JP2000086398A - P type gaas single crystal and its production - Google Patents

P type gaas single crystal and its production

Info

Publication number
JP2000086398A
JP2000086398A JP19204299A JP19204299A JP2000086398A JP 2000086398 A JP2000086398 A JP 2000086398A JP 19204299 A JP19204299 A JP 19204299A JP 19204299 A JP19204299 A JP 19204299A JP 2000086398 A JP2000086398 A JP 2000086398A
Authority
JP
Japan
Prior art keywords
single crystal
type
type gaas
gaas single
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19204299A
Other languages
Japanese (ja)
Other versions
JP3797824B2 (en
Inventor
Hideo Fujisawa
英夫 藤澤
Chiku Katano
築 片野
Osamu Yamamoto
治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP19204299A priority Critical patent/JP3797824B2/en
Publication of JP2000086398A publication Critical patent/JP2000086398A/en
Application granted granted Critical
Publication of JP3797824B2 publication Critical patent/JP3797824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a single crystal having a low average dislocation density in good yield by including specific amounts of Si and a dopant which is a GaAs single crystal manifesting the p-type. SOLUTION: The content of p-type dopant (e.g. Zn) based on Si is within the range of 1.5-200 expressed in terms of atomic ratio. The average dislocation density of the resultant p-type GaAs single crystal is <=500 cm-2. For production, a dopant manifesting the p-type is filled in a p-type GaAs single crystal in a growth container so as to provide >=1 and <=1,000 ratio expressed in terms of atomic ratio to the Si and usually contain 1×1017 to 5×1019 cm-3 atoms Si and 1×1018 to 1×1020 cm-3 atoms p-type dopant to produce the single crystal according to a transverse type boat growth method or a vertical type boat method. A GaAs seed crystal 3 is filled in a crucible 1 having 3 inches diameter and made of a pyrolytic boron nitride and a GaAs polycrystal 4 and B2O3 5 are then filled thereon. Zn 6 and Si 7 are then added thereto and the resultant. mixture is subsequently vacuum sealed in a quartz ampul 2, heated with a heater 8 and annealed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低転位のp型Ga
As単結晶及び、その製造方法に関する。
The present invention relates to a low dislocation p-type Ga
The present invention relates to an As single crystal and a method for producing the same.

【0002】[0002]

【従来の技術】p型GaAs単結晶は切り出されて、化
合物半導体レーザー、発光ダイオード(LED)等を製
造するためのエピタキシャル成長用基板として幅広く用
いられている。
2. Description of the Related Art A p-type GaAs single crystal is cut out and widely used as a substrate for epitaxial growth for manufacturing a compound semiconductor laser, a light emitting diode (LED) and the like.

【0003】このように化合物半導体レーザー、LED
などに幅広く用いられているp型GaAs単結晶は、従
来、水平ブリッジマン法(HB法)、水平温度勾配凝固
法(GF法)、液体封止引き上げ法(LEC法)、垂直
ブリッジマン法(VB法)、垂直温度勾配凝固法(VG
F法)等様々な方法で製造されることが知られている。
As described above, compound semiconductor lasers and LEDs
Conventionally, a p-type GaAs single crystal widely used for such purposes includes a horizontal Bridgman method (HB method), a horizontal temperature gradient solidification method (GF method), a liquid sealing pulling method (LEC method), and a vertical Bridgman method ( VB method), vertical temperature gradient solidification method (VG
It is known that it is manufactured by various methods such as F method).

【0004】このうち化合物半導体レーザーは高い発光
効率と高寿命が求められるため、より低転位のp型Ga
As単結晶が必要とされてきた。このため一般的にp型
GaAs単結晶製造に際し、水平ブリッジマン法(HB
法)、水平温度勾配凝固法(GF法)または垂直ブリッ
ジマン法(VB法)、垂直温度勾配凝固法(VGF法)
等の手法が用いられてきた。
Of these, compound semiconductor lasers are required to have high luminous efficiency and long life, so that p-type Ga with lower dislocations is used.
There has been a need for As single crystals. For this reason, the horizontal Bridgman method (HB
Method), horizontal temperature gradient solidification method (GF method) or vertical Bridgman method (VB method), vertical temperature gradient solidification method (VGF method)
And other techniques have been used.

【0005】[0005]

【発明が解決しようとする課題】ところが上記いずれの
手法によっても平均転位密度は、概ね1000cm-2以上
であり、平均転位密度が500cm-2以下のp型GaAs
単結晶を歩留まりよく得ることは困難であった。
However, according to any of the above methods, the average dislocation density is approximately 1000 cm -2 or more, and p-type GaAs having an average dislocation density of 500 cm -2 or less.
It was difficult to obtain a single crystal with good yield.

【0006】一方、結晶中にS、Siをドープすること
が低転位化に有効であることが知られているが、この場
合にはn型のGaAs単結晶しか得られないという問題
があった。
On the other hand, it is known that doping S and Si into the crystal is effective for reducing dislocations. In this case, however, there is a problem that only an n-type GaAs single crystal can be obtained. .

【0007】また、かかる問題を解決する手段の一例と
して、水平ブリッジマン法(HB法)においてGaAs
結晶中にZnとSをダブルドープすることが特開昭63
−57079号に記載されている。ところがこの手法で
も平均転位密度が1000cm -2以下のp型GaAs単結
晶は得られるが、平均転位密度が500cm-2以下である
p型GaAs単結晶を製造することは困難であった。
[0007] Further, an example of means for solving such a problem and
GaAs in the horizontal Bridgman method (HB method)
Double doping of Zn and S in the crystal
No. 57079. However, with this method
Also has an average dislocation density of 1000cm -2The following p-type GaAs single bond
Crystals are obtained, but the average dislocation density is 500 cm-2Is less than
It has been difficult to produce a p-type GaAs single crystal.

【0008】さらに中性不純物であるInがGaAs結
晶の低転位化に効果があることが報告されている (Pro
c. 12th Intern. Symp. on GaAs and Related Compound
s, London-Bristol, 1986, p7-2)。かかる報告には、Z
n濃度が1.5×1019cm-3、In濃度が4.0×10
19cm-3をドープした2インチのGaAs基板が無転位基
板になることが示されている。
Furthermore, it has been reported that In, which is a neutral impurity, is effective in reducing dislocations in GaAs crystals (Pro
c. 12th Intern. Symp. on GaAs and Related Compound
s, London-Bristol, 1986, p7-2). Such reports include Z
n concentration 1.5 × 10 19 cm −3 , In concentration 4.0 × 10
It is shown that a 2-inch GaAs substrate doped with 19 cm -3 becomes a dislocation-free substrate.

【0009】しかしながら、Inは偏析係数が0.1と
小さいため、上記のように結晶中に高濃度のInをドー
ピングするためにはあらかじめInを多量に添加したG
aAs融液より単結晶を製造する必要があった。ところ
がこうした条件で結晶を製造すると結晶固化の途中で組
成的過冷却によるセル成長が始まり生産性が著しく悪く
なることが問題となっていた。
However, since In has a small segregation coefficient of 0.1, in order to dope a high concentration of In into the crystal as described above, G which contains a large amount of In in advance is used.
It was necessary to produce a single crystal from the aAs melt. However, when a crystal is manufactured under these conditions, cell growth due to compositional supercooling starts in the course of solidification of the crystal, resulting in a problem that productivity is significantly deteriorated.

【0010】したがって、本発明の目的は、かかる従来
の問題を解決するp型GaAs単結晶及び、その製造方
法を提供することにある。
Therefore, an object of the present invention is to provide a p-type GaAs single crystal that solves the conventional problems and a method for manufacturing the same.

