WO2004088734A1 - Method of heat treatment and heat treatment apparatus - Google Patents

Method of heat treatment and heat treatment apparatus Download PDF

Info

Publication number
WO2004088734A1
WO2004088734A1 PCT/JP2004/003152 JP2004003152W WO2004088734A1 WO 2004088734 A1 WO2004088734 A1 WO 2004088734A1 JP 2004003152 W JP2004003152 W JP 2004003152W WO 2004088734 A1 WO2004088734 A1 WO 2004088734A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat treatment
less
heating
pressure
Prior art date
Application number
PCT/JP2004/003152
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Asaoka
Tadaaki Kaneko
Naokatsu Sano
Hiroshi Kawai
Tomohiro Iwazaki
Seiji Yamaguchi
Hiroyuki Matsumoto
Toshiyuki Kouno
Original Assignee
Kwansei Gakuin Educational Foundation
The New Industry Research Organization
Iwasaki Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003063275A external-priority patent/JP2004271072A/en
Priority claimed from JP2003333266A external-priority patent/JP3741283B2/en
Priority claimed from JP2003333255A external-priority patent/JP4593099B2/en
Application filed by Kwansei Gakuin Educational Foundation, The New Industry Research Organization, Iwasaki Electric Co., Ltd. filed Critical Kwansei Gakuin Educational Foundation
Priority to US10/548,825 priority Critical patent/US20060249073A1/en
Publication of WO2004088734A1 publication Critical patent/WO2004088734A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/10Controlling or regulating
    • C30B19/106Controlling or regulating adding crystallising material or reactants forming it in situ to the liquid
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium

Definitions

  • the present invention relates to a heat treatment method in a liquid phase epitaxial growth method of single crystal silicon carbide and a heat treatment apparatus suitable for carrying out the method.
  • a heat treatment apparatus used in a semiconductor manufacturing process includes a heat treatment apparatus that heat-treats an object at a high speed in order to reduce the heat history of the object and prevent the occurrence of slip
  • Patent Document 1 Japanese Unexamined Patent Publication No. Hei 8-70008
  • Patent Document 2 Japanese Patent Laid-Open Publication No. 111-260738
  • the operating temperature of the heat treatment apparatus described in Patent Document 1 is, for example, 950 ° C. in the high-temperature section, and the heat treatment apparatus described in Patent Document 2 is 800 ° C. to 900 ° C. I have.
  • Hexagonal SiC has a lattice constant close to that of gallium nitride (GaN), and is expected to serve as a GaN substrate.
  • GaN gallium nitride
  • this type of single crystal S i C has a seed crystal fixedly arranged on a low temperature side in a rutupo and a raw material S i C on a high temperature side.
  • the powder containing Si By placing the powder containing Si and heating the crucible to a high temperature of 1450 ° C to 2400 ° C in an inert atmosphere, the powder containing Si is sublimated and re-formed on the surface of the seed crystal on the low-temperature side.
  • Some are formed by a sublimation recrystallization method (improved Lely method) in which a single crystal is grown by crystallization.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 11-315000, a SiC single crystal substrate and a plate material composed of Si atoms and C atoms are parallel to each other with a small gap. Heat treatment in an inert gas atmosphere at atmospheric pressure or lower and in a SiC saturated vapor atmosphere with a temperature gradient so that the side of the SiC single crystal substrate is also at a low temperature. Sublimates and recrystallizes Si atoms and C atoms in the minute gap. Some deposit a single crystal on a single crystal substrate.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 10-509943, after forming a first epitaxy layer on a SiC single crystal by a liquid phase epitaxy method, a CVD method is used. In some cases, a second epitaxial layer is formed on the surface to remove micropipe defects.
  • Patent Documents 3 to 5 it is necessary to perform heat treatment at a high temperature of 1450 ° C. to 2400 ° C. as described in Patent Documents 3 to 5. For this reason, it is difficult to form a single crystal SiC in a conventional heat treatment apparatus as described in Patent Document 1 or Patent Document 2.
  • the growth rate is very fast, at several 100 ⁇ / ⁇ r, but at the time of sublimation, the SiC powder gradually becomes Si, S i C 2, S i 2 C is decomposed and vaporized, and further reacts with over part of the crucible.
  • the present invention has been made in view of the above problems, and provides a heat treatment method suitable for forming a new material, for example, a next-generation single crystal SiC, and a heat treatment apparatus suitable for performing the heat treatment method.
  • the purpose is to:
  • the heat treatment method of the present invention mainly has the following several features to achieve the above object.
  • the heat treatment apparatus of the present invention is an apparatus suitable for performing the heat treatment method of the present invention.
  • the object to be treated is heated to about 800 ° C. or more in a short time.
  • a heat treatment apparatus comprising: a front chamber provided with a moving means for moving an object to be processed in the chamber; and a preheating chamber connected to the front chamber and heating the object to be processed to a predetermined temperature in advance.
  • the object is preliminarily heated to about 800 ° C. or more in a vacuum preheating chamber having a pressure of about 10 to 2 Pa or less, preferably about 10 to 5 Pa or less.
  • the object to be treated is quickly heated to a temperature in the range of about 800 ° C. to 260 ° C., preferably about 1200 ° C. It is characterized in that it is heated to a predetermined temperature within the range of not less than ° C and not more than 230 ° C.
  • the time is in the range of about 800 ° C. to 260 ° C., preferably in the range of about 120 ° C. to 230 ° C. Since it can be heated to a predetermined temperature within the furnace, there is a possibility that a new material that cannot be obtained with the conventional heat treatment apparatus can be created.
  • the heat treatment method described above is suitable as a heat treatment method in a liquid phase epitaxial growth method of single crystal SiC.
  • the heat treatment method in the liquid-phase epitaxial growth method of single-crystal silicon carbide of the present invention includes a method in which a single-crystal silicon carbide substrate serving as a seed crystal and a polycrystalline silicon carbide substrate are stacked and placed in a closed container. Installation and high temperature heat treatment Thus, an ultra-thin metal silicon melt is interposed between the single-crystal silicon carbide substrate and the polycrystalline silicon carbide substrate during the heat treatment, and the single-crystal silicon carbide is placed on the single-crystal silicon carbide substrate. Is characterized by liquid phase epitaxial growth.
  • the closed container preliminarily pressure of about 10- 5 P a following approximately 800 ° in a high vacuum preheating chamber with heating above and C
  • the sealed vessel was evacuated to below a pressure of about 10- 5 P a, in advance about 1400 ° C or higher 2300 ° C temperature range below a pressure of about 10_ heated to a predetermined temperature within 2 P a vacuum below, preferably about 10- 5 Pa or less of vacuum, or pre after reaching a pressure of about 10- 5 P a high vacuum below the heating chamber under slight lean gas atmosphere with an inert gas is introduced
  • the single crystal silicon carbide substrate and the polycrystalline silicon carbide substrate are heated to a predetermined temperature within a temperature range of about 1400 ° C or more and 2300 ° C or less in a short time, and the microcrystalline silicon carbide substrate is heated. absence of grain boundaries, microphone port pipe defect density on
  • a micropipe defect is also called a pinhole, and is a tubular void having a diameter of several ⁇ or less that exists along the crystal growth direction.
  • the single-crystal SiC substrate serving as a seed crystal to be used can be formed on all crystal planes of 4H-SiC and 6H-SiC, but preferably uses a (0001) Si plane. .
  • the polycrystalline SiC substrate has an average particle size of about 5 ⁇ m or more and 10 zm It is preferable that the particles have the following particle diameters and the particle diameters are substantially uniform. Therefore, polycrystalline
  • the crystal structure of S i C is not particularly limited, and any of 3 C—S i C, 4 H—S i C, and 6 H—S i C can be used, but preferably 3 C—S i C.
  • Si penetrates into the corners of the interface between the single-crystal SiC substrate and the polycrystalline SiC substrate due to the capillary action, so that ultrathin metal Si melt is obtained.
  • the C atoms flowing out of the polycrystalline SiC substrate are supplied to the monocrystalline SiC substrate through the Si melt layer, and are grown on the monocrystalline SiC substrate as liquid crystalline epitaxy as monocrystalline SiC. I do. Therefore, induction of defects can be suppressed from the beginning to the end of growth.
  • the Si that is deposited on the single-crystal SiC substrate and the polycrystalline SiC substrate serving as seed crystals is removed.
  • the amount is extremely small.
  • the ultra-thin metal Si melt is interposed between the single-crystal SiC substrate and the polycrystalline SiC substrate during the heat treatment, the metal Si necessary for the epitaxial growth of the single-crystal SiC is Only one can be used for liquid phase epitaxial growth of single crystal sic. For this reason, the contact area with the outside is minimized in the thin Si layer during the heat treatment, so that the probability of entry of impurities is reduced, and a high-purity single crystal SiC can be formed.
  • Heat treatment apparatus of the present invention the object to be processed with less pressure of about 1 CT 2 P a, preferably preferably to less than about 1 0 _ 5 P a vacuum below, or pre-pressure of about 1 0- 2 P a of about 1 0 - within a short time of about 1 2 0 0 ° C over 2 3 0 0 ° C following temperature range in the 5 P a following under lean gas atmosphere with an inert gas is introduced after reaching the vacuum to a predetermined temperature
  • the inside of the vacuum high-temperature furnace is composed of two or more separate tanks, and the inside of the plurality of tanks is composed of a main heating tank and a preheating tank. It is heated from room temperature to about 800 ° C to degas mainly the gas adsorbed on the sample and the gas contained in the sample.After the degassing is completed, the sample is evacuated by heating beforehand and kept at a clean high temperature.
  • the main heating tank is quickly moved to the main heating tank, and the main heating tank always reaches a pressure of about 10 -3 Pa or less, or once reaches a pressure of about 10 -3 Pa or less.
  • inert gas Introduce a small amount of inert gas and set it within the range of about 800 ° C or more and 260 ° C or less under a rare gas atmosphere of any pressure from atmospheric pressure to about 10-3 Pa.
  • the preheating tank is always heated to a high temperature, and the preheating tank moves the sample from the main heating tank to the atmospheric pressure for loading and unloading the sample.
  • the vacuum high-temperature furnace is divided into a main heating tank and a preheating tank in order to rapidly heat the sample, and each chamber is maintained in a high-purity atmosphere.
  • Each independent vacuum pumping system, or each independent gas introduction system and can be maintained at atmospheric pressure, and the main heating tank and the preheating tank power can be opened and closed by shutting off each other to integrate and separate.
  • a heat treatment apparatus having a high-speed high-temperature heating furnace maintained at a pressure of about 10-3 Pa or less, or once at a pressure of about 10-3 Pa or less during normal use of the main heating tank After that, a small amount of inert gas is introduced, and about 80 to about 10-3 Pa in a rare gas atmosphere at an arbitrary pressure from about 10 to 3 Pa.
  • the temperature is maintained at a predetermined high temperature within a temperature range of 0 ° C or more and 2600 ° C or less, and the preheating tank is maintained at a predetermined temperature within a temperature range of about room temperature or more and 1000 ° C or less.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of a heat treatment apparatus used for a liquid phase epitaxial growth method of single crystal SiC according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an example of the closed container used in one embodiment of the present invention.
  • FIG. 3 is a diagram showing the inside of the closed container in one embodiment of the present invention.
  • FIG. 4 is a diagram showing a state where a substrate is placed in a lower container according to an embodiment of the present invention.
  • FIGS. 5A and 5B are schematic diagrams showing an example of a reflecting mirror used in an embodiment of the present invention.
  • FIGS. 6 (a) and 6 (b) are diagrams showing microscopic photographs of the surface of a single crystal SiC growth layer obtained by the heat treatment method and the heat treatment apparatus according to one embodiment of the present invention.
  • FIG. 6 (a) is a diagram showing a surface morphology
  • FIG. 6 (b) is a diagram showing a micrograph showing a cross section thereof.
  • FIGS. 7 (a) and 7 (b) are views showing AFM images of the surface of the single crystal SiC shown in FIGS. 6 (a) and 6 (b), and FIG. Surface morphology Fig. 7 (b) is an AFM image showing the cross section.
  • FIGS. 8 (a), 8 (b) and 8 (c) show the growth process of single crystal SiC obtained by the heat treatment method and the heat treatment apparatus according to one embodiment of the present invention.
  • FIG. 4 is a view for explaining a step punching mechanism in the step.
  • 9 (a) and 9 (b) are cross-sectional views of main parts of a heat treatment apparatus according to another embodiment of the present invention.
  • FIG. 10 is a diagram showing the relationship between the spectral emissivity and the reflectance at a high temperature of W. .
  • FIG. 11 is a diagram showing the wavelength energy of W in the range from 180 ° C. to 260 ° C. '
  • FIG. 12 is a diagram showing the spectral reflection characteristics of Au covering the surface of the metal reflector 5.
  • FIG. 13 is a cross-sectional view of a main part of a heat treatment apparatus according to still another embodiment of the present invention.
  • FIG. 14 is a diagram showing an example of a heating temperature characteristic according to the embodiment shown in FIG.
  • FIG. 15 is a cross-sectional view of a main part of a heat treatment apparatus according to still another embodiment of the present invention.
  • FIG. 1 is a schematic sectional view showing an example of a heat treatment apparatus according to the present invention.
  • the heat treatment apparatus 1 includes a heating chamber 2, a pre-heating chamber 3, and a pre-chamber 4 continuing from the pre-heating chamber 3 to the heating chamber 2.
  • the workpiece 5 is sequentially moved from the pre-heating chamber 3 to the pre-chamber 4 and the heating chamber 2 to grow single crystal SiC.
  • a heating chamber 2, a preheating chamber 3, and a front chamber 4 communicate with each other. For this reason, it is necessary to control each chamber to a predetermined pressure in advance. Becomes possible. Further, by providing a gate valve 7 or the like for each chamber, it is also possible to adjust the pressure for each chamber. Thus, even when the object 5 is moved, the inside of the furnace under a predetermined pressure can be moved by a moving means (not shown) without touching the outside air, so that contamination of impurities can be suppressed. .
  • the preheating chamber 3 is provided with a heating means 6 such as a lamp such as a halogen lamp or a calorie heating means 6 such as a rod heater, and capable of rapidly heating to about 800 ° C or more and about 100 ° C or less. Has become.
  • a heating means such as a lamp such as a halogen lamp or a calorie heating means 6 such as a rod heater, and capable of rapidly heating to about 800 ° C or more and about 100 ° C or less.
  • a lamp-type heating means such as a halogen lamp is preferred!
  • a gate valve 7 is provided at a connection portion between the preheating chamber 3 and the front chamber 4 to facilitate the pressure control of the preheating chamber 3 and the front chamber 4.
  • the object 5 is in a state of being placed on the table 8 of the preheating chamber 3, from about 1 0 "2 P a less is the pressure of Jo Tokoro, preferably under a vacuum of less than about 1 0- 5 Pa
  • the preheating chamber 3 is moved to be installed on the elevating susceptor 9 provided in the front chamber 4. Let me do.
  • the workpiece 5 moved to the front chamber 4 is moved from the front chamber 4 to the heating chamber 2 by the vertically moving means 10 shown in part.
  • the heating chamber 2 is shown Shinare, about 1 0 one 1 P a less in advance predetermined pressure in the vacuum ordinary man, less preferably about 1 0- 2 P a, more preferably from about 1 0 one 5 Pa or less vacuum, or pre-pressure of about 1 0 2 P a or less, preferably, to introduce some inert gas after reaching the high vacuum of below about 1 0 5 P a, about 1 0 or less, preferably about 1 0 _ 2 P a following and under a lean atmosphere, about 8 0 0 ° C or higher by the heating heater motor 1 1 2 6 0 0 ° C or less, preferably in the range of from about 1 2 0 0 It is preferable that the temperature is set to not less than ° C and not more than 230 ° C.
  • the condition in the heating chamber 2 is set in this way, and the workpiece 5 is By moving the object 5 into the heating chamber 2, the object 5 is heated to a temperature of about 800 ° C. or more and 260 ° C. or less, preferably, about 1200 ° C. or more and 230 ° C. It can be rapidly heated to a predetermined temperature within the following range.
  • a reflecting mirror 12 is disposed around the heater 11, and reflects the heat of the heater 11 so as to reflect the heat of the heater 5, which is located inside the heater 11. I try to focus on it.
  • the reflecting mirror 12 may be a case-shaped reflecting mirror 12 as shown in FIG. 1, for example, a dome-shaped reflecting mirror 12 as shown in FIGS. 5 (a) and 5 (b). You can also.
  • the reflecting mirror 12 dome-shaped it is possible to use a flat heater for the heater 11, and even if the flat heater 11 is used, the heating can be performed. The heat from the heater 11 can be efficiently concentrated on the workpiece 5.
  • the fitting part 25 between the moving means 10 and the heating chamber 2 includes a convex stepped part 21 provided in the moving means 10 and a concave stepped part 2 formed in the heating chamber 2. It consists of two.
  • the heating chamber 2 is sealed by a sealing member such as an O-ring (not shown) provided at each step of the stepped portion 21 of the moving means 10.
  • a contaminant removal mechanism 20 is provided inside the heater 11 in the heating chamber 2 for removing contaminants leaking from the workpiece 5 so as not to contact the heater 11. ing. This can suppress the heater 11 from reacting with contaminants and deteriorating.
  • the contaminants include, for example, Si vapor in the case of heat treatment in the liquid phase epitaxial growth method of single crystal SiC.
  • the contaminant removing mechanism for removing contaminants such as silicon vapor leaking from the closed container is provided in the heating chamber, the silicon vapor or the like of the heating means such as the heater provided in the heating chamber is provided. Deterioration due to contaminants Can be prevented.
  • a vacuum pump and other general exhaust means can be used as the contaminant removing mechanism.
  • the contaminant removing mechanism 20 is not particularly limited as long as it removes contaminants leaking from the inside of the processing object 5.
  • the heating heater 11 is a resistance heating heater made of a metal such as graphite or tantalum, and has a cylindrical shape with a side heater and a base heater 11 a installed on the susceptor 9. It consists of an upper heater lib. As described above, since the heater 11 is disposed so as to cover the object 5, the object 5 can be heated evenly. '
  • the heating method of the heating chamber 2 is not limited to the resistance heater shown in the present embodiment, but may be, for example, a high-frequency induction heating method.
  • a closed container 5 composed of an upper container 5a and a lower container 5b as shown in FIG. Is preferred.
  • a single-crystal SiC substrate 16 and a polycrystalline SiC substrate are stacked and stored in the closed container 5 and heat-treated (see FIG. 3).
  • the closed container 5 is composed of an upper container 5a and a lower container 5b, and each is formed of either tantalum or tantalum carbide.
  • Sealed container is formed of a tantalum or tantalum carbide because, while suppressing the S i C of the sealed container, the heating chamber to ensure that the pressure of about 1 0 - can be less than or equal to 2 P a.
  • the play of the fitting portion when fitting the upper container 5a and the lower container 5b is about 2 mm or less.
  • the partial pressure of Si in the closed vessel 5 does not become 10 Pa or less.
  • the partial pressure of Si in the closed container 5 is controlled to a predetermined pressure. Not only is difficult, but also impurities may enter the sealed container 5 via the fitting portion, which is not preferable.
  • the shape of the closed container 5 is not limited to a square, but may be a circular one.
  • the closed container is formed by the upper container and the lower container, and the pressure in the closed container is increased to such an extent that the silicon vapor leaks from the fitting portion between the upper container and the lower container. It is characterized by controlling the pressure to be higher than the pressure and suppressing the contamination of the closed container with impurities.
  • the purity of the bag ground is about 5 ⁇ 10 15 / cm 3 or less.
  • the lower container 5b is provided with three support portions 13 as shown in FIGS.
  • the supporting portion 13 supports a polycrystalline SiC substrate 14 serving as a seed crystal described later.
  • the support portion 13 need not be a pin-shaped member as shown in the present embodiment, but may be a ring-shaped member made of, for example, SiC.
  • Figure 3 shows a 6 H-type single crystal SiC substrate 16 serving as a seed crystal installed in a closed container 5 in which the upper container 5a and the lower container 5b are fitted together, and the single crystal S
  • This figure shows the state of a polycrystalline SiC substrate 15 sandwiching the iC substrate 16 and an ultra-thin metal Si melt 17 formed between them.
  • the ultra-thin metal Si melt 17 is formed during heat treatment, and the Si source of the ultra-thin metal Si melt 17 is a single crystal SiC substrate serving as a seed crystal.
  • the method is not particularly limited, such as forming a film of metal Si in advance so as to have a thickness of about 10 ⁇ to 50 ⁇ by CVD or placing Si powder in advance. As shown in FIG.
  • the single crystal SiC substrate 16, the polycrystalline SiC substrates 14, 15 and the ultra-thin metal Si melt 17 are provided in a lower container 5b constituting a closed container 5. And is housed in a closed container 5.
  • the single-crystal SiC substrate 16 was cut into a desired size (10 X 1 Omm or more and 20 X 2 Omm or less) from a single crystal 6H—SiC substrate manufactured by the sublimation method. It is.
  • the polycrystalline SiC substrates 14 and 15 can be cut out to a desired size from SiC used as a dummy wafer in a Si semiconductor manufacturing process manufactured by a CVD method. .
  • the surfaces of these substrates 16, 14, and 15 are mirror-polished, and oils, oxide films, metals, and the like adhering to the surfaces are removed by washing or the like.
  • the polycrystalline SiC substrate 14 located on the lower side is for preventing erosion of the monocrystalline SiC substrate 16 from the closed vessel 5 and is formed by liquid phase epitaxial growth on the monocrystalline SiC substrate 16. This contributes to the improvement of the quality of single crystal SiC.
  • this closed container 5 it is possible to install together with Si pieces for controlling sublimation of SiC and evaporation of Si during the heat treatment.
  • Si pieces By simultaneously installing the Si pieces, they are sublimated during the heat treatment to increase the SiC partial pressure and Si partial pressure in the closed vessel 5, and the single crystal SiC substrate 16 and the polycrystalline SiC substrate 14, 15. It contributes to the prevention of sublimation of ultra-thin metal Si melt 17.
  • the pressure in the closed vessel 5 can be adjusted to be higher than the pressure in the heating chamber 2, whereby the Si vapor is always discharged from the fitting portion between the upper vessel 5a and the lower vessel 5b. Can be released and impurities can be prevented from entering the closed container 5.
  • Closed container 5 thus configured as described above, after being installed in the preheating chamber 3, below about 10- 2 P a, preferably, is set equal to or less than about 10- 5 P a, preliminary Caro It is heated to about 800 ° C. or more, preferably about 1000 ° C. or more, by a heating means 6 such as a lamp and / or a mouth heater provided in the heat chamber 3.
  • a heating means 6 such as a lamp and / or a mouth heater provided in the heat chamber 3.
  • about 10- 2 P a or less preferably, after being set to less than about 10 one 5 P a, about 800 ° C or higher 2600 ° C or less in the range, good rare
  • it is preferably heated to a predetermined temperature in the range of about 1200 ° C to 2300 ° C.
  • the closed vessel 5 preheated in the preheating chamber 3 opens the gate valve 7 and moves to the susceptor 9 in the front chamber 4, and is moved by the elevating means 10 in a range of about 800 ° C to 2600 ° C, Preferably, it is moved into the heating chamber 2 which is heated to a predetermined temperature in the range of about 1200 ° C or more and 2300 ° C or less.
  • the temperature of the sealed container 5 is rapidly increased within a short time within about 30 minutes within a range from about 800 to 2600 ° C, preferably from about 1200 to 2300 ° C. Heated.
