufficiently suppress the generation of crystal defects such as basal plane dislocations and spiral dislocations other than micropipes. I couldn't say that.

そこで、本発明は、マイクロパイプ欠陥のみならず、基底面転位や螺旋転位等の結晶欠陥の発生をも十分に抑制して、性能的、品質的に安定した単結晶SiCエピタキシャル層を得ることができる単結晶SiCの成長方法を提供することを課題とする。   Therefore, the present invention can sufficiently suppress the generation of not only micropipe defects but also crystal defects such as basal plane dislocations and screw dislocations, and obtain a single crystal SiC epitaxial layer that is stable in terms of performance and quality. It is an object of the present invention to provide a method for growing single crystal SiC that can be produced.

本発明者は、従来のMSE法に新たな工夫を加えることにより、上記の課題を解決して、結晶欠陥の発生が十分に抑制された単結晶SiCエピタキシャル層を得ることができることを見出し、本発明を完成するに至った。
以下、本発明に関連する第1〜第8の技術について説明する。
The present inventor has found that a single-crystal SiC epitaxial layer in which generation of crystal defects is sufficiently suppressed can be obtained by adding a new device to the conventional MSE method to solve the above problems. The invention has been completed.
Hereinafter, first to eighth techniques related to the present invention will be described.

本発明に関連する第1の技術は、
単結晶SiC基板と炭素原子供給基板との間に所定の厚さのSi融液層を介在させた状態で熱処理を行うことによって、前記単結晶SiC基板上に単結晶SiCをエピタキシャル成長させる単結晶SiCの成長方法であって、
前記単結晶SiCの成長方法は、反応系内のガス/水分を除去する脱ガス/脱水工程、Siの融点以上の温度まで昇温するSi昇温工程、前記Siの融点以上の温度でSi融液を形成させるSi融解工程、エピタキシャル成長温度で単結晶SiC基板上に単結晶SiCをエピタキシャル成長させるSiC成長工程の順に行われ、
前記Si昇温工程が、単結晶SiC基板の面内温度の均熱を保つ所定の昇温速度で、Si融点を超えないSi融点近傍の所定の温度まで昇温を行う第1の昇温工程と、前記Si融点を超えないSi融点近傍の所定の温度からSi融点以上の温度まで昇温する第2の昇温工程からなることを特徴とする単結晶SiCの成長方法である。
The first technique related to the present invention is:
A single crystal SiC is epitaxially grown on the single crystal SiC substrate by performing a heat treatment with a Si melt layer having a predetermined thickness interposed between the single crystal SiC substrate and the carbon atom supply substrate. The growth method of
The single-crystal SiC growth method includes a degassing / dehydration process for removing gas / water in the reaction system, a Si heating process for raising the temperature to a temperature higher than the melting point of Si, and a Si melting process at a temperature higher than the melting point of Si. A Si melting step for forming a liquid, and a SiC growth step for epitaxially growing single crystal SiC on a single crystal SiC substrate at an epitaxial growth temperature,
The Si temperature raising step is a first temperature raising step in which the temperature is raised to a predetermined temperature in the vicinity of the Si melting point that does not exceed the Si melting point at a predetermined heating rate that keeps the in-plane temperature of the single crystal SiC substrate constant. And a second temperature raising step of raising the temperature from a predetermined temperature near the Si melting point not exceeding the Si melting point to a temperature equal to or higher than the Si melting point.

第1の技術においては、Si昇温工程において、単結晶SiC基板の面内温度の均熱を保つ所定の昇温速度で、Si融点を超えないSi融点近傍の所定の温度まで昇温を行う第1の昇温工程を設けているため、単結晶SiC基板上に単結晶SiCを面内においても十分均一にエピタキシャル成長させることができ、結晶欠陥の発生を十分に抑制することができる。 In the first technique , in the Si temperature raising step, the temperature is raised to a predetermined temperature in the vicinity of the Si melting point that does not exceed the Si melting point at a predetermined heating rate that keeps the in-plane temperature of the single crystal SiC substrate constant Since the first temperature raising step is provided, single crystal SiC can be epitaxially grown sufficiently uniformly on the single crystal SiC substrate even in the plane, and generation of crystal defects can be sufficiently suppressed.

本発明者は、従来のMSE法において、基底面転位や螺旋転位等の結晶欠陥が発生する原因につき検討した結果、単結晶SiC基板の面内温度の均熱が十分に保たれていなかったことが原因であることを突き止めた。   As a result of examining the cause of crystal defects such as basal plane dislocations and screw dislocations in the conventional MSE method, the present inventor has not sufficiently maintained the in-plane temperature of the single crystal SiC substrate. I found out that is the cause.

そして、単結晶SiC基板の面内温度の均熱を十分に保つ手段につき検討した結果、Si融点を超えないSi融点近傍の所定の温度まで、従来のMSE法に比べ昇温速度を遅くして、単結晶SiC基板の面内温度の均熱を保つ所定の昇温速度で昇温させた場合、基底面転位や螺旋転位等の結晶欠陥の発生が抑制された単結晶SiCエピタキシャル層が得られることが分かった。   As a result of studying means for sufficiently maintaining the in-plane temperature of the single-crystal SiC substrate, the rate of temperature increase is slowed down to a predetermined temperature near the Si melting point that does not exceed the Si melting point compared to the conventional MSE method. When a single crystal SiC substrate is heated at a predetermined rate to keep the in-plane temperature uniform, a single crystal SiC epitaxial layer in which generation of crystal defects such as basal plane dislocations and spiral dislocations is suppressed can be obtained. I understood that.

なお、第2の昇温工程は、第1の昇温工程の後に続いてSi融点以上の温度まで昇温する昇温工程であり、Si融液が生成される工程である。この工程における昇温速度は、温度ばらつきのないSi融液を生成できる昇温速度を適宜選択して決定すればよく、前記第1の昇温工程における昇温速度と同じ昇温速度であっても、異なる昇温速度であってもよい。   In addition, a 2nd temperature rising process is a temperature rising process heated up to the temperature more than Si melting | fusing point after a 1st temperature rising process, and is a process by which Si melt is produced | generated. The temperature increase rate in this step may be determined by appropriately selecting a temperature increase rate capable of generating a Si melt having no temperature variation, and is the same as the temperature increase rate in the first temperature increase step. Alternatively, different heating rates may be used.

本発明に関連する第2の技術は、
前記第2の昇温工程における昇温速度が、前記第1の昇温工程における昇温速度より速いことを特徴とする第1の技術に記載の単結晶SiCの成長方法である。
The second technique related to the present invention is:
The method for growing single-crystal SiC according to the first technique , wherein a temperature increase rate in the second temperature increase step is faster than a temperature increase rate in the first temperature increase step.