【0011】さらに本発明の目的は、平均転位密度を5
00cm-2以下とするp型GaAs単結晶及び、その製
造方法を提供することにある。
It is another object of the present invention to provide an average dislocation density of 5
An object of the present invention is to provide a p-type GaAs single crystal having a size of not more than 00 cm -2 and a method for producing the same.

【0012】[0012]

【課題を解決するための手段】上記の本発明の課題を達
成するp型GaAs単結晶は、ドーパントとして、Si
と、GaAs単結晶中でp型を示すドーパントを、Si
に対する該p型ドーパントの原子比として、1.5〜2
00、中でも2〜100の範囲で含むことを特徴とす
る。
The p-type GaAs single crystal which achieves the above-mentioned object of the present invention comprises Si as a dopant.
And a dopant showing a p-type in the GaAs single crystal,
1.5 to 2 as an atomic ratio of the p-type dopant to
It is characterized by being included in the range of 00, especially 2 to 100.

【0013】さらに一の態様として、ドーパントとし
て、更に、B及び/又はSを、Siに対する原子比とし
て、0.001〜1000の範囲で含むことによって、
原子濃度としては、1×1017〜1×1020cm-3原子含
むことによって、より低転位のp型GaAs単結晶が得
られる。
[0013] In another embodiment, B and / or S is further contained as a dopant in an atomic ratio to Si in the range of 0.001 to 1000.
By containing an atomic concentration of 1 × 10 17 to 1 × 10 20 cm −3 , a lower dislocation p-type GaAs single crystal can be obtained.

【0014】また、一の態様としてキャリア濃度が1×
1018〜5×1019cm-3であることを特徴とする。
In one embodiment, the carrier concentration is 1 ×
It is characterized by being 10 18 to 5 × 10 19 cm −3 .

【0015】このような特徴のp型GaAs単結晶で
は、平均転位密度を500cm-2以下とすることができ
る。
In the p-type GaAs single crystal having such characteristics, the average dislocation density can be set to 500 cm −2 or less.

【0016】また、上記において、Siの少なくとも一
部を、Se及び/又はTeで置換することが可能であ
る。なお、いずれのドーパントについても、ドーピング
の手法について特に制限されることはなく、ドーピング
源が、例えば、金属、化合物、酸化物あるいは原料多結
晶中や容器中の不純物等いずれでもよく、また、固体、
液体、気体いずれの形態でもよい。
In the above, at least a part of Si can be replaced with Se and / or Te. There is no particular limitation on the doping method for any of the dopants, and the doping source may be, for example, any of metals, compounds, oxides, impurities in a raw material polycrystal or a container, and solid doping. ,
It may be liquid or gas.

【0017】さらに上記特徴のp型GaAs単結晶を製
造するに当たっては、p型GaAs単結晶中に、ドーパ
ントとしてSiと、p型GaAs単結晶でp型を示すド
ーパントを、Siに対する原子比として、1より大きく
1000以下、中でも1.1〜500となるように、通
常、Siを1×1017〜5×1019cm-3原子、前期p型
を示すドーパントを1×1018〜1×1020cm-3原子含
まれる範囲となるように、成長容器内にドーパントを充
填することにより、横型ボート成長法あるいは、縦型ボ
ート成長法いずれを用いることができる。
Further, in producing the p-type GaAs single crystal having the above characteristics, Si and a p-type GaAs single-crystal dopant exhibiting a p-type dopant in the p-type GaAs single crystal are expressed by an atomic ratio to Si. Usually, Si is 1 × 10 17 to 5 × 10 19 cm −3 atoms, and the dopant showing the p-type is 1 × 10 18 to 1 × 10 so that it is larger than 1 and 1000 or less, especially 1.1 to 500. Either the horizontal boat growth method or the vertical boat growth method can be used by filling the growth container with a dopant so as to have a range of 20 cm −3 atoms.

【0018】本発明の更なる特徴及び、効果は、以下の
発明の実施の形態の説明から明らかになる。
Further features and effects of the present invention will become apparent from the following description of the embodiments of the present invention.

【0019】[0019]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照しながら詳細に説明する。なお、先に説明したよう
に、成長されたp型GaAs単結晶は、切り出されてエ
ピタキシャル半導体基板として使用されることから、本
発明の説明においてp型GaAs単結晶の用語の意味及
び発明の保護の範囲は、特に特定されている場合を除
き、成長されたp型GaAs単結晶及び、切り出された
p型GaAs単結晶半導体基板を含むものである。
Embodiments of the present invention will be described below in detail with reference to the drawings. As described above, the grown p-type GaAs single crystal is cut out and used as an epitaxial semiconductor substrate. Therefore, in the description of the present invention, the meaning of the term of the p-type GaAs single crystal and the protection of the invention will be described. The range includes the grown p-type GaAs single crystal and the cut-out p-type GaAs single-crystal semiconductor substrate, unless otherwise specified.

【0020】本発明者は、先に説明した従来例に存在す
る問題を解決すべく鋭意検討した。その結果、GaAs
結晶中にSiと、GaAs単結晶中でp型を示すドーパ
ントをダブルドープすること、特に、特定の比率、即
ち、Siに対するp型ドーパントの原子比として、1.
5〜200、中でも、2〜100、好ましくは、2〜5
0の範囲で、共に存在させることにより、Siが転移の
移動を効果的に抑制し、低転位のp型GaAs単結晶を
得ることができることを見出した。通常、Si及びドー
プされる不純物等のp型ドーパントの濃度を所定の範囲
として製造することにより、好ましい平均転位密度を有
するp型GaAs単結晶を得ることが可能である。
The inventor of the present invention has intensively studied to solve the problems existing in the prior art described above. As a result, GaAs
Double doping of the crystal with Si and a p-type dopant in the GaAs single crystal, in particular, as a specific ratio, that is, as an atomic ratio of the p-type dopant to Si:
5 to 200, especially 2 to 100, preferably 2 to 5
It has been found that, by being present together in the range of 0, Si effectively suppresses the transfer of dislocation, and a p-type GaAs single crystal with low dislocation can be obtained. Normally, by manufacturing the silicon and the concentration of the p-type dopant such as the impurity to be doped in a predetermined range, it is possible to obtain a p-type GaAs single crystal having a preferable average dislocation density.

【0021】本発明に従う一の実施の態様として、不純
物としてSiを1×1017〜5×1019cm-3原子、中で
も1×1017〜1×1019cm-3原子の範囲で含み、p型
ドーパントを、1.1×1017〜1×1020cm-3原子、
中でも、1×1018〜1×1020cm-3原子、好ましくは
2×1018×6×1019cm-3原子、更に好ましくは2×
1018〜5×1019cm-3原子含むことにより、低転位密
度のp型GaAs単結晶が得られた。
In one embodiment according to the present invention, Si is contained as an impurity in an amount of 1 × 10 17 to 5 × 10 19 cm −3 , especially 1 × 10 17 to 1 × 10 19 cm −3 , 1.1 × 10 17 to 1 × 10 20 cm −3 atoms of a p-type dopant,
Among them, 1 × 10 18 to 1 × 10 20 cm −3 atoms, preferably 2 × 10 18 × 6 × 10 19 cm −3 atoms, and more preferably 2 × 10 18 cm −3 atoms.
By containing 10 18 to 5 × 10 19 cm −3 atoms, a p-type GaAs single crystal having a low dislocation density was obtained.