  • the heat treatment temperature in the heating chamber 2 may be a temperature at which the metal Si pieces simultaneously installed in the closed vessel 5 are melted, but in the present embodiment, it is in a range of about 1200 ° C or more and 2300 ° C or less. At a predetermined temperature. As the processing temperature is increased, the wettability between the molten Si and SiC increases, and the molten Si becomes a single-crystal SiC substrate 16 and a polycrystalline SiC substrate 14, 1 ⁇ due to a capillary phenomenon. It is easy to penetrate between. As a result, an ultrathin metal Si melt 17 having a thickness of about 50 ⁇ or less can be interposed between the single-crystal SiC substrate 16 and the polycrystalline SiC substrates 14 and 15.
  • the predetermined temperature within a range of about 800 ° C. to 260 ° C. in a short time, preferably within a range of about 1200 ° C. to 2300 ° C. Therefore, crystal growth can be completed in a short time, and the efficiency of crystal growth can be improved.
  • the heat treatment time is such that the generated single crystal S i C has a desired thickness. It can be appropriately selected as described above.
  • the amount of the metal Si as the Si source increases, the amount melted during the heat treatment increases, and when the ultra-thin metal Si melt has a thickness of about 50 ⁇ m or more, the metal Si melt is melted.
  • the liquid becomes unstable and the transport of C is hindered, and Si not suitable for growing single crystal SiC and not necessary for forming single crystal SiC melts and accumulates at the bottom of the closed vessel 5.
  • the C atoms flowing out of the polycrystalline SiC substrate 2 are supplied to the monocrystalline SiC substrate 16 through the Si melt layer, and the monocrystalline SiC
  • Liquid phase epitaxial growth (hereinafter referred to as LPE) as a 6H—SiC single crystal on 1C substrate 1.
  • LPE Liquid phase epitaxial growth
  • the force of molten Si penetrating only between single-crystal SiC substrate 16 and polycrystalline SiC substrate 15 is considered.
  • Bagdara It is possible to produce a single crystal SiC having a high purity of about 5 ⁇ 10 15 cm 3 or less.
  • the object to be treated to a pressure of about 1 0 one 2 P a or less, preferably about 1 0- 5 P a vacuum below, or pre-pressure of about 1 0 "2 P a below preferably about 1 0- 5 P a following in lean gas atmosphere was introduced inert gas after reaching the vacuum briefly at about 8 0 0 ° C over 2 6 0 0 ° C or less range
  • a heating chamber for heating to a temperature range of about 1200 ° C. or more and 230 ° C. or less, and a moving means connected to the heating chamber and for moving an object to be processed to the heating chamber are provided.
  • a front chamber provided, 'coupled to said front chamber, the object to be treated for about 1 0- 2 P a less preferably about 1 0- 5 P a previously about 8 0 0 ° C or more in the following vacuum
  • a pre-heating chamber for heating the room 7.
  • a pressure of about 1 0 2 P a following lower and preferably about 1 0 - 5 P a vacuum below, or previously pressure of about 1 0 2 P a less preferably about 1 0-5 introduce some inert gas after reaching the P a high vacuum below about 1 0 - 1 P a or less, preferably about 1 0 - in 2 P a under less lean gas atmosphere, a short time Heating to a predetermined temperature in the range of about 800 ° C or more and 260 ° C or less, preferably in the range of about 1200 ° C or more and 230 ° C or less.
  • the heat treatment method the preferably pre-pressure of about 1 0- 2 P a following processing object about 1 0- 5 P a following approximately 8 0 in the preliminary heating chamber of the vacuum 0
  • a predetermined temperature within the range of approximately 800 ° C or more and 260 ° C or less, preferably within the range of approximately 1200 ° C or more and 230 ° C or less.
  • the object to be treated can be quickly cooled to a temperature within a range of about 800 ° C to 260 ° C.
  • it is a heat treatment method of heating to a predetermined temperature within a range of about 1200 ° C. or more and 230 ° C. or less.
  • the single crystal silicon carbide substrate serving as a seed crystal and the polycrystalline silicon carbide substrate are overlapped with each other in an airtight container. And performing a high-temperature heat treatment so that an ultra-thin metal silicon melt is interposed between the single-crystal silicon carbide substrate and the polycrystalline silicon carbide substrate during the heat treatment.
  • This is a heat treatment method for liquid phase epitaxial growth of single-crystal silicon carbide on a silicon substrate.
  • a temperature gradient is not provided in an axial direction of the closed container, a temperature gradient is provided in an in-plane direction of the closed container, and the temperature gradient is arbitrary.
  • the axial direction of the closed container means a direction in which the single-crystal silicon carbide substrate and the polycrystalline silicon carbide substrate are stacked in the closed container, and the in-plane direction of the closed container is The direction perpendicular to the lamination direction, that is, the plane direction of the crystal surface.
  • the temperature gradient can be arbitrarily controlled, so that during the growth of single crystal SiC, the fine crystal grain boundaries are shifted from the high temperature side to the low temperature side of the temperature gradient.
  • single crystal SiC can be grown so as to move to a single crystal, and as a result, single crystal SiC having a microphone opening pipe defect density of about 1 / cm 2 or less can be formed.
  • the ultra-thin metal Si melt has a thickness of about 50 ⁇ m or less.
  • the ultrathin metal Si melt interposed between the single crystal SiC substrate and the polycrystalline SiC substrate during the heat treatment is about 50 ⁇ m or less, preferably about 30 m or less, C dissolved from the polycrystalline SiC substrate is transported by diffusion to the surface of the monocrystalline SiC substrate, and the growth of the monocrystalline SiC is promoted.
  • the thickness of the ultra-thin metal silicon melt is about 50 ⁇ m or more, the metal silicon melt becomes unstable, and the transport of C is hindered, which is not suitable for growing single crystal SiC.
  • local liquid phase epitaxial growth can be performed at a high temperature in the same environment as a conventional high-temperature heat treatment environment such as a sublimation method.
  • micropipe defects can be closed without inheriting the micropipe defects contained in the seed crystal.
  • the growth surface is always in contact with the Si melt, an Si excess state is formed, and the generation of defects due to the shortage of Si is suppressed, and the growth of the Si melt in use is prevented. Since the contact area is small, impurities can be suppressed from entering the growth surface, and high-quality and high-performance single-crystal SiC with high purity and excellent crystallinity can be grown.
  • this growth method can be performed at a very high temperature and can be performed in a short time, so that the growth rate can be remarkably increased as compared with the conventional LPE method. The growth efficiency of high-quality single crystal SiC can be extremely increased.
  • single crystal S which is expected to be a power device and semiconductor material for high-frequency devices, is superior in high temperature, high frequency, withstand voltage and environmental resistance.
  • the practical application of i C can be promoted.
  • FIGS. 6A and 6B are micrographs showing the surface state of the single crystal SiC grown by the method described above.
  • Fig. 6 (a) shows the surface morphology
  • Fig. 6 (b) shows its cross section.
  • very flat terraces and step structures can be observed on the crystal growth surface by the LPE method.
  • FIGS. 7 (a) and 7 (b) show the results of observing the surface with an atomic force microscope (hereinafter, referred to as AFM).
  • AFM atomic force microscope
  • the step heights are about 4.0 nm and about 8.4 nm, respectively. This is an integer multiple height based on three molecular layers of SiC molecules (SiC monolayer is 0.25 ⁇ ).
  • SiC monolayer is 0.25 ⁇ .
  • the surface is very flat.
  • the surface of the single crystal S i C has a trilayer as a minimum unit. It has an atomic order step and a wide terrace, wherein the width of the terrace is about
  • the terrace width is about 1 ⁇ or more, the growth surface does not need to be subjected to surface treatment such as machining after the formation of single crystal SiC. For this reason, it is possible to produce a product without going through a processing step.
  • the single crystal SiC according to the present embodiment has a surface with a wide terrace of about 1 ⁇ m or more and a step having a height of a minimum of three molecular layers. This suggests that step bunching occurred during the crystal growth process. This step bunching mechanism can be explained by the effect of surface free energy during crystal growth.
  • the single crystal 6 ⁇ —SiC according to the present embodiment there are two kinds of stacking cycle directions, ABC and ACB, in the unit stacking cycle. Therefore, by assigning numbers 1, 2, and 3 from the layers that are bent in the stacking direction, three types of surfaces can be defined as shown in FIGS. 8), 8 (b) and 8 (c). The energy of each surface is determined as follows (T. Kimoto, et al., J. Appl. Phys. 81 (1997) 3494-3500).
  • step bunching proceeds in units of half integral multiples of the lattice constant, and after growth, the surface of the single crystal S i C has a minimum height of three molecular layers. Steps and a flat terrace.
  • the terrace of the single crystal SiC according to the present invention is formed by step bunching. Therefore, the steps are formed intensively near the end of the single crystal SiC.
  • Figures 6 (a), 6 (b), 7 (a), and 7 (b) described above show the end portions of the single crystal SiC in order to observe the step portion. .
  • the single crystal S i C obtained by the heat treatment apparatus in the present embodiment has a growth temperature in the range of about 1400 ° C. or more and 2300 ° C. or less, which is lower than the liquid phase growth temperature of the conventional single crystal S i C. It is very high and can be heated to a temperature of about 1400 ° C or more and 2300 ° C or less in a short time. As the growth temperature increases, the dissolved concentration of C in the Si melt formed between the single-crystal SiC as a seed crystal and the polycrystalline SiC increases. It is also considered that the diffusion of C in the Si melt increases with increasing temperature.
  • the single crystal S i C since the density of micro-pipes defects of the surface is at 1 / cm 2 or less, about 1 0 / m or more wide terraces are formed, After the single crystal SiC formation, surface treatment such as machining is not required. Further, since there are few crystal defects, it can be used as a light emitting diode or various semiconductor diodes. In addition, since the growth of the crystal depends on the temperature (not dependent on the surface energy of the seed crystal and the crystal of the source of C), the need for strict temperature control in the processing furnace is eliminated.
  • the space between the single crystal SiC as the seed crystal and the polycrystalline SiC as the supply source of C is extremely small, the manufacturing cost can be significantly reduced.
  • a temperature difference is hardly formed between the single crystal S i C serving as a seed crystal and the polycrystal S i C serving as a supply source of C, the heat convection of the seed crystal can be suppressed.
  • the single crystal SiC grows in the plane direction of the crystal surface, and therefore, by providing a temperature gradient in the plane direction of the closed vessel, the crystal is grown. The direction of growth can be directed from high temperature to low!
  • the temperature gradient can be exemplified by a method of providing a temperature difference between the side heaters 11b located on the side wall side of the closed vessel 5 of the heater 11 provided in the heating chamber 2.
  • the crystal growth rate can be controlled, and the generation of fine grain boundaries on the crystal surface can be suppressed.
  • (001) Si was used as the seed crystal, but another crystal orientation such as (11-20) may be used. .
  • the plane orientation of the surface is (0 0 0 1) Si plane, compared with other crystal planes, Low surface energy and therefore high nucleation energy during growth, making nucleation difficult. For the above reasons, single crystal S i C with a wide terrace width can be obtained after liquid phase growth.
  • the plane orientation of the surface is not limited to the (0001) Si plane, and it is possible to use all crystal planes of 4H-SiC and 6H-SiC.
  • the single crystal SiC according to the present invention is formed by appropriately selecting the size of the single crystal SiC serving as a seed crystal and the size of the polycrystalline SiC substrate serving as a supply source of C.
  • the size of the crystal S i C can be controlled. Also, since no strain is formed between the formed single crystal S i C and the seed crystal, the single crystal S i C having a very smooth surface can be obtained, so that it is applied as a surface reforming film. It is also possible.
  • a single crystal SiC as a seed crystal and polycrystalline SiC which is a source of C, are alternately stacked or arranged side by side and heat-treated by the above-described method, thereby simultaneously producing a large amount of the single crystal SiC.
  • the polycrystalline SiC substrate and the metal Si may be preliminarily added with an impurity of a group III metal such as A1 or B, or Arbitrary control of the p-type and n-type conductivity of the grown crystal by sending a gas containing an element that controls the conductivity type of SiC, such as nitrogen, A1, or B, into the atmosphere during growth Is possible.
  • FIGS. 9A and 9B are cross-sectional views of main parts of another embodiment of a heat treatment apparatus suitable for performing the heat treatment method of the present invention.
  • the heat treatment apparatus has a high-temperature heating furnace 50.
  • the high-temperature heating furnace 50 includes a main heating tank 51, a preheating tank 52, and a communication between the main heating tank 51 and the preheating tank 52.
  • a vacuum valve 59 that enables separation and a jig that can move the sample 56 to be processed between the main heating tank 51 and the preliminary heating tank 52;
  • the main part is configured.
  • a high-melting point metal main heater 53 and a preliminary heating heater 54 are provided, respectively.
  • a high-melting-point metal reflection plate 55 that enables efficient heating by the high-melting-point metal main heater 53 is provided.
  • an adsorption trap 58 is provided in the preheating tank 52, so that the pressure in the preheating tank 52 can be maintained at a predetermined pressure.
  • the heating part of the main heating tank that is, the heating heater 53 is composed of a cylindrical main heater (not shown) made of a high melting point metal and a planar auxiliary heater, and a heating control of these two heaters.
  • the heating source that is, the heater in the main heating tank 51 and the preliminary heating tank 52, and the heat insulating material surrounding the heating source, avoid the use of graphite, which causes gas generation.
  • Tungsten (W) a refractory metal with low gas adsorption, is mainly used as the reflector.
  • the preheating tank 52 is evacuated from the atmospheric pressure to a vacuum by a vacuum pump (not shown).
  • the pre-heater 54 heats the gas adsorbed on the sample and the gas contained in the sample 56 from room temperature to about 800 ° C from the room temperature.
  • An infrared heating lamp with a reflecting mirror for collecting near-infrared light on the sample and having an infrared-generating functional film added to the outer surface of the tare of the halogen or Xe lamp or lamp is used.
  • the sample 56 is preheated, evacuated, and moved within 1 minute to the main heating tank 51 maintained at a high temperature (see FIG. 9 (b)).
  • the movement is performed by opening the vacuum valve 59 and raising the elevating table 57.
  • the main heating tank 5 1 always high vacuum of about 1 0- 3 P a pressure below or, once, after reaching a high vacuum, to introduce some inert gas, to about 1 (T 2 P a
  • the temperature is constantly maintained at a predetermined high temperature within a range of about 800 ° C. or more, preferably about 180 ° C. or more and 260 ° C. or less under a set lean gas atmosphere.
  • the temperature range of the main heating tank is, for example, in the case of a heat treatment in a liquid phase epitaxial growth method of single crystal silicon carbide, in a range of about 120 ° C. or more and 230 ° C. or less.
  • the temperature is in the range of about 140 ° C. or more and 230 ° C. or less.
  • the sample 56 has a predetermined high temperature within a range of about 1200 ° C. or more and 260 ° C. or less, that is, the sample 56 Achieve optimal processing temperature quickly. Since the main heating tank 51 is pre-heated, a uniform high temperature state can be maintained for a required processing time. Further, since the high melting point reflecting metal plate 55 is provided, the sample 56 can be efficiently heated by heat radiation.
  • the heating section of the main heating tank 51 that is, the heater, comprises a cylindrical main heater made of a high melting point metal and a planar auxiliary heater.
  • the wavelength energy emitted from the W heater is expressed by the following equation.
  • W wavelength energy W spectral emissivity X
  • Ideal black body wavelength energy The ideal black body wavelength energy can be easily calculated from the radiation law of P 1 ank. It is possible to
  • FIG. 10 is a diagram of the spectral emissivity and the reflectance of W.
  • the spectral emissivity in the figure was calculated by the following equation described in the document 'The Science Of Incandescence' Dr. Milan R. Vukcevich. '
  • ⁇ [, T] a ⁇ ) -b [ ⁇ , T] ⁇ ( ⁇ 1 600) / 1 100 000 ⁇
  • emissivity
  • wavelength [ ⁇ ]
  • temperature [ ⁇ ]
  • R reflectance
  • emissivity
  • Fig. 11 shows the wavelength energy characteristics of the high-temperature region of W from 180 ° C to 260 ° C according to the ⁇ 1 ank radiation law.
  • the wavelength energy in the high-temperature region of 180 ° C. or more and 260 ° C. or less has a peak between 1.0 ⁇ 111 and 1.5 ⁇ . It can be seen that most of the wavelength energy is in the wavelength range from .4 111 to 3.5 ⁇ . In other words, at wavelengths of about 0.4 ⁇ m or more and 3.5 ⁇ or less, the reflective material having a reflective property enables highly efficient heating of the sample in the furnace.
  • Table 1 shows some examples of metals and compounds that can be used in this temperature range.
  • the processing temperature of the main heating tank is set to a predetermined temperature in the range of about 1200 ° C. or more and 260 ° C. or less.
  • the heating part of the high-temperature furnace is made of a high melting point metal of W or Ta, and the material for the heat reflection and heat insulation area surrounding the high-temperature area is selected from W, Ta, and Mo It has a composite structure made of a high melting point metal material, and the wavelength that reflects the emission wavelength region of the heat generating part on the surface of the high melting point metal of the material in the heat insulation area is about 0.4 ⁇ m or more and about 3.5 ⁇ m.
  • An infrared reflective film in an arbitrary wavelength range within the range of m or less is formed.
  • W was used as a heater, and W and Ta were used as reflectors having wavelengths of about 0.5 to 3.5 ⁇ mainly in the infrared region.
  • the peak wavelength energy of W radiation at 2200 ° C is about 1.1 ⁇ m, and the reflectance of W at this time is about 0.65.
  • the reflectance increases as the wavelength becomes longer, and reaches 0.8 at 3. ⁇ .
  • the reflection characteristics of W are sufficient as a reflector of a W heater in a clean high-purity atmosphere.
  • Table 2 shows an example of the design of the metal reflector 55 surrounding the W heater and the sample, based on the relationship between the emissivity and the reflectivity at high temperatures of W in FIG.
  • Each reflector 55 surrounds the heater 53 and the sample 56 in a sealed state, and the interval between the reflectors 55 is about 3 mm.
  • Table 3 shows a configuration example of the high heat-resistant metal oxide formed on the high-melting point metal reflection plate 55 and the infrared reflection film.
  • FIG. 12 shows the spectral reflection characteristics of the eight-11 reflective layer in the wavelength range of 0.4 111 to 3.5 ⁇ .
  • the heat retaining region composed of the high melting point metal plate surrounding the heater portion of the main heating tank has a composite structure including the heat retaining layer and the heat ray reflective layer, and each layer has a high temperature. It has the function of holding and reflecting heat rays, and the surface of the high melting point metal plate that constitutes the heat insulation area is made of a highly heat-resistant metal carbide such as WC, TaC, MoC, ZrC, HfC, BN, or By coating metal nitride alone or in combination, it has the function of preventing the deterioration and deformation of the high melting point metal, and the surface of the high melting point metal serving as the heat ray reflective layer reflects infrared rays such as Au. By being coated with a film, it has the function of reflecting efficiently an arbitrary emission wavelength range in the range of about 0.4 to 3.5 ⁇ m.
  • the inside of the vacuum high-temperature furnace is composed of two or more separate tanks as described above, and the insides of the plurality of tanks are configured with the main heating tank and the preliminary heating tank.
  • the preheating tank is heated from room temperature to about 800 ° C to degas mainly the gas adsorbed on the sample and the gas contained in the sample.
  • the preheating tank has a function capable of evacuating from the atmospheric pressure for loading and unloading the sample to a pressure equivalent to that of the main heating tank, which is necessary for moving the sample between the main heating tank and the main heating tank.
  • the sample After preheating the sample from room temperature to a temperature of about 800 ° C, the sample is moved to the main heating tank quickly, so that the optimum processing temperature of the sample is about 800 ° C or more, preferably 120 ° C or more.
  • a high-temperature heating furnace that quickly achieves a high-temperature and high-purity atmosphere within a temperature range of 0 ° C or higher, more preferably 180 ° C or higher and 260 ° C or lower. It is characterized by having.
  • the temperature range of the main heating tank is, for example, in the case of a heat treatment in a liquid phase epitaxial growth method of single crystal silicon carbide, a range of about 1200 ° C. or more and 230 ° C. or less. Preferably, it is more preferably in the range of about 140 ° C. or more and 230 ° C. or less.
  • the vacuum high-temperature furnace in order to rapidly heat the sample, is divided into two parts, a main heating tank and a preheating tank, and a high-purity atmosphere is maintained.
  • the room can be maintained in an independent vacuum evacuation system or an independent gas introduction system and an atmospheric pressure atmosphere, and the main heating tank and preheating tank are integrated by opening and closing the shutoff valve.
  • the main heating chamber is always about 1 0- 3 P a pressure below at regular or, less time about 1 0- 3 P a after reaching the pressure, some introducing an inert gas, about 8 0 0 ° C or more under a lean gas atmosphere any pressure from atmospheric pressure to about 1 0- 3 P a, preferably from about 1 2 0 0 ° C or more, more preferably about 180 ° C or more and 260 ° C or less It is held in a high temperature state in the inner, the preliminary When the heating tank is maintained at a temperature in the range of about room temperature to 100 ° C or less, a cold trap is built in to absorb the built-in gas generated from the sample, etc. It is characterized by having a high-temperature heating furnace with a built-in gas circulating device for rapid cooling to quickly cool to room temperature.
  • the temperature range of the main heating tank is, for example, in the case of a heat treatment in a liquid phase epitaxial growth method of single crystal silicon carbide, preferably in a range of about 120 ° C. or more and 230 ° C. or less. It is more preferably in the range of about 140 ° C. or more and 230 ° C. or less.
  • the heat treatment apparatus is divided into the main heating tank and the preliminary heating tank, and by clearly dividing the respective work assignments, it is possible to maintain the high-purity atmosphere in the main heating tank at the optimum processing temperature and to maintain the optimal processing temperature.
  • the preliminary heating bath by heating the sample in advance about 8 0 0 ° C or higher under 1 0 _ 3 P a pressure below, which performs temperature increase in the outgassing of removal and intermediate stage or is there.
  • the main heating chamber is for heating sample 1 0- 3 P a following optimal treatment temperature in a short time under pressure, for example 1 8 0 0 ° or more C.
  • a vacuum pump with sufficient exhaust capacity dedicated to the tank can be installed to quickly remove contaminated gas to the outside of the tank. It is. Furthermore, by providing an auxiliary physical adsorption removal mechanism such as a cold trap in the preheating tank, it is possible to more completely prevent the deterioration of the heaters and reflectors provided in the main heating tank.
  • the sample soaking area is narrow and the soaking area Disadvantage that the temperature control in the region is difficult, heating atmosphere is a high vacuum (1 0 3 under P a pressure below) or a slight case of rare gas atmosphere, disadvantage that it is difficult retaining contaminating not high temperature region of the impure gas was there.
  • a large amount of the adsorption gas such as hydrogen and the built-in gas released from the sample in the initial stage of heating were sequentially heated (room temperature to 800 ° G) and exhausted in the preheating tank.
  • the sample is rapidly moved into the main heating tank in a high-purity processing atmosphere.
  • the optimal heating area of the sample is about 1200 ° C or more and 260 ° C or less.
  • the main heating tank By preheating the main heating tank to about 800 ° C or more and 260 ° C or less, high-speed and uniform heating, which was not possible in the past, became possible.
