JPH01133998A - Liquid phase epitaxy for sic single crystal - Google Patents

Liquid phase epitaxy for sic single crystal

Info

Publication number
JPH01133998A
JPH01133998A JP29091787A JP29091787A JPH01133998A JP H01133998 A JPH01133998 A JP H01133998A JP 29091787 A JP29091787 A JP 29091787A JP 29091787 A JP29091787 A JP 29091787A JP H01133998 A JPH01133998 A JP H01133998A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
sic single
distance
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29091787A
Other languages
Japanese (ja)
Inventor
Yasuhiko Matsushita
保彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP29091787A priority Critical patent/JPH01133998A/en
Publication of JPH01133998A publication Critical patent/JPH01133998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the title single crystal capable of increasing the yield of a blue light emitting diode and having excellent crystallinity with good reproducibility by dipping an SiC single crystal substrate in the Si melt in a graphite crucible so that the distance between the substrate and the crucible bottom is kept within specified limits. CONSTITUTION:The Si melt 5 is filled in the graphite crucible 4 set on a susceptor 3 in a quartz reaction tube 1 around which a highfrequency coil 2 is wound in the device for liq. epitaxy for an SiC single crystal. The 6H-SiC single crystal substrate 8 set in the V-shaped notch 7 formed on the lower end of a substrate supporting rod 6 is dipped in the melt 5 so that the distance between the bottom of the crucible 4 and the substrate 8 is controlled to <=3mm, and an SiC single crystal is grown under specified conditions.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はSiC単結晶の液相エピタキシャル成長方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for liquid phase epitaxial growth of SiC single crystals.

(ロ))従来の技術 81(3単結晶は禁制帯幅が2.398 V 〜5.3
3ayと広範囲であり、かつP型及びn型の結晶が得ら
れるなめpn接合形成が容易であるという利点を有する
(b)) Conventional technology 81 (3 single crystal has a forbidden band width of 2.398 V to 5.3
It has the advantage that it has a wide range of 3ay, and that it is easy to form a slanted pn junction where P-type and n-type crystals can be obtained.

なかでも、α型6H−s1c単結晶は室温において約5
.QeVの禁制帯幅を有し、青色発光ダイオード材料と
して用いられている。この青色発光ダイオードは6H型
もしくは4H型の810単結晶基板上に6H型のn型8
10層及びp型SiO層をエピタキシャル成長させるこ
とにより作成する0 ま九、上記各層の成長は黒鉛ルツボ中に収容され、下か
ら上に向って徐々に高温となるように温度勾配がつけら
れたSi融液中に上記基板を一定時間浸漬することによ
り行なっている(電子技術第26巻、!14号、p12
8−129)。
Among them, α-type 6H-s1c single crystal has a crystallinity of about 5 at room temperature.
.. It has a forbidden band width of QeV and is used as a material for blue light emitting diodes. This blue light emitting diode is a 6H type n-type 8 on a 6H type or 4H type 810 single crystal substrate.
10 layers and a p-type SiO layer are grown epitaxially. The above layers are grown in a graphite crucible with a temperature gradient that gradually increases the temperature from the bottom to the top. This is done by immersing the substrate in the melt for a certain period of time (Electronic Technology Vol. 26, No. 14, p. 12).
8-129).

(ハ)発明が解決しようとする問題煮 熱るに上記方法では融液の温反やその勾配をいくら調整
しても、成長結晶中の炭素空孔等の結晶欠陥を減少させ
ることができず、その結果上記方法を用いて作成した青
色発光ダイオードは発光波長の長波長化及び輝度低下が
生じ易く歩留りが向上しなかった。
(c) Problems to be Solved by the Invention In the above-mentioned method, crystal defects such as carbon vacancies in the growing crystal cannot be reduced, no matter how much the temperature gradient of the melt is adjusted. As a result, blue light emitting diodes produced using the above method tended to have longer emission wavelengths and lower brightness, and the yield did not improve.

に)問題点を解決する九めの手段 本発明は斯る点に鑑みてなされたもので、黒鉛ルツボ内
の81融液中に81G単結晶基板を浸漬し、上記基板上
にSiO単結晶を成長させる際に上記基板と上記ルツボ
底面との距離を6−以下とすることにある。
Ninth Means for Solving the Problems The present invention has been made in view of the above-mentioned problems. An 81G single crystal substrate is immersed in 81 melt in a graphite crucible, and a SiO single crystal is deposited on the substrate. The purpose is to set the distance between the substrate and the bottom of the crucible to 6 or less during growth.