【0022】このときSi原子濃度が1×1018cm-3
上だと、更に大きな低転位化効果が得られる。また、1
×1019を超えると不純物に起因する微細な析出物が発
生しやすくなり、組成的過冷却によるセル成長が始ま
る。したがって、不純物としてSiを1×1018〜1×
1019cm-3原子含むことが実用的である。
At this time, if the concentration of Si atoms is 1 × 10 18 cm −3 or more, a larger dislocation reducing effect can be obtained. Also, 1
If it exceeds × 10 19 , fine precipitates due to impurities are likely to be generated, and cell growth due to compositional supercooling starts. Therefore, 1 × 10 18 to 1 × Si is used as an impurity.
It is practical to contain 10 19 cm -3 atoms.

【0023】p型ドーパントとしては、通常、C、B
e、Zn、Cd、Li、Ge、Au、Mn、Ag、P
b、Co、Ni、Cu及びFeからなる群から選ばれる
元素が用いられる。これらの中でも、Znが最も好適で
ある。Znは2×1018〜6×1019cm-3であると結
晶成長中に組成的過冷却が起こりにくく、かつ低転位密
度が得られるので特に好ましい。6×1019cm-3を超え
ると結晶成長中に組成的過冷却が起こり歩留りが低下す
る傾向がある。
As the p-type dopant, usually, C, B
e, Zn, Cd, Li, Ge, Au, Mn, Ag, P
An element selected from the group consisting of b, Co, Ni, Cu and Fe is used. Of these, Zn is most preferred. When Zn is 2 × 10 18 to 6 × 10 19 cm −3 , compositional supercooling hardly occurs during crystal growth and a low dislocation density can be obtained, which is particularly preferable. If it exceeds 6 × 10 19 cm −3 , compositional supercooling occurs during crystal growth, and the yield tends to decrease.

【0024】また、キャリア濃度は、1×1018cm-3
5×1019cm-3であることがp型基板として好ましい。
The carrier concentration is 1 × 10 18 cm −3 to
It is preferably 5 × 10 19 cm −3 as a p-type substrate.

【0025】なお、平均転位密度が500cm-2以下のp
型GaAs単結晶の製造には本発明に従い、上記のよう
にSiとp型ドーパントをダブルドープすることで十分
であるが、さらに低転位密度の単結晶を得るためには、
更に、B及び/又はSを、Siに対する原子比として、
0.001〜1000、中でも、0.001〜100、
特に、0.05〜50の範囲で含むことが好ましい。通
常、B及び/又はSの濃度として、1×1017〜1×1
20cm-3原子、好ましくは、1×1018〜5×1019cm
-3原子の範囲で含有させる。
Incidentally, p having an average dislocation density of 500 cm -2 or less is used.
According to the present invention, double doping of Si and a p-type dopant as described above is sufficient for the production of a single-type GaAs single crystal, but in order to obtain a single crystal with a lower dislocation density,
Further, B and / or S are represented as an atomic ratio to Si,
0.001 to 1000, among them 0.001 to 100,
In particular, it is preferable that the content be contained in the range of 0.05 to 50. Usually, the concentration of B and / or S is 1 × 10 17 to 1 × 1
0 20 cm -3 atoms, preferably 1 × 10 18 to 5 × 10 19 cm
It is contained in the range of -3 atoms.

【0026】また平均転位密度が500cm-2以下のp型
GaAs単結晶の製造方法として、水平ブリッジマン法
(HB法)、水平温度勾配凝固法(GF法)等の横型ボ
ート法、垂直ブリッジマン法(VB法)、垂直温度勾配
凝固法(VGF法)等の縦型ボート法のいずれを採用し
てもよい。
As a method for producing a p-type GaAs single crystal having an average dislocation density of 500 cm -2 or less, a horizontal boat method such as a horizontal Bridgman method (HB method) or a horizontal temperature gradient solidification method (GF method), or a vertical Bridgman method Any of the vertical boat method such as the method (VB method) and the vertical temperature gradient solidification method (VGF method) may be adopted.

【0027】横型ボート法(HB,GF)の場合には、
横型(ボート型)の成長容器を用い、その一端に種結晶
を配置し、一方、縦型ボート法(VB,VGF)では、
縦長のるつぼ状成長容器を用い、その下端に種結晶を配
置する。
In the case of the horizontal boat method (HB, GF),
A horizontal (boat-type) growth vessel is used, and a seed crystal is arranged at one end of the growth vessel. On the other hand, in the vertical boat method (VB, VGF),
A seed crystal is placed at the lower end of a vertically elongated crucible-shaped growth vessel.

【0028】いずれの場合も、成長容器の一端にGaA
s単結晶種結晶を配置するとともに、当該成長容器内に
GaAs結晶成長用原料の少なくとも一部とドーパント
を配置するステップ、前記成長容器およびその近傍を加
熱し、成長容器内でドーパントを含むGaAs融液を調
整するステップ、種付けを行うステップ、徐冷してp型
GaAs単結晶を成長させるステップを含むp型GaA
s単結晶の製造方法である点では共通する。
In each case, GaAs is provided at one end of the growth vessel.
disposing the s single crystal seed crystal and disposing at least a part of the GaAs crystal growth raw material and the dopant in the growth vessel; heating the growth vessel and the vicinity thereof to form a GaAs melt containing the dopant in the growth vessel. P-type GaAs including a step of adjusting a solution, a step of seeding, and a step of gradually cooling to grow a p-type GaAs single crystal
It is common in that it is a method for producing an s single crystal.

【0029】本発明の特徴は、前記p型GaAs単結晶
中に、Siと、GaAs単結晶中でp型を示すドーパン
トを、Siに対する該p型ドーパントの原子比として、
前記した1.5〜200の範囲となるように、配慮する
こと、通常は、Siが1×10 17〜5×1019cm-3
子、p型ドーパントが、1×1018〜1×1020cm-3
子含まれる様に、成長容器内にドーパントを配置する点
に存する。p型ドーパントとして、Znを用いる場合に
は、2×1018〜6×1019cm-3で含まれるように配置
することが好ましい。ドーパントとして、B及び/又は
Sを用いる場合には、前記した、Siに対する特定の原
子比0.001〜1000となるように配置する。通
常、1×1017〜1×1020cm-3原子含まれるように配
置する。
A feature of the present invention is that the p-type GaAs single crystal
Inside, Si and dopan showing p-type in GaAs single crystal
As the atomic ratio of the p-type dopant to Si,
Care should be taken to be in the range of 1.5 to 200 described above.
That is, usually, Si is 1 × 10 17~ 5 × 1019cm-3original
And the p-type dopant is 1 × 1018~ 1 × 1020cm-3original
The point of placing the dopant in the growth vessel so that it is included
Exists. When Zn is used as a p-type dopant,
Is 2 × 1018~ 6 × 1019cm-3Arranged to be included in
Is preferred. B and / or as a dopant
When S is used, the above-described specific element for Si is used.
It is arranged so that the child ratio becomes 0.001 to 1000. Through
Always 1 × 1017~ 1 × 1020cm-3Atoms to be included
Place.

【0030】本発明の方法は、縦型、横型いずれのボー
ト成長方法にも有効だが、円形ウェハが高歩留まりで得
られ、大型基板が得られ、且つより低転位密度の単結晶
が得られることから縦型ボート法がより好ましい。本発
明によれば、平均転位密度が500cm-2以下で、表面積
(片面の面積として)が20cm2を超え、両面の表面積
として40cm2を超える、直径が50.8mm(2イン
チ)を超える、2.5インチ以上(片面の面積として約
31cm2以上)或いは、3インチ以上(片面の面積とし
て約45cm2以上)もの大型のp型GaAs単結晶半導
体基板を得ることができる。本発明の単結晶半導体基板
は、上記したボート成長方法によって円形ウエハが効率
よく得られるが、円形ウエハに限定されるものではな
く、本発明の基板を満足する限り、任意の形状、例えば
角形ウエハであってもよい。
Although the method of the present invention is effective for both vertical and horizontal boat growth methods, a circular wafer can be obtained at a high yield, a large substrate can be obtained, and a single crystal having a lower dislocation density can be obtained. The vertical boat method is more preferable. According to the present invention, the average dislocation density is 500 cm -2 or less, the surface area (as one-sided area) exceeds 20 cm 2 , the surface area of both sides exceeds 40 cm 2 , the diameter exceeds 50.8 mm (2 inches), A large p-type GaAs single crystal semiconductor substrate having a size of 2.5 inches or more (about 31 cm 2 or more on one side) or 3 inches or more (about 45 cm 2 or more on one side) can be obtained. The single crystal semiconductor substrate of the present invention can efficiently obtain a circular wafer by the above-described boat growth method, but is not limited to the circular wafer, and may have any shape, such as a square wafer, as long as the substrate of the present invention is satisfied. It may be.