  • this equipment In addition, in the case of conventional heat treatment equipment, it took a long time to cool the sample to a working temperature close to room temperature after heat treatment, but this equipment has a built-in gas cooling device in the preheating tank. This enabled rapid cooling of the sample.
  • FIG. 13 shows still another embodiment of the heat treatment apparatus according to the present invention.
  • the heat treatment apparatus has a high-temperature heating furnace 70.
  • the preheating tank 52 in the present embodiment shown in FIG. 13 is provided with a halogen lamp or a mouth heater 54, and is quickly set within a range of about 800 ° C. or more and 180 ° C. or less. It is equipped with a lamp or open heater type heating furnace that can heat up to the temperature of '
  • cassettes 60 capable of loading a plurality of samples are arranged on both sides of the preheating chamber 52, and one of them is a pre-processed sample and the other is a processed sample in the other.
  • the preheating chamber 52 a is partitioned by a vacuum valve 59.
  • the main heating tank 51 includes a heater 53 made of a high melting point metal, for example, a W-shaped mesh heater and a metal reflecting plate 55 made of a high melting point metal.
  • a sample 56 is placed on a jig and a lifting table 57 from a cassette 60 in which a plurality of unprocessed samples are loaded, and preheated.
  • tank 52 it is preheated to about 800 ° C. or higher.
  • the main heating tank is previously heated to a predetermined temperature within a range of about 800 ° C or more and 260.0 ° C or less.
  • the preheated sample 56 opens the vacuum valve 59 between the preheating tank 52 and the main heating tank 51 as soon as the pressure between the preheating chamber 52 and the main heating tank 51 is adjusted.
  • the sample 56, the jig and the elevating table 57 move, and are processed in the main heating tank 51 at a predetermined temperature within a range of about 800 ° C. or more and 260 ° C. or less. In this embodiment, the processing is performed at about 2000 ° C.
  • the jig and the elevating table 57 descend, and the vacuum valve 59 between the preheating tank 52 and the main heating tank 1 is closed. Then, the sample is transported to a cassette 60 for receiving the heat-treated sample.
  • FIG. 14 shows an example of the heating temperature characteristic at this time.
  • FIG. 15 shows still another embodiment of the heat treatment apparatus according to the present invention.
  • the heat treatment apparatus according to the present embodiment has a high-temperature heating furnace 80.
  • the high-temperature heating furnace 80 is a continuous heating furnace, in which a plurality of main heating tanks 51 are provided in a preheating tank 52, and a plurality of preheating tanks 52 are provided. Partitioned to correspond to 1. According to such a configuration, it is possible to set the temperature of the main heating tank 51 to be different from each other, to perform the processing in each main heating tank 51 according to each process, and to continuously give a different heat history to the sample 56. And In addition, the improvement in mass productivity is remarkable compared to batch processing.
  • the heat treatment apparatuses described in all of the above embodiments are not limited to the use of the heat treatment in the liquid crystal growth method of single crystal SiC described above.
  • the device Utilize the feature of heating to a predetermined temperature within a range of about 800 ° C or more and 260 ° C or less, preferably 120 ° C or more and 230 ° C or less in a short time.
  • a predetermined temperature within a range of about 800 ° C or more and 260 ° C or less, preferably 120 ° C or more and 230 ° C or less in a short time.
  • the device is heated to a high temperature in a short time, so that the ion-implanted portion can be crystallized reliably and efficiently.
  • the heat treatment apparatus according to the present embodiment is small and has a relatively simple structure, so that it can be easily connected to another apparatus such as an ion implantation apparatus.
  • the heat treatment apparatus when high-speed heating is performed, a special method such as laser or plasma has been used.
  • the heat treatment apparatus according to the present embodiment has a simple structure and can be connected to another apparatus such as an electron microscope or an ion implantation apparatus. Therefore, there is a possibility that new materials that could not be obtained by the conventional method can be created.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A method of heat treatment suitable for heat treatment in a process for liquid phase epitaxial growth of single-crystal silicon carbide, the process comprising superimposing a single-crystal silicon carbide substrate as seed crystal and a polycrystalline silicon carbide substrate upon each other, disposing the laminate in a closed vessel, performing high-temperature heat treatment and, during the heat treatment, interposing an extremely thin metallic silicon melt between the single-crystal silicon carbide substrate and the polycrystalline silicon carbide substrate so as to effect a liquid phase epitaxial growth of single-crystal silicon carbide on the single-crystal silicon carbide substrate. In the heat treatment method, the closed vessel is heated in advance to about 800°C or above in a preheating chamber of 10-5 Pa or below pressure, with the internal pressure of the closed vessel simultaneously reduced to 10-5 Pa or below, and moved into and disposed in a heating chamber of inert gas atmosphere preheated to given temperature within the range of about 1400 to 2300°C and having its pressure reduced to 10-2 Pa or below vacuum or given degree, so that the single-crystal silicon carbide substrate and the polycrystalline silicon carbide substrate are heated within a short time to given temperature within the range of about 1400 to 2300°C, thereby obtaining a single-crystal silicon carbide free of microcrystalline grain boundary whose surface micropipe defect density is 1/cm2 or less. Further, there is provided a heat treatment apparatus for use in the performing of the heat treatment method.

Description

明 細 書  Specification
熱処理方法と熱処理装置 Heat treatment method and heat treatment equipment
技術分野 Technical field
本発明は、 単結晶炭化ケィ素の液相ェピタキシャル成長法における熱 処理方法及ぴそれを実施するに適した熱処理装置に関するものである。 背景技術  TECHNICAL FIELD The present invention relates to a heat treatment method in a liquid phase epitaxial growth method of single crystal silicon carbide and a heat treatment apparatus suitable for carrying out the method. Background art
従来から、 半導体製造工程において使用される熱処理装置には、 被処 理物の熱履歴を減らし、 スリップの発生を防止するために、 被処理物を 高速で熱処理する熱処理装置や (特許文献 1 :特開平 8— 70008号 公報 参照)、 短時間で高真空とし、 低圧でェピタキシャル成長を行な うことができる熱処理装置 (特許文献 2 :特開平 1 1一 260738号 公報 参照) 等が報告されている。  Conventionally, a heat treatment apparatus used in a semiconductor manufacturing process includes a heat treatment apparatus that heat-treats an object at a high speed in order to reduce the heat history of the object and prevent the occurrence of slip (Patent Document 1: Japanese Unexamined Patent Publication No. Hei 8-70008), a heat treatment apparatus capable of forming a high vacuum in a short time and performing epitaxy growth at a low pressure (see Patent Document 2: Japanese Patent Laid-Open Publication No. 111-260738), and the like are reported. ing.
これら、 従来の半導体製造工程に使用されていた熱処理装置は、 主に 炭化ケィ素 (以下、 S i Cという。) のェピタキシャル成長に用いられ ていたものである。 そのため、 使用温度が、 例えば、 特許文献 1に記載 の熱処理装置は、 高温部の温度が 950°Cであり、 特許文献 2に記載の 熱処理装置においても、 800°Cから 900°Cとなっている。  These heat treatment devices used in the conventional semiconductor manufacturing process are mainly used for epitaxial growth of silicon carbide (hereinafter referred to as SiC). For this reason, the operating temperature of the heat treatment apparatus described in Patent Document 1 is, for example, 950 ° C. in the high-temperature section, and the heat treatment apparatus described in Patent Document 2 is 800 ° C. to 900 ° C. I have.
ところが、 近年になり、 耐熱性及び機械的強度に優れているだけでな く、 放射線にも強く、 さらに不純物の添加によって電子や正孔の価電子 制御が容易である上、 広い禁制帯幅を持つ (因みに、 6 H型の S i C単 結晶で約 3. O eV、 4H型の S i C単結晶で 3. 3 e V) ために、 シ リコン (以下、 S iという。) やガリゥムヒ素 (以下、 G a A sという 。)などの既存の半導体材料では実現することができない高温、高周波、 耐電圧 ·耐環境性を実現することが可能である単結晶炭化ケィ素が、 次 世代のパワーデバイス、 高周波デバイス用半導体材料として注目され、 かつ期待されている。 However, in recent years, it is not only excellent in heat resistance and mechanical strength but also resistant to radiation, and it is easy to control the valence electrons of electrons and holes by adding impurities. (By the way, about 3.3 OeV for 6H-type SiC single crystal and 3.3 eV for 4H-type SiC single crystal), silicon (hereafter referred to as Si) and garymhi Single-crystal silicon carbide, which can realize high temperature, high frequency, withstand voltage and environmental resistance that cannot be realized with existing semiconductor materials such as element (hereinafter referred to as GaAs) As a semiconductor material for power devices and high-frequency devices, And is expected.
また、 六方晶 S i Cは、 窒化ガリウム (以下、 GaNという。) と格 子定数が近く、 GaNの基板として期待されている。  Hexagonal SiC has a lattice constant close to that of gallium nitride (GaN), and is expected to serve as a GaN substrate.
この種の単結晶 S i Cは、 特許文献 3 :特開 2001— 158695 号公報に記載されているように、ルツポ内の低温側に種結晶を固定配置 し、 高温側に原料となる S iを含む粉末を配置してルツボを不活性雰囲 気中で 1450°C乃至 2400°Cの高温に加熱することによって、 S i を含む粉末を昇華させて低温側の種結晶の表面上で再結晶させて単結 晶の育成を行う昇華再結晶法(改良レーリ一法)によつて形成されてい るものがある。  As described in Patent Document 3: Japanese Patent Application Laid-Open No. 2001-158695, this type of single crystal S i C has a seed crystal fixedly arranged on a low temperature side in a rutupo and a raw material S i C on a high temperature side. By placing the powder containing Si and heating the crucible to a high temperature of 1450 ° C to 2400 ° C in an inert atmosphere, the powder containing Si is sublimated and re-formed on the surface of the seed crystal on the low-temperature side. Some are formed by a sublimation recrystallization method (improved Lely method) in which a single crystal is grown by crystallization.
また、 特許文献 4 :特開平 1 1— 315000号公報に記載されてい るように、 S i C単結晶基板と S i原子及び C原子により構成された板 材とを微小隙間を隔てて互いに平行に対峙させた状態で大気圧以下の 不活性ガス雰囲気、 且つ、 S i C飽和蒸気雰囲気下で S i C単結晶基板 側が板材ょりも低温となるように温度傾斜を持たせて熱処理すること により、微小隙間内で S i原子及び C原子を昇華再結晶させて S i。単 結晶基板上に単結晶を析出させるものもある。  In addition, as described in Patent Document 4: Japanese Patent Application Laid-Open No. 11-315000, a SiC single crystal substrate and a plate material composed of Si atoms and C atoms are parallel to each other with a small gap. Heat treatment in an inert gas atmosphere at atmospheric pressure or lower and in a SiC saturated vapor atmosphere with a temperature gradient so that the side of the SiC single crystal substrate is also at a low temperature. Sublimates and recrystallizes Si atoms and C atoms in the minute gap. Some deposit a single crystal on a single crystal substrate.
また、 特許文献 5 :特表平 10— 509943号公報に記載されてい るように、液相ェピタキシャル成長法によって S i C単結晶上に第 1の ェピタキシャル層を形成した後に、 C V D法によつて表面に第 2のェピ タキシャル層を形成して、 マイクロパイプ欠陥を除去するものもある。  In addition, as described in Patent Document 5: Japanese Patent Application Laid-Open No. 10-509943, after forming a first epitaxy layer on a SiC single crystal by a liquid phase epitaxy method, a CVD method is used. In some cases, a second epitaxial layer is formed on the surface to remove micropipe defects.
しかしながら、 これら単結晶 S i Cの形成は、 特許文献 3乃至 5に 記載されているように、 1450°C乃至 2400°Cという高温で熱処理 する必要がある。 このため、 特許文献 1又は特許文献 2に記載されてい るような従来の熱処理装置では、 単結晶 S i Cの形成が困難となってい る。 また、 例えば、 特許文献 3に記載の昇華再結晶法の場合は、 成長速度 が数 1 0 0 μ πι/ ΐι rと非常に早い反面、 昇華の際に S i C粉末がい つたん S i、 S i C2、 S i 2 Cに分解されて気化し、 さらにルツボのー 部と反応する。 このために、 温度変化によって種結晶の表面に到達する ガスの種類が異なり、 これらの分圧を化学量論的に正確に制御すること が技術的に非常に困難である。 また、 不純物も混入しやすく、 その混入 した不純物や熱に起因する歪みの影響で結晶欠陥やマイク口パイプ欠 陥等を発生しやすく、 また、 多くの核生成に起因する結晶粒界の発生な ど、 性能的、 品質的に安定した単結晶 S i Cが得られないという問題が ある。 However, as described in Patent Documents 3 to 5, it is necessary to perform heat treatment at a high temperature of 1450 ° C. to 2400 ° C. as described in Patent Documents 3 to 5. For this reason, it is difficult to form a single crystal SiC in a conventional heat treatment apparatus as described in Patent Document 1 or Patent Document 2. In addition, for example, in the case of the sublimation recrystallization method described in Patent Document 3, the growth rate is very fast, at several 100 μππ / ΐιr, but at the time of sublimation, the SiC powder gradually becomes Si, S i C 2, S i 2 C is decomposed and vaporized, and further reacts with over part of the crucible. For this reason, the type of gas that reaches the surface of the seed crystal varies depending on temperature changes, and it is technically very difficult to control these partial pressures stoichiometrically accurately. In addition, impurities are easily mixed in, and crystal defects and cracks in a mic opening are easily generated due to strains caused by the mixed impurities and heat. However, there is a problem that a single crystal S i C stable in performance and quality cannot be obtained.
一方、 特許文献 4や特許文献 5に記載の液相ェピタキシャル成長法 (以下、 L P E法という。) の場合は、 昇華再結晶法で見られるような マイクロパイプ欠陥や結晶欠陥などの発生が少なく、昇華再結晶法で製 造されるものに比べて品質的に優れた単結晶 S i Cが得られる。 その反 面、成長過程が、 S i融液中への Cの溶解度によって律せられるために、 成長速度が 1 0 mZ h r以下と非常に遅くて単結晶 S i Cの生産性 が低く、 製造装置内 の液相を精密に温度制御しなくてはならない。 また、 工程が複雑となり、 単結晶 S i Cの製造コストが非常に高価な ものになる。 発明の開示  On the other hand, in the case of the liquid-phase epitaxy method (hereinafter referred to as LPE method) described in Patent Documents 4 and 5, the occurrence of micropipe defects and crystal defects such as those observed in the sublimation recrystallization method is small. As a result, a single crystal SiC superior in quality to that produced by the sublimation recrystallization method can be obtained. On the other hand, since the growth process is controlled by the solubility of C in the Si melt, the growth rate is very slow at 10 mZhr or less, and the productivity of single crystal SiC is low. The temperature of the liquid phase in the equipment must be precisely controlled. In addition, the process becomes complicated, and the manufacturing cost of single-crystal SiC becomes extremely expensive. Disclosure of the invention
本発明は前記問題に鑑みてなされたもので、 新規な材料、 例えば、 次 世代の単結晶 S i Cの形成に好適な熱処理方法及ぴ前記熱処理方法を 実施するに好適な熱処理装置を提供することを目的とする。  The present invention has been made in view of the above problems, and provides a heat treatment method suitable for forming a new material, for example, a next-generation single crystal SiC, and a heat treatment apparatus suitable for performing the heat treatment method. The purpose is to:
本発明の熱処理方法は、 上記目的を達成するために以下のような幾つ かの特徴を主に有している。本発明において、以下の主な特徴は単独で、 若しくは、 適宜組合わされて備えられている。 そして、 本発明の熱処理 装置は、 本発明の熱処理方法を実施するに好適な装置である。 The heat treatment method of the present invention mainly has the following several features to achieve the above object. In the present invention, the following main features alone, Alternatively, they are provided in appropriate combinations. And the heat treatment apparatus of the present invention is an apparatus suitable for performing the heat treatment method of the present invention.
本発明に係る熱処理方法は、被処理物を短時間で約 8 0 0 °C以上 2 6 In the heat treatment method according to the present invention, the object to be treated is heated to about 800 ° C. or more in a short time.
0 0 °C以下の範囲、 好ましくは、 約 1 2 0 0 °C以上 2 3 0 0 °C以下の範 囲内で所定の温度に加熱する加熱室と、 前記加熱室に連結され、 前記カロ 熱室に被処理物を移動するための移動手段が設けられている前室と、 前 記前室に連結され、前記被処理物を予め所定の温度に加熱する予備加熱 室とを備える熱処理装置による熱処理方法であって、 前記被処理物を予 め圧力約 1 0— 2 P a以下好ましくは約 1 0— 5 P a以下の真空の予備加 熱室で約 8 0 0 °C以上に加熱した後、 予め約 8 0 0 °C以上 2 6 0 0 °C以 下の範囲、 好ましくは、 約 1 2 0 0 °C以上 2 3 0 0 °C以下の範囲内で所 定の温度に加熱された圧力約 1 0— 2P a以下好ましくは約 1 0— 5 P a以 下の真空、 又は予め圧力約 1 0— 2 P a以下、 好ましくは約 1 0—5 P a以 下の真空に到達した後に不活性ガスを導入した希薄ガス雰囲気下の加 熱室に移動することで、 前記被処理物を、 短時間で約 8 0 0 °C以上 2 6 0 0 °C以下の範囲、 好ましくは、 約 1 2 0 0 °C以上 2 3 0 0 °C以下の範 囲内で所定の温度の温度に加熱することを特徴とする。 A heating chamber for heating to a predetermined temperature in a range of not more than 200 ° C., preferably in a range of not less than about 1200 ° C. and not more than 230 ° C .; A heat treatment apparatus comprising: a front chamber provided with a moving means for moving an object to be processed in the chamber; and a preheating chamber connected to the front chamber and heating the object to be processed to a predetermined temperature in advance. In a heat treatment method, the object is preliminarily heated to about 800 ° C. or more in a vacuum preheating chamber having a pressure of about 10 to 2 Pa or less, preferably about 10 to 5 Pa or less. After that, it is heated to a predetermined temperature in the range of about 800 ° C or more and 260 ° C or less, preferably in the range of about 1200 ° C or more and 230 ° C or less. pressure of about 1 0- 2 P a less preferably about 1 0- 5 P a hereinafter the vacuum, or pre-pressure of about 1 0- 2 P a or less, preferably to about 1 0- 5 P a hereinafter the vacuum After reaching the inert gas By moving to the heating chamber under the rare gas atmosphere, the object to be treated is quickly heated to a temperature in the range of about 800 ° C. to 260 ° C., preferably about 1200 ° C. It is characterized in that it is heated to a predetermined temperature within the range of not less than ° C and not more than 230 ° C.
前記本発明の熱処理方法によれば、 時間で、 約 8 0 0 °C以上 2 6 0 0 °C以下の範囲、 好ましくは、 約 1 2 0 0 °C以上 2 3 0 0 °C以下の範囲 内で所定の温度の温度に加熱することができるので、従来の熱処理装置 では得られなかつた新規な材料を創作できる可能性がある。  According to the heat treatment method of the present invention, the time is in the range of about 800 ° C. to 260 ° C., preferably in the range of about 120 ° C. to 230 ° C. Since it can be heated to a predetermined temperature within the furnace, there is a possibility that a new material that cannot be obtained with the conventional heat treatment apparatus can be created.
前記熱処理方法は、 単結晶 SiCの液相ェピタキシャル成長法における 熱処理方法として適している。  The heat treatment method described above is suitable as a heat treatment method in a liquid phase epitaxial growth method of single crystal SiC.
具体的に、本発明の単結晶炭化ケィ素の液相ェピタキシャル成長法に おける熱処理方法は、種結晶となる単結晶炭化ケィ素基板と多結晶炭化 ケィ素基板とを重ね、 密閉容器内に設置して、 高温熱処理を行なうこと によって、 前記単結晶炭化ケィ素基板と前記多結晶炭化ケィ素基板との 間に、 熱処理中に極薄金属シリコン融液を介在させ、 前記単結晶炭化ケ ィ素基板上に単結晶炭化ケィ素を液相ェピタキシャル成長させること を特徴とする。 Specifically, the heat treatment method in the liquid-phase epitaxial growth method of single-crystal silicon carbide of the present invention includes a method in which a single-crystal silicon carbide substrate serving as a seed crystal and a polycrystalline silicon carbide substrate are stacked and placed in a closed container. Installation and high temperature heat treatment Thus, an ultra-thin metal silicon melt is interposed between the single-crystal silicon carbide substrate and the polycrystalline silicon carbide substrate during the heat treatment, and the single-crystal silicon carbide is placed on the single-crystal silicon carbide substrate. Is characterized by liquid phase epitaxial growth.
そして、本発明の単結晶炭化ケィ素の液相ェピタキシャル成長法にお ける熱処理方法は、 前記密閉容器を、 予め圧力約 10— 5P a以下の高真 空の予備加熱室で約 800°C以上に加熱するとともに、 前記密閉容器内 を圧力約 10— 5 P a以下に減圧し、予め約 1400 °C以上 2300 °C以下 の温度範囲内で所定の温度に加熱された圧力約 10_2P a以下の真空、 好ましくは約 10— 5Pa以下の真空、 又は予め圧力約 10— 5P a以下の高 真空に到達した後に若干の不活性ガスを導入した希薄ガス雰囲気下の 加熱室に移動して設置することで、前記単結晶炭化ケィ素基板と多結晶 炭化ケィ素基板とを短時間で約 1400 °C以上 2300 °C以下の温度範 囲内で所定の温度に加熱して微結晶粒界の存在しない、表面のマイク口 パイプ欠陥密度が約 1 / c m2以下である単結晶炭化ケィ素を製造する ことを特 ί教とする。 Then, you Keru heat treatment method in the liquid phase Epitakisharu growth method of a single crystal carbide Kei element of the present invention, the closed container, preliminarily pressure of about 10- 5 P a following approximately 800 ° in a high vacuum preheating chamber with heating above and C, the sealed vessel was evacuated to below a pressure of about 10- 5 P a, in advance about 1400 ° C or higher 2300 ° C temperature range below a pressure of about 10_ heated to a predetermined temperature within 2 P a vacuum below, preferably about 10- 5 Pa or less of vacuum, or pre after reaching a pressure of about 10- 5 P a high vacuum below the heating chamber under slight lean gas atmosphere with an inert gas is introduced By moving and installing, the single crystal silicon carbide substrate and the polycrystalline silicon carbide substrate are heated to a predetermined temperature within a temperature range of about 1400 ° C or more and 2300 ° C or less in a short time, and the microcrystalline silicon carbide substrate is heated. absence of grain boundaries, microphone port pipe defect density on the surface is about 1 / cm 2 or less single crystal carbide Kei And JP ί Christian to produce.