Si融点以上の温度になると、Siが融解してSi融液を生成するが、その一方でSi融液の蒸発も始まる。Si融点よりも高いエピタキシャル成長温度に到達するまでの間、Si融液は成長に関与せず蒸発していくため、成長工程において必要なSi融液量を確保するためにも、Siの蒸発量を抑制する必要がある。   When the temperature becomes higher than the melting point of Si, Si melts to form a Si melt, but on the other hand, the evaporation of the Si melt also begins. Until the epitaxial growth temperature higher than the Si melting point is reached, the Si melt evaporates without being involved in the growth. Therefore, in order to secure the amount of Si melt necessary for the growth process, the amount of Si evaporation is also reduced. It is necessary to suppress it.

そこで、第2の昇温工程における昇温速度を、前記第1の昇温工程における昇温速度より速くすることにより、昇温時間を短縮させて、Siの蒸発を抑制することが好ましい。そして、昇温時間を短縮することにより、単結晶SiC基板上における単結晶SiCのエピタキシャル成長に直接的には関係せずに蒸発するSi量を低減することができ、製造コストの低減を図ることができる。   Therefore, it is preferable that the temperature increase rate in the second temperature increase step is faster than the temperature increase rate in the first temperature increase step, thereby shortening the temperature increase time and suppressing the evaporation of Si. By shortening the heating time, it is possible to reduce the amount of Si evaporated without directly relating to the epitaxial growth of the single crystal SiC on the single crystal SiC substrate, thereby reducing the manufacturing cost. it can.

本発明に関連する第3の技術は、
前記SiC成長工程の終了後、Si融液を完全に蒸発させる蒸発処理を行うことを特徴とする第1の技術または第2の技術に記載の単結晶SiCの成長方法である。
The third technique related to the present invention is:
After the completion of the SiC growth step, the single crystal SiC growth method according to the first technique or the second technique , wherein an evaporation process for completely evaporating the Si melt is performed.

SiC成長工程の終了後もSi融液が残っていると、成長したSiC基板を取り出すために降温する際、残ったSiが凝固する。SiCとSiの熱膨張率は異なるため、降温過程でSiC基板に応力が発生して結晶欠陥を生じさせるおそれがある。そのため、Si融液を完全に蒸発させることが好ましい。具体的には、予め定められていた所定のSiC成長が終了した後も、Si融点よりも高い温度下に置き、蒸発処理を行わせることが好ましい。   If the Si melt remains even after the end of the SiC growth step, the remaining Si solidifies when the temperature is lowered to take out the grown SiC substrate. Since the thermal expansion coefficients of SiC and Si are different, stress may be generated in the SiC substrate during the temperature lowering process, which may cause crystal defects. Therefore, it is preferable to completely evaporate the Si melt. Specifically, it is preferable that the evaporation process is performed after the predetermined SiC growth, which has been determined in advance, is placed at a temperature higher than the Si melting point.

本発明に関連する第4の技術は、
前記蒸発処理が、前記エピタキシャル成長温度を保持してSi融液を蒸発させる処理であることを特徴とする第3の技術に記載の単結晶SiCの成長方法である。
The fourth technique related to the present invention is:
The single crystal SiC growth method according to the third technique , wherein the evaporation process is a process of evaporating the Si melt while maintaining the epitaxial growth temperature.

第4の技術においては、SiC成長工程の終了後、エピタキシャル成長温度を保持したままSi融液を蒸発させるため、Si融液を短時間に完全に蒸発させることができる。 In the fourth technique , after the SiC growth step is completed, the Si melt is evaporated while maintaining the epitaxial growth temperature. Therefore, the Si melt can be completely evaporated in a short time.

本発明に関連する第5の技術は、
前記蒸発処理が、前記エピタキシャル成長温度からSi融点までの温度領域でSi融液を蒸発させる処理であることを特徴とする第3の技術に記載の単結晶SiCの成長方法である。
The fifth technique related to the present invention is:
The single crystal SiC growth method according to the third technique , wherein the evaporation process is a process of evaporating a Si melt in a temperature range from the epitaxial growth temperature to the Si melting point.

第5の技術は、エピタキシャル成長温度からSi融点までの温度領域においても、Siが蒸発することを利用するものである。エピタキシャル成長温度からSi融点までの温度領域でSi融液を蒸発させることにより、生産性への影響を小さくして、Si融液を蒸発させることができる。 The fifth technique utilizes the fact that Si evaporates even in the temperature range from the epitaxial growth temperature to the Si melting point. By evaporating the Si melt in the temperature range from the epitaxial growth temperature to the Si melting point, the influence on the productivity can be reduced and the Si melt can be evaporated.

本発明に関連する第6の技術は、
前記蒸発処理の終了した単結晶SiC基板を、前記単結晶SiC基板の熱応力を緩和させる所定の降温速度で降温させる降温処理を行うことを特徴とする第1の技術ないし第5の技術のいずれかに記載の単結晶SiCの成長方法である。
The sixth technique related to the present invention is:
Any one of the first to fifth techniques is characterized in that the single crystal SiC substrate having undergone the evaporation process is subjected to a temperature lowering process for lowering the temperature at a predetermined temperature lowering rate that relaxes the thermal stress of the single crystal SiC substrate. A method for growing single crystal SiC as described above.

成長したSiC基板を取り出すためには、取り出し温度まで降温する必要がある。しかし、降温速度が速い場合には、SiC基板へ熱応力の蓄積が行われ、基底面転位や螺旋転位等の結晶欠陥が発生するおそれがある。そのため、単結晶SiC基板の熱応力を緩和させる所定の降温速度で降温させる降温処理を行い、降温に伴うSiC基板への熱応力の蓄積を抑制することが好ましい。   In order to take out the grown SiC substrate, it is necessary to lower the temperature to the take-out temperature. However, when the temperature lowering rate is high, thermal stress is accumulated on the SiC substrate, and crystal defects such as basal plane dislocations and spiral dislocations may occur. Therefore, it is preferable to perform a temperature lowering process for lowering the thermal stress of the single crystal SiC substrate at a predetermined temperature lowering rate to suppress accumulation of thermal stress on the SiC substrate accompanying the temperature decrease.

本発明に関連する第7の技術は、
単結晶SiC基板と、第1の技術ないし第6の技術のいずれかに記載の単結晶SiCの成長方法により単結晶SiC基板上に形成された第1の単結晶SiCエピタキシャル層からなるバッファ層と、前記バッファ層上に形成された第2の単結晶SiCエピタキシャル成長層からなる活性層とを備えてなることを特徴とする単結晶SiCエピタキシャル基板である。
The seventh technique related to the present invention is:
And the single crystal SiC substrate, a first technique to a buffer layer made of a first single crystal SiC epitaxial layer formed on the single crystal SiC substrate by method of growing single crystal SiC of any crab according to the sixth technical And a single crystal SiC epitaxial substrate comprising an active layer made of a second single crystal SiC epitaxial growth layer formed on the buffer layer.