【0031】またSi少なくとも一部を、Se及び/又
はTeの不純物をドーピングして置換しても、Siと同
様の効果が得られる。
Even if at least a part of Si is replaced by doping with Se and / or Te impurities, the same effect as Si can be obtained.

【0032】上記のように、本発明は、GaAs結晶に
Siとp型ドーパントとを組み合わせること、或いは、
Siと、B及び/又はSとp型ドーパントとを組合わせ
てドーピングすることで、低転位密度のp型GaAs単
結晶を得ることができる。ここでSiは、Inに比べて
約10分の1の濃度で低転位化効果を示すので、Siの
ドーピング量が少なくて済み、結晶製造過程において偏
析による組成的過冷却が起こりにくい。このため低転位
のp型GaAs単結晶を高歩留まりで得られる。
As described above, the present invention relates to combining GaAs crystal with Si and a p-type dopant, or
By doping in combination with Si, B and / or S, and a p-type dopant, a p-type GaAs single crystal having a low dislocation density can be obtained. Here, since Si exhibits a dislocation-reducing effect at a concentration about one tenth of that of In, the doping amount of Si may be small, and compositional supercooling due to segregation in a crystal manufacturing process is unlikely to occur. For this reason, a low dislocation p-type GaAs single crystal can be obtained with a high yield.

【0033】またこのようにして得られたp型GaAs
単結晶及び、p型GaAs単結晶基板は従来のものに比
べて転位密度500cm-2以下、中でも400cm-2を下回
るような転位密度の低い単結晶基板が得られることか
ら、これらを化合物半導体レーザー用基板として使用す
ることで発光効率が高く高寿命のレーザーが得られる。
The p-type GaAs thus obtained is
Single crystal and, p-type GaAs single crystal substrate dislocation density 500 cm -2 or less as compared with the conventional, since the lower single-crystal substrate having dislocation densities below a among them 400 cm -2 obtained, these compound semiconductor laser By using it as a substrate for use, a laser with high luminous efficiency and long life can be obtained.

【0034】実施例1 図1に示すように直径3インチのpBN(熱分解窒化硼
素)製るつぼ(1)の底にGaAs種結晶(3)を充填
し、その上に4000gのGaAs多結晶(4)及び、
23(5)を50g充填した。さらにZn(6)を1.
5gとSi(7)を0.5g添加した後、石英アンプル
(2)内に真空封入した。
Example 1 As shown in FIG. 1, a crucible (1) made of pBN (pyrolytic boron nitride) having a diameter of 3 inches was filled with a GaAs seed crystal (3) at the bottom, and 4000 g of GaAs polycrystal ( 4) and
50 g of B 2 O 3 (5) was charged. Furthermore, Zn (6) was added to 1.
After adding 5 g and 0.5 g of Si (7), it was vacuum-sealed in a quartz ampule (2).

【0035】次にこの石英アンプル(2)を成長炉に設
置し、ヒータ(8)により加熱し、GaAs多結晶
(4)と種結晶(3)の一部を溶融してシーディングを
行い、3〜5℃/cmの温度勾配を保ったまま除冷して
GaAs単結晶を育成した。
Next, the quartz ampoule (2) is set in a growth furnace, heated by a heater (8), and a part of the GaAs polycrystal (4) and a part of the seed crystal (3) are melted for seeding. While maintaining a temperature gradient of 3 to 5 ° C./cm, cooling was performed to grow a GaAs single crystal.

【0036】得られた単結晶から(100)面の3イン
チ(片面の表面積45cm2)GaAs基板を切り出し、
400℃で30分間溶融KOHエッチングを実施した
後、光学顕微鏡で観察して転位密度を測定した。顕微鏡
の視野内で1×1mmの範囲の転位個数をカウントし、
100倍して1cm2あたりの転位密度とした。同様の
測定を10mm間隔で37点について行い、平均転位密
度を求めた。
A 3-inch (100 surface) GaAs substrate (one side surface area: 45 cm 2 ) was cut out from the obtained single crystal.
After performing melt KOH etching at 400 ° C. for 30 minutes, the dislocation density was measured by observing with an optical microscope. Count the number of dislocations in the range of 1 × 1 mm in the field of view of the microscope,
The dislocation density per 1 cm 2 was obtained by multiplying by 100. Similar measurements were performed at 37 points at 10 mm intervals to determine the average dislocation density.

【0037】測定結果では、平均転位密度は180cm
-2であった。またこの基板のキャリア濃度は1.2×1
19cm-3でp型の導電型を示した。この時の基板中の不
純物濃度をSIMSにより測定した結果を図2に示す。
According to the measurement result, the average dislocation density was 180 cm
-2 . The carrier concentration of this substrate is 1.2 × 1
At 0 19 cm -3 , a p-type conductivity type was exhibited. FIG. 2 shows the result of SIMS measurement of the impurity concentration in the substrate at this time.

【0038】またこの条件で合計5本の結晶成長を実施
したところ得られた結晶は、全て単結晶であった。
When a total of five crystals were grown under these conditions, all the obtained crystals were single crystals.

【0039】実施例2 図3に示すように直径3インチの石英製るつぼ(1)の
底にGaAs種結晶(3)を充填し、その上に4000
gのGaAs多結晶(4)を充填した。さらにZn
(6)を1.5gと、Si(7)を0.2g添加した
後、石英アンプル(2)内に真空封入した。
Example 2 As shown in FIG. 3, the bottom of a quartz crucible (1) having a diameter of 3 inches was filled with a GaAs seed crystal (3), and 4000 was placed thereon.
g of GaAs polycrystal (4). Further Zn
After 1.5 g of (6) and 0.2 g of Si (7) were added, they were vacuum-sealed in a quartz ampule (2).

【0040】次にこの石英アンプル(2)を成長炉に設
置しヒータ(8)を加熱し、GaAs多結晶と種結晶の
一部を溶融してシーディングを行い、3〜5℃/cmの
温度勾配を保ったまま除冷してGaAs単結晶を育成し
た。
Next, the quartz ampoule (2) is set in a growth furnace, and a heater (8) is heated to melt a part of the GaAs polycrystal and the seed crystal to perform seeding. While maintaining the temperature gradient, the substrate was cooled to grow a GaAs single crystal.

【0041】得られた単結晶から(100)面の3イン
チGaAs基板を切り出し、400℃で30分間溶融K
OHエッチングを実施した後、実施例1と同様にして転
位密度を測定した。測定結果は、平均転位密度は380
cm-2であった。
From the obtained single crystal, a 3-inch (100) plane GaAs substrate was cut out and melted at 400 ° C. for 30 minutes.
After the OH etching, the dislocation density was measured in the same manner as in Example 1. The measurement results show that the average dislocation density is 380
cm -2 .