このように、 短時間で約 1400°C以上 2300°C以下の温度範囲内 で所定の温度に加熱することが可能であるため、効率良く単結晶 S i C を形成することができる。また、成長結晶内部に微結晶粒界が存在せず、 表面のマイク口パイプ欠陥の密度が約 1/cm2以下の単結晶 S i Cと できるため、 各種半導体デバイスとしての適用が可能となる。 ここで、 マイクロパイプ欠陥とは、 ピンホールとも呼ばれ、 結晶の成長方向に沿 つて存在する数 μηι以下の直径の管状の空隙のことである。 また、 使用 する種結晶となる単結晶 S i C基板は、 4H— S i C、 6H—S i Cの 全ての結晶面で可能であるが、 好ましくは ( 0001 ) S i面を使用す る。 また、 多結晶 S i C基板には、 平均粒子径が約 5 μ m以上 10 zm 以下の粒子径で、 粒子径が略均一なものが好ましい。 このため、 多結晶As described above, since it is possible to heat to a predetermined temperature within a temperature range of about 1400 ° C. or more and 2300 ° C. or less in a short time, single crystal Si C can be efficiently formed. Further, there is no fine grain boundaries ingrowth crystal, the density of the microphone port pipe surface defects can be about 1 / cm 2 or less of the single crystal S i C, it is possible to apply a variety of semiconductor devices . Here, a micropipe defect is also called a pinhole, and is a tubular void having a diameter of several μηι or less that exists along the crystal growth direction. The single-crystal SiC substrate serving as a seed crystal to be used can be formed on all crystal planes of 4H-SiC and 6H-SiC, but preferably uses a (0001) Si plane. . The polycrystalline SiC substrate has an average particle size of about 5 μm or more and 10 zm It is preferable that the particles have the following particle diameters and the particle diameters are substantially uniform. Therefore, polycrystalline
S i Cの結晶構造には特に限定はなく、 3 C— S i C、 4 H—S i C、 6 H - S i Cのいずれをも使用することができるが、 好ましくは 3 C— S i Cである。 The crystal structure of S i C is not particularly limited, and any of 3 C—S i C, 4 H—S i C, and 6 H—S i C can be used, but preferably 3 C—S i C.
また、 本発明によると、 熱処理時に単結晶 S i C基板と多結晶 S i C 基板との間に S iが毛細管現象により界面のすみずみに濡れが浸透し て極薄の金属 S i融液層を形成する。 多結晶 S i C基板から流れ出した C原子は S i融液層を通して単結晶 S i C基板に供給されて、 その単結 晶 S i C基板上に単結晶 S i Cとして液相ェピタキシャル成長する。 こ のため、 成長初期から終了まで欠陥の誘発を抑制できる。 また、 従来の ように、 溶融 S i中に浸漬して処理する必要がないため、 熱処理後に、 種結晶となる単結晶 S i C基板及び多結晶 S i C基板に溶着する S i を除去する量が極めて少なくなる。 また、 単結晶 S i C基板と多結晶 S i C基板との間に、 熱処理中に極薄金属 S i融液を介在させるため、 単 結晶 S i Cのェピタキシャル成長に必要な金属 S iのみを単結晶 S i cの液相ェピタキシャル成長に使用できる。 このため、 熱処理時に薄い S i層では外部との接触面積が最小となり、 したがって不純物の進入確 率が減り、 高純度な単結晶 S i Cを形^することができる。  Further, according to the present invention, during heat treatment, Si penetrates into the corners of the interface between the single-crystal SiC substrate and the polycrystalline SiC substrate due to the capillary action, so that ultrathin metal Si melt is obtained. Form a layer. The C atoms flowing out of the polycrystalline SiC substrate are supplied to the monocrystalline SiC substrate through the Si melt layer, and are grown on the monocrystalline SiC substrate as liquid crystalline epitaxy as monocrystalline SiC. I do. Therefore, induction of defects can be suppressed from the beginning to the end of growth. Further, unlike the conventional case, it is not necessary to immerse in the molten Si for the treatment, so that after the heat treatment, the Si that is deposited on the single-crystal SiC substrate and the polycrystalline SiC substrate serving as seed crystals is removed. The amount is extremely small. In addition, since the ultra-thin metal Si melt is interposed between the single-crystal SiC substrate and the polycrystalline SiC substrate during the heat treatment, the metal Si necessary for the epitaxial growth of the single-crystal SiC is Only one can be used for liquid phase epitaxial growth of single crystal sic. For this reason, the contact area with the outside is minimized in the thin Si layer during the heat treatment, so that the probability of entry of impurities is reduced, and a high-purity single crystal SiC can be formed.
本発明の熱処理装置は、被処理物を圧力約 1 CT2 P a以下、好ましく は約 1 0 _5 P a以下の真空、又は予め圧力約 1 0— 2 P a以下に好ましく は約 1 0 -5 P a以下の真空に到達した後に不活性ガスを導入した希薄 ガス雰囲気下において短時間で約 1 2 0 0 °C以上 2 3 0 0 °C以下の温 度範囲内で所定の温度に加熱する加熱室と、 前記加熱室に連結され、 前 記加熱室に被処理物を移動するための移動手段が設けられている前室 と、 前記前室に連結され、 前記被処理物を約 1 0— 2 P a以下好ましくは 約 1 0— 5 P a以下の真空において予め約 8 0 0 °C以上に加熱する予備 加熱室とを備えていることを特徴とする。 Heat treatment apparatus of the present invention, the object to be processed with less pressure of about 1 CT 2 P a, preferably preferably to less than about 1 0 _ 5 P a vacuum below, or pre-pressure of about 1 0- 2 P a of about 1 0 - within a short time of about 1 2 0 0 ° C over 2 3 0 0 ° C following temperature range in the 5 P a following under lean gas atmosphere with an inert gas is introduced after reaching the vacuum to a predetermined temperature A heating chamber to be heated, a front chamber connected to the heating chamber, and a moving unit for moving the processing object to the heating chamber, and a heating chamber connected to the front chamber; 1 0- 2 P a less preferably about 1 0 5 P a preliminary heating to advance about 8 0 0 ° C or higher in the following vacuum And a heating chamber.
また、 本発明の熱処理装置は、 真空高温炉の内部が 2糟以上の複数の 分離された槽からなり、 その複数の槽内部が主加熱槽と予備加熱槽から 構成され、前記予備加熱槽が主に試料に吸着したガスと試料に内蔵する ガスの脱ガスのため室温から約 8 0 0 °Cに加熱され、 脱ガス終了後、 予 め加熱真空排気されて、清浄高温下に保持されている前記主加熱槽に速 やかに移動され、また前記主加熱槽は常に約 1 0 -3 P a以下の圧力、 ま たは、 一度約 1 0 -3 P a以下の圧力に到達した後、 若干の不活性ガスを 導入し、 大気圧から約 1 0 -3 P aまでの任意の圧力の希薄ガス雰囲気下 で約 8 0 0 °C以上 2 6 0 O °C以下の範囲内で所定の温度の高温に常に 加熱されており、 前記予備加熱槽が試料の出し入れのための大気圧から、 前記主加熱槽との間で試料を移動させるために必要な、 前記主加熱槽と 同等の圧力に排気可能な機能を有し、 室温から約 8 0 0 °Cの温度に試料 を予備加熱した後、 前記主加熱槽に早く移動することにより、 試料の最 適処理温度約 8 0 0 °C以上 2 6 0 0 °C以下の温度範囲内で所定の温度 の高温かつ高純度雰囲気を速やかに達成する高温加熱炉を有すること を特徴とする。  Further, in the heat treatment apparatus of the present invention, the inside of the vacuum high-temperature furnace is composed of two or more separate tanks, and the inside of the plurality of tanks is composed of a main heating tank and a preheating tank. It is heated from room temperature to about 800 ° C to degas mainly the gas adsorbed on the sample and the gas contained in the sample.After the degassing is completed, the sample is evacuated by heating beforehand and kept at a clean high temperature. The main heating tank is quickly moved to the main heating tank, and the main heating tank always reaches a pressure of about 10 -3 Pa or less, or once reaches a pressure of about 10 -3 Pa or less. Introduce a small amount of inert gas and set it within the range of about 800 ° C or more and 260 ° C or less under a rare gas atmosphere of any pressure from atmospheric pressure to about 10-3 Pa. The preheating tank is always heated to a high temperature, and the preheating tank moves the sample from the main heating tank to the atmospheric pressure for loading and unloading the sample. Has the function of evacuating to the same pressure as that of the main heating tank, and preliminarily heating the sample from room temperature to a temperature of about 800 ° C, and then moving to the main heating tank quickly. Therefore, it has a high-temperature heating furnace that quickly achieves a high-temperature, high-purity atmosphere at a predetermined temperature within a temperature range of about 800 ° C or more and 260 ° C or less. I do.
更にまた、 本発明の熱処理装置は、 試料を急速に加熱するため、 真空 高温炉が主加熱槽と予備加熱槽の二つに分かれ、 かつ、 高純度な雰囲気 を維持するため、 各々の室内が個々の独立した真空排気系と、 あるいは 個々の独立したガス導入系、 及び大気圧雰囲気に維持可能で、 かつ、 主 加熱槽と予備加熱槽力 遮断バルブの開閉によって、 一体化と分離を相 互に維持されている高速な高温加熱炉を有する熱処理装置において、 前記主加熱槽が常用時に常に約 1 0 - 3 P a以下の圧力、 または、 一度 約 1 0 -3 P a以下の圧力に到達した後、 若干の不活性ガスを導入し、 大 気圧から約 1 0 - 3 P aまでの任意の圧力の希薄ガス雰囲気下に約 8 0 0°C以上 2600°C以下の温度範囲内で所定の温度の高温状態に保持 されており、 前記予備加熱槽が約室温以上 1000°C以下の温度範囲内 で所定の温度に保持されている状態において、試料等から発生する内蔵 ガスを吸着するためのコールドトラップが内蔵され、加熱終了後の高温 から室温に速やかに冷却する為の急冷用ガス循環装置が内蔵されてい る高温加熱炉を有することを特徴とする。 図面の簡単な説明 Furthermore, in the heat treatment apparatus of the present invention, the vacuum high-temperature furnace is divided into a main heating tank and a preheating tank in order to rapidly heat the sample, and each chamber is maintained in a high-purity atmosphere. Each independent vacuum pumping system, or each independent gas introduction system, and can be maintained at atmospheric pressure, and the main heating tank and the preheating tank power can be opened and closed by shutting off each other to integrate and separate. In a heat treatment apparatus having a high-speed high-temperature heating furnace maintained at a pressure of about 10-3 Pa or less, or once at a pressure of about 10-3 Pa or less during normal use of the main heating tank After that, a small amount of inert gas is introduced, and about 80 to about 10-3 Pa in a rare gas atmosphere at an arbitrary pressure from about 10 to 3 Pa. The temperature is maintained at a predetermined high temperature within a temperature range of 0 ° C or more and 2600 ° C or less, and the preheating tank is maintained at a predetermined temperature within a temperature range of about room temperature or more and 1000 ° C or less. In the state, it has a built-in cold trap to adsorb the built-in gas generated from the sample etc., and has a built-in high temperature heating furnace with a built-in quenching gas circulation device to quickly cool from high temperature after heating to room temperature. It is characterized by the following. BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明の一実施形態に係る単結晶 S i Cの液相ェピタキシャ ル成長法に用いられる熱処理装置の一実施形態の概略断面図である。 図 2は、本発明の一実施形態に用いられる密閉容器の一例を示す概略 図である。  FIG. 1 is a schematic cross-sectional view of an embodiment of a heat treatment apparatus used for a liquid phase epitaxial growth method of single crystal SiC according to an embodiment of the present invention. FIG. 2 is a schematic view showing an example of the closed container used in one embodiment of the present invention.
図 3は、 本発明の一実施形態における密閉容器内を示す図である。 図 4は、本発明の一実施形態における下容器に基板を設置した状態を 示す図である。  FIG. 3 is a diagram showing the inside of the closed container in one embodiment of the present invention. FIG. 4 is a diagram showing a state where a substrate is placed in a lower container according to an embodiment of the present invention.
図 5 (a), 図 5 (b) は、 本発明の一実施形態に用いられる反射鏡 の一例を示す概略図である。  FIGS. 5A and 5B are schematic diagrams showing an example of a reflecting mirror used in an embodiment of the present invention.
図 6 (a) 及び図 6 (b) は、 本発明の一実施形態に係る熱処理方法 及ぴ熱処理装置によって得られた単結晶 S i Cの成長層の表面の顕微 鏡写真を示す図であり、 図 6 (a) は表面モフォロジー、 図 6 (b) は その断面を示す顕微鏡写真を示す図である。  FIGS. 6 (a) and 6 (b) are diagrams showing microscopic photographs of the surface of a single crystal SiC growth layer obtained by the heat treatment method and the heat treatment apparatus according to one embodiment of the present invention. FIG. 6 (a) is a diagram showing a surface morphology, and FIG. 6 (b) is a diagram showing a micrograph showing a cross section thereof.
図 7 (a)及び図 7 (b) は、 図 6 (a) 及ぴ図 6 (b) に示す単結晶 S i Cの表面の AFM像を示す図であり、 図 7 (a)は、 表面モフォロジ 一、 図 7 (b) はその断面を示す AFM像を示す図である。  FIGS. 7 (a) and 7 (b) are views showing AFM images of the surface of the single crystal SiC shown in FIGS. 6 (a) and 6 (b), and FIG. Surface morphology Fig. 7 (b) is an AFM image showing the cross section.
図 8 (a)、 図 8 (b) 及び図 8 (c) は、 本発明の一実施形態に係 る熱処理方法及ぴ熱処理装置によって得られた単結晶 S i Cの成長過 程におけるステツプパンチング機構を説明するための図である。 FIGS. 8 (a), 8 (b) and 8 (c) show the growth process of single crystal SiC obtained by the heat treatment method and the heat treatment apparatus according to one embodiment of the present invention. FIG. 4 is a view for explaining a step punching mechanism in the step.
図 9 ( a ) 図 9 ( b ).は本発明に係る他の実施形態における熱処理装 置の主要部の断面図である。  9 (a) and 9 (b) are cross-sectional views of main parts of a heat treatment apparatus according to another embodiment of the present invention.
図 1 0は Wの高温下における分光放射率と反射率との関係を示す図 である。 .  FIG. 10 is a diagram showing the relationship between the spectral emissivity and the reflectance at a high temperature of W. .
図 1 1は、 1 8 0 0 °C以上 2 6 0 0 °C以下における Wの波長エネルギ 一を示す図である。 '  FIG. 11 is a diagram showing the wavelength energy of W in the range from 180 ° C. to 260 ° C. '
図 1 2は、金属反射板 5の表面に被覆する A uの分光反射特性を示す 図である。  FIG. 12 is a diagram showing the spectral reflection characteristics of Au covering the surface of the metal reflector 5.
図 1 3は、 本発明に係る更に他の実施形態に係る熱処理装置の主要部 の断面図である。  FIG. 13 is a cross-sectional view of a main part of a heat treatment apparatus according to still another embodiment of the present invention.
図 1 4は、 図 1 3に示す実施形態に係る加熱温度特性例を示す図であ る。  FIG. 14 is a diagram showing an example of a heating temperature characteristic according to the embodiment shown in FIG.
図 1 5は、本発明に係る更にまた他の実施形態における熱処理装置の 主要部の断面図である。 発明を実施するための最良の形態  FIG. 15 is a cross-sectional view of a main part of a heat treatment apparatus according to still another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しつつ、 本発明に係る熱処理装置の一例をについて 説明する。  Hereinafter, an example of a heat treatment apparatus according to the present invention will be described with reference to the drawings.
図 1は、 本発明に係る熱処理装置の一例を示す断面概略図である。 図 1において、 熱処理装置 1は、 加熱室 2と、 予備加熱室 3と、 予備加熱 室 3から加熱室 2に続く前室 4とで構成されている。 そして、 被処理物 5が予備加熱室 3から前室 4、 加熱室 2へと順次移動することで、 単結 晶 S i Cを育成するように構成されている。  FIG. 1 is a schematic sectional view showing an example of a heat treatment apparatus according to the present invention. In FIG. 1, the heat treatment apparatus 1 includes a heating chamber 2, a pre-heating chamber 3, and a pre-chamber 4 continuing from the pre-heating chamber 3 to the heating chamber 2. The workpiece 5 is sequentially moved from the pre-heating chamber 3 to the pre-chamber 4 and the heating chamber 2 to grow single crystal SiC.
図 1に示すように、 熱処理装置 1は、 加熱室 2、 予備加熱室 3、 前室 4が連通している。 このため、 各室を予め所定の圧力下に制御すること が可能となる。また、各室毎にゲートバルブ 7等を設けることによって、 各室毎に圧力調整をすることも可能である。 これによつて被処理物 5の 移動時においても、 外気に触れることなく、 所定圧力下の炉内を図示し ない移動手段によって移動させることができるため、 不純物の混入等を 抑制することができる。 As shown in FIG. 1, in the heat treatment apparatus 1, a heating chamber 2, a preheating chamber 3, and a front chamber 4 communicate with each other. For this reason, it is necessary to control each chamber to a predetermined pressure in advance. Becomes possible. Further, by providing a gate valve 7 or the like for each chamber, it is also possible to adjust the pressure for each chamber. Thus, even when the object 5 is moved, the inside of the furnace under a predetermined pressure can be moved by a moving means (not shown) without touching the outside air, so that contamination of impurities can be suppressed. .
予備加熱室 3は、 ハロゲンランプ等のランプ又はロッドヒータ等のカロ 熱手段 6が設けられ、 急速に 8 0 0 °C以上 1 0 O 0 °C以下程度にまで加 熱が可能な加熱炉になっている。 加熱手段としては、 ハロゲンランプ等 のランプ式加熱手段が好まし!/、。 また、 予備加熱室 3と前室 4との接続 部分には、 ゲートバルブ 7が設けらており、 予備加熱室 3及ぴ前室 4の 圧力制御を容易なものとしている。  The preheating chamber 3 is provided with a heating means 6 such as a lamp such as a halogen lamp or a calorie heating means 6 such as a rod heater, and capable of rapidly heating to about 800 ° C or more and about 100 ° C or less. Has become. As the heating means, a lamp-type heating means such as a halogen lamp is preferred! Further, a gate valve 7 is provided at a connection portion between the preheating chamber 3 and the front chamber 4 to facilitate the pressure control of the preheating chamber 3 and the front chamber 4.
被処理物 5は、 予備加熱室 3内のテーブル 8に載置された状態で、 所 定の圧力である約 1 0 "2 P a以下、 好ましくは、 約 1 0— 5Pa以下の真空 下で 8 0 0 °C以上に予め加熱された後、 予備加熱室 3と前室 4との圧力 調整が済み次第、前室 4に設けられている昇降式のサセプタ 9に設置す るように移動させられる。 The object 5 is in a state of being placed on the table 8 of the preheating chamber 3, from about 1 0 "2 P a less is the pressure of Jo Tokoro, preferably under a vacuum of less than about 1 0- 5 Pa After being preheated to 800 ° C or more in the preheating chamber 3 and the front chamber 4, as soon as the pressure has been adjusted, the preheating chamber 3 is moved to be installed on the elevating susceptor 9 provided in the front chamber 4. Let me do.
前室 4に移動させられた被処理物 5は、 一部図示している昇降式の移 動手段 1 0によって前室 4から加熱室 2に移動させられる。 このとき、 加熱室 2内は、 図示しなレ、真空ボンプで予め所定の圧力である約 1 0一1 P a以下、 好ましくは約 1 0— 2 P a以下、 更に好ましくは、 約 1 0一5 Pa 以下の真空、 又は予め圧力約 1 0— 2P a以下、 好ましくは、約 1 0— 5P a 以下の高真空に到達した後に若干の不活性ガスを導入し、 約 1 0— 以下、 好ましくは約 1 0 _2P a以下の希薄ガス雰囲気下にし、 加熱ヒー タ 1 1によって約 8 0 0 °C以上 2 6 0 0 °C以下の範囲、 好ましくは、 約 1 2 0 0 °C以上 2 3 0 0 °C以下に設定されていることが好ましい。 The workpiece 5 moved to the front chamber 4 is moved from the front chamber 4 to the heating chamber 2 by the vertically moving means 10 shown in part. At this time, the heating chamber 2 is shown Shinare, about 1 0 one 1 P a less in advance predetermined pressure in the vacuum ordinary man, less preferably about 1 0- 2 P a, more preferably from about 1 0 one 5 Pa or less vacuum, or pre-pressure of about 1 0 2 P a or less, preferably, to introduce some inert gas after reaching the high vacuum of below about 1 0 5 P a, about 1 0 or less, preferably about 1 0 _ 2 P a following and under a lean atmosphere, about 8 0 0 ° C or higher by the heating heater motor 1 1 2 6 0 0 ° C or less, preferably in the range of from about 1 2 0 0 It is preferable that the temperature is set to not less than ° C and not more than 230 ° C.
加熱室 2内の状態をこのように設定しておき、被処理物 5を前室 4か ら加熱室 2内に移動することによって、被処理物 5を約 8 0 0 °C以上 2 6 0 0 °C以下の範囲、 好ましくは、 約 1 2 0 0 °C以上 2 3 0 0 °C以下の 範囲内で所定の温度に急速に加熱することができる。 The condition in the heating chamber 2 is set in this way, and the workpiece 5 is By moving the object 5 into the heating chamber 2, the object 5 is heated to a temperature of about 800 ° C. or more and 260 ° C. or less, preferably, about 1200 ° C. or more and 230 ° C. It can be rapidly heated to a predetermined temperature within the following range.
また、 加熱室 2には、 加熱ヒータ 1 1の周囲に反射鏡 1 2が配置され ており、加熱ヒータ 1 1の熱を反射して加熱ヒータ 1 1の内部に位置す る被処理物 5側に集中するようにしている。  In the heating chamber 2, a reflecting mirror 12 is disposed around the heater 11, and reflects the heat of the heater 11 so as to reflect the heat of the heater 5, which is located inside the heater 11. I try to focus on it.
この反射鏡 1 2は、 図 1に示すような筐体状のものであっても、 例え ば、 図 5 ( a )、 図 5 ( b ) に示すようなドーム状の反射鏡 1 2とする こともできる。 このように、 反射鏡 1 2をドーム状とすることで、 加熱 ヒータ 1 1に平板状 のヒータを使用することも可能となり、 平板状の 加熱ヒータ 1 1を使用した場合であっても、加熱ヒータ 1 1からの熱を 効率良く被処理物 5に集中させることができる。  The reflecting mirror 12 may be a case-shaped reflecting mirror 12 as shown in FIG. 1, for example, a dome-shaped reflecting mirror 12 as shown in FIGS. 5 (a) and 5 (b). You can also. By making the reflecting mirror 12 dome-shaped, it is possible to use a flat heater for the heater 11, and even if the flat heater 11 is used, the heating can be performed. The heat from the heater 11 can be efficiently concentrated on the workpiece 5.
移動手段 1 0と加熱室 2との嵌合部 2 5は、移動手段 1 0に設けられ ている凸状の段付き部 2 1と、加熱室 2に形成されている凹状の段付き 部 2 2とで構成されている。 そして、 移動手段 1 0の段付き部 2 1の各 段部に設けられている図示しない Oリング等のシール部材によって、加 熱室 2は密閉された状態となる。  The fitting part 25 between the moving means 10 and the heating chamber 2 includes a convex stepped part 21 provided in the moving means 10 and a concave stepped part 2 formed in the heating chamber 2. It consists of two. The heating chamber 2 is sealed by a sealing member such as an O-ring (not shown) provided at each step of the stepped portion 21 of the moving means 10.
また、加熱室 2内の加熱ヒータ 1 1の内側には、 被処理物 5内から漏 出する汚染物を、加熱ヒータ 1 1と接触しないように除去する汚染物除 去機構 2 0が設けられている。 これによつて、 加熱ヒータ 1 1が汚染物 と反応し劣化することを抑制できる。 前記汚染物としては、 例えば、 単 結晶 SiCの液相ェピタキシャル成長法における熱処理の場合、 S i蒸気 が挙げられる。  A contaminant removal mechanism 20 is provided inside the heater 11 in the heating chamber 2 for removing contaminants leaking from the workpiece 5 so as not to contact the heater 11. ing. This can suppress the heater 11 from reacting with contaminants and deteriorating. The contaminants include, for example, Si vapor in the case of heat treatment in the liquid phase epitaxial growth method of single crystal SiC.