本発明者の検討によれば、MSE法により生成されたSiCエピタキシャル層が、基底面転位や螺旋転位等の結晶欠陥を伝播しにくい特性(欠陥伝播低減機能)を有していることが分かった。即ち、単結晶SiC基板に発生した結晶欠陥が活性層に伝播することをバッファ層が抑制する。   According to the study of the present inventors, it has been found that the SiC epitaxial layer generated by the MSE method has a characteristic (defect propagation reduction function) that is difficult to propagate crystal defects such as basal plane dislocations and spiral dislocations. . That is, the buffer layer suppresses the crystal defect generated in the single crystal SiC substrate from propagating to the active layer.

そして、第7の技術において、第1の単結晶SiCエピタキシャル層からなるバッファ層は、結晶欠陥が十分に抑制されたバッファ層である。 In the seventh technique , the buffer layer formed of the first single crystal SiC epitaxial layer is a buffer layer in which crystal defects are sufficiently suppressed.

その結果、このようなバッファ層の上に第2の単結晶SiCエピタキシャル成長層からなる活性層を形成すると、極めて結晶欠陥の抑制された活性層を備えた単結晶SiCエピタキシャル基板を提供することができる。なお、第2の単結晶SiCエピタキシャル成長層を形成する手段としては、気相成長法や液相成長法等、公知の方法を採用することができ、特に限定されない。   As a result, when an active layer made of the second single crystal SiC epitaxial growth layer is formed on such a buffer layer, a single crystal SiC epitaxial substrate having an active layer with extremely suppressed crystal defects can be provided. . In addition, as a means for forming the second single crystal SiC epitaxial growth layer, a known method such as a vapor phase growth method or a liquid phase growth method can be adopted and is not particularly limited.

本発明に関連する第8の技術は、
第7の技術に記載の単結晶SiCエピタキシャル基板の製造方法であって、
第1の技術ないし第6の技術のいずれかに記載の単結晶SiCの成長方法により単結晶SiC基板上に第1の単結晶SiCエピタキシャル層を生成する第1の単結晶SiCエピタキシャル層生成工程と、
前記第1の単結晶SiCエピタキシャル層上に気相成長法によって第2の単結晶SiCエピタキシャル層を生成する第2の単結晶SiCエピタキシャル層生成工程と
を含むことを特徴とする単結晶SiCエピタキシャル基板の製造方法である。
The eighth technique related to the present invention is:
A method for producing a single crystal SiC epitaxial substrate according to a seventh technique ,
A first single-crystal SiC epitaxial layer generating step of generating the first technology to the first single-crystal SiC epitaxial layer on a single crystal SiC substrate by method of growing single crystal SiC of any crab according to the sixth technical ,
And a second single crystal SiC epitaxial layer generation step of generating a second single crystal SiC epitaxial layer by vapor deposition on the first single crystal SiC epitaxial layer. It is a manufacturing method.

第8の技術は、第7の技術に記載の単結晶SiCエピタキシャル基板の製造方法であって、気相成長法によって第2の単結晶SiCエピタキシャル層を生成している。 An eighth technique is a method for manufacturing a single crystal SiC epitaxial substrate described in the seventh technique , in which a second single crystal SiC epitaxial layer is generated by vapor phase growth.

気相成長法は、他の成長法に比べ、層の厚さを容易にかつ精度よく制御することができるため、第2の単結晶SiCエピタキシャル層の生成方法として好ましい。このため、第8の技術によれば、MSE法によるバッファ層の効果に加え、さらに、厚さが精度よく均一に制御された活性層を備えた単結晶SiCエピタキシャル基板を提供することができる。そして、高品質、かつ高機能の半導体デバイスを歩留まりよく提供することができる。 The vapor phase growth method is preferable as a method for generating the second single crystal SiC epitaxial layer because the thickness of the layer can be easily and accurately controlled as compared with other growth methods. Therefore, according to the eighth technique , in addition to the effect of the buffer layer by the MSE method, it is possible to provide a single crystal SiC epitaxial substrate including an active layer whose thickness is accurately and uniformly controlled. A high-quality and high-performance semiconductor device can be provided with a high yield.

なお、具体的な気相成長法としては特に限定されず、例えば、CVD法、PVD法、MBE法等、従来から公知の方法を採用することができる。   In addition, it does not specifically limit as a specific vapor phase growth method, For example, conventionally well-known methods, such as CVD method, PVD method, MBE method, are employable.

本発明は上記の各技術に基いてなされたものであり、請求項1に記載の発明は、The present invention has been made on the basis of the above-described technologies, and the invention according to claim 1
単結晶SiC基板と炭素原子供給基板との間に所定の厚さのSi融液層を介在させた状態で熱処理を行うことによって、前記単結晶SiC基板上に単結晶SiCをエピタキシャル成長させる単結晶SiCの成長方法であって、A single crystal SiC is epitaxially grown on the single crystal SiC substrate by performing a heat treatment with a Si melt layer having a predetermined thickness interposed between the single crystal SiC substrate and the carbon atom supply substrate. The growth method of
前記単結晶SiCの成長方法は、反応系内のガス/水分を除去する脱ガス/脱水工程、Siの融点以上の温度まで昇温するSi昇温工程、前記Siの融点以上の温度でSi融液を形成させるSi融解工程、エピタキシャル成長温度で単結晶SiC基板上に単結晶SiCをエピタキシャル成長させるSiC成長工程の順に行われ、The single-crystal SiC growth method includes a degassing / dehydration process for removing gas / water in the reaction system, a Si heating process for raising the temperature to a temperature higher than the melting point of Si, A Si melting step for forming a liquid, and a SiC growth step for epitaxially growing single crystal SiC on a single crystal SiC substrate at an epitaxial growth temperature,
前記Si昇温工程が、単結晶SiC基板の面内温度の均熱を保つ所定の昇温速度で、Si融点を超えないSi融点近傍の所定の温度まで昇温を行う第1の昇温工程と、前記Si融点を超えないSi融点近傍の所定の温度からSi融点以上の温度まで昇温する第2の昇温工程からなり、The Si temperature raising step is a first temperature raising step in which the temperature is raised to a predetermined temperature in the vicinity of the Si melting point that does not exceed the Si melting point at a predetermined heating rate that keeps the in-plane temperature of the single crystal SiC substrate constant. And a second temperature raising step for raising the temperature from a predetermined temperature near the Si melting point not exceeding the Si melting point to a temperature equal to or higher than the Si melting point,
前記SiC成長工程の終了後、Si融液を完全に蒸発させる蒸発処理を行うことを特徴とする単結晶SiCの成長方法である。After the completion of the SiC growth step, an evaporation process for completely evaporating the Si melt is performed.

また、請求項2に記載の発明は、The invention according to claim 2
前記第2の昇温工程における昇温速度が、前記第1の昇温工程における昇温速度より速いことを特徴とする請求項1に記載の単結晶SiCの成長方法である。2. The method for growing single crystal SiC according to claim 1, wherein a temperature increase rate in the second temperature increase step is faster than a temperature increase rate in the first temperature increase step.

また、請求項3に記載の発明は、The invention according to claim 3
前記蒸発処理が、前記エピタキシャル成長温度を保持してSi融液を蒸発させる処理であることを特徴とする請求項1または請求項2に記載の単結晶SiCの成長方法である。3. The single crystal SiC growth method according to claim 1, wherein the evaporation process is a process of evaporating a Si melt while maintaining the epitaxial growth temperature.