【0042】またこの基板のキャリア濃度は1.5×1
19cm-3でp型の導電型を示した。このときの基板中の
不純物濃度をSIMSにて測定した結果を図2の表に示
す。
The carrier concentration of this substrate is 1.5 × 1
At 0 19 cm -3 , a p-type conductivity type was exhibited. FIG. 2 shows the result of SIMS measurement of the impurity concentration in the substrate at this time.

【0043】またこの条件で合計5本の結晶成長を実施
したところ得られた結晶はすべて単結晶であった。
When a total of five crystals were grown under these conditions, all the obtained crystals were single crystals.

【0044】実施例3 図4に示すように横型の石英ボート(10)に、Ga
(9)を2750g、Zn(6)を3.0g及び、Si(7)
を0.2g充填する。また石英ボート(10)の一端に
GaAs種結晶(3)を配置する。そして、3000g
の金属砒素(11)とともに石英アンプル(2)中に真
空封入する。
Example 3 As shown in FIG. 4, a horizontal quartz boat (10)
(9) 2750 g, Zn (6) 3.0 g and Si (7)
Is filled with 0.2 g. A GaAs seed crystal (3) is arranged at one end of the quartz boat (10). And 3000g
Is vacuum-sealed in a quartz ampoule (2) together with the metal arsenic (11).

【0045】次にこの石英アンプル(2)を成長炉に設
置しヒータ(8)を加熱し、GaAs融液を合成した
後、GaAs種結晶(3)の一部を溶融してシーディン
グを行い、0.5〜3℃/cmの温度勾配を保ったまま
除冷してGaAs単結晶を育成した。
Next, the quartz ampoule (2) is set in a growth furnace, the heater (8) is heated to synthesize a GaAs melt, and a part of the GaAs seed crystal (3) is melted and seeded. While maintaining a temperature gradient of 0.5 to 3 ° C./cm, cooling was performed to grow a GaAs single crystal.

【0046】得られた単結晶から(100)面の2イン
チGaAs基板を切り出し、400℃で30分間溶融K
OHエッチングを実施した後、5mm間隔で69点につ
いて測定した以外、実施例1と同様にして転位密度を測
定した。その測定結果は、平均転位密度は420cm-2
であった。
From the obtained single crystal, a 2-inch GaAs substrate having a (100) plane was cut out and melted at 400 ° C. for 30 minutes.
After performing the OH etching, the dislocation density was measured in the same manner as in Example 1 except that measurement was performed at 69 points at intervals of 5 mm. The measurement results show that the average dislocation density is 420 cm -2
Met.

【0047】またこのGaAs基板のキャリア濃度は
2.1×1019cm-3でp型の導電型を示した。この時の
基板中の不純物濃度をSIMSにて測定した結果を上記
表1に示す。またこの条件で合計5本の結晶成長を実施
したところ得られた結晶はすべて単結晶であった。
The carrier concentration of the GaAs substrate was 2.1 × 10 19 cm -3 , indicating a p-type conductivity. Table 1 shows the result of SIMS measurement of the impurity concentration in the substrate at this time. Further, when a total of five crystals were grown under these conditions, all the obtained crystals were single crystals.

【0048】比較例1 Si添加量を0.01gとする他は、実施例1と同様に
GaAs単結晶の成長を行った。この時得られたGaA
s基板の転位密度を実施例1と同じ条件で測定したとこ
ろ面内平均は1810cm-2であった。このときの基板
中の不純物濃度をSIMSにて測定した結果を図2の表
に示す。
Comparative Example 1 A GaAs single crystal was grown in the same manner as in Example 1 except that the amount of Si added was 0.01 g. The GaAs obtained at this time
When the dislocation density of the s substrate was measured under the same conditions as in Example 1, the in-plane average was 1810 cm -2 . FIG. 2 shows the result of SIMS measurement of the impurity concentration in the substrate at this time.

【0049】比較例2 Si添加量を1.5gとする他は、実施例1と同様にG
aAs単結晶の成長を5回実施したが、不純物に起因す
る微細な析出物が多数発生し単結晶が得られたのは1本
のみであった。またこの時得られた単結晶から切り出し
たGaAs基板の転位密度を実施例1と同じ条件で測定
したところ面内平均は2840cm-2であった。このと
きの基板中の不純物濃度をSIMSにて測定した結果を
同様に、上記表1に示す。
Comparative Example 2 G was the same as in Example 1 except that the amount of Si added was 1.5 g.
The growth of the aAs single crystal was performed five times, but only one single crystal was obtained by generating many fine precipitates due to impurities. When the dislocation density of the GaAs substrate cut out from the single crystal obtained at this time was measured under the same conditions as in Example 1, the average in-plane was 2840 cm -2 . Table 1 also shows the results of SIMS measurement of the impurity concentration in the substrate at this time.

【0050】図2の表にまとめて示されるように、本発
明に従う実施例1〜3のいずれも比較例1、2と比較し
て、ZnとSi、又はZnとSi及び、Bの濃度の組み
合わせにより、単位面積当たりの転位個数が500cm
-2以下となることが理解できる。
As shown in the table of FIG. 2, all of Examples 1 to 3 according to the present invention are different from Comparative Examples 1 and 2 in the concentration of Zn and Si or Zn and Si and B. Depending on the combination, the number of dislocations per unit area is 500cm
It can be understood that it becomes -2 or less.

【0051】また、図5は、本発明により得られた単結
晶の(100)面における結晶転位欠陥個数(EPD)
の分布例である。いずれの箇所における転位密度も、上
記比較例1、2のいずれの平均転位密度よりも小さい値
であることが理解できる。
FIG. 5 shows the number of crystal dislocation defects (EPD) on the (100) plane of the single crystal obtained according to the present invention.
It is an example of distribution. It can be understood that the dislocation density at any point is a value smaller than the average dislocation density of any of Comparative Examples 1 and 2.

【0052】[0052]

【発明の効果】以上実施例に基づき説明したように、本
発明は、Siとp型ドーパントをダブルドープすること
により、低転位のp型GaAs単結晶を得ることが可能
である。これにより、低転位のp型GaAs単結晶基板
から高効率、長寿命の化合物半導体レーザ、発光ダイオ
ード等が実現可能である。
As described above with reference to the embodiments, according to the present invention, it is possible to obtain a p-type GaAs single crystal with low dislocation by double doping with Si and a p-type dopant. As a result, a highly efficient and long-lived compound semiconductor laser, a light emitting diode, and the like can be realized from a low dislocation p-type GaAs single crystal substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の単結晶を製造する際に用いる装置の概
略を示し、実施例1を説明する図である。
FIG. 1 is a view schematically showing an apparatus used for producing a single crystal of the present invention, and is a view for explaining a first embodiment.

【図2】実施例と比較例の測定値を示す表である。FIG. 2 is a table showing measured values of Examples and Comparative Examples.

【図3】本発明の単結晶を製造する際に用いる装置の概
略を示し、実施例2を説明する図である。
FIG. 3 is a view schematically showing an apparatus used for producing a single crystal of the present invention, and is a view for explaining Example 2.

【図4】本発明の単結晶を製造する際に用いる装置の概
略を示し、実施例3を説明する図である。
FIG. 4 is a view schematically showing an apparatus used for producing a single crystal of the present invention, and is a view for explaining a third embodiment.

【図5】本発明で得られた単結晶の(100)面の転位
(EPD)分布を示す例である。
FIG. 5 is an example showing a (100) plane dislocation (EPD) distribution of a single crystal obtained by the present invention.