このように、 加熱室内に、 密閉容器から漏出するシリコン蒸気等の汚 染物を除去する汚染物除去機構が設けられているため、加熱室内に設け られているヒータ等の加熱手段のシリコン蒸気等の汚染物による劣化 を防止することができる。 ここで、 汚染物除去機構としては、 真空ボン プ及び、 他の一般的な排気手段等を使用することができる。 As described above, since the contaminant removing mechanism for removing contaminants such as silicon vapor leaking from the closed container is provided in the heating chamber, the silicon vapor or the like of the heating means such as the heater provided in the heating chamber is provided. Deterioration due to contaminants Can be prevented. Here, as the contaminant removing mechanism, a vacuum pump and other general exhaust means can be used.
この汚染物除去機構 2 0は、 被処理物 5内から漏出する汚染物を除去 するものであれば、 特に限定されるものではない。  The contaminant removing mechanism 20 is not particularly limited as long as it removes contaminants leaking from the inside of the processing object 5.
加熱ヒータ 1 1は、 黒鉛製若しくはタンタル等の金属製の抵抗加熱ヒ ータであり、 サセプタ 9に設置されているベースヒータ 1 1 aと、 側部 及び上部が一体に筒状に形成された上部ヒータ l i bとで構成されて いる。 このように、 被処理物 5を覆うように加熱ヒータ 1 1が配置され ているため、 被処理物 5を均等に加熱することが可能となる。'  The heating heater 11 is a resistance heating heater made of a metal such as graphite or tantalum, and has a cylindrical shape with a side heater and a base heater 11 a installed on the susceptor 9. It consists of an upper heater lib. As described above, since the heater 11 is disposed so as to cover the object 5, the object 5 can be heated evenly. '
なお、 加熱室 2の加熱方式は、 本実施形態に示す抵抗加熱ヒータに限 定されるものではなく、例えば、高周波誘導加熱式であっても構わない。 被処理物 5として、 例えば、 単結晶 SiCの液相ェピタキシャル成長法 における熱処理の場合、 図 2に示すような上容器 5 aと、 下容器 5 bと で構成される密閉容器 5を用いることが好ましい。 この密閉容器 5内に、 後述するように、 単結晶 S i C基板 1 6と多結晶 S i C基板を積層、 収 納して熱処理を行う (図 3参照)。  The heating method of the heating chamber 2 is not limited to the resistance heater shown in the present embodiment, but may be, for example, a high-frequency induction heating method. For example, in the case of a heat treatment in the liquid-phase epitaxial growth method of single-crystal SiC, a closed container 5 composed of an upper container 5a and a lower container 5b as shown in FIG. Is preferred. As described later, a single-crystal SiC substrate 16 and a polycrystalline SiC substrate are stacked and stored in the closed container 5 and heat-treated (see FIG. 3).
密閉容器 5は、 図 2に示すように、 上容器 5 aと、 下容器 5 bとで構 成され、 それぞれタンタル又は炭化タンタルのいずれかで形成されてレ、 る。  As shown in FIG. 2, the closed container 5 is composed of an upper container 5a and a lower container 5b, and each is formed of either tantalum or tantalum carbide.
密閉容器がタンタル又は炭化タンタルで形成されてい.るため、 密閉容 器の S i C化を抑制するとともに、 加熱室内を確実に圧力約 1 0 - 2 P a 以下とすることができる。 . Sealed container is formed of a tantalum or tantalum carbide because, while suppressing the S i C of the sealed container, the heating chamber to ensure that the pressure of about 1 0 - can be less than or equal to 2 P a.
そして、 上容器 5 aと下容器 5 bとの嵌め合わせ時の嵌合部の遊ぴは 約 2 mm以下であることが好ましい。 これによつて、 密閉容器 5内への 不純物の混入を抑制することができる。 また、 遊びを約 2 mm以下とす ることによって、 密閉容器 5内の S i分圧を 1 0 P a以下とならないよ うに制御することもできる。 このため、 密閉容器 5内の S i C分圧及ぴ S i分圧を高め、 単結晶 S i C基板 1 6及ぴ多結晶 S i C基板 1 4, 1 5、 極薄金属 S i融液 1 7の昇華の防止に寄与するようになる。 なお、 この上容器 5 aと下容器 5 bとの嵌め合い時の嵌合部の遊びが約 2 m mよりも大きい場合は、密閉容器 5内の S i分圧を所定圧に制御するこ とが困難になるばかりでなく、 不純物がこの嵌合部を介して密閉容器 5 内に侵入することもあるため、 好ましくない。 この密閉容器 5は、 図 2 に示すように、形状が四角のものに限らず、円形のものであっても良い。 このように、 前記密閉容器が上容器及び下容器で形成され、 '前記上容 器及び前記下容器の嵌合部からシリコン蒸気が漏れ出す程度に前記密 閉容器内の圧力が前記加熱室内の圧力よりも高くなるように制御し、 前 記密閉容器内に不純物が混入するのを抑制することを特徴とする。 It is preferable that the play of the fitting portion when fitting the upper container 5a and the lower container 5b is about 2 mm or less. As a result, it is possible to suppress the entry of impurities into the closed container 5. Also, by setting the play to about 2 mm or less, the partial pressure of Si in the closed vessel 5 does not become 10 Pa or less. Can also be controlled. Therefore, the partial pressure of SiC and the partial pressure of Si in the sealed container 5 are increased, and the monocrystalline SiC substrate 16 and the polycrystalline SiC substrates 14, 15 and ultrathin metal Si The liquid 17 contributes to the prevention of sublimation. If the play of the fitting portion at the time of fitting the upper container 5a and the lower container 5b is larger than about 2 mm, the partial pressure of Si in the closed container 5 is controlled to a predetermined pressure. Not only is difficult, but also impurities may enter the sealed container 5 via the fitting portion, which is not preferable. As shown in FIG. 2, the shape of the closed container 5 is not limited to a square, but may be a circular one. As described above, the closed container is formed by the upper container and the lower container, and the pressure in the closed container is increased to such an extent that the silicon vapor leaks from the fitting portion between the upper container and the lower container. It is characterized by controlling the pressure to be higher than the pressure and suppressing the contamination of the closed container with impurities.
密閉容器をこのような構造とすることによって、 密閉容器内への不純 物の混入を抑制することができる。 これによつて、 バッググランド約 5 X 1 0 15/ c m3以下の純度とできる。 With such a structure of the closed container, entry of impurities into the closed container can be suppressed. As a result, the purity of the bag ground is about 5 × 10 15 / cm 3 or less.
また、 下容器 5 bには、 図 3及ぴ図 4に示すように、 3本の支持部 1 3が設けられている。 この支持部 1 3によって、 後述する種結晶となる 多結晶 S i C基板 1 4を支持している。'なお、 支持部 1 3は、 本実施形 態に示すようなピン状のものである必要はなく、 例えば、 S i C等で形 成されているリング状のものであってもよい。  Further, the lower container 5b is provided with three support portions 13 as shown in FIGS. The supporting portion 13 supports a polycrystalline SiC substrate 14 serving as a seed crystal described later. Note that the support portion 13 need not be a pin-shaped member as shown in the present embodiment, but may be a ring-shaped member made of, for example, SiC.
図 3は上容器 5 aと下容器 5 bとが嵌合した状態の密閉容器 5内に 設置されている種結晶となる 6 H型の単結晶 S i C基板 1 6と、 この単 結晶 S i C基板 1 6を挟み込む多結晶 S i C基板 1 5と、 これらの間に 形成される極薄金属 S i融液 1 7の状態を示している。 なお、 極薄金属 S i融液 1 7は熱処理時に形成されるものであり、 この極薄金属 S i融 液 1 7の S i源となるのは、種結晶となる単結晶 S i C基板 1 6の表面 に予め金属 S iを CVD等によって約 1 0 μπιから 50 μιηとなるよ う膜を形成するか、 S . i粉末を置く等その方法は特に限定されない。 図 3に示すように、 これら単結晶 S i C基板 16、 多結晶 S i C基板 14, 15及び極薄金属 S i融液 17は、 密閉容器 5を構成する下容器 5 bに設けられている支持部 13に载置されて、密閉容器 5内に収納さ れている。 ここで、 単結晶 S i C基板 16は、 昇華法で作製された単結 晶 6H— S i Cのゥヱハーより所望の大きさ (10 X 1 Omm以上 20 X 2 Omm以下) に切り出されたものである。 また、 多結晶 S i C基板 14, 15は、 C V D法で作製された S i半導体製造工程でダミーゥェ ハーとして使用される S i Cから所望の大きさに切り出されたものを 使用することができる。 これら各基板 16, 14, 15は表面が鏡面に 研磨加工され、 表面に付着した油類、 酸化膜、 金属等が洗浄等によって 除去されている。 ここで、 下部側に位置する多結晶 S i C基板 14は単 結晶 S i C基板 16の密閉容器 5からの侵食を防止するもので、 単結晶 S i C基板 16上に液相ェピタキシャル成長する単結晶 S i Cの品質 向上に寄与するものである。 Figure 3 shows a 6 H-type single crystal SiC substrate 16 serving as a seed crystal installed in a closed container 5 in which the upper container 5a and the lower container 5b are fitted together, and the single crystal S This figure shows the state of a polycrystalline SiC substrate 15 sandwiching the iC substrate 16 and an ultra-thin metal Si melt 17 formed between them. The ultra-thin metal Si melt 17 is formed during heat treatment, and the Si source of the ultra-thin metal Si melt 17 is a single crystal SiC substrate serving as a seed crystal. 1 6 surface The method is not particularly limited, such as forming a film of metal Si in advance so as to have a thickness of about 10 μπη to 50 μιη by CVD or placing Si powder in advance. As shown in FIG. 3, the single crystal SiC substrate 16, the polycrystalline SiC substrates 14, 15 and the ultra-thin metal Si melt 17 are provided in a lower container 5b constituting a closed container 5. And is housed in a closed container 5. Here, the single-crystal SiC substrate 16 was cut into a desired size (10 X 1 Omm or more and 20 X 2 Omm or less) from a single crystal 6H—SiC substrate manufactured by the sublimation method. It is. In addition, the polycrystalline SiC substrates 14 and 15 can be cut out to a desired size from SiC used as a dummy wafer in a Si semiconductor manufacturing process manufactured by a CVD method. . The surfaces of these substrates 16, 14, and 15 are mirror-polished, and oils, oxide films, metals, and the like adhering to the surfaces are removed by washing or the like. Here, the polycrystalline SiC substrate 14 located on the lower side is for preventing erosion of the monocrystalline SiC substrate 16 from the closed vessel 5 and is formed by liquid phase epitaxial growth on the monocrystalline SiC substrate 16. This contributes to the improvement of the quality of single crystal SiC.
また、 この密閉容器 5内には、 熱処理時における S i Cの昇華、 S i の蒸発を制御するための S i片と共に設置することもできる。 S i片を 同時に設置することによって、熱処理時に昇華して密閉容器 5内の S i C分圧及び S i分圧を高め、 単結晶 S i C基板 16及び多結晶 S i C基 板 14, 15、 極薄金属 S i融液 1 7の昇華の防止に寄与するようにな る。 また、 密閉容器 5内の圧力を加熱室 2内の圧力よりも高くなるよう に調整でき、 これによつて、 上容器 5 aと下容器 5 bとの嵌合部から常 に S i蒸気を放出でき、 不純物の密閉容器 5内への侵入を防止できる。 このように構成された密閉容器 5は、予備加熱室 3内に設置された後、 約 10— 2P a 以下、 好ましくは、 約 10— 5P a以下に設定され、 予備カロ 熱室 3に設けられているランプ及び又は口ッドヒーター等の加熱手段 6によって約 800°C以上、好ましくは約 1000°C以上に加熱される。 この際、 加熱室 2内も同様に、 約 10— 2 P a以下、 好ましくは、 約 10 一5 P a以下に設定された後、 約 800°C以上 2600°C以下の範囲、 好 まレくは、約 1200°C以上 2300°C以下の範囲の所定の温度に加熱 しておくことが好ましい。 Further, in this closed container 5, it is possible to install together with Si pieces for controlling sublimation of SiC and evaporation of Si during the heat treatment. By simultaneously installing the Si pieces, they are sublimated during the heat treatment to increase the SiC partial pressure and Si partial pressure in the closed vessel 5, and the single crystal SiC substrate 16 and the polycrystalline SiC substrate 14, 15. It contributes to the prevention of sublimation of ultra-thin metal Si melt 17. In addition, the pressure in the closed vessel 5 can be adjusted to be higher than the pressure in the heating chamber 2, whereby the Si vapor is always discharged from the fitting portion between the upper vessel 5a and the lower vessel 5b. Can be released and impurities can be prevented from entering the closed container 5. Closed container 5 thus configured as described above, after being installed in the preheating chamber 3, below about 10- 2 P a, preferably, is set equal to or less than about 10- 5 P a, preliminary Caro It is heated to about 800 ° C. or more, preferably about 1000 ° C. or more, by a heating means 6 such as a lamp and / or a mouth heater provided in the heat chamber 3. In this case, as well inside the heating chamber 2, about 10- 2 P a or less, preferably, after being set to less than about 10 one 5 P a, about 800 ° C or higher 2600 ° C or less in the range, good rare Preferably, it is preferably heated to a predetermined temperature in the range of about 1200 ° C to 2300 ° C.
予備加熱室 3内で予備加熱された密閉容器 5は、 ゲートバルブ 7を開 き、前室 4のサセプタ 9に移動して、昇降手段 10によって、約 800°C 以上 2600 °C以下の範囲、 好ましくは、 約 1200 °C以上 2300 °C 以下の範囲の所定の温度に加熱されている加熱室 2内に移動される。 これによつて、 密閉容器 5は、 約 30分以内の短時間で急速に約 80 0 以上 2600°C以下の範囲、 好ましくは、 約 1200 °C以上 230 0 °C以下の範囲の所定の温度に加熱される。加熱室 2での熱処理温度は、 密閉容器 5内に同時に設置している金属 S i片が溶融する温度であれ ば良いが、本実施形態においては約 1200°C以上 2300°C以下の範 囲の所定の温度とする。 処理温度を高温で行なうほど、 溶融 S iと S i Cとの濡れ性が上昇し、 溶融 S iが毛細管現象によって、 単結晶 S i C 基板 16と多結晶 S i C基板 14, 1 έとの間に浸透しやすくなる。 こ れによって、 単結晶 S i C基板 16と多結晶 S i C基板 14, 15との 間に厚み約 50 μιη以下の極薄金属 S i融液 17を介在させることが できる。  The closed vessel 5 preheated in the preheating chamber 3 opens the gate valve 7 and moves to the susceptor 9 in the front chamber 4, and is moved by the elevating means 10 in a range of about 800 ° C to 2600 ° C, Preferably, it is moved into the heating chamber 2 which is heated to a predetermined temperature in the range of about 1200 ° C or more and 2300 ° C or less. As a result, the temperature of the sealed container 5 is rapidly increased within a short time within about 30 minutes within a range from about 800 to 2600 ° C, preferably from about 1200 to 2300 ° C. Heated. The heat treatment temperature in the heating chamber 2 may be a temperature at which the metal Si pieces simultaneously installed in the closed vessel 5 are melted, but in the present embodiment, it is in a range of about 1200 ° C or more and 2300 ° C or less. At a predetermined temperature. As the processing temperature is increased, the wettability between the molten Si and SiC increases, and the molten Si becomes a single-crystal SiC substrate 16 and a polycrystalline SiC substrate 14, 1έ due to a capillary phenomenon. It is easy to penetrate between. As a result, an ultrathin metal Si melt 17 having a thickness of about 50 μιη or less can be interposed between the single-crystal SiC substrate 16 and the polycrystalline SiC substrates 14 and 15.
本実施形態に係る熱処理装置によると、短時間で約 800°C以上 26 00°C以下の範囲、 好ましくは、 約 1200°C以上 2300°C以下の範 囲内で所定の温度とすることが可能であるため、結晶成長を短時間で終 了することが可能となり結晶成長の効率化が可能となる。  According to the heat treatment apparatus according to the present embodiment, it is possible to set the predetermined temperature within a range of about 800 ° C. to 260 ° C. in a short time, preferably within a range of about 1200 ° C. to 2300 ° C. Therefore, crystal growth can be completed in a short time, and the efficiency of crystal growth can be improved.
また、 熱処理時間は、 生成される単結晶 S i Cが所望の厚みとなるよ うに適宜選択することが可能である。ここで、 S i源となる金属 S iは、 量が多くなると、 熱処理時に溶融する量が多くなり、 極薄金属 S i融液 が約 5 0 μ m以上の厚みになると、 金属 S i融液が不安定になり、 また Cの輸送が阻害され、 単結晶 S i Cの育成に適さず、 また単結晶 S i C の形成に必要でない S iが、 溶融し密閉容器 5の底部に溜まり、 単結晶 S i C形成後に再度固化し.た金属 S iを除去する必要が生じる。 このた め、 金属 S iの大きさ及ぴ厚さについては、 形成する単結晶 S i Cの大 きさに合わせ適宜選択する。 Also, the heat treatment time is such that the generated single crystal S i C has a desired thickness. It can be appropriately selected as described above. Here, as the amount of the metal Si as the Si source increases, the amount melted during the heat treatment increases, and when the ultra-thin metal Si melt has a thickness of about 50 μm or more, the metal Si melt is melted. The liquid becomes unstable and the transport of C is hindered, and Si not suitable for growing single crystal SiC and not necessary for forming single crystal SiC melts and accumulates at the bottom of the closed vessel 5. However, it is necessary to remove the metal Si solidified again after the formation of the single crystal SiC. For this reason, the size and thickness of the metal Si are appropriately selected according to the size of the single crystal SiC to be formed.
ところで、 単結晶 S i Cの成長メカニズムについて簡単に説明すると、 熱処理に伴い単結晶 S i C基板 1 6と上部の多結晶 S i C基板 1 5と の間に溶融した S iが侵入して、 両基板 1 6, 1 5の界面に厚さ約 3 0 μ ηι以上 5 0 μ m以下の金属 S i融液層 1 7を形成する。 この金属 S i 融液層 1 7は、 熱処理温度が高温になるにしたがって、 薄くなり、 約 3 By the way, the growth mechanism of single-crystal SiC will be briefly described. Melt Si penetrates between the single-crystal SiC substrate 16 and the upper polycrystalline SiC substrate 15 due to the heat treatment. Then, a metal Si melt layer 17 having a thickness of about 30 μηι or more and 50 μm or less is formed at the interface between the substrates 16 and 15. The metal Si melt layer 17 becomes thinner as the heat treatment temperature increases,
0 μ ηι程度となる。 そして、 多結晶 S i C基板 2から流れ出した C原子 は S i融液層を通して単結晶 S i C基板 1 6に供給され、 この単結晶 SIt is about 0 μηι. Then, the C atoms flowing out of the polycrystalline SiC substrate 2 are supplied to the monocrystalline SiC substrate 16 through the Si melt layer, and the monocrystalline SiC
1 C基板 1上に 6 H— S i C単結晶として液相ェピタキシャル成長 (以 下、 L P Eという。) する。 このように、 種結晶となる単結晶 S i C基 板 1 6と多結晶 S i C基板 1 4との間が小さいため、 熱処理時に熱対流 が生成しない。 このため、 形成される単結晶 S i Cと、 種結晶となる単 結晶 S i C基板 1 6と界面が非常に滑らかとなり、 この界面に歪み等が 形成されない。 したがって、 非常に平滑な単結晶 S i Cが形成される。 また、 熱処理時に S i Cの核生成が抑制されるため、 形成される単結晶 S i Cの微小結晶粒界の生成を抑制することができる。 本実施形態に係 る単結晶 S i Cの育成方法においては、 溶融した S iが単結晶 S i C基 板 1 6と多結晶 S i C基板 1 5との間にのみ侵入すること力 ら、 他の不 純物が成長する単結晶 S i C中に侵入することがないため、 バッグダラ ンド約 5 X 1 0 15ノ c m3以下の高純度の単結晶 S i Cを生成すること が可能となる。 Liquid phase epitaxial growth (hereinafter referred to as LPE) as a 6H—SiC single crystal on 1C substrate 1. As described above, since the distance between the single-crystal SiC substrate 16 serving as a seed crystal and the polycrystalline SiC substrate 14 is small, no thermal convection is generated during the heat treatment. Therefore, the interface between the formed single crystal SiC and the single crystal SiC substrate 16 serving as a seed crystal becomes extremely smooth, and no distortion or the like is formed at this interface. Therefore, a very smooth single crystal SiC is formed. In addition, since the nucleation of SiC is suppressed during the heat treatment, the generation of the fine crystal grain boundaries of the formed single crystal SiC can be suppressed. In the method for growing single-crystal SiC according to the present embodiment, the force of molten Si penetrating only between single-crystal SiC substrate 16 and polycrystalline SiC substrate 15 is considered. However, since other impurities do not penetrate into the growing single crystal SiC, Bagdara It is possible to produce a single crystal SiC having a high purity of about 5 × 10 15 cm 3 or less.
以上のような本実施形態に係る熱処理装置は、被処理物を圧力約 1 0 一2 P a以下、好ましくは約 1 0—5 P a以下の真空、又は予め圧力約 1 0 "2 P a以下に好ましくは約 1 0— 5 P a以下の真空に到達した後に不活 性ガスを導入した希薄ガス雰囲気下において短時間で約 8 0 0 °C以上 2 6 0 0 °C以下の範囲、 好ましくは、 約 1 2 0 0 °C以上 2 3 0 0 °C以下 の温度範囲に加熱する加熱室と、 前記加熱室に連結され、 前記加熱室に 被処理物を移動するための移動手段が設けられている前室と、'前記前室 に連結され、前記被処理物を約 1 0— 2 P a以下好ましくは約 1 0— 5 P a 以下の真空において予め約 8 0 0 °C以上に加熱する予備加熱室とを備 7 る。 Above such a heat treatment apparatus according to the present embodiment, the object to be treated to a pressure of about 1 0 one 2 P a or less, preferably about 1 0- 5 P a vacuum below, or pre-pressure of about 1 0 "2 P a below preferably about 1 0- 5 P a following in lean gas atmosphere was introduced inert gas after reaching the vacuum briefly at about 8 0 0 ° C over 2 6 0 0 ° C or less range, Preferably, a heating chamber for heating to a temperature range of about 1200 ° C. or more and 230 ° C. or less, and a moving means connected to the heating chamber and for moving an object to be processed to the heating chamber are provided. a front chamber provided, 'coupled to said front chamber, the object to be treated for about 1 0- 2 P a less preferably about 1 0- 5 P a previously about 8 0 0 ° C or more in the following vacuum There is a pre-heating chamber for heating the room 7.