また、請求項4に記載の発明は、The invention according to claim 4
前記蒸発処理が、前記エピタキシャル成長温度からSi融点までの温度領域でSi融液を蒸発させる処理であることを特徴とする請求項1または請求項2に記載の単結晶SiCの成長方法である。3. The single crystal SiC growth method according to claim 1, wherein the evaporation process is a process of evaporating a Si melt in a temperature range from the epitaxial growth temperature to the Si melting point.

また、請求項5に記載の発明は、The invention according to claim 5
前記蒸発処理の終了した単結晶SiC基板を、前記単結晶SiC基板の熱応力を緩和させる所定の降温速度で降温させる降温処理を行うことを特徴とする請求項1ないし請求項4のいずれか1項に記載の単結晶SiCの成長方法である。5. The temperature lowering process for lowering the temperature of the single-crystal SiC substrate after the evaporation process at a predetermined temperature-decreasing rate that relaxes thermal stress of the single-crystal SiC substrate is performed. The method for growing single crystal SiC according to the item.

また、請求項6に記載の発明は、The invention according to claim 6
単結晶SiC基板と、請求項1ないし請求項5のいずれか1項に記載の単結晶SiCの成長方法により単結晶SiC基板上に形成された第1の単結晶SiCエピタキシャル層からなるバッファ層と、前記バッファ層上に形成された第2の単結晶SiCエピタキシャル成長層からなる活性層とを備えてなることを特徴とする単結晶SiCエピタキシャル基板である。A buffer layer comprising a single crystal SiC substrate and a first single crystal SiC epitaxial layer formed on the single crystal SiC substrate by the single crystal SiC growth method according to any one of claims 1 to 5. And a single crystal SiC epitaxial substrate comprising an active layer made of a second single crystal SiC epitaxial growth layer formed on the buffer layer.

また、請求項7に記載の発明は、The invention according to claim 7
請求項6に記載の単結晶SiCエピタキシャル基板の製造方法であって、A method for producing a single crystal SiC epitaxial substrate according to claim 6,
請求項1ないし請求項5のいずれか1項に記載の単結晶SiCの成長方法により単結晶SiC基板上に第1の単結晶SiCエピタキシャル層を生成する第1の単結晶SiCエピタキシャル層生成工程と、A first single crystal SiC epitaxial layer generation step for generating a first single crystal SiC epitaxial layer on a single crystal SiC substrate by the single crystal SiC growth method according to any one of claims 1 to 5. ,
前記第1の単結晶SiCエピタキシャル層上に気相成長法によって第2の単結晶SiCエピタキシャル層を生成する第2の単結晶SiCエピタキシャル層生成工程とA second single crystal SiC epitaxial layer generating step of generating a second single crystal SiC epitaxial layer on the first single crystal SiC epitaxial layer by vapor deposition;
を含むことを特徴とする単結晶SiCエピタキシャル基板の製造方法である。Is a method for manufacturing a single crystal SiC epitaxial substrate.

本発明によれば、マイクロパイプ欠陥のみならず、基底面転位や螺旋転位等の結晶欠陥の発生をも十分に抑制して、性能的、品質的に安定した単結晶SiCエピタキシャル層を得ることができる単結晶SiCの成長方法を提供することができる。   According to the present invention, not only micropipe defects but also crystal defects such as basal plane dislocations and screw dislocations can be sufficiently suppressed to obtain a single crystal SiC epitaxial layer that is stable in terms of performance and quality. It is possible to provide a method for growing single crystal SiC.

また、本発明により得られた単結晶SiCエピタキシャル層をバッファ層とし、その上に第2の単結晶SiCエピタキシャル成長層を活性層として形成させることにより、結晶欠陥が極めて少ない活性層を得ることができ、高品質、かつ高機能の半導体デバイスを歩留まりよく提供することができる。   Also, an active layer with extremely few crystal defects can be obtained by forming the single crystal SiC epitaxial layer obtained by the present invention as a buffer layer and forming a second single crystal SiC epitaxial growth layer as an active layer thereon. Therefore, it is possible to provide a high-quality and high-performance semiconductor device with a high yield.

本発明に係る単結晶SiCの成長方法を説明する概略図である。It is the schematic explaining the growth method of the single crystal SiC which concerns on this invention.

以下、本発明の実施の形態につき図面を用いて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

(実施の形態)
図1は、本発明に係る単結晶SiCの成長方法の一実施の形態を説明する概略図である。図1において、8は容器(サセプタ)であり、容器8の内部に、下から、炭素原子供給基板3、Si板2、スペーサー4、単結晶SiC基板1、スペーサー4’、炭素原子供給基板3’が順に配置され、最上部には重石6が配置されている。
(Embodiment)
FIG. 1 is a schematic diagram for explaining an embodiment of a method for growing single crystal SiC according to the present invention. In FIG. 1, reference numeral 8 denotes a container (susceptor). The carbon atom supply substrate 3, the Si plate 2, the spacer 4, the single crystal SiC substrate 1, the spacer 4 ′, and the carbon atom supply substrate 3 are placed inside the container 8 from below. 'Is arranged in order, and the weight 6 is arranged at the top.

そして、単結晶SiC基板1とSi板2との間にスペーサー4を挟み込むことにより、空間5が設けられている。空間5では、Siの融点以上の温度でSi板2から融解して生成されたSi融液が保持され、また、単結晶SiC基板1の表面に単結晶SiCがエピタキシャル成長する。   A space 5 is provided by sandwiching a spacer 4 between the single crystal SiC substrate 1 and the Si plate 2. In the space 5, the Si melt generated by melting from the Si plate 2 at a temperature equal to or higher than the melting point of Si is held, and single crystal SiC is epitaxially grown on the surface of the single crystal SiC substrate 1.

同様に、単結晶SiC基板1と炭素原子供給基板3’の間にスペーサー4’を配置することにより、空間7が設けられている。空間7は、単結晶SiC基板1の裏面側(図面上方側)へ廻り込んだSi融液が炭素原子供給基板3’と接触して介在しないようにすることを目的に設ける。   Similarly, a space 7 is provided by disposing a spacer 4 ′ between the single crystal SiC substrate 1 and the carbon atom supply substrate 3 ′. The space 7 is provided for the purpose of preventing the Si melt that has entered the back surface side (upper side in the drawing) of the single crystal SiC substrate 1 from coming into contact with the carbon atom supply substrate 3 ′.

単結晶SiC基板1としては、従来から公知の単結晶SiC基板を用いることができ、市販の単結晶SiC基板を用いてもよい。なお、この単結晶SiC基板上に単結晶SiCがエピタキシャル成長する。なお、予め、エピタキシャル成長させる側の面をCMP法(化学的機械研磨法)によって平坦化処理し、研磨痕等を除去しておくことが好ましい。   As the single crystal SiC substrate 1, a conventionally known single crystal SiC substrate can be used, and a commercially available single crystal SiC substrate may be used. Single crystal SiC is epitaxially grown on the single crystal SiC substrate. In addition, it is preferable to planarize the surface on the side to be epitaxially grown in advance by a CMP method (chemical mechanical polishing method) to remove polishing marks and the like.