(ホ)作 用 このように、SiO単結晶基板をルツボ底面から6関以
内に配して成長を行なった場合、成長し九層は結晶性が
良好となる。
(e) Effect When the SiO single crystal substrate is grown within six layers from the bottom of the crucible in this way, the nine layers grown have good crystallinity.

第1図は本発明に到る実験に使用した装置を示し、(1
)は石英製の反応管、(2)は該反応管の周囲に巻回さ
れた高周波コイル、(3)は反応管(1)内に配された
サセプタ、(4)は該サセプタ上に載置された黒鉛ルツ
ボ、(5)は該ルツボ中に収納され九Si融液、(6)
は基板支持棒であシ、該支持棒はその下端が81融液(
5)中に浸漬されるように支持される。(7)は支持棒
(6)の下端に形成された7字状の切込み部、(8)は
6H−8i○単結晶基板であシ、該基板は上記切込み部
(7)に装着されている〇 また、上記実験は1700層程度に保持すると共に下か
ら上に向って4 ’C/備 の割合で温度が高くなるよ
うな勾配(以下、単に温度勾配と称す)を設けたSi融
液(5)中に基板(8)を浸漬し、6H−310単結晶
層を成長させた際のルツボ(4)底面から斯る底面と対
向する基板(8)表面までの距離dと成長層のロッキン
グカーブ(回折強度曲線)半値幅との関係を調べたもの
である。尚、上記ロッキングカーブ半値幅とはX線回折
によシ測定される回折線ピークの半値幅であシ、斯る半
値幅が小さいほど結晶性が優れていることを示す。
Figure 1 shows the apparatus used in the experiment leading to the present invention.
) is a reaction tube made of quartz, (2) is a high-frequency coil wound around the reaction tube, (3) is a susceptor placed inside the reaction tube (1), and (4) is placed on the susceptor. The placed graphite crucible, (5) is housed in the crucible and contains the nine-Si melt, (6)
is a substrate support rod, and the lower end of the support rod is 81 melt (
5) Supported so as to be immersed in it. (7) is a 7-shaped notch formed at the lower end of the support rod (6), and (8) is a 6H-8i○ single crystal substrate, which is attached to the notch (7). 〇Also, the above experiment was carried out using a silicon melt with a gradient (hereinafter simply referred to as temperature gradient) in which the number of layers was maintained at about 1,700 and the temperature increased from the bottom to the top at a rate of 4'C/1. The distance d from the bottom of the crucible (4) to the surface of the substrate (8) opposite to the bottom when a 6H-310 single crystal layer was grown by dipping the substrate (8) in (5) and the distance of the growth layer. The relationship between the rocking curve (diffraction intensity curve) and the half width was investigated. Note that the rocking curve half-width is the half-width of a diffraction line peak measured by X-ray diffraction, and the smaller the half-width, the better the crystallinity.

第2図は斯る実験結果を示す。斯る第2図よシ明らかな
如く、上記距離dが3−よシ大となると上記半値幅も大
きくなり結晶性が低下することがわかる。
FIG. 2 shows the results of such an experiment. As is clear from FIG. 2, when the distance d increases by more than 3, the half width increases and the crystallinity decreases.

斯る理由は明確ではないが、サセプタ(3)を介しての
放熱効果が大きく、このため相対的にルツボ(4)底置
付近に極端な冷点が生じ、斯る冷点及びその近傍にルツ
ボ(4)側壁から溶は出した炭素原子が集中する結果成
長結晶中の炭素空孔の発生が抑止されるためであると考
える。
Although the reason for this is not clear, the heat dissipation effect through the susceptor (3) is large, and as a result, an extremely cold spot is created relatively near the bottom of the crucible (4), and the cold spot and its vicinity are It is thought that this is because the carbon atoms dissolved from the side wall of the crucible (4) are concentrated, thereby suppressing the generation of carbon vacancies in the growing crystal.

尚、Si融液(5)の温度勾配を変化させた際でも第2
図に示し九結果と同様に距離−dが6調より大となると
急激に結晶性が低下することを実検によシ確認した。
Note that even when the temperature gradient of the Si melt (5) is changed, the second
Similar to the results shown in the figure, it was confirmed through actual tests that when the distance -d was greater than 6, the crystallinity sharply decreased.