そして、 本実施形態に係る熱処理装置によると、圧力約 1 0— 2 P a以 下好ましくは約 1 0 -5 P a以下の真空、 又は予め圧力約 1 0— 2 P a以下 好ましくは約 1 0— 5 P a以下の高真空に到達した後に若干の不活性ガス を導入し、約 1 0 -1 P a以下、好ましくは約 1 0 - 2 P a以下の希薄ガス 雰囲気下において、 短時間で約 8 0 0 °C以上 2 6 0 0 °C以下の範囲、 好 ましくは、 約 1 2 0 0 °C以上 2 3 0 0 °C以下の範囲内で所定の温度に加 熱することができるため、被処理物として単結晶 S i Cを形成する場合、 従来の単結晶 S i Cの液相成長法 (L P E法) では、 困難であった表面 に約 1 0 μ m以上の幅広のテラスを有した単結晶 S i Cを形成するこ とが可能となる。 Then, according to the heat treatment apparatus of the present embodiment, a pressure of about 1 0 2 P a following lower and preferably about 1 0 - 5 P a vacuum below, or previously pressure of about 1 0 2 P a less preferably about 1 0-5 introduce some inert gas after reaching the P a high vacuum below about 1 0 - 1 P a or less, preferably about 1 0 - in 2 P a under less lean gas atmosphere, a short time Heating to a predetermined temperature in the range of about 800 ° C or more and 260 ° C or less, preferably in the range of about 1200 ° C or more and 230 ° C or less. Therefore, when single crystal SiC is formed as an object to be processed, a surface of about 10 μm or more can be formed on the surface, which has been difficult by the conventional liquid crystal growth method of single crystal SiC (LPE method). It becomes possible to form a single crystal SiC having a terrace of this type.
また、 本発明の実施形態に係る熱処理方法は、 前記被処理物を予め圧 力約 1 0— 2 P a以下好ましくは約 1 0— 5 P a以下の真空の予備加熱室 で約 8 0 0 °C以上に加熱した後、 予め約 8 0 0 °C以上 2 6 0 0 °C以下の 範囲、 好ましくは、 約 1 2 0 0 °C以上 2 3 0 0 °C以下の範囲内で所定の 温度に加熱された圧力約 1 0— 2P a以下好ましくは約 1 0—5 P a以下の 真空、 又は予め圧力約.1 0— 2 P a以下、 好ましくは約 1 0 _5P a以下の 真空に到達した後に不活性ガスを導入した希薄ガス雰囲気下の加熱室 に移動することで、 前記被処理物を、 短時間で約 8 0 0 °C以上 2 6 0 0 °C以下の範囲、 好ましくは、 約 1 2 0 0 °C以上 2 3 0 0 °C以下の範囲 内で所定の温度の温度に加熱する熱処理方法である。 The heat treatment method according to an embodiment of the present invention, the preferably pre-pressure of about 1 0- 2 P a following processing object about 1 0- 5 P a following approximately 8 0 in the preliminary heating chamber of the vacuum 0 After heating to at least ° C, a predetermined temperature within the range of approximately 800 ° C or more and 260 ° C or less, preferably within the range of approximately 1200 ° C or more and 230 ° C or less. A vacuum heated to a temperature of about 10 to 2 Pa or less, preferably about 10 to 5 Pa or less, or a pressure of about 0.1 to 2 Pa or less, preferably about 10 to 5 Pa or less By moving to a heating chamber under a rare gas atmosphere into which an inert gas has been introduced after the vacuum has been reached, the object to be treated can be quickly cooled to a temperature within a range of about 800 ° C to 260 ° C. Preferably, it is a heat treatment method of heating to a predetermined temperature within a range of about 1200 ° C. or more and 230 ° C. or less.
更に、 本発明の実施形態に係る単結晶炭化ケィ素の液相ェピタキシャ ル成長法における熱処理方法は、種結晶となる単結晶炭化ケィ素基板と 多結晶炭化ケィ素基板とを重ね、 密閉容器内に設置して、 高温熱処理を 行なうことによって、前記単結晶炭化ケィ素基板と前記多結晶炭化ケィ 素基板との間に、 熱処理中に極薄金属シリコン融液を.介在させ、 前記単 結晶炭化ケィ素基板上に単結晶炭化ケィ素を液相ェピタキシャル成長 させる熱処理方法である。  Further, in the heat treatment method in the liquid phase epitaxial growth method of single crystal silicon carbide according to the embodiment of the present invention, the single crystal silicon carbide substrate serving as a seed crystal and the polycrystalline silicon carbide substrate are overlapped with each other in an airtight container. And performing a high-temperature heat treatment so that an ultra-thin metal silicon melt is interposed between the single-crystal silicon carbide substrate and the polycrystalline silicon carbide substrate during the heat treatment. This is a heat treatment method for liquid phase epitaxial growth of single-crystal silicon carbide on a silicon substrate.
そして、 前記密閉容器を、 予め圧力約 1 0—2 P a以下の予備加熱室で 約 8 0 0 °C以上に加熱するとともに、 前記密閉容器内を圧力約 1 0— 5P a以下に減圧し、 予め約 1 40 0で以上 2 3 0 0 °C以下の範囲内で所定 の温度に加熱された圧力約 1 0— 2P a以下、 好ましくは約 10- 5Pa以下の 真空、 又は予め圧力約 1 0—5 P a以下に到達した後に不活性ガスを導入 した希薄ガス雰囲気下の加熱室に移動して設置することで、 前記単結晶 炭化ケィ素基板と多結晶炭化ケィ素基板とを短時間で約 1 40 0 °C以上 2 3 0 0 °C以下の温度範囲内で所定の温度に加熱して微結晶粒界の存 在しない、 表面のマイク口パイプ欠陥密度が約 1 / c m2以下である単 結晶炭化ケィ素を製造する。 Then, vacuum the sealed container, with heating to about 8 0 0 ° C or higher in advance a pressure of about 1 0- 2 P a less preheating chamber, the closed container below the pressure of about 1 0- 5 P a A pressure of about 140 to 2 Pa or less, preferably about 10 to 5 Pa or less, or a vacuum preheated to a predetermined temperature within a range of about 140 to 230 ° C. by installing moved to the heating chamber under the lean gas atmosphere with an inert gas is introduced after reaching below a pressure of about 1 0- 5 P a, the single crystal carbide Kei arsenide substrate and the polycrystalline carbide Kei arsenide substrate Is heated to a predetermined temperature within a temperature range of about 140 ° C. or more and 230 ° C. or less in a short time so that there is no fine crystal grain boundary. A single crystal silicon carbide having a size of not more than cm 2 is produced.
加えて、 前記密閉容器を、 前記加熱室に移動した際に、 前記密閉容器 の軸方向には温度差を設けず、 前記密閉容器の面内方向に温度勾配を設 け、 前記温度勾配を任意に制御することによつて微結晶粒界の生成を抑 制する。 前記密閉容器の軸方向とは、 前記密閉容器内で、 前記単結晶炭 化ケィ素基板と多結晶炭化ケィ素基板とが積層される方向を意味し、 前 記密閉容器の面内方向とは、 前記積層方向に対して垂直な方向、 即ち、 結晶表面の面方向を意味している。 In addition, when the closed container is moved to the heating chamber, a temperature gradient is not provided in an axial direction of the closed container, a temperature gradient is provided in an in-plane direction of the closed container, and the temperature gradient is arbitrary. Control of fine grain boundaries Control. The axial direction of the closed container means a direction in which the single-crystal silicon carbide substrate and the polycrystalline silicon carbide substrate are stacked in the closed container, and the in-plane direction of the closed container is The direction perpendicular to the lamination direction, that is, the plane direction of the crystal surface.
密閉容器の軸方向に温度差を設けることがないため、 単結晶 S i C基 板と多結晶 S i C基板との間に温度差が形成されないため、 熱平衡状態 で熱処理することが可能となり、 また金属 S i融液が薄いため熱対流が 抑制される。このため、成長初期から終了まで欠陥の誘発を抑制できる。 さらに、 熱処理時に核生成が抑制されるため、 形成される単結晶 S i C の微小結晶粒界の生成が抑制できる。 また、 簡易な熱処理装置を用いる ことができるとともに、 加熱時の厳密な温度制御が必要ないことから製 造コストの大幅な低減化が可能となる。 加えて、 密閉容器の面内方向に 温度勾配を設けることで、 この温度勾配を任意に制御することによって、 単結晶 S i Cの成長時に、 微結晶粒界を温度勾配の高温側から低温側に 移動させるように単結晶 S i Cを成長させることができ、 結果として、 マイク口パイプ欠陥密度を約 1 / c m2以下の単結晶 S i Cを形成する ことができる。 Since there is no temperature difference in the axial direction of the closed vessel, no temperature difference is formed between the single crystal SiC substrate and the polycrystalline SiC substrate, so that heat treatment can be performed in a thermal equilibrium state. Also, since the metal Si melt is thin, thermal convection is suppressed. Therefore, induction of defects can be suppressed from the beginning to the end of growth. Furthermore, since nucleation is suppressed during the heat treatment, the formation of fine crystal grain boundaries of the formed single crystal S i C can be suppressed. In addition, a simple heat treatment apparatus can be used, and strict temperature control during heating is not required, so that manufacturing costs can be significantly reduced. In addition, by providing a temperature gradient in the in-plane direction of the closed vessel, the temperature gradient can be arbitrarily controlled, so that during the growth of single crystal SiC, the fine crystal grain boundaries are shifted from the high temperature side to the low temperature side of the temperature gradient. Thus, single crystal SiC can be grown so as to move to a single crystal, and as a result, single crystal SiC having a microphone opening pipe defect density of about 1 / cm 2 or less can be formed.
前記極薄金属 S i融液は、 約 5 0 μ m以下の厚みである。  The ultra-thin metal Si melt has a thickness of about 50 μm or less.
熱処理中に単結晶 S i C基板と多結晶 S i C基板との間に介在され る極薄金属 S i融液が約 5 0 μ m以下、 好ましくは約 3 0 m以下であ るため、 多結晶 S i C基板から溶解した Cが単結晶 S i C基板表面へ拡 散により輸送され、 単結晶 S i Cの成長が促進される。 前記極薄金属シ リコン融液が約 5 0 μ m以上の厚みになると、 金属シリコン融液が不安 定になり、 また Cの輸送が阻害され、 単結晶 S i Cの育成に適さない。 このような本発明によれば、 従来の昇華法等の高温熱処理環境と同一 環境で局所的な液相ェピタキシャル成長を高温で行なうことができる ため、 種結晶に含まれるマイクロパイプ欠陥を引き継がず、 マイクロパ イブ欠陥の閉塞を行なうことができる。 また、 成長表面が常に S i融液 と接するため、 S i過剰の状態が形成され、 S iの不足に起因する欠陥 の発生が抑制されるとともに、使用している S i融液の外部との接触面 積が微小なため、 成長表面への不純物の混入が抑制でき、 高純度で結晶 性に優れた高品質高性能の単結晶 S i Cを育成することができる。 しか も従来の LP E法に比べて、 本成長法は非常に高温で、 短時間での成長 が可能であるために、従来の L P E法に比べて成長速度を著しく速くす ることができ、 高品質単結晶 S i Cの育成効率を非常に高くすることが できる。 さらに、 単結晶育成時に厳密な温度勾配制御をする必要性がな く、 簡易な装置によることが可能となる。 これらのことから、 S i G a A sなどの既存の半導体材科に比べて高温、 高周波、 耐電圧、 耐環境 性に優れパワーデバイス、 高周波デバイス用半導体材科として期待され ている単結晶 S i Cの実用化を促進することができる。 Since the ultrathin metal Si melt interposed between the single crystal SiC substrate and the polycrystalline SiC substrate during the heat treatment is about 50 μm or less, preferably about 30 m or less, C dissolved from the polycrystalline SiC substrate is transported by diffusion to the surface of the monocrystalline SiC substrate, and the growth of the monocrystalline SiC is promoted. When the thickness of the ultra-thin metal silicon melt is about 50 μm or more, the metal silicon melt becomes unstable, and the transport of C is hindered, which is not suitable for growing single crystal SiC. According to the present invention, local liquid phase epitaxial growth can be performed at a high temperature in the same environment as a conventional high-temperature heat treatment environment such as a sublimation method. Therefore, micropipe defects can be closed without inheriting the micropipe defects contained in the seed crystal. In addition, since the growth surface is always in contact with the Si melt, an Si excess state is formed, and the generation of defects due to the shortage of Si is suppressed, and the growth of the Si melt in use is prevented. Since the contact area is small, impurities can be suppressed from entering the growth surface, and high-quality and high-performance single-crystal SiC with high purity and excellent crystallinity can be grown. However, compared to the conventional LPE method, this growth method can be performed at a very high temperature and can be performed in a short time, so that the growth rate can be remarkably increased as compared with the conventional LPE method. The growth efficiency of high-quality single crystal SiC can be extremely increased. Furthermore, there is no need to strictly control the temperature gradient during single crystal growth, and a simple apparatus can be used. Based on these facts, compared to existing semiconductor materials such as SiGaAs, single crystal S, which is expected to be a power device and semiconductor material for high-frequency devices, is superior in high temperature, high frequency, withstand voltage and environmental resistance. The practical application of i C can be promoted.
図 6 (a) 及び図 6 (b) は、 前述の方法によって成長した単結晶 S i Cの表面状態を示す顕微鏡写真を示す図である。 図 6 (a) は表面モ フォロジ一、 図 6 (b) はその断面を示すものである。 図 6 (a) 及び 図 6 (b) に示すように、 LPE法による結晶の成長表面は、 非常に平 坦なテラスとステツプ構造が観察できる。  FIGS. 6A and 6B are micrographs showing the surface state of the single crystal SiC grown by the method described above. Fig. 6 (a) shows the surface morphology, and Fig. 6 (b) shows its cross section. As shown in Figs. 6 (a) and 6 (b), very flat terraces and step structures can be observed on the crystal growth surface by the LPE method.
図 7 (a) 及び図 7 (b) は、 この表面を原子間力顕微鏡 (以下、 A FMという。) によって観察した結果を示す図である。 図 7 (a) 及び 図 7 (b) から観察できるように、 ステップの高さはそれぞれ約 4. 0 nm、 約 8. 4 nmであることがわかる。 これは、 S i C分子 (S i C 1分子層の高さは 0. 25 ηπι) の 3分子層を基本とした整数倍の高さ である。 このように、 非常に平坦な表面となっていることがわかる。 このように、 前記単結晶 S i Cの表面が、 3分子層を最小単位とした 原子オーダーステップと、 幅広のテラスとを有し、 前記テラスの幅が約FIGS. 7 (a) and 7 (b) show the results of observing the surface with an atomic force microscope (hereinafter, referred to as AFM). As can be seen from FIGS. 7 (a) and 7 (b), the step heights are about 4.0 nm and about 8.4 nm, respectively. This is an integer multiple height based on three molecular layers of SiC molecules (SiC monolayer is 0.25 ηπι). Thus, it can be seen that the surface is very flat. Thus, the surface of the single crystal S i C has a trilayer as a minimum unit. It has an atomic order step and a wide terrace, wherein the width of the terrace is about
1 0 m以上である。 10 m or more.
テラス幅が約 1 Ο μπι以上であるため、 成長表面は、 単結晶 S i C形 成後に、 機械加工等による表面処理をする必要がない。 このため、 加工 工程を経ずとも製品とすることが可能となる。  Since the terrace width is about 1 μμπι or more, the growth surface does not need to be subjected to surface treatment such as machining after the formation of single crystal SiC. For this reason, it is possible to produce a product without going through a processing step.
また、 図 6 (a) 及び図 6 (b) の表面形態の顕 ί敷鏡写真からもわか るように、 表面にマイクロパイプ欠陥が観察されない。 これらのことか ら、 本発明による熱処理装置によって得られた単結晶 S i Cは、 表面に 形成されるマイクロパイプ欠陥の密度が約 1/c 2以下と非常に少な くなり、 表面に形成されるテラスの幅も約 1 O ^m以上と広く、 平坦で 欠陥の少ないものであることがわかる。 In addition, no micropipe defects are observed on the surface, as can be seen from the microscope images of the surface morphology in FIGS. 6 (a) and 6 (b). These things do et al, single crystal S i C obtained by the heat treatment apparatus according to the present invention, the density of micropipe defects formed on the surface of about 1 / c 2 or less and very small no longer formed on the surface The terrace width is as wide as about 1 O ^ m or more, indicating that it is flat and has few defects.
一般に、 結晶のェピタキシャル成長は、 1分子層ごとに行なわれる。 ところが、 本実施形態に係る単結晶 S i Cでは、 表面に約 1 Ο μΐΏ以上 の幅広のテラスと 3分子層を最小単位とした高さのステツプで構成さ れている。 このことから、 結晶成長の過程で、 ステップバンチングが起 きたと考えられる。 このステップバンチング機構は、 結晶成長中の表面 自由エネルギーの効果によって説明することができる。 本実施形態に係 る単結晶 6Η— S i Cは、 単位積層周期の中に AB Cと、 ACBという 2種類の積層周期の方向がある。 そこで、 積層方向の折れ曲がる層から 番号を 1、 2、 3と付けることにより、 図 8 )、 図 8 (b) 及ぴ図 8 (c) に示すように 3種類の表面が規定できる。 そして、 各面のエネ ルギ一 は以下 の よ う に求 め ら れて い る ( T. Kimoto, et al. , J. Appl. Phys.81 (1997) 3494 - 3500)。  In general, epitaxial growth of crystals is performed for each molecular layer. However, the single crystal SiC according to the present embodiment has a surface with a wide terrace of about 1 μm or more and a step having a height of a minimum of three molecular layers. This suggests that step bunching occurred during the crystal growth process. This step bunching mechanism can be explained by the effect of surface free energy during crystal growth. In the single crystal 6Η—SiC according to the present embodiment, there are two kinds of stacking cycle directions, ABC and ACB, in the unit stacking cycle. Therefore, by assigning numbers 1, 2, and 3 from the layers that are bent in the stacking direction, three types of surfaces can be defined as shown in FIGS. 8), 8 (b) and 8 (c). The energy of each surface is determined as follows (T. Kimoto, et al., J. Appl. Phys. 81 (1997) 3494-3500).
6 H 1 = 1. 3 3 m e V  6 H 1 = 1.3 3 m e V
6H2 = 6. 56 m e V  6H2 = 6.56 m e V
6H3 = 2. 34me V この様に面によつてエネルギーが異なるため、 テラスの広がる速度が 異なる。 すなわち、 テラス'は、 各面の表面自由エネルギーの高いものほ ど成長速度が速く、 図 8 (a)、 図 8 (b) 及び図 8 (c) に示すよう に、 3周期おきにステップハンチングが起きる。また、本実施形態では、 積層周期の違い(ABC又は AC B)により、 ステップ面からでている未 結合手の数が 1段おきに異なり、 このステツプ端から出ている未結合手 の数の違いにより、 3分子単位でさらにステップパンチングが起きると 考えられる。 1ステップの前進速度は、 ステップから出ている未結合手 が 1本の所では遅く、 2本の所では速いと考えられる。 この様にして、 6H-S i Cでは格子定数の半整数倍の高さ単位でステップバンチン グが進み、 成長後、 単結晶 S i Cの表面は 3分子層を最小単位とした高 さのステップと、 平坦なテラスとで覆われると考えられる。 6H3 = 2.34me V Since the energy differs depending on the surface, the spread speed of the terrace differs. In other words, the higher the surface free energy of each surface, the higher the growth rate of the terrace ', and as shown in Figs. 8 (a), 8 (b) and 8 (c), the step hunting occurs every three periods. Happens. Further, in the present embodiment, the number of unbonded hands coming out of the step surface differs every other stage due to the difference in the lamination period (ABC or ACB). Due to the difference, it is thought that further step punching occurs in units of three molecules. The forward speed of one step is considered to be slow where one unjoined hand exiting the step is fast and two where it is fast. In this way, in 6H-S i C, step bunching proceeds in units of half integral multiples of the lattice constant, and after growth, the surface of the single crystal S i C has a minimum height of three molecular layers. Steps and a flat terrace.
なお、 以上説明したように、 本発明に係る単結晶 S i Cは、 ステップ バンチングによってそのテラスが形成されている。 そのため、 ステップ は、 単結晶 S i Cの端部付近に集中して形成されるようになる。 前述し た図 6 (a), 図 6 (b) 及び図 7 (a)、 図 7 (b) は、 ステップ部分 を観察するために単結晶 S i Cの端部部分を観察したものである。  As described above, the terrace of the single crystal SiC according to the present invention is formed by step bunching. Therefore, the steps are formed intensively near the end of the single crystal SiC. Figures 6 (a), 6 (b), 7 (a), and 7 (b) described above show the end portions of the single crystal SiC in order to observe the step portion. .
また、 本実施形態における熱処理装置によって得られた単結晶 S i C は、 その成長温度が約 1400°C以上 2300°C以下の範囲と従来の単 結晶 S i Cの液相成長温度に比べて非常に高く、 また、 短時間で約 14 00°C以上 2300°C以下の範囲に加熱出来る。 成長温度が上がると、 種結晶となる単結晶 S i Cと多結晶 S i Cとの間に形成される S i融 液中への Cの溶解濃度が増加する。 また温度の上昇とともに S i融液中 での Cの拡散が大きくなると考えられる。 このように、 Cの供給源と種 結晶とが非常に近接しているため、 約 500 Mm/h rという速い成長 速度とする事も条件次第で可能になる。 このように、 本実施形態に係る単結晶 S i Cは、 表面のマイクロパイ プ欠陥の密度が 1 / c m2以下であり、 約 1 0 / m以上の幅広のテラス が形成されることから、 単結晶 S i C形成後に、 機械加工等の表面処理 が不要となる。 また、 結晶欠陥等が少ないために、 発光ダイオードや、 各種半導体ダイオードとして使用することが可能となる。 加えて、 結晶 の成長が温度 (こ依存せず、 種結晶及ぴ Cの供給源の結晶の表面エネルギ 一に依存することから、 処理炉内の厳密な温度制御の必要性がなくなる こと力、ら、 製造コス トの大幅な低減化が可能となる。 さらに、 種結晶と なる単結晶 S i C及び Cの供給源である多結晶 S i Cとの間隔が非常 に小さことから、 熱処理時の熱対流を抑制することができる。 また種結 晶となる単結晶 S i C及び Cの供給源である多結晶 S i Cとの間に温 度差が形成されにくいことから、 熱平衡状態で熱処理することができる。 前述したように、 単結晶 S i Cの結晶成長は、 結晶表面の面方向に沿 つて成長していくことから、 密閉容器の面方向に温度勾配を設けること で、 結晶の成長方向を温度の高い方から低!/、方へと方向性を持たせるこ とができるようになる。 温度勾配は、 加熱室 2に設けられているヒータ 1 1の密閉容器 5の側壁側に位置するサイ ドヒータ 1 1 b間の温度差 を設ける等の方法を例示できる。 このときの、 温度勾配の大きさを制御 することによって、 結晶の成長速度を制御することができ、 結晶表面の 微結晶粒界の生成を抑制することが可能となる。 Further, the single crystal S i C obtained by the heat treatment apparatus in the present embodiment has a growth temperature in the range of about 1400 ° C. or more and 2300 ° C. or less, which is lower than the liquid phase growth temperature of the conventional single crystal S i C. It is very high and can be heated to a temperature of about 1400 ° C or more and 2300 ° C or less in a short time. As the growth temperature increases, the dissolved concentration of C in the Si melt formed between the single-crystal SiC as a seed crystal and the polycrystalline SiC increases. It is also considered that the diffusion of C in the Si melt increases with increasing temperature. As described above, since the C source and the seed crystal are very close to each other, a high growth rate of about 500 Mm / hr can be achieved depending on conditions. Thus, the single crystal S i C according to the present embodiment, since the density of micro-pipes defects of the surface is at 1 / cm 2 or less, about 1 0 / m or more wide terraces are formed, After the single crystal SiC formation, surface treatment such as machining is not required. Further, since there are few crystal defects, it can be used as a light emitting diode or various semiconductor diodes. In addition, since the growth of the crystal depends on the temperature (not dependent on the surface energy of the seed crystal and the crystal of the source of C), the need for strict temperature control in the processing furnace is eliminated. In addition, since the space between the single crystal SiC as the seed crystal and the polycrystalline SiC as the supply source of C is extremely small, the manufacturing cost can be significantly reduced. In addition, since a temperature difference is hardly formed between the single crystal S i C serving as a seed crystal and the polycrystal S i C serving as a supply source of C, the heat convection of the seed crystal can be suppressed. As described above, the single crystal SiC grows in the plane direction of the crystal surface, and therefore, by providing a temperature gradient in the plane direction of the closed vessel, the crystal is grown. The direction of growth can be directed from high temperature to low! / The temperature gradient can be exemplified by a method of providing a temperature difference between the side heaters 11b located on the side wall side of the closed vessel 5 of the heater 11 provided in the heating chamber 2. By controlling the magnitude of the temperature gradient, the crystal growth rate can be controlled, and the generation of fine grain boundaries on the crystal surface can be suppressed.