Si板2は、融点以上の温度で融解して空間5においてSi融液を生成する。   The Si plate 2 is melted at a temperature equal to or higher than the melting point to generate a Si melt in the space 5.

炭素原子供給基板3は、熱処理時に、Si板2およびSi融液層(空間5)を介して単結晶SiC基板1上に炭素を供給する。材質としては、単結晶SiC基板1上に炭素を供給できるものであれば特に限定されず、例えば、多結晶SiC基板、炭素基板、ポーラスSiC基板、焼結SiC基板、非晶質SiC基板等を用いることができる。なお、予め、これら炭素原子供給基板の表面を鏡面に研磨加工し、表面に付着した油類、酸化膜、金属等を洗浄等によって除去しておくことが好ましい。   Carbon atom supply substrate 3 supplies carbon onto single-crystal SiC substrate 1 via Si plate 2 and Si melt layer (space 5) during heat treatment. The material is not particularly limited as long as carbon can be supplied onto the single crystal SiC substrate 1. For example, a polycrystalline SiC substrate, a carbon substrate, a porous SiC substrate, a sintered SiC substrate, an amorphous SiC substrate, or the like can be used. Can be used. It is preferable that the surface of the carbon atom supply substrate is polished to a mirror surface in advance, and oils, oxide films, metals, and the like attached to the surface are removed by washing or the like.

スペーサー4は、単結晶SiC基板1とSi板2との間隔を規定し、空間5において、Si融液層およびエピタキシャル成長した単結晶SiCエピタキシャル層の厚さを規定する。これにより、単結晶SiCエピタキシャル層の厚さを成長面全面にわたって均一にすることができる。   The spacer 4 defines the distance between the single crystal SiC substrate 1 and the Si plate 2 and defines the thickness of the Si melt layer and the epitaxially grown single crystal SiC epitaxial layer in the space 5. Thereby, the thickness of the single crystal SiC epitaxial layer can be made uniform over the entire growth surface.

スペーサー4の構成としては、単結晶SiC基板1とSi板2との間隔を適切に規定できるものであればよく、特に限定されず、例えば、単結晶SiC基板1上に機械加工によって形成されたものであってもよく、単結晶SiC基板1上にリソグラフィー法、蒸着法、スパッタリング法、イオンプレーティング法、気相成長法等によって形成されたものであってもよい。また、単結晶SiC基板1上に形成するのではなく、Si板2上に形成してもよい。また、単結晶SiC基板1とSi板2とでスペーサー4を挟み込む構成であってもよい。   The configuration of the spacer 4 is not particularly limited as long as the distance between the single crystal SiC substrate 1 and the Si plate 2 can be appropriately defined. For example, the spacer 4 is formed on the single crystal SiC substrate 1 by machining. It may be formed on the single crystal SiC substrate 1 by lithography, vapor deposition, sputtering, ion plating, vapor phase growth, or the like. Further, it may be formed on the Si plate 2 instead of being formed on the single crystal SiC substrate 1. Alternatively, the spacer 4 may be sandwiched between the single crystal SiC substrate 1 and the Si plate 2.

スペーサー4の断面形状としては特に限定されず、例えば、円柱形状や直方体形状等種々の形状のものを用いることができる。   The cross-sectional shape of the spacer 4 is not particularly limited, and various shapes such as a cylindrical shape and a rectangular parallelepiped shape can be used.

また、スペーサー4の厚さとしては、炭素原子供給基板3から供給される炭素が単結晶SiC基板1表面に移動できる厚さであればよく、特に限定されないが、適切な移動のためには1〜50μmが好ましい。   The thickness of the spacer 4 is not particularly limited as long as the carbon supplied from the carbon atom supply substrate 3 can move to the surface of the single crystal SiC substrate 1, but is 1 for proper movement. ˜50 μm is preferred.

次に、本実施の形態における単結晶SiCの成長方法につき、工程順に説明する。
(1)脱ガス/脱水工程
図1に示すように各部材を容器8に収納し、例えば、10−4Pa以下の圧力まで減圧して真空雰囲気とした後、この圧力状態を保持したまま、容器8内の温度を図示しない加熱手段を用いて、室温から500℃まで昇温し、30分保持することにより、脱ガス/脱水を行う。なお、脱ガス/脱水が適切に行えるのであれば、本工程の条件は限定されず、例えば、200℃まで昇温後60分保持でもよい。また、200℃から500℃まで5℃/分の昇温速度で昇温し、その過程で、脱ガス/脱水を行ってもよい。
Next, the single crystal SiC growth method in the present embodiment will be described in the order of steps.
(1) Degassing / Dehydrating Step Each member is housed in a container 8 as shown in FIG. 1, and after reducing the pressure to, for example, 10 −4 Pa or less to form a vacuum atmosphere, this pressure state is maintained, Degassing / dehydrating is performed by raising the temperature in the container 8 from room temperature to 500 ° C. using a heating means (not shown) and holding the temperature for 30 minutes. As long as degassing / dehydration can be performed appropriately, the conditions of this step are not limited. For example, the temperature may be raised to 200 ° C. and held for 60 minutes. Further, the temperature may be raised from 200 ° C. to 500 ° C. at a rate of 5 ° C./min, and degassing / dehydration may be performed in the process.

(2)第1のSi昇温工程
次いで、Si融点を超えないSi融点近傍の所定の温度、例えば、1300℃まで、単結晶SiC基板1の面内温度の均熱を十分に保つために、7.0〜10.0℃/分の昇温速度で昇温を行う。
(2) First Si temperature raising step Next, in order to sufficiently maintain the soaking of the in-plane temperature of the single crystal SiC substrate 1 up to a predetermined temperature near the Si melting point that does not exceed the Si melting point, for example, 1300 ° C., The temperature is increased at a temperature increase rate of 7.0 to 10.0 ° C./min.

(3)第2のSi昇温工程およびSi融解工程
次いで、所定の成長温度、例えば、1800℃まで、Siの蒸発を抑制できるように、20〜40℃/分の昇温速度で昇温を行う。Siの融点は1420℃であり、Si板2よりSi融液が空間5に形成される。
(3) Second Si temperature raising step and Si melting step Next, the temperature is raised to a predetermined growth temperature, for example, 1800 ° C., at a temperature raising rate of 20 to 40 ° C./min so as to suppress the evaporation of Si. Do. The melting point of Si is 1420 ° C., and Si melt is formed in the space 5 from the Si plate 2.