(へ)実施例 本発明の一実施例としては、第1図に示した装置を用い
て、n型6H−81C単結晶上に窒素及びアルミニウム
ドープのn型6)I−8iO層及びアルミニウムドープ
のp型6H−1310層を頴次積層してなる青色発光ダ
イオードを作成した。尚上記各成長層の成長条件は以下
のとおりである01)n型6H−8iO層の成長条件 融液温度: 1650〜1700層 温度勾配:4℃/cm 距離d:3鴎 融液材料:81+EliN+微量のAI!11)p型6
H−8iO層の成長条件 融液温度: 1650〜1700層 温度勾配:4℃/国 距離a:3mm 融液材料:31+AI! このような条件下で青色発光ダイオードを作成した場合
、屓方向電流20fflAで発光波長480nm以下、
光度2mCa以上を示す発光ダイオードの歩留シは70
%であった。
(f) Example As an example of the present invention, an n-type 6)I-8iO layer doped with nitrogen and aluminum and an aluminum-doped A blue light emitting diode was fabricated by stacking p-type 6H-1310 layers. The growth conditions for each growth layer above are as follows.01) Growth conditions for n-type 6H-8iO layer Melt temperature: 1650-1700 Layer temperature gradient: 4°C/cm Distance d: 3 Molten material: 81+EliN+ A small amount of AI! 11) p-type 6
Growth conditions for H-8iO layer Melt temperature: 1650-1700 Layer temperature gradient: 4°C/Country distance a: 3mm Melt material: 31+AI! When a blue light emitting diode is created under these conditions, the emission wavelength is 480 nm or less at a lateral current of 20 fflA,
The yield rate of light emitting diodes with a luminous intensity of 2 mCa or more is 70
%Met.

また、上記成長条件中、距離dのみを変化させて青色発
光ダイオードを作成し、距離こと歩留シとの関係を調べ
たところ、第6図に示す如く距離dが5−以下では歩留
りは70〜80%の範囲内で略安定であるが、距離dが
3鯛を超えると歩留りは急激に低下した。
In addition, under the above growth conditions, blue light emitting diodes were created by changing only the distance d, and the relationship between distance and yield was investigated. As shown in Figure 6, when the distance d is 5 - or less, the yield is 70. Although the yield was approximately stable within the range of ~80%, when the distance d exceeded 3 sea breams, the yield decreased rapidly.

これは、距離とが3−以下では結晶性が良好な成長層が
再現性良く得られるのに対して、距離dが3関を超える
と結晶性の良好な成長層を再現性良く得ることができな
いためである。
This is because when the distance d is less than 3, a grown layer with good crystallinity can be obtained with good reproducibility, whereas when the distance d exceeds 3, a grown layer with good crystallinity cannot be obtained with good reproducibility. This is because it cannot be done.

更に、距離dだけではなく温度勾配も3〜15”C/a
aの範囲で変化させて実験を行なったところ温度勾配に
関係なく、距離dが3−を超えると青色発光ダイオード
の歩留りが急激に低下することが判つ念。
Furthermore, not only the distance d but also the temperature gradient is 3 to 15"C/a
Experiments were conducted with distance a varied within a range, and it was found that, regardless of the temperature gradient, the yield of blue light emitting diodes sharply decreases when distance d exceeds 3-.

(ト)  発明の効果 本発明方法によれば、結晶性が良好な810単結晶を再
現性良く成長できるので、青色発光ダイオード等の製造
歩留りも向上する。
(g) Effects of the Invention According to the method of the present invention, an 810 single crystal with good crystallinity can be grown with good reproducibility, so that the manufacturing yield of blue light emitting diodes and the like is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSi0単結晶の製造に用いる液相エピタキシャ
ル成長装置な示す断面図、第2図は距離dとロッキング
カーブ軍値幅との関係を示す特性図、第3図は距離dと
青色発光ダイオードの歩留りとの関係を示す特性図であ
る。 (4)−・・黒鉛ルツボ、+5)・S i融液、+81
−8 i O単結晶基板。
Figure 1 is a cross-sectional view showing the liquid phase epitaxial growth apparatus used for manufacturing Si0 single crystals, Figure 2 is a characteristic diagram showing the relationship between distance d and rocking curve width, and Figure 3 is a diagram showing the relationship between distance d and blue light emitting diode. FIG. 3 is a characteristic diagram showing the relationship with yield. (4) - Graphite crucible, +5) Si melt, +81
-8 i O single crystal substrate.