【符号の説明】[Explanation of symbols]

1 pBN(熱分解窒化硼素)製るつぼ 2 石英アンプル 3 GaAs種結晶 4 GaAs多結晶 5 B23 6 Zn 7 Si 8 ヒータ 9 Ga 10 石英ボート 11 金属砒素DESCRIPTION OF SYMBOLS 1 Crucible made of pBN (pyrolytic boron nitride) 2 Quartz ampoule 3 GaAs seed crystal 4 GaAs polycrystal 5 B 2 O 3 6 Zn 7 Si 8 Heater 9 Ga 10 Quartz boat 11 Metal arsenic

Claims (29)

【特許請求の範囲】[Claims] 【請求項1】ドーパントとして、SiとGaAs単結晶
でp型を示すドーパントを、Siに対する該p型ドーパ
ントの原子比として、1.5〜200の範囲で含むこと
を特徴とするp型GaAs単結晶。
1. A p-type GaAs single crystal comprising, as a dopant, a dopant exhibiting a p-type with Si and GaAs single crystal in an atomic ratio of the p-type dopant to Si in a range of 1.5 to 200. crystal.
【請求項2】請求項1に記載のp型GaAs単結晶にお
いて、Siに対するp型ドーパントの原子比が、2〜1
00の範囲で含むことを特徴とするp型GaAs単結
晶。
2. The p-type GaAs single crystal according to claim 1, wherein the atomic ratio of the p-type dopant to Si is 2 to 1.
A p-type GaAs single crystal characterized by being included in the range of 00.
【請求項3】請求項1に記載のp型GaAs単結晶にお
いて、Siを1×1017〜5×1019cm-3原子含むこと
を特徴とするp型GaAs単結晶。
3. The p-type GaAs single crystal according to claim 1, wherein Si contains 1 × 10 17 to 5 × 10 19 cm -3 atoms.
【請求項4】請求項3に記載のp型GaAs単結晶にお
いて、Siを1×1017〜1×1019cm-3原子含むこと
を特徴とするp型GaAs単結晶。
4. The p-type GaAs single crystal according to claim 3, wherein Si contains 1 × 10 17 to 1 × 10 19 cm -3 atoms.
【請求項5】請求項1又は2に記載のp型GaAs単結
晶において、p型を示すドーパントを、1.1×1017
〜1×1020cm-3原子含有することを特徴とするp型G
aAs単結晶。
5. The p-type GaAs single crystal according to claim 1, wherein the p-type dopant is 1.1 × 10 17
P-type G containing 〜1 × 10 20 cm -3 atoms
aAs single crystal.
【請求項6】請求項5に記載のp型GaAs単結晶にお
いて、p型を示すドーパントを、2×1018〜6×10
19cm-3原子含有することを特徴とするp型GaAs単結
晶。
6. The p-type GaAs single crystal according to claim 5, wherein the p-type dopant is 2 × 10 18 to 6 × 10
A p-type GaAs single crystal containing 19 cm -3 atoms.
【請求項7】請求項1に記載のp型GaAs単結晶にお
いて、p型を示すドーパントが、C、Be、Zn、C
d、Li、Ge、Au、Mn、Ag、Pb、Co、N
i、Cu及びFeからなる群から選ばれる元素であるこ
とを特徴とするp型GaAs単結晶。
7. The p-type GaAs single crystal according to claim 1, wherein the p-type dopant is C, Be, Zn, C
d, Li, Ge, Au, Mn, Ag, Pb, Co, N
A p-type GaAs single crystal, which is an element selected from the group consisting of i, Cu, and Fe.
【請求項8】請求項7に記載のp型GaAs単結晶にお
いて、p型を示すドーパントが、Znであることを特徴
とするp型GaAs単結晶。
8. The p-type GaAs single crystal according to claim 7, wherein the p-type dopant is Zn.
【請求項9】請求項1に記載のp型GaAs単結晶にお
いて、ドーパントとして、更に、B及び/又はSを、S
iに対する原子比として、0.001〜1000の範囲
で含むことを特徴とするp型GaAs単結晶。
9. The p-type GaAs single crystal according to claim 1, further comprising B and / or S as a dopant.
A p-type GaAs single crystal, which is contained in an atomic ratio to i in a range of 0.001 to 1000.
【請求項10】請求項9に記載のp型GaAs単結晶に
おいて、B及び/又はSを、1×1017〜1×1020cm
-3原子含むことを特徴とするp型GaAs単結晶。
10. The p-type GaAs single crystal according to claim 9, wherein B and / or S is 1 × 10 17 to 1 × 10 20 cm.
A p-type GaAs single crystal comprising -3 atoms.
【請求項11】請求項1に記載のp型GaAs単結晶に
おいて、Siの少なくとも一部を、Se及び/又はTe
で置換することを特徴とするp型GaAs単結晶。
11. The p-type GaAs single crystal according to claim 1, wherein at least a part of Si is made of Se and / or Te.
A p-type GaAs single crystal, characterized in that:
【請求項12】請求項1〜4及び6〜11のいずれかに
記載のp型GaAs単結晶において、キャリア濃度が1
×1018〜5×1019cm-3であることを特徴とするp型
GaAs単結晶。
12. The p-type GaAs single crystal according to claim 1, wherein said carrier concentration is 1%.
A p-type GaAs single crystal having a size of × 10 18 to 5 × 10 19 cm −3 .
【請求項13】ドーパントとして、Siを1×1017
1×1019cm-3原子含み、p型を示すドーパントを1×
1018〜1×1020cm-3原子含むことを特徴とするp型
GaAs単結晶。
13. A dopant comprising 1 × 10 17 to Si
1 × 10 19 cm −3 atoms, and a p-type dopant containing 1 × 10 19 cm −3 atoms
A p-type GaAs single crystal comprising 10 < 18 > to 1 * 10 < 20 > cm <-3> atoms.
【請求項14】請求項13に記載のp型GaAs単結晶
において、Siを1×1017〜1×1019cm-3原子含
み、p型を示すドーパントとしてZnを2×1018〜6
×1019cm-3原子含むことを特徴とするp型GaAs単
結晶。
14. The p-type GaAs single crystal according to claim 13, wherein Si contains 1 × 10 17 to 1 × 10 19 cm -3 atoms, and Zn as a p-type dopant has 2 × 10 18 to 6 × 10 18.
A p-type GaAs single crystal containing x10 19 cm -3 atoms.
【請求項15】請求項13に記載のp型GaAs単結晶
において、p型を示すドーパントが、C、Be、Zn、
Cd、Li、Ge、Au、Mn、Ag、Pb、Co、N
i、Cu及びFeからなる群から選ばれる元素であるこ
とを特徴とするp型GaAs単結晶。
15. The p-type GaAs single crystal according to claim 13, wherein the p-type dopant is C, Be, Zn,
Cd, Li, Ge, Au, Mn, Ag, Pb, Co, N
A p-type GaAs single crystal, which is an element selected from the group consisting of i, Cu, and Fe.
【請求項16】請求項15に記載のp型GaAs単結晶
において、p型を示すドーパントが、Znであることを
特徴とするp型GaAs単結晶。
16. The p-type GaAs single crystal according to claim 15, wherein the p-type dopant is Zn.
【請求項17】請求項13に記載のp型GaAs単結晶
において、ドーパントとして、更に、B及び/又はS
を、1×1017〜1×1020cm-3原子含むことを特徴と
するp型GaAs単結晶。
17. The p-type GaAs single crystal according to claim 13, further comprising B and / or S as a dopant.
Is a 1 × 10 17 to 1 × 10 20 cm −3 atom.
【請求項18】請求項13に記載のp型GaAs単結晶
において、Siの少なくとも一部を、Se及び/又はT
eで置換することを特徴とするp型GaAs単結晶。
18. The p-type GaAs single crystal according to claim 13, wherein at least a part of Si is made of Se and / or T
A single crystal of p-type GaAs, wherein the single crystal is substituted with e.
【請求項19】請求項13〜18のいずれかに記載のp
型GaAs単結晶において、キャリア濃度が1×1018
〜5×1019cm-3であることを特徴とするp型GaAs
単結晶。
19. The p according to claim 13, wherein
In the type GaAs single crystal, the carrier concentration is 1 × 10 18
P-type GaAs having a size of about 5 × 10 19 cm −3
Single crystal.
【請求項20】p型GaAs単結晶の製造方法におい
て、該p型GaAs単結晶中に、ドーパントとして、S
iを1×1017〜5×1019cm-3原子、及び、GaAs
単結晶中でp型を示すドーパントを、Siに対する原子