なお、本実施の形態においては、真空雰囲気下での熱処理であるため、昇温速度を速くしてSiの蒸発を抑制できるようにしたが、Ar等の不活性ガスを導入して成長雰囲気圧力を高くしてSiの蒸発を抑制する方法や、カーボン製や高融点金属製等、密閉性の高い容器等を用いて蒸発を抑制してもよい。   In this embodiment, since the heat treatment is performed in a vacuum atmosphere, the temperature rise rate is increased so that the evaporation of Si can be suppressed. However, an inert gas such as Ar is introduced to grow the atmospheric pressure. The evaporation may be suppressed using a method of suppressing the evaporation of Si by increasing the height, a container having high airtightness such as carbon or a high melting point metal.

(4)SiC成長工程
その後、所定の時間、成長温度を保持し、Si融液を完全に蒸発させる。この間、炭素原子供給基板3から炭素がSi板を介して空間5に形成されたSi融液に溶け出し、単結晶SiC基板上に単結晶SiCがエピタキシャル成長する。そして、Si融液が完全に蒸発した時点でエピタキシャル成長が停止する。
(4) SiC growth step Thereafter, the growth temperature is maintained for a predetermined time, and the Si melt is completely evaporated. During this time, carbon is dissolved from the carbon atom supply substrate 3 into the Si melt formed in the space 5 through the Si plate, and single crystal SiC is epitaxially grown on the single crystal SiC substrate. The epitaxial growth stops when the Si melt is completely evaporated.

(5)降温工程
次いで、成長温度から1000℃以下の所定の温度、例えば、800℃まで、単結晶SiCをエピタキシャル成長させた単結晶SiC基板1に熱応力が蓄積されないよう、0.1〜10℃/分の降温速度で降温を行う。
(5) Temperature drop step Next, in order to prevent thermal stress from accumulating on the single crystal SiC substrate 1 on which single crystal SiC is epitaxially grown from the growth temperature to a predetermined temperature of 1000 ° C. or lower, for example, 800 ° C., 0.1 to 10 ° C. The temperature is lowered at a rate of temperature reduction per minute.

(6)取り出し工程
さらに、自然冷却を行い、100℃以下の温度で単結晶SiCをエピタキシャル成長させた単結晶SiC基板1を取り出し、本発明に係る単結晶SiCエピタキシャル層が生成された単結晶SiC基板1を得ることができる。
(6) Extraction step Further, the single crystal SiC substrate 1 on which the single crystal SiC substrate 1 obtained by performing natural cooling and epitaxially growing the single crystal SiC at a temperature of 100 ° C. or less is extracted and the single crystal SiC epitaxial layer according to the present invention is generated is obtained. 1 can be obtained.

(実施例)
以下に示す具体的な熱処理条件の下、単結晶SiCエピタキシャル層が生成された単結晶SiC基板を得た。単結晶SiC基板として4H−SiC単結晶基板、炭素原子供給基板3として多結晶SiC基板を用い、厚さ50μmのスペーサーを挟み込んだ。
(Example)
A single crystal SiC substrate on which a single crystal SiC epitaxial layer was generated was obtained under the specific heat treatment conditions shown below. A 4H—SiC single crystal substrate was used as the single crystal SiC substrate, and a polycrystalline SiC substrate was used as the carbon atom supply substrate 3, and a spacer having a thickness of 50 μm was sandwiched therebetween.

次いで、500℃から1300℃まで、10℃/分の昇温速度で昇温を行い、その後、1300℃から成長温度である1800℃まで、Siの蒸発を抑制できるように、30.0℃/分の昇温速度で昇温を行った。次に、成長温度(1800℃)で40分間保持し、厚さ7.1μmのエピタキシャル成長層を生成させた。その後、成長温度(1800℃)から800℃まで、単結晶SiCをエピタキシャル成長させた単結晶SiC基板に熱応力が蓄積されないよう、1.0℃/分の降温速度で降温を行い、さらに自然冷却して40℃で単結晶SiC基板を取り出した。なお、降温の間、クラックの発生などは見られなかった。   Next, the temperature is raised from 500 ° C. to 1300 ° C. at a rate of 10 ° C./min, and thereafter, from 1300 ° C. to 1800 ° C. which is the growth temperature, 30.0 ° C. / The temperature was increased at a temperature increase rate of minutes. Next, it was held at a growth temperature (1800 ° C.) for 40 minutes to produce an epitaxial growth layer having a thickness of 7.1 μm. Thereafter, the temperature is lowered at a rate of 1.0 ° C./min so that thermal stress is not accumulated on the single crystal SiC substrate on which single crystal SiC is epitaxially grown from the growth temperature (1800 ° C.) to 800 ° C., and further natural cooling is performed. The single crystal SiC substrate was taken out at 40 ° C. During the temperature drop, no cracks were observed.

得られた単結晶SiCエピタキシャル層は、結晶欠陥の極めて少ないエピタキシャル層であった。   The obtained single crystal SiC epitaxial layer was an epitaxial layer with very few crystal defects.

(欠陥伝播低減機能の測定)
上記実施例の単結晶SiCエピタキシャル層を有する単結晶SiC基板の単結晶SiCエピタキシャル層面に溶融KOHエッチングを施し、エッチピット観察を行った。観察結果を、表1にMSE膜表面として示す。
(Measurement of defect propagation reduction function)
The surface of the single crystal SiC epitaxial layer of the single crystal SiC substrate having the single crystal SiC epitaxial layer of the above example was subjected to molten KOH etching, and etch pit observation was performed. The observation results are shown in Table 1 as the MSE film surface.

次に、単結晶SiCエピタキシャル成長層を研磨処理にて完全に除去して、単結晶SiC基板を表出させた。その後、同様に、溶融KOHエッチングを施し、エッチピット観察を行った。観察結果を、表1にSiC基板表面として示す。   Next, the single crystal SiC epitaxial growth layer was completely removed by a polishing process to expose a single crystal SiC substrate. Thereafter, similarly, molten KOH etching was performed, and etch pit observation was performed. The observation results are shown in Table 1 as the SiC substrate surface.

Figure 0005263900
Figure 0005263900

表1において、SiC基板表面における結果は各欠陥の転位密度(単位:個/cm)であり、MSE膜表面における結果は、基底面転位欠陥については転位密度(単位:個/cm)、マイクロパイプ欠陥と螺旋転位欠陥についてはSiC基板表面の結果に対する割合(単位:%)で示す。 In Table 1, the result on the SiC substrate surface is the dislocation density (unit: piece / cm 2 ) of each defect, and the result on the MSE film surface is the dislocation density (unit: piece / cm 2 ) for the basal plane dislocation defect, About a micropipe defect and a screw dislocation defect, it shows by the ratio (unit:%) with respect to the result of the SiC substrate surface.

表1の結果より、単結晶SiC基板におけるマイクロパイプ欠陥および螺旋転位欠陥のバッファ層表面への伝播を95%以上低減でき、基底面転位についてはさらに大きく低減できていることが分かる。   From the results in Table 1, it can be seen that the propagation of micropipe defects and spiral dislocation defects to the buffer layer surface in the single crystal SiC substrate can be reduced by 95% or more, and the basal plane dislocations can be further reduced.