なお、 本実施形態では、 種結晶として、 6 H—S i Cを用いたが、 4 H - S i Cを使用することも可能である。  In the present embodiment, 6 H—S i C is used as the seed crystal, but 4 H—S i C may be used.
なお、 本実施形態では、 種結晶として、 (0 0 0 1 ) S iを用いたが、 例えば、 (1 1—2 0 )などのその他の面方位のものを使用することも可 能である。  In the present embodiment, (001) Si was used as the seed crystal, but another crystal orientation such as (11-20) may be used. .
表面の面方位が(0 0 0 1 ) S i面であると、他の結晶面と比較して、 表面エネルギーが低く、 従って成長中の核形成エネルギーが高くなり、 核形成しにくい。 以上の理由から、 液相成長後テラス幅の広い単結晶 S i Cとできる。 なお、 表面の面方位は、 (0001) S i面に限定され るものではなく、 4H—S i C、 6H-S i Cの全ての結晶面を使用す ることが可能である。 When the plane orientation of the surface is (0 0 0 1) Si plane, compared with other crystal planes, Low surface energy and therefore high nucleation energy during growth, making nucleation difficult. For the above reasons, single crystal S i C with a wide terrace width can be obtained after liquid phase growth. The plane orientation of the surface is not limited to the (0001) Si plane, and it is possible to use all crystal planes of 4H-SiC and 6H-SiC.
また、 本発明に係る単結晶 S i Cは、 種結晶となる単結晶 S i C及び Cの供給源となる多結晶 S i C基板の大きさを適宜選択することによ つて形成される単結晶 S i Cの大きさを制御することができる。 また、 形成される単結晶 S i Cと種結晶との間に歪みが形成されることもな いため、 非常に平滑な表面の単結晶 S i Cとできることから、 表面の改 質膜として適用することも可能である。  Further, the single crystal SiC according to the present invention is formed by appropriately selecting the size of the single crystal SiC serving as a seed crystal and the size of the polycrystalline SiC substrate serving as a supply source of C. The size of the crystal S i C can be controlled. Also, since no strain is formed between the formed single crystal S i C and the seed crystal, the single crystal S i C having a very smooth surface can be obtained, so that it is applied as a surface reforming film. It is also possible.
さらに、 種結晶となる単結晶 S i Cと Cの供給源である多結晶 S i C を交互に積層、 または横に並べて前述の方法によって、 熱処理すること によって、 同時に多量の単結晶 S i Cを製造することも可能である。 また、 本発明に係る単結晶 S i Cの製造方法では、 多結晶 S i C基板 及び金属 S i中にあらかじめ A 1または B等の III族金属の不純物を添 加しておくか、 さらには成長中の雰囲気中に窒素、 A 1または B等の S i Cの伝導型を制御する元素を含むガスを送り込むことにより、 成長結 晶の p型、 n型の伝導型を任意に制御することが可能である。  Furthermore, a single crystal SiC as a seed crystal and polycrystalline SiC, which is a source of C, are alternately stacked or arranged side by side and heat-treated by the above-described method, thereby simultaneously producing a large amount of the single crystal SiC. Can also be produced. In the method for producing a single crystal SiC according to the present invention, the polycrystalline SiC substrate and the metal Si may be preliminarily added with an impurity of a group III metal such as A1 or B, or Arbitrary control of the p-type and n-type conductivity of the grown crystal by sending a gas containing an element that controls the conductivity type of SiC, such as nitrogen, A1, or B, into the atmosphere during growth Is possible.
次に、 本発明の熱処理方法を実施するに好適な他の熱処理装置に係る 実施形態を図 9 (a), 図 9 (b) 乃至図 15を参照しつつ説明する。 図 9 (a), 図 9 (b) は、 本発明の熱処理方法を実施するに好適な 熱処理装置に係る他の実施形態の主要部の断面図である。  Next, an embodiment of another heat treatment apparatus suitable for carrying out the heat treatment method of the present invention will be described with reference to FIGS. 9 (a), 9 (b) to FIG. FIGS. 9A and 9B are cross-sectional views of main parts of another embodiment of a heat treatment apparatus suitable for performing the heat treatment method of the present invention.
図 9 (a), 図 9 (b) に示すように、 本実施形態に係る熱処理装置 は高温加熱炉 50を有している。 前記高温加熱炉 50は、 主加熱槽 51 と、 予備加熱槽 52と、 これら主加熱槽 51と予備加熱槽 52とを連通 及び分離可能とする真空バルブ 5 9と、被処理物である試料 5 6をこれ ら主加熱槽 5 1と予備加熱槽 5 2間を移動させることが可能な治具及 ぴ昇降テーブル 5 7とを主要部として構成されている。 主加熱槽 5 1及 び予備加熱槽 5 2内には、 それぞれ高融点金属主加熱ヒータ 5 3、 予備 加熱ヒータ 5 4が設けられている。 As shown in FIGS. 9 (a) and 9 (b), the heat treatment apparatus according to the present embodiment has a high-temperature heating furnace 50. The high-temperature heating furnace 50 includes a main heating tank 51, a preheating tank 52, and a communication between the main heating tank 51 and the preheating tank 52. A vacuum valve 59 that enables separation and a jig that can move the sample 56 to be processed between the main heating tank 51 and the preliminary heating tank 52; The main part is configured. In the main heating tank 51 and the preliminary heating tank 52, a high-melting point metal main heater 53 and a preliminary heating heater 54 are provided, respectively.
また、 主加熱槽 5 1内には、 高融点金属主加熱ヒータ 5 3による加熱 を効率的に行うことを可能とする高融点金属反射板 5 5が設けられて いる。また、予備加熱槽 5 2内には吸着トラップ 5 8が設けられており、 予備加熱槽 5 2内の圧力を所定の圧力に維持することを可能としてい る。  Further, in the main heating tank 51, a high-melting-point metal reflection plate 55 that enables efficient heating by the high-melting-point metal main heater 53 is provided. Further, an adsorption trap 58 is provided in the preheating tank 52, so that the pressure in the preheating tank 52 can be maintained at a predetermined pressure.
また、 前記主加熱槽の加熱部、 即ち、 前記加熱ヒータ 5 3は、 高融点 金属からなる図示しないが円筒状の主ヒータと平面状の補助ヒータと からなり、 この 2つのヒータの加熱コントロールと試料位置の変化によ つて、 円盤状の均熱領域内の温度の均熱性向上と円盤状加熱領域内にお ける面内方向に温度勾配を設けることが可能である。  The heating part of the main heating tank, that is, the heating heater 53 is composed of a cylindrical main heater (not shown) made of a high melting point metal and a planar auxiliary heater, and a heating control of these two heaters. By changing the sample position, it is possible to improve the temperature uniformity in the disc-shaped heating zone and to provide a temperature gradient in the in-plane direction in the disc-shaped heating zone.
主加熱槽 5 1及ぴ予備加熱槽 5 2内の加熱源即ちヒータ、 また前記加 熱源を取り卷く保温材には、 ガス発生の原因となるグラフアイトの使用 を避け、 発熱体、 保温用反射板としてガス吸着の少ない高融点金属のタ ングステン (W) が主に用いられている。  For the heating source, that is, the heater in the main heating tank 51 and the preliminary heating tank 52, and the heat insulating material surrounding the heating source, avoid the use of graphite, which causes gas generation. Tungsten (W), a refractory metal with low gas adsorption, is mainly used as the reflector.
本実施形態に係る熱処理装置は、 まず、 予備加熱槽 5 2に試料 5 6が 設置されると予備加熱槽 5 2は大気圧から図示しない真空ポンプによ つて真空に排気されつつ、試料 5 6に吸着したガスと試料 5 6に内蔵す るガスの脱ガスのため、 予備加熱ヒータ 5 4によって、 室温から約 8 0 0 °Cに加熱され、 吸着ガス及ぴ内蔵ガスが槽外に真空ポンプによって排 気される。  First, when the sample 56 is set in the preheating tank 52, the preheating tank 52 is evacuated from the atmospheric pressure to a vacuum by a vacuum pump (not shown). The pre-heater 54 heats the gas adsorbed on the sample and the gas contained in the sample 56 from room temperature to about 800 ° C from the room temperature. Exhausted by
前記予備加熱槽の加熱源として、 短時間に急速に加熱するために 、 試料に近赤外線を集光するための反射鏡を持つ、 ハロゲン及び X eラン プまたはランプの風袋外面に赤外線発生機能膜を付加した赤外線加熱 ランプが拳げられる。 As a heating source of the preheating tank, for rapid heating in a short time, An infrared heating lamp with a reflecting mirror for collecting near-infrared light on the sample and having an infrared-generating functional film added to the outer surface of the tare of the halogen or Xe lamp or lamp is used.
そして、 試料 5 6の脱ガス終了後、 予め加熱、 真空排気されて、 清浄 高温下に保持されている主加熱槽 5 1に 1分以内に移動される (図 9 ( b ) 参照)。 移動に際しては、 真空バルブ 5 9を開き、 昇降テーブル 5 7を上昇させることで行う。 なお、 主加熱槽 5 1は常に約 1 0— 3 P a 以下の圧力の高真空または、 一度、 高真空に到達した後、 若干の不活性 ガスを導入し、 約 1 (T2 P aに設定した希薄ガス雰囲気下で約 8 0 0 °C 以上、好ましくは約 1 8 0 0 °C以上 2 6 0 0 °C以下の範囲内で所定の高 温に常に維持されている。 After the degassing of the sample 56 is completed, the sample 56 is preheated, evacuated, and moved within 1 minute to the main heating tank 51 maintained at a high temperature (see FIG. 9 (b)). The movement is performed by opening the vacuum valve 59 and raising the elevating table 57. The main heating tank 5 1 always high vacuum of about 1 0- 3 P a pressure below or, once, after reaching a high vacuum, to introduce some inert gas, to about 1 (T 2 P a The temperature is constantly maintained at a predetermined high temperature within a range of about 800 ° C. or more, preferably about 180 ° C. or more and 260 ° C. or less under a set lean gas atmosphere.
尚、 前記主加熱槽の温度範囲は、 例えば、 単結晶炭化ケィ素の液相ェ ピタキシャル成長法における熱処理等の場合は、約 1 2 0 0 °C以上 2 3 0 0 °C以下の範囲であることが好ましく、 更に好ましくは約 1 4 0 0 °C 以上 2 3 0 0 °C以下の範囲である。  Incidentally, the temperature range of the main heating tank is, for example, in the case of a heat treatment in a liquid phase epitaxial growth method of single crystal silicon carbide, in a range of about 120 ° C. or more and 230 ° C. or less. Preferably, the temperature is in the range of about 140 ° C. or more and 230 ° C. or less.
次いで、 試料 5 6の主加熱槽 5 1への移動終了後、 試料 5 6は約 1 2 0 0 °C以上 2 6 0 0 °C以下の範囲内で所定の高温、 即ち、 試料 5 6の最 適処理温度に速やかに達成する。 そして、 主加熱槽 5 1は、 予め加熱さ れているため、 均一な高温状態を必要な処理時間の間維持する事ができ る。 また、 高融点反射金属板 5 5が設けられているため、 熱輻射によつ て、 試料 5 6を効率よく加熱することができる。  Then, after the transfer of the sample 56 to the main heating tank 51 is completed, the sample 56 has a predetermined high temperature within a range of about 1200 ° C. or more and 260 ° C. or less, that is, the sample 56 Achieve optimal processing temperature quickly. Since the main heating tank 51 is pre-heated, a uniform high temperature state can be maintained for a required processing time. Further, since the high melting point reflecting metal plate 55 is provided, the sample 56 can be efficiently heated by heat radiation.
前記主加熱槽 5 1の加熱部即ちヒータは、 高融点金属からなる円筒状 の主ヒータと平面状の捕助ヒータとからなる。  The heating section of the main heating tank 51, that is, the heater, comprises a cylindrical main heater made of a high melting point metal and a planar auxiliary heater.
また、 Wヒータの発する波長エネルギーは、次の式によって表される。  The wavelength energy emitted from the W heater is expressed by the following equation.
Wの波長エネルギー =Wの分光放射率 X理想黒体の波長エネルギー なお、 理想黒体の波長エネルギーは P 1 a n kの放射則から容易に求 めることが可能である。 W wavelength energy = W spectral emissivity X Ideal black body wavelength energy The ideal black body wavelength energy can be easily calculated from the radiation law of P 1 ank. It is possible to
図 1 0は、 Wの分光放射率と反射率の図である。 図中の分光放射率は 文献 'The Science Of Incandescence 'Dr. Milan R. Vukcevich に記載されている下式より算出した。 '  FIG. 10 is a diagram of the spectral emissivity and the reflectance of W. The spectral emissivity in the figure was calculated by the following equation described in the document 'The Science Of Incandescence' Dr. Milan R. Vukcevich. '
ε 〔 、 T〕 = a ίλ) -b 〔λ、 T〕 {(Τ一 1 6 0 0) /1 0 0 0 } ここで、 ε :放射率、 λ :波長 〔μπι〕、 Τ:温度 〔Κ〕 とした。  ε [, T] = a ίλ) -b [λ, T] {(Τ1 600) / 1 100 000} where ε: emissivity, λ: wavelength [μπι], Τ: temperature [ Κ]
また、 図 1 0中の反射率については、 下式のキルヒホッフの法則より 算出した。  The reflectance in FIG. 10 was calculated from Kirchhoff's law of the following equation.
' R= 1— ε  'R = 1— ε
ここで、 R:反射率、 ε :放射率とした。 Here, R: reflectance, ε : emissivity.
Ρ 1 a n kの放射則による Wの高温領域 1 8 0 0°C以上 2 6 0 0 °C 以下の波長エネルギー特性を図 1 1に示す。  Fig. 11 shows the wavelength energy characteristics of the high-temperature region of W from 180 ° C to 260 ° C according to the 放射 1 ank radiation law.
図 1 1の結果から、 Wの高温領域 1 8 0 0°C以上 2 6 0 0°C以下での 波長エネルギーは、 1. 0 ^ 111以上1. 5 μπι以下の間でピークを持ち、 0. 4 111以上 3. 5 μΐη以下の波長領域の間に波長エネルギーのほと んどが入っていることがわかる。 つまり、 波長約 0. 4 μ m以上 3. 5 μ πι以下において高!/、反射特性を有する反射材料が炉体内の試料の高 効率な加熱を可能とする。  From the results in Fig. 11, the wavelength energy in the high-temperature region of 180 ° C. or more and 260 ° C. or less has a peak between 1.0 ^ 111 and 1.5 μπι. It can be seen that most of the wavelength energy is in the wavelength range from .4 111 to 3.5 μΐη. In other words, at wavelengths of about 0.4 μm or more and 3.5 μππ or less, the reflective material having a reflective property enables highly efficient heating of the sample in the furnace.
また、 この温度領域において使用可能な金属と化合物のいくつか例を 表 1に示した。  Table 1 shows some examples of metals and compounds that can be used in this temperature range.
[表 1]
Figure imgf000029_0001
[table 1]
Figure imgf000029_0001
これらを参考として、 前記主加熱槽の処理温度が約 1 2 0 0°C以上 2 6 0 0°C以下の範囲の所定の温度に設定された高純度雰囲気の高温加 熱炉で、 高温炉の発熱部が Wまたは T aの高融点金属からなり、 高温領 域を取り卷く、 熱反射及び保温領域の構成材料が、 W, T a, Moの中 から選択した高融点金属材料からなる複合構造になっており、熱遮断領 域の構成材料の高融点金属の表面に発熱部の発光波長領域を反射する 波長が約 0. 4 μ m以上約 3. 5 μ m以下の範囲の中の任意の波長領域 の赤外反射膜が形成されている。 With reference to these, the processing temperature of the main heating tank is set to a predetermined temperature in the range of about 1200 ° C. or more and 260 ° C. or less. In a heating furnace, the heating part of the high-temperature furnace is made of a high melting point metal of W or Ta, and the material for the heat reflection and heat insulation area surrounding the high-temperature area is selected from W, Ta, and Mo It has a composite structure made of a high melting point metal material, and the wavelength that reflects the emission wavelength region of the heat generating part on the surface of the high melting point metal of the material in the heat insulation area is about 0.4 μm or more and about 3.5 μm. An infrared reflective film in an arbitrary wavelength range within the range of m or less is formed.
具体的には、 Wをヒータとして、 W及ぴ T aを赤外線領域を主とした 波長が約 0. 以上 3. 5 μιτα以下の反射板として用いた。  Specifically, W was used as a heater, and W and Ta were used as reflectors having wavelengths of about 0.5 to 3.5 μιτα mainly in the infrared region.
図 1 1より 2200°Cにおける W放射の波長エネルギーのピークは 約 1. 1 μ m であり、 このときの Wの反射率は約 0. 65である。 ま た、 比較的波長エネルギーの高い約 1. 1 μ m以上 3. 0 μ m以下の領 域では、 波長が長くなるにつれて反射率は増加し、 3. Ομηιにおいて は 0. 8に達する。 すなわち、 清浄な高純度雰囲気での Wヒ一ターの反 射板として Wの反射特性は十分であるといえる。  From Fig. 11, the peak wavelength energy of W radiation at 2200 ° C is about 1.1 μm, and the reflectance of W at this time is about 0.65. In the region where the wavelength energy is relatively high, about 1.1 μm or more and 3.0 μm or less, the reflectance increases as the wavelength becomes longer, and reaches 0.8 at 3.Ομηι. In other words, it can be said that the reflection characteristics of W are sufficient as a reflector of a W heater in a clean high-purity atmosphere.
また、 図 10の Wの高温下における放射率と反射率の関係特性から、 Wヒータ 及び試料を取り卷く、 金属反射板 55の設計例を表 2に示す。 各反射板 55は、 ヒータ 53および試料 56を密閉状態で囲み、 かつ、 各反射板 55の間隔は約 3 mmである。'また、 高融点金属反射板 55の 上に形成される高耐熱金属酸化物及び、 赤外線反射膜の構成例を表 3に 示す。  Table 2 shows an example of the design of the metal reflector 55 surrounding the W heater and the sample, based on the relationship between the emissivity and the reflectivity at high temperatures of W in FIG. Each reflector 55 surrounds the heater 53 and the sample 56 in a sealed state, and the interval between the reflectors 55 is about 3 mm. Table 3 shows a configuration example of the high heat-resistant metal oxide formed on the high-melting point metal reflection plate 55 and the infrared reflection film.
2]  2]
9層型 Ta/Ta/Ta/Ta/Mo/Mo/Mo/Mo/Mo 9-layer Ta / Ta / Ta / Ta / Mo / Mo / Mo / Mo / Mo
11層型 W/W/W/W/W/Mo/Mo/Mo/Mo/Mo/Mo  11-layer W / W / W / W / W / Mo / Mo / Mo / Mo / Mo / Mo
[表 3] I¾温領域 w金属反射板 +WC 中温領域 Mo金属反射板 +Au ここで、 高融点金属である Wは、 融点が約 3400 °Cであり、 M oは 約 2620°Cである。 また、 本実施形態で例として上げた WGは約 27 20°Cであり、 Auは約 1060°Cである。 そのため、 W上に高融点で あり、 基材と馴染みの良い WCを使用し、 Mo上に融点の比較的低い A uを用いた。 WCの近赤外線領域の反射率は成膜条件にもよる平滑な平 面状態では比較的高い。 同領域での A uは反射率約 95 %以上の高反射 材料であるが、 融点が低いため、 中温領域から後半 (外側) の Mo上に 成膜した。 図 12に、 八11反射層の0. 4 111以上 3. 5 μ ΐΊ以下波長 領域における分光反射特性を示す。 [Table 3] I ¾ temperature region w Metal reflector + WC Medium temperature region Mo metal reflector + Au Here, W, which is a high melting point metal, has a melting point of about 3400 ° C and Mo of about 2620 ° C. The WG given as an example in the present embodiment is about 2720 ° C, and Au is about 1060 ° C. Therefore, WC, which has a high melting point and is familiar with the substrate, was used on W, and Au, which had a relatively low melting point, was used on Mo. The reflectance of WC in the near-infrared region is relatively high in a smooth flat surface state depending on the film forming conditions. Au in the same region is a highly reflective material with a reflectivity of about 95% or more, but because of its low melting point, a film was formed on Mo in the latter half (outside) of the medium temperature region. FIG. 12 shows the spectral reflection characteristics of the eight-11 reflective layer in the wavelength range of 0.4 111 to 3.5 μΐΊ.
このように本実施形態においては、前記主加熱槽のヒータ部を取り卷 く高融点金属板で構成される保温領域が、保温層と熱線反射層からなる 複合構造になっており、各層が高温保持および熱線反射する機能を有し、 保温領域を構成する高融点金属板表面が、 WC、 Ta C、 Mo C、 Z r C、 H f C、 B Nなどの高耐'熱性金属炭化物、 または、 金属窒化物が単 独、 もしくは、 複合で被覆されることで、 高融点金属の劣化、 変形を防 止する機能を有し、 かつ、 熱線反射層となる高融点金属表面が Auなど の赤外線反射膜で被覆されることで、 約 0. 4以上 3. 5 μ m以下の範 囲の任意の発光波長領域を高効率で反射する機能を有する。  As described above, in the present embodiment, the heat retaining region composed of the high melting point metal plate surrounding the heater portion of the main heating tank has a composite structure including the heat retaining layer and the heat ray reflective layer, and each layer has a high temperature. It has the function of holding and reflecting heat rays, and the surface of the high melting point metal plate that constitutes the heat insulation area is made of a highly heat-resistant metal carbide such as WC, TaC, MoC, ZrC, HfC, BN, or By coating metal nitride alone or in combination, it has the function of preventing the deterioration and deformation of the high melting point metal, and the surface of the high melting point metal serving as the heat ray reflective layer reflects infrared rays such as Au. By being coated with a film, it has the function of reflecting efficiently an arbitrary emission wavelength range in the range of about 0.4 to 3.5 μm.