比として、1.5〜200の範囲で含まれるように、成
長容器内にドーパントを充填することを特徴とするp型
GaAs単結晶の製造方法。
20. A method for producing a p-type GaAs single crystal, comprising the steps of:
i is 1 × 10 17 to 5 × 10 19 cm −3 atoms, and GaAs
Production of a p-type GaAs single crystal, characterized in that a dopant is filled in a growth vessel so that a dopant exhibiting a p-type in a single crystal is contained in a range of 1.5 to 200 as an atomic ratio with respect to Si. Method.
【請求項21】p型GaAs単結晶の製造方法におい
て、 成長容器の一端にGaAs単結晶種結晶を配置するステ
ップと、 該成長容器内にGaAs結晶成長用原料の少なくとも一
部とドーパントを配置するステップと、 該成長容器およびその近傍を加熱し、該成長容器内で前
記ドーパントを含むGaAs融液を調整するステップ
と、 種付けを行うステップと、 徐冷してp型GaAs単結晶を成長させるステップを含
み、 前記ドーパントとして、Siを1×1017〜5×1019
cm-3原子、及び、GaAs単結晶中でp型を示すドーパ
ントを、Siに対する原子比として、1.5〜200の
範囲で含まれるように、前記成長容器内に充填すること
を特徴とするp型GaAs単結晶の製造方法。
21. A method of manufacturing a p-type GaAs single crystal, comprising: disposing a GaAs single crystal seed crystal at one end of a growth vessel; and disposing at least a part of a GaAs crystal growth material and a dopant in the growth vessel. Heating the growth vessel and its vicinity to adjust a GaAs melt containing the dopant in the growth vessel; seeding; and gradually cooling to grow a p-type GaAs single crystal. 1 × 10 17 to 5 × 10 19 as the dopant
cm- 3 atoms and a dopant showing a p-type in a GaAs single crystal are filled in the growth vessel so as to be included in an atomic ratio to Si in a range of 1.5 to 200. A method for producing a p-type GaAs single crystal.
【請求項22】p型GaAs単結晶の製造方法におい
て、 成長容器の一端にGaAs単結晶種結晶を配置するステ
ップと、 該成長容器内にGaAs結晶成長用原料の少なくとも一
部とドーパントを配置するステップと、 該成長容器およびその近傍を加熱し、該成長容器内で前
記ドーパントを含むGaAs融液を調整するステップ
と、 種付けを行うステップと、 徐冷してp型GaAs単結晶を成長させるステップを含
み、 前記ドーパントとして、Siを1×1017〜5×1019
cm-3原子、及び、GaAs単結晶中でp型を示すドーパ
ントを、1×1018〜1×1020cm-3原子の範囲で含ま
れるように、前記成長容器内に充填することを特徴とす
るp型GaAs単結晶の製造方法。
22. A method of manufacturing a p-type GaAs single crystal, comprising: disposing a GaAs single crystal seed crystal at one end of a growth vessel; and disposing at least a part of a GaAs crystal growth material and a dopant in the growth vessel. Heating the growth vessel and its vicinity to adjust a GaAs melt containing the dopant in the growth vessel; seeding; and gradually cooling to grow a p-type GaAs single crystal. 1 × 10 17 to 5 × 10 19 as the dopant
cm- 3 atoms and a dopant exhibiting a p-type in a GaAs single crystal are filled in the growth vessel so as to be contained in a range of 1 × 10 18 to 1 × 10 20 cm −3 atoms. A method for producing a p-type GaAs single crystal.
【請求項23】請求項21又は22に記載のp型GaA
s単結晶の製造方法において、 前記成長容器は、横型ボートの成長容器であることを特
徴とするp型GaAs単結晶の製造方法。
23. The p-type GaAs according to claim 21 or 22.
The method for producing an s single crystal, wherein the growth vessel is a growth vessel for a horizontal boat.
【請求項24】請求項21又は22に記載のp型GaA
s単結晶の製造方法において、 前記成長容器は、縦型ボートの成長容器であることを特
徴とするp型GaAs単結晶の製造方法。
24. The p-type GaAs according to claim 21 or 22.
In the method for producing an s single crystal, the growth vessel is a growth vessel for a vertical boat, wherein the p-type GaAs single crystal is produced.
【請求項25】請求項22に記載のp型GaAs単結晶
の製造方法において、 前記ドーパントとして、Siを1×1017〜1×1019
cm-3原子、及び、GaAs単結晶中でp型を示すドーパ
ントとしてZnを2×1018〜6×1019cm-3原子含ま
れるように、成長容器内にを充填することを特徴とする
p型GaAs単結晶の製造方法。
25. The method for producing a p-type GaAs single crystal according to claim 22, wherein Si is used as the dopant in an amount of 1 × 10 17 to 1 × 10 19.
cm -3 atoms, and, as contained 2 × 10 18 ~6 × 10 19 cm -3 atomic Zn as dopant for the p-type in GaAs single crystal, characterized in that filling the growth vessel A method for producing a p-type GaAs single crystal.
【請求項26】請求項21又は22に記載のp型GaA
s単結晶の製造方法において、ドーパントとして、さら
に、B及び/又はSが1×1017〜1×10 20cm-3原子
含まれる様に、成長容器内にドーパントを充填すること
を特徴とするp型GaAs単結晶の製造方法。
26. A p-type GaAs according to claim 21 or 22.
In the method for producing an s single crystal, the dopant
And B and / or S is 1 × 1017~ 1 × 10 20cm-3atom
Filling the growth vessel with dopants as included
A method for producing a p-type GaAs single crystal, characterized in that:
【請求項27】請求項21又は22に記載のp型GaA
s単結晶の製造方法において、 ドーパントとして、更に、B及び/又はSが、Siに対
する原子比として、0.001〜1000の範囲で含ま
れるように、前記成長容器内に充填することを特徴とす
るp型GaAs単結晶の製造方法。
27. A p-type GaAs according to claim 21 or 22.
In the method for producing an s single crystal, the growth vessel is filled so that B and / or S are contained as dopants in an atomic ratio to Si in a range of 0.001 to 1000. For producing a p-type GaAs single crystal.
【請求項28】平均転移密度が500cm-2以下で、表面
積が20cm2以上のp型GaAs単結晶半導体基板。
28. A p-type GaAs single crystal semiconductor substrate having an average transition density of 500 cm −2 or less and a surface area of 20 cm 2 or more.
【請求項29】請求項28に記載のp型GaAs単結晶
基板において、単結晶基板が、直径50.8mmより大
きいことを特徴とするp型GaAs単結晶半導体基板。
29. The p-type GaAs single-crystal semiconductor substrate according to claim 28, wherein the single-crystal substrate has a diameter larger than 50.8 mm.
JP19204299A 1998-07-07 1999-07-06 p-type GaAs single crystal and method for producing the same Expired - Lifetime JP3797824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19204299A JP3797824B2 (en) 1998-07-07 1999-07-06 p-type GaAs single crystal and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19153198 1998-07-07
JP10-191531 1998-07-07
JP19204299A JP3797824B2 (en) 1998-07-07 1999-07-06 p-type GaAs single crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000086398A true JP2000086398A (en) 2000-03-28
JP3797824B2 JP3797824B2 (en) 2006-07-19