このように、本発明に係る単結晶SiCエピタキシャル層は、結晶欠陥の伝播を抑制する特性を有しているため、これをバッファ層として、その上に、気相成長法により第2の単結晶SiCエピタキシャル成長層からなる活性層を生成させると、活性層に結晶欠陥が伝播せず、結晶欠陥が極めて少ない活性層を生成させることができる。   As described above, since the single crystal SiC epitaxial layer according to the present invention has the characteristic of suppressing the propagation of crystal defects, the second single crystal is formed thereon by using the buffer layer as a buffer layer by vapor phase growth. When an active layer made of an SiC epitaxial growth layer is generated, crystal defects are not propagated to the active layer, and an active layer with very few crystal defects can be generated.

また、単結晶SiC基板として、結晶欠陥が比較的多い安価な単結晶SiC基板を用いた場合でも、活性層に結晶欠陥が伝播しないため、結晶欠陥が少ない活性層を生成することができる。   Even when an inexpensive single crystal SiC substrate having a relatively large number of crystal defects is used as the single crystal SiC substrate, an active layer with few crystal defects can be generated because the crystal defects do not propagate to the active layer.

(活性層の生成)
実施例の単結晶SiCエピタキシャル層をバッファ層として、その上に、気相成長法により第2の単結晶SiCエピタキシャル成長層からなる活性層を形成した。
(Generation of active layer)
The single crystal SiC epitaxial layer of the example was used as a buffer layer, and an active layer composed of a second single crystal SiC epitaxial growth layer was formed thereon by vapor phase growth.

具体的には、キャリヤガスとしてH(水素)50SLM、カーボン原料としてC(プロパン)、シリコン原料としてSiH(シラン)、n型ドーパントとしてN(窒素)を用い、カーボン/シリコン比(C/S)を1.1、成長温度を1650℃、圧力を6.7×10Paとして、バッファ層上に単結晶SiCエピタキシャル成長層をステップ制御エピタキシャル法(気相成長法)によって生成し、活性層とした。以上により、キャリヤ濃度4×1015〜6×1015cm−2、厚さ約10μmの結晶欠陥の少ない活性層が得られた。 Specifically, H 2 (hydrogen) 50 SLM as a carrier gas, C 3 H 8 (propane) as a carbon raw material, SiH 4 (silane) as a silicon raw material, N 2 (nitrogen) as an n-type dopant, carbon / silicon The ratio (C / S) is 1.1, the growth temperature is 1650 ° C., the pressure is 6.7 × 10 3 Pa, and a single crystal SiC epitaxial growth layer is formed on the buffer layer by the step-controlled epitaxial method (vapor phase growth method). The active layer was formed. As a result, an active layer with a carrier concentration of 4 × 10 15 to 6 × 10 15 cm −2 and a thickness of about 10 μm and few crystal defects was obtained.

このような単結晶SiCエピタキシャル基板は、結晶欠陥が少ない活性層を有しているため、発光ダイオード、各種半導体ダイオード、電子デバイス等に好適に用いることができる。   Since such a single crystal SiC epitaxial substrate has an active layer with few crystal defects, it can be suitably used for light emitting diodes, various semiconductor diodes, electronic devices, and the like.

1 単結晶SiC基板1 Single crystal SiC substrate
2 Si板2 Si plate
3、3’ 炭素原子供給基板3, 3 'carbon atom supply substrate
4、4’ スペーサー4, 4 'spacer
5、7 空間5, 7 space
6 重石6 Cobblestone
8 容器8 containers

Claims (7)

単結晶SiC基板と炭素原子供給基板との間に所定の厚さのSi融液層を介在させた状態で熱処理を行うことによって、前記単結晶SiC基板上に単結晶SiCをエピタキシャル成長させる単結晶SiCの成長方法であって、
前記単結晶SiCの成長方法は、反応系内のガス/水分を除去する脱ガス/脱水工程、Siの融点以上の温度まで昇温するSi昇温工程、前記Siの融点以上の温度でSi融液を形成させるSi融解工程、エピタキシャル成長温度で単結晶SiC基板上に単結晶SiCをエピタキシャル成長させるSiC成長工程の順に行われ、
前記Si昇温工程が、単結晶SiC基板の面内温度の均熱を保つ所定の昇温速度で、Si融点を超えないSi融点近傍の所定の温度まで昇温を行う第1の昇温工程と、前記Si融点を超えないSi融点近傍の所定の温度からSi融点以上の温度まで昇温する第2の昇温工程からなり、
前記SiC成長工程の終了後、Si融液を完全に蒸発させる蒸発処理を行うことを特徴とする単結晶SiCの成長方法。
A single crystal SiC is epitaxially grown on the single crystal SiC substrate by performing a heat treatment with a Si melt layer having a predetermined thickness interposed between the single crystal SiC substrate and the carbon atom supply substrate. The growth method of
The single-crystal SiC growth method includes a degassing / dehydration process for removing gas / water in the reaction system, a Si heating process for raising the temperature to a temperature higher than the melting point of Si, and a Si melting process at a temperature higher than the melting point of Si. A Si melting step for forming a liquid, and a SiC growth step for epitaxially growing single crystal SiC on a single crystal SiC substrate at an epitaxial growth temperature,
The Si temperature raising step is a first temperature raising step in which the temperature is raised to a predetermined temperature in the vicinity of the Si melting point that does not exceed the Si melting point at a predetermined heating rate that keeps the in-plane temperature of the single crystal SiC substrate constant. If, Ri do from the second heating step of raising the temperature from a predetermined temperature of the Si melting point near that does not exceed the Si melting point to Si melting point or higher,
After the completion of the SiC growth step, an evaporation process for completely evaporating the Si melt is performed .
前記第2の昇温工程における昇温速度が、前記第1の昇温工程における昇温速度より速いことを特徴とする請求項1に記載の単結晶SiCの成長方法。   The method for growing single crystal SiC according to claim 1, wherein a temperature increase rate in the second temperature increase step is faster than a temperature increase rate in the first temperature increase step. 前記蒸発処理が、前記エピタキシャル成長温度を保持してSi融液を蒸発させる処理であることを特徴とする請求項1または請求項2に記載の単結晶SiCの成長方法。 3. The method for growing single crystal SiC according to claim 1, wherein the evaporation process is a process of evaporating Si melt while maintaining the epitaxial growth temperature. 前記蒸発処理が、前記エピタキシャル成長温度からSi融点までの温度領域でSi融液を蒸発させる処理であることを特徴とする請求項1または請求項2に記載の単結晶SiCの成長方法。 3. The method for growing single crystal SiC according to claim 1, wherein the evaporation process is a process of evaporating a Si melt in a temperature range from the epitaxial growth temperature to the Si melting point. 前記蒸発処理の終了した単結晶SiC基板を、前記単結晶SiC基板の熱応力を緩和させる所定の降温速度で降温させる降温処理を行うことを特徴とする請求項1ないし請求項のいずれか1項に記載の単結晶SiCの成長方法。 Wherein the single crystal SiC substrate in which the end of the evaporation process, any one of claims 1 to 4, characterized in that the temperature lowering processing temperature is lowered at a predetermined temperature lowering rate to relieve single crystal SiC thermal stress of the substrate 1 The method for growing single crystal SiC according to the item. 単結晶SiC基板と、請求項1ないし請求項のいずれか1項に記載の単結晶SiCの成長方法により単結晶SiC基板上に形成された第1の単結晶SiCエピタキシャル層からなるバッファ層と、前記バッファ層上に形成された第2の単結晶SiCエピタキシャル成長層からなる活性層とを備えてなることを特徴とする単結晶SiCエピタキシャル基板。 A buffer layer comprising a single crystal SiC substrate and a first single crystal SiC epitaxial layer formed on the single crystal SiC substrate by the single crystal SiC growth method according to any one of claims 1 to 5. And a single crystal SiC epitaxial substrate comprising an active layer made of a second single crystal SiC epitaxial growth layer formed on the buffer layer. 請求項に記載の単結晶SiCエピタキシャル基板の製造方法であって、
請求項1ないし請求項のいずれか1項に記載の単結晶SiCの成長方法により単結晶SiC基板上に第1の単結晶SiCエピタキシャル層を生成する第1の単結晶SiCエピタキシャル層生成工程と、
前記第1の単結晶SiCエピタキシャル層上に気相成長法によって第2の単結晶SiCエピタキシャル層を生成する第2の単結晶SiCエピタキシャル層生成工程と
を含むことを特徴とする単結晶SiCエピタキシャル基板の製造方法。
A method for producing a single crystal SiC epitaxial substrate according to claim 6 ,
A first single crystal SiC epitaxial layer generation step for generating a first single crystal SiC epitaxial layer on a single crystal SiC substrate by the single crystal SiC growth method according to any one of claims 1 to 5. ,
And a second single crystal SiC epitaxial layer generating step of generating a second single crystal SiC epitaxial layer by vapor deposition on the first single crystal SiC epitaxial layer. Manufacturing method.
JP2010500465A 2008-02-25 2008-02-25 Method for growing single crystal SiC Active JP5263900B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053185 WO2009107188A1 (en) 2008-02-25 2008-02-25 METHOD FOR GROWING SINGLE CRYSTAL SiC