Claims (1)

【特許請求の範囲】[Claims] (1)黒鉛ルツボ内のSi融液中にSiC単結晶基板を
浸漬し、上記基板上にSiC単結晶を成長させる際に、
上記基板と上記ルツボ底面との距離をmm以下とするこ
とを特徴とするSiC単結晶の液相エピタキシャル成長
方法。
(1) When a SiC single crystal substrate is immersed in a Si melt in a graphite crucible and a SiC single crystal is grown on the substrate,
A method for liquid phase epitaxial growth of a SiC single crystal, characterized in that the distance between the substrate and the bottom surface of the crucible is less than or equal to mm.
JP29091787A 1987-11-18 1987-11-18 Liquid phase epitaxy for sic single crystal Pending JPH01133998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29091787A JPH01133998A (en) 1987-11-18 1987-11-18 Liquid phase epitaxy for sic single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29091787A JPH01133998A (en) 1987-11-18 1987-11-18 Liquid phase epitaxy for sic single crystal

Publications (1)

Publication Number Publication Date
JPH01133998A true JPH01133998A (en) 1989-05-26

Family

ID=17762182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29091787A Pending JPH01133998A (en) 1987-11-18 1987-11-18 Liquid phase epitaxy for sic single crystal

Country Status (1)

Country Link
JP (1) JPH01133998A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107188A1 (en) * 2008-02-25 2009-09-03 財団法人地球環境産業技術研究機構 METHOD FOR GROWING SINGLE CRYSTAL SiC
CN102400224A (en) * 2010-07-30 2012-04-04 株式会社电装 Silicon carbide single crystal and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107188A1 (en) * 2008-02-25 2009-09-03 財団法人地球環境産業技術研究機構 METHOD FOR GROWING SINGLE CRYSTAL SiC
CN102400224A (en) * 2010-07-30 2012-04-04 株式会社电装 Silicon carbide single crystal and manufacturing method of the same

Similar Documents

Publication Publication Date Title
CA1317857C (en) Homoepitaxial growth of alpha-sic thin films and semiconductor devices fabricated thereon
KR100420182B1 (en) Epitaxial growth of silicon carbide and resulting silicon carbide structures
US8044408B2 (en) SiC single-crystal substrate and method of producing SiC single-crystal substrate
EP1403404A1 (en) Single crystal silicon carbide and method for producing the same
RU97110653A (en) METHOD FOR REDUCING THE FORMATION OF MICROTUBULES AT EPITAXIAL GROWTH OF SILICON CARBIDE AND THE SILICON OBTAINED BY THE SILICON CARBIDE STRUCTURES
US4526632A (en) Method of fabricating a semiconductor pn junction
US3129061A (en) Process for producing an elongated unitary body of semiconductor material crystallizing in the diamond cubic lattice structure and the product so produced
US3565703A (en) Silicon carbide junction diode
JP4833798B2 (en) Method for producing SiC single crystal
US4012242A (en) Liquid epitaxy technique
US5329141A (en) Light emitting diode
JPS5863183A (en) 2-6 group compound semiconductor device
JPH01133998A (en) Liquid phase epitaxy for sic single crystal
JP2000086398A (en) P type gaas single crystal and its production
Dmitriev Silicon carbide and SiC-AIN solid-solution pn structures grown by liquid-phase epitaxy
US4983249A (en) Method for producing semiconductive single crystal
US5047112A (en) Method for preparing homogeneous single crystal ternary III-V alloys
US3773553A (en) Silicon carbide junction diode
JPH05345700A (en) Device for liquid-phase epitaxial growth of silicon carbide single crystal
v Münch Silicon carbide technology for blue-emitting diodes
JP2680617B2 (en) Method for growing silicon carbide single crystal
JPS63156095A (en) Liquid phase epitaxy of sic single crystal
JPH06340498A (en) Method for growing sic single crystal
JPH06342935A (en) Gap pure green light-emitting device substrate
JPH06188451A (en) Manufacture of silicon carbide light emitting diode element