Family

ID=26506755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19204299A Expired - Lifetime JP3797824B2 (en) 1998-07-07 1999-07-06 p-type GaAs single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JP3797824B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175707B2 (en) 2003-03-24 2007-02-13 Hitachi Cable Ltd. P-type GaAs single crystal and its production method
DE102008032628A1 (en) 2008-07-11 2010-01-28 Freiberger Compound Materials Gmbh Preparation of doped gallium arsenide single crystal, useful to produce gallium arsenide substrate wafer, comprises melting gallium arsenide starting material and subsequently making the gallium arsenide melts
JP2010103254A (en) * 2008-10-22 2010-05-06 Sumitomo Electric Ind Ltd GaAs SUBSTRATE, MULTILAYER SUBSTRATE AND ELECTRONIC DEVICE USING THE SAME, DUMMY GaAs SUBSTRATE, AND GaAs SUBSTRATE FOR REUSE
US8329295B2 (en) 2008-07-11 2012-12-11 Freiberger Compound Materials Gmbh Process for producing doped gallium arsenide substrate wafers having low optical absorption coefficient
JP2012246156A (en) * 2011-05-25 2012-12-13 Dowa Electronics Materials Co Ltd METHOD FOR PRODUCING GaAs SINGLE CRYSTAL AND GaAs SINGLE CRYSTAL WAFER
US8771560B2 (en) 2005-07-01 2014-07-08 Freiberger Compound Materials Gmbh Process for the manufacture of doped semiconductor single crystals, and III-V semiconductor single crystal
WO2014156596A1 (en) * 2013-03-26 2014-10-02 Jx日鉱日石金属株式会社 Compound semiconductor wafer, photoelectric conversion element, and method for producing group iii-v compound semiconductor single crystals
US8986446B2 (en) 2005-03-31 2015-03-24 Dowa Electronics Materials Co., Ltd. Si-doped GaAs single crystal ingot and process for producing the same, and Si-doped GaAs single crystal wafer produced from Si-doped GaAs single crystal ingot
WO2020245215A1 (en) 2019-06-07 2020-12-10 Freiberger Compound Materials Gmbh Device and method of manufacturing aiii-bv-crystals and substrate wafers manufactured thereof free of residual stress and dislocations
US11965266B2 (en) 2019-06-07 2024-04-23 Freiberger Compound Materials Gmbh Device and method of manufacturing AIII-BV-crystals and substrate wafers manufactured thereof free of residual stress and dislocations

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175707B2 (en) 2003-03-24 2007-02-13 Hitachi Cable Ltd. P-type GaAs single crystal and its production method
US8986446B2 (en) 2005-03-31 2015-03-24 Dowa Electronics Materials Co., Ltd. Si-doped GaAs single crystal ingot and process for producing the same, and Si-doped GaAs single crystal wafer produced from Si-doped GaAs single crystal ingot
US8771560B2 (en) 2005-07-01 2014-07-08 Freiberger Compound Materials Gmbh Process for the manufacture of doped semiconductor single crystals, and III-V semiconductor single crystal
US8815392B2 (en) 2008-07-11 2014-08-26 Freiberger Compound Materials Gmbh Process for producing doped gallium arsenide substrate wafers having low optical absorption coefficient
US8329295B2 (en) 2008-07-11 2012-12-11 Freiberger Compound Materials Gmbh Process for producing doped gallium arsenide substrate wafers having low optical absorption coefficient
DE102008032628A1 (en) 2008-07-11 2010-01-28 Freiberger Compound Materials Gmbh Preparation of doped gallium arsenide single crystal, useful to produce gallium arsenide substrate wafer, comprises melting gallium arsenide starting material and subsequently making the gallium arsenide melts
JP2010103254A (en) * 2008-10-22 2010-05-06 Sumitomo Electric Ind Ltd GaAs SUBSTRATE, MULTILAYER SUBSTRATE AND ELECTRONIC DEVICE USING THE SAME, DUMMY GaAs SUBSTRATE, AND GaAs SUBSTRATE FOR REUSE
JP2012246156A (en) * 2011-05-25 2012-12-13 Dowa Electronics Materials Co Ltd METHOD FOR PRODUCING GaAs SINGLE CRYSTAL AND GaAs SINGLE CRYSTAL WAFER
US9469916B2 (en) 2011-05-25 2016-10-18 Dowa Electronics Materials Co., Ltd. Method of producing GaAs single crystal and GaAs single crystal wafer
WO2014156596A1 (en) * 2013-03-26 2014-10-02 Jx日鉱日石金属株式会社 Compound semiconductor wafer, photoelectric conversion element, and method for producing group iii-v compound semiconductor single crystals
US11211505B2 (en) 2013-03-26 2021-12-28 Jx Nippon Mining & Metals Corporation Indium phosphide wafer, photoelectric conversion element, and method for producing a monocrystalline indium phosphide
US11349037B2 (en) 2013-03-26 2022-05-31 Jx Nippon Mining & Metals Corporation Indium phosphide wafer, photoelectric conversion element, and method for producing a monocrystalline indium phosphide
WO2020245215A1 (en) 2019-06-07 2020-12-10 Freiberger Compound Materials Gmbh Device and method of manufacturing aiii-bv-crystals and substrate wafers manufactured thereof free of residual stress and dislocations
EP4249650A2 (en) 2019-06-07 2023-09-27 Freiberger Compound Materials GmbH Device for manufacturing aiii-bv-crystals and substrate wafers manufactured thereof free of residual stress and dislocations
US11965266B2 (en) 2019-06-07 2024-04-23 Freiberger Compound Materials Gmbh Device and method of manufacturing AIII-BV-crystals and substrate wafers manufactured thereof free of residual stress and dislocations

Also Published As

Publication number Publication date
JP3797824B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
US7078731B2 (en) Gallium nitride crystals and wafers and method of making
US8357945B2 (en) Gallium nitride crystal and method of making same
JP4757029B2 (en) Method for producing group III nitride crystal
Sunder et al. Czochralski growth and characterization of GaSb
Rudolph et al. Crystal growth of ZnSe from the melt
US4303464A (en) Method of manufacturing gallium phosphide single crystals with low defect density
JP2013237591A (en) Gallium oxide melt, gallium oxide single crystal, gallium oxide substrate, and method for producing gallium oxide single crystal
EP0971052B1 (en) P-type GaAs single crystal and method for manufacturing the same
Tang et al. Growth and development of sapphire crystal for LED applications
EP2933359B1 (en) Method for growing a beta-ga2o3-based single crystal
Zhang et al. Preparation and characterization of AlN seeds for homogeneous growth
US4866007A (en) Method for preparing single-crystal ZnSe
JP3797824B2 (en) p-type GaAs single crystal and method for producing the same
WO2021251349A1 (en) Gaas ingot, method for manufacturing gaas ingot, and gaas wafer
US4196171A (en) Apparatus for making a single crystal of III-V compound semiconductive material
US7175707B2 (en) P-type GaAs single crystal and its production method
US6273969B1 (en) Alloys and methods for their preparation
EP0333120B1 (en) Method for producing semiconductive single crystal
CN1973063A (en) Monocrystals of nitride containing gallium and its application
JP2003206200A (en) p-TYPE GaAs SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JP3211594B2 (en) Compound semiconductor crystal substrate
EP0332198B1 (en) Method for producing semiconductive single crystal
JPH11268998A (en) Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same
JP3818023B2 (en) Method for producing GaAs single crystal
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3797824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term