Publications (2)

Publication Number Publication Date
JPWO2009107188A1 JPWO2009107188A1 (en) 2011-06-30
JP5263900B2 true JP5263900B2 (en) 2013-08-14

Family

ID=41015602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010500465A Active JP5263900B2 (en) 2008-02-25 2008-02-25 Method for growing single crystal SiC

Country Status (2)

Country Link
JP (1) JP5263900B2 (en)
WO (1) WO2009107188A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2426238A4 (en) * 2009-04-30 2014-08-27 Ecotron Co Ltd METHOD FOR FABRICATING SiC SUBSTRATE
WO2012090268A1 (en) * 2010-12-27 2012-07-05 株式会社エコトロン Monocrystalline silicon carbide epitaxial substrate, method for producing same, and monocrystalline sic device
WO2014122768A1 (en) * 2013-02-08 2014-08-14 日新電機株式会社 Single crystal silicon carbide substrate and method for producing same
JP6582779B2 (en) 2015-09-15 2019-10-02 信越化学工業株式会社 Manufacturing method of SiC composite substrate
JP2017071519A (en) * 2015-10-06 2017-04-13 東洋炭素株式会社 Liquid-phase epitaxial growth method and crucible used therefor
JP7415558B2 (en) * 2017-09-01 2024-01-17 住友電気工業株式会社 Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319099A (en) * 1999-05-07 2000-11-21 Hiroyuki Matsunami SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION OF SiC WAFER
JP2005126248A (en) * 2003-10-21 2005-05-19 New Industry Research Organization Method for growing single crystal silicon carbide
JP2008016691A (en) * 2006-07-07 2008-01-24 Kwansei Gakuin Method of reforming surface of single crystal silicon carbide substrate, method of forming single crystal silicon carbide thin film, ion implantation and annealing method, and single crystal silicon carbide substrate and single crystal silicon carbide semiconductor substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156095A (en) * 1986-12-19 1988-06-29 Sanyo Electric Co Ltd Liquid phase epitaxy of sic single crystal
JPH01133998A (en) * 1987-11-18 1989-05-26 Sanyo Electric Co Ltd Liquid phase epitaxy for sic single crystal
JP4593099B2 (en) * 2003-03-10 2010-12-08 学校法人関西学院 Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319099A (en) * 1999-05-07 2000-11-21 Hiroyuki Matsunami SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION OF SiC WAFER
JP2005126248A (en) * 2003-10-21 2005-05-19 New Industry Research Organization Method for growing single crystal silicon carbide
JP2008016691A (en) * 2006-07-07 2008-01-24 Kwansei Gakuin Method of reforming surface of single crystal silicon carbide substrate, method of forming single crystal silicon carbide thin film, ion implantation and annealing method, and single crystal silicon carbide substrate and single crystal silicon carbide semiconductor substrate

Also Published As

Publication number Publication date
JPWO2009107188A1 (en) 2011-06-30
WO2009107188A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP5130468B2 (en) Method for manufacturing SiC epitaxial substrate
JP6584428B2 (en) Method for producing silicon carbide single crystal and silicon carbide single crystal substrate
TWI736554B (en) Manufacturing method of SiC composite substrate
JP4964672B2 (en) Low resistivity silicon carbide single crystal substrate
JP5304713B2 (en) Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
JP6537590B2 (en) Method of manufacturing silicon carbide single crystal ingot
JP5263900B2 (en) Method for growing single crystal SiC
US9732436B2 (en) SiC single-crystal ingot, SiC single crystal, and production method for same
JP2010089983A (en) METHOD FOR FORMING SiC SINGLE CRYSTAL
KR20130040178A (en) Method for producing single crystal 3c-sic substrate and resulting single-crystal 3c-sic substrate
JP5418385B2 (en) Method for producing silicon carbide single crystal ingot
JP7161784B2 (en) Silicon carbide ingot, wafer and manufacturing method thereof
JP5339239B2 (en) Method for producing SiC substrate
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
JP5131262B2 (en) Silicon carbide single crystal and method for producing the same
JP5761264B2 (en) Method for manufacturing SiC substrate
JP6052465B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP5948988B2 (en) Method for producing silicon carbide single crystal
JP2005314167A (en) Seed crystal for use in silicon carbide single crystal growth, manufacturing method thereof, and method for growing crystal using it
JP2005132703A (en) Method for manufacturing silicon carbide substrate, and silicon carbide substrate
JP2014009115A (en) Substrate manufacturing method
JP2005093519A (en) Silicon carbide substrate and method of manufacturing the same
JP2014218397A (en) Manufacturing method of silicon carbide single crystal
WO2015097852A1 (en) METHOD FOR FORMING SINGLE CRYSTAL SiC EPITAXIAL FILM
JP2008254941A (en) Sapphire single crystal substrate and method for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5263900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250