本実施形態に係る熱処理装置は、 このように真空高温炉の内部が 2槽 以上の複数の分離された槽からなり、 その複数の槽内部が主加熱槽と予 備加熱槽から構成され、前記予備加熱槽が主に試料に吸着したガスと試 料に内蔵するガスの脱ガスのため室温から約 800°Cに加熱され、脱ガ ス終了後、 予め加熱真空排気されて、 清浄高温下に保持されている前記 主加熱槽に速やかに移動され、また前記主加熱槽は常に約 1 0—3 P a以 下の圧力、 または、 一度約 1 0—3 P a以下の圧力に到達した後、 若干の 不活性ガスを導入し、 大気圧から約 1 0 -3 P aまでの任意の圧力の希薄 ガス雰囲気下で約 8 0 0 °C以上 2 6 0 0 °C以下の範囲内で高温に常に 加熱されており、 前記予備加熱槽が試料の出し入れのための大気圧から、 前記主加熱槽との間で試料を移動させるために必要な、前記主加熱槽と 同等の圧力に排気可能な機能を有し、 室温から約 8 0 0 °Cの温度に試料 を予備加熱した後、 前記主加熱槽に早く移動することにより、 試料の最 適処理温度約 8 0 0 °C以上、 好ましくは、 1 2 0 0 °C以上、 更に好まし くは 1 8 0 0 °C以上 2 6 0 0 °C以下の温度範囲内で高温かつ高純度雰 囲気を速やかに達成する高温加熱炉を有することを特徴とする。 In the heat treatment apparatus according to the present embodiment, the inside of the vacuum high-temperature furnace is composed of two or more separate tanks as described above, and the insides of the plurality of tanks are configured with the main heating tank and the preliminary heating tank. The preheating tank is heated from room temperature to about 800 ° C to degas mainly the gas adsorbed on the sample and the gas contained in the sample. Said being held Is moved quickly to the main heating chamber and the main heating chamber is always about 1 0- 3 P a hereinafter pressure or, after reaching the time about 1 0- 3 P a pressure below, some of the inert introducing a gas from atmospheric pressure to about 1 0 - is always heated to a high temperature in any range of about 8 0 0 ° C over 2 6 0 0 ° C under a lean gas atmosphere at a pressure of up to 3 P a The preheating tank has a function capable of evacuating from the atmospheric pressure for loading and unloading the sample to a pressure equivalent to that of the main heating tank, which is necessary for moving the sample between the main heating tank and the main heating tank. After preheating the sample from room temperature to a temperature of about 800 ° C, the sample is moved to the main heating tank quickly, so that the optimum processing temperature of the sample is about 800 ° C or more, preferably 120 ° C or more. A high-temperature heating furnace that quickly achieves a high-temperature and high-purity atmosphere within a temperature range of 0 ° C or higher, more preferably 180 ° C or higher and 260 ° C or lower. It is characterized by having.
尚、 前記主加熱槽の温度範囲は、 例えば、 単結晶炭化ケィ素の液相ェ ピタキシャル成長法における熱処理等の場合は、約 1 2 0 0 °C以上 2 3 0 0 °C以下の範囲が好ましくは、 更に、 好ましくは約 1 4 0 0 °C以上 2 3 0 0 °C以下の範囲である。  Incidentally, the temperature range of the main heating tank is, for example, in the case of a heat treatment in a liquid phase epitaxial growth method of single crystal silicon carbide, a range of about 1200 ° C. or more and 230 ° C. or less. Preferably, it is more preferably in the range of about 140 ° C. or more and 230 ° C. or less.
また、 本実施形態に係る熱処理装置は、 試料を急速に加熱するため、 真空高温炉が主加熱槽と予備加熱槽の二つに分かれ、 かつ、 高純度な雰 囲気を維持するため、 各々の室内が個々の独立した真空排気系と、 ある いは個々の独立したガス導入系、及び大気圧雰囲気に維持可能で、かつ、 主加熱槽と予備加熱槽が、 遮断バルブの開閉によって、 一体化と分離を 相互に維持されている高速な高温加熱炉を有する熱処理装置において、 前記主加熱槽が常用時に常に約 1 0—3 P a以下の圧力、 または、 一度 約 1 0— 3 P a以下の圧力に到達した後、 若干の不活性ガスを導入し、 大 気圧から約 1 0— 3 P aまでの任意の圧力の希薄ガス雰囲気下に約 8 0 0 °C以上、 好ましく約 1 2 0 0 °C以上、 更に好ましくは約 1 8 0 0 °じ以 上 2 6 0 0 °C以下の温度範囲内で高温状態に保持されており、前記予備 加熱槽が約室温以上 1 0 0 o °c以下の温度範囲に保持されている状態 において、試料等から発生する内蔵ガスを吸着するためのコールドトラ ップが内蔵され、加熱終了後の高温から室温に速やかに冷却する為の急 冷用ガス循環装置が内蔵されている高温加熱炉を有することを特徴と する。 Further, in the heat treatment apparatus according to the present embodiment, in order to rapidly heat the sample, the vacuum high-temperature furnace is divided into two parts, a main heating tank and a preheating tank, and a high-purity atmosphere is maintained. The room can be maintained in an independent vacuum evacuation system or an independent gas introduction system and an atmospheric pressure atmosphere, and the main heating tank and preheating tank are integrated by opening and closing the shutoff valve. and the heat treatment apparatus having a high-speed high-temperature furnace which is maintained mutually separated, the main heating chamber is always about 1 0- 3 P a pressure below at regular or, less time about 1 0- 3 P a after reaching the pressure, some introducing an inert gas, about 8 0 0 ° C or more under a lean gas atmosphere any pressure from atmospheric pressure to about 1 0- 3 P a, preferably from about 1 2 0 0 ° C or more, more preferably about 180 ° C or more and 260 ° C or less It is held in a high temperature state in the inner, the preliminary When the heating tank is maintained at a temperature in the range of about room temperature to 100 ° C or less, a cold trap is built in to absorb the built-in gas generated from the sample, etc. It is characterized by having a high-temperature heating furnace with a built-in gas circulating device for rapid cooling to quickly cool to room temperature.
前記主加熱槽の温度範囲は、 例えば、 単結晶炭化ケィ素の液相ェピタ キシャル成長法における熱処理等の場合は、 約 1 2 0 0 °C以上 2 3 0 0 °C以下の範囲が好ましくは、 更に、 好ましくは約 1 4 0 0 °C以上 2 3 0 o °c以下の範囲である。  The temperature range of the main heating tank is, for example, in the case of a heat treatment in a liquid phase epitaxial growth method of single crystal silicon carbide, preferably in a range of about 120 ° C. or more and 230 ° C. or less. It is more preferably in the range of about 140 ° C. or more and 230 ° C. or less.
このように、 本実施形態に係る熱処理装置は、 主加熱槽と予備加熱槽 に分け、 各々の作業分担を明確に分ける事により、 最適処理温度の主加 熱槽内の高純度雰囲気を保ち最適な処理条件を維持できるようにした。 ここで、 予備加熱槽は、 試料を 1 0 _3 P a以下の圧力下において予め 約 8 0 0 °C以上に加熱することにより、 アウトガスの除去と中間段階ま での昇温を行うものである。 また、 主加熱槽は、 試料を 1 0— 3 P a以下 の圧力下において短時間に最適処理温度、例えば 1 8 0 0 °C以上に加熱 するものである。 As described above, the heat treatment apparatus according to the present embodiment is divided into the main heating tank and the preliminary heating tank, and by clearly dividing the respective work assignments, it is possible to maintain the high-purity atmosphere in the main heating tank at the optimum processing temperature and to maintain the optimal processing temperature. To maintain the proper processing conditions. Here, the preliminary heating bath, by heating the sample in advance about 8 0 0 ° C or higher under 1 0 _ 3 P a pressure below, which performs temperature increase in the outgassing of removal and intermediate stage or is there. The main heating chamber is for heating sample 1 0- 3 P a following optimal treatment temperature in a short time under pressure, for example 1 8 0 0 ° or more C.
主加熱槽と予備加熱槽間の試料の移動には、 空気起動による直線移動 または、 モータ駆動による円移動による 1分以内の高速移動が可能であ る。 また、 主加熱槽内において、 新たなガス放出があった場合、 同槽専 用の十分な排気能力を持つ真空ポンプを設置することにより、 汚染ガス を速やかに槽外部へ除去する事が出来るものである。 さらに、 予備加熱 槽内にコールドトラップ等の補助的な物理吸着除去機構を併設する事 により主加熱槽内に設けられているヒータ、 反射板等の劣化をさらに完 全に防止することができる。  To move the sample between the main heating tank and the preheating tank, linear movement by air activation or high-speed movement within 1 minute by circular movement driven by a motor is possible. If a new gas is released in the main heating tank, a vacuum pump with sufficient exhaust capacity dedicated to the tank can be installed to quickly remove contaminated gas to the outside of the tank. It is. Furthermore, by providing an auxiliary physical adsorption removal mechanism such as a cold trap in the preheating tank, it is possible to more completely prevent the deterioration of the heaters and reflectors provided in the main heating tank.
従来の熱処理装置の場合、 試料の均熱領域が狭く、 かつ、 その均熱領 域内の温度制御が難しいという欠点、 加熱雰囲気が高真空 (1 0— 3P a 以下の圧力下) または、 若干の希ガス雰囲気の場合、 不純ガスの混入し ない高温領域の保持が難しいという欠点があった。 本実施形態によれば、 試料から加熱の初期段階において放出される、水素等の多量の吸着ガス、 内蔵ガスは、 予備加熱槽において、 順次加熱 (室温〜 8 0 0 °G) 排気さ れた後、 高純度な処理雰囲気の主加熱槽中に急速移動され、 さらに、 試 料の加熱最適処理領域が約 1 2 0 0 °C以上 2 6 0 0 °C以下の高温の時 には、 予め主加熱槽を約 8 0 0 °C以上 2 6 0 0 °C以下に予熱しておく事 により、 従来にない、 高速均一な加熱が可能となつた。 また、 '従来の熱 処理装置の場合、 加熱処理後、 試料を室温に近い作業温度まで冷却する のに長時間を要したが、 本装置においては、 予備加熱槽内にガス冷却装 置を内蔵することによって、 試料の急速冷却が可能となった。 In the case of the conventional heat treatment equipment, the sample soaking area is narrow and the soaking area Disadvantage that the temperature control in the region is difficult, heating atmosphere is a high vacuum (1 0 3 under P a pressure below) or a slight case of rare gas atmosphere, disadvantage that it is difficult retaining contaminating not high temperature region of the impure gas was there. According to this embodiment, a large amount of the adsorption gas such as hydrogen and the built-in gas released from the sample in the initial stage of heating were sequentially heated (room temperature to 800 ° G) and exhausted in the preheating tank. After that, the sample is rapidly moved into the main heating tank in a high-purity processing atmosphere.In addition, when the optimal heating area of the sample is about 1200 ° C or more and 260 ° C or less, By preheating the main heating tank to about 800 ° C or more and 260 ° C or less, high-speed and uniform heating, which was not possible in the past, became possible. In addition, in the case of conventional heat treatment equipment, it took a long time to cool the sample to a working temperature close to room temperature after heat treatment, but this equipment has a built-in gas cooling device in the preheating tank. This enabled rapid cooling of the sample.
図 1 3に本発明に係る熱処理装置の更に他の実施形態を示す。 本実施 形態において、 熱処理装置は、 高温加熱炉 7 0を有する。 図 1 3に示す 本実施形態における予備加熱槽 5 2は、 ハロゲンランプ又は口ッドヒー タ 5 4が設けられ、 急速に約 8 0 0 °C以上 1 8 0 0 °C以下の範囲内で所 定の温度にまで加熱が可能なランプ又は口ッドヒータ式加熱炉になつ ている。 '  FIG. 13 shows still another embodiment of the heat treatment apparatus according to the present invention. In the present embodiment, the heat treatment apparatus has a high-temperature heating furnace 70. The preheating tank 52 in the present embodiment shown in FIG. 13 is provided with a halogen lamp or a mouth heater 54, and is quickly set within a range of about 800 ° C. or more and 180 ° C. or less. It is equipped with a lamp or open heater type heating furnace that can heat up to the temperature of '
また、 予備加熱室 5 2の両脇に試料を複数個装填出来るカセット 6 0 が配置され、 一方に処理前、 他方に処理済の試料が置かれ、 カセットを 装填している入出槽 6 1と、 予備加熱室 5 2 aは真空バルブ 5 9で仕切 られている。主加熱槽 5 1には高融点金属でできたヒータ 5 3、例えば、 Wのメッシュ状のヒータと、 高融点金属からなる金属反射板 5 5で構成 されている。  In addition, cassettes 60 capable of loading a plurality of samples are arranged on both sides of the preheating chamber 52, and one of them is a pre-processed sample and the other is a processed sample in the other. The preheating chamber 52 a is partitioned by a vacuum valve 59. The main heating tank 51 includes a heater 53 made of a high melting point metal, for example, a W-shaped mesh heater and a metal reflecting plate 55 made of a high melting point metal.
高温加熱炉 7 0において、未処理の試料が複数個装填してあるカセッ ト 6 0から試料 5 6が治具及び昇降テーブル 5 7に乗せられ、予備加熱 槽 5 2で、 約 8 0 0 °C以上に予め加熱される。 一方で、 予め主加熱槽を 約 8 0 0 °C以上 2 6 0 .0 °C以下の範囲内の所定の温度に加熱しておく。 予備加熱された試料 5 6は、予備加熱室 5 2と主加熱槽 5 1との圧力調 整が済み次第、予備加熱槽 5 2と主加熱槽 5 1との間の真空バルブ 5 9 が開き、試料 5 6と治具及び昇降テーブル 5 7が移動し主加熱槽 5 1に て約 8 0 0 °C以上 2 6 0 0 °C以下の範囲内の所定の温度で処理される。 本実施形態では、 約 2 0 0 0 °Cで処理される。 In a high-temperature heating furnace 70, a sample 56 is placed on a jig and a lifting table 57 from a cassette 60 in which a plurality of unprocessed samples are loaded, and preheated. In tank 52, it is preheated to about 800 ° C. or higher. On the other hand, the main heating tank is previously heated to a predetermined temperature within a range of about 800 ° C or more and 260.0 ° C or less. The preheated sample 56 opens the vacuum valve 59 between the preheating tank 52 and the main heating tank 51 as soon as the pressure between the preheating chamber 52 and the main heating tank 51 is adjusted. Then, the sample 56, the jig and the elevating table 57 move, and are processed in the main heating tank 51 at a predetermined temperature within a range of about 800 ° C. or more and 260 ° C. or less. In this embodiment, the processing is performed at about 2000 ° C.
主加熱槽 5 1にて処理が終了すると、 治具及び昇降テーブル 5 7が降 り、 予備加熱槽 5 2と主加熱槽 1との間の真空バルブ 5 9が閉じる。 そ して、 加熱処理済の試料を受けるカセット 6 0に試料が搬送される。 こ れを繰り返すことにより、 バッチ式の処理炉ょり短時間でかつ、 量産性 向上が顕著であることがわかる。  When the processing is completed in the main heating tank 51, the jig and the elevating table 57 descend, and the vacuum valve 59 between the preheating tank 52 and the main heating tank 1 is closed. Then, the sample is transported to a cassette 60 for receiving the heat-treated sample. By repeating this process, it can be seen that the batch-type processing furnace is remarkably improved in a short time and in mass productivity.
また、 このときの加熱温度特性例を図 1 4に示す。  FIG. 14 shows an example of the heating temperature characteristic at this time.
図 1 5に本発明に係る熱処理装置の更にまた他の実施形態を示す。本 実施形態に係る熱処理装置は高温加熱炉 8 0を有する。 高温加熱炉 8 0 は、 連続式加熱炉であって、 予備加熱槽 5 2に複数の主加熱槽 5 1が設 けられ、 予備加熱槽 5 2力 真空バルブ 5 9によって、 各主加熱槽 5 1 に対応するように区画されている。 このような構成によると、 主加熱槽 5 1の設定温度を各個それぞれ異ならせ、各工程に応じ各主加熱槽 5 1 により処理し、試料 5 6に異なる熱履歴を連続的に与えることが可能と なる。 また、 バッチ処理と比較し、 量産性向上が顕著となる。  FIG. 15 shows still another embodiment of the heat treatment apparatus according to the present invention. The heat treatment apparatus according to the present embodiment has a high-temperature heating furnace 80. The high-temperature heating furnace 80 is a continuous heating furnace, in which a plurality of main heating tanks 51 are provided in a preheating tank 52, and a plurality of preheating tanks 52 are provided. Partitioned to correspond to 1. According to such a configuration, it is possible to set the temperature of the main heating tank 51 to be different from each other, to perform the processing in each main heating tank 51 according to each process, and to continuously give a different heat history to the sample 56. And In addition, the improvement in mass productivity is remarkable compared to batch processing.
なお、 上述の全ての実施形態において説明された熱処理装置は、 上述 の単結晶 S i Cの液相成長法における熱処理法の実施にのみ限定され て使用されるものでない。  The heat treatment apparatuses described in all of the above embodiments are not limited to the use of the heat treatment in the liquid crystal growth method of single crystal SiC described above.
短時間で約 8 0 0 °C以上 2 6 0 0 °C以下の範囲、 好ましくは、 1 2 0 0 °C以上 2 3 0 0 °C以下の範囲の所定の温度に加熱する特徴を利用し て、 例えば、 半導体基板表面にイオンを注入した後、 本装置によって短 時間で、 高温に加熱することで、 イオンを注入した部分を確実に且つ効 率良く結晶化等することが可能となる。 なお、 本実施形態に係る熱処理 装置は、 小型で、 構造が比較的簡易であるため、 イオン注入装置等他の 装置との連結を容易に行うことができる。 Utilize the feature of heating to a predetermined temperature within a range of about 800 ° C or more and 260 ° C or less, preferably 120 ° C or more and 230 ° C or less in a short time. Thus, for example, after ions are implanted into the surface of the semiconductor substrate, the device is heated to a high temperature in a short time, so that the ion-implanted portion can be crystallized reliably and efficiently. The heat treatment apparatus according to the present embodiment is small and has a relatively simple structure, so that it can be easily connected to another apparatus such as an ion implantation apparatus.
また、 従来、 高速加熱を行う場合は、 レーザやプラズマ等の特殊な方 法が用いられていた。 ところが、 本実施形態に係る熱処理装置は、 構造 が簡易であると共に、 他の装置、 例えば、 電子顕微鏡やイオン注入装置 等と連結することが可能である。 このため、 従来の方法では、 得られな かった新規な材料を創作できる可能性がある。  Conventionally, when high-speed heating is performed, a special method such as laser or plasma has been used. However, the heat treatment apparatus according to the present embodiment has a simple structure and can be connected to another apparatus such as an electron microscope or an ion implantation apparatus. Therefore, there is a possibility that new materials that could not be obtained by the conventional method can be created.
尚、 本発明は、 上記の好ましい実施形態に記載されているが、 本発 明はそれだけに制限されない。 本発明の精神と範囲から逸脱することの ない様々な実施形態例が他になされることができることは理解されよ う。  Although the present invention has been described in the above preferred embodiments, the present invention is not limited thereto. It will be understood that various example embodiments may be made without departing from the spirit and scope of the invention.

Claims

請 求 の 範 囲 The scope of the claims
1 . 被処理物を短時間で約 1 2 0 0 °C以上 2 3 0 0 °C以下の範囲内の 所定の温度に加熱する加熱室と、  1. A heating chamber that heats the object to be processed in a short time to a predetermined temperature within a range of about 1200 to 230 ° C,
前記加熱室に連結され、 前記加熱室に被処理物を移動するための移動 手段が設けられている前室と、  A front chamber connected to the heating chamber and provided with a moving unit for moving an object to be processed into the heating chamber;
前記前室に連結され、前記被処理物を予め所定の温度に加熱する予備 加熱室とを備える熱処理装置による熱処理方法であって、  A preheating chamber connected to the front chamber and preheating the workpiece to a predetermined temperature;
前記被処理物を予め圧力約 1 0— 2 P a以下好ましくは約 1 0— 5 P a以 下の真空の予備加熱室で約 8 0 0 °C以上に加熱した後、 予め約 1 2 0 0 °C以上 2 3 0 0 °C以下の範囲内で所定の温度に加熱された圧力約 1 0 _2 P a以下好ましくは約 1 0— 5 P a以下の真空、 又は予め圧力約 1 0 一2 P a以下、 好ましくは約 1 0—5 P a以下の真空に到達した後に不活性 ガスを導入した希薄ガス雰囲気下の加熱室に移動することで、前記被処 理物を、 短時間で約 1 2 0 0 °C以上 2 3 0 0 °C以下の範囲内で所定の温 度に加熱する熱処理方法。 After heating the about 8 0 0 ° C or higher in the object to be processed in advance a pressure of about 1 0- 2 P a less preferably about 1 0- 5 P a preheating chamber of a vacuum follows, advance about 1 2 0 0 ° C or more 2 3 0 0 ° C or less pressure of about 1 that is heated to a predetermined temperature in the range of 0 _ 2 P a less preferably about 1 0- 5 P a vacuum below, or pre-pressure of about 1 0 one 2 P a or less, preferably by moving about 1 0- 5 P a following heating chamber under lean gas atmosphere with an inert gas is introduced after reaching the vacuum, the object to be processed was briefly A heat treatment method of heating to a predetermined temperature within a range of about 1200 ° C to 230 ° C.
2 . 種結晶となる単結晶炭化ケィ素基板と多結晶炭化ケィ素基板とを 重ね、 密閉容器内に設置して、 高温熱処理を行なうことによって、 前記 単結晶炭化ケィ素基板と前記多結晶炭化ケィ素基板との間に、熱処理中 に極薄金属シリコン融液を介在させ、 前記単結晶炭化ケィ素基板上に単 結晶炭化ケィ素を液相ェピタキシャル成長させる単結晶炭化ケィ素の 液相ェピタキシャル成長法における熱処理方法であって、  2. A single-crystal silicon carbide substrate serving as a seed crystal and a polycrystalline silicon carbide substrate are stacked, placed in a closed container, and subjected to a high-temperature heat treatment to obtain the single-crystal silicon carbide substrate and the polycrystalline carbon carbide. A liquid crystal of single-crystal silicon carbide in which an ultra-thin metal silicon melt is interposed between the silicon substrate and the silicon substrate during the heat treatment and the single-crystal silicon carbide is liquid-phase epitaxially grown on the single-crystal silicon carbide substrate A heat treatment method in an epitaxial growth method,
前記密閉容器を、 予め圧力約 1 0— 2 P a以下の予備加熱室で約 8 0 0 °C以上に加熱するとともに、 前記密閉容器内を圧力約 1 0— 5 P a以下 に減圧し、 予め約 1 4 0 0 °C以上 2 3 0 0 °C以下の範囲内で所定の温度 に加熱された圧力約 1 0—2 P a以下、 好ましくは約 10_5Pa以下の真空、 又は予め圧力約 1 0—5 P a以下に到達した後に不活性ガスを導入した希 薄ガス雰囲気下の加熱室に移動して設置することで、前記単結晶炭化ケ ィ素基板と多結晶炭化ケィ素基板とを短時間で約 1 4 0 0 °C以上 2 3 0 0 °C以下の温度範囲内で所定の温度に加熱して微結晶粒界の存在しな い、 表面のマイク口パイプ欠陥密度が約 1 Z c m2以下である単結晶炭 化ケィ素を製造する単結晶炭化ケィ素の液相ェピタキシャル成長法に おける熱処理方法。 Said sealed container, with heating to about 8 0 0 ° C or higher in advance a pressure of about 1 0- 2 P a less preheating chamber, under reduced pressure the closed container below the pressure of about 1 0- 5 P a, advance about 1 4 0 0 ° C over 2 3 0 0 ° C following the pressure which has been heated to a predetermined temperature in the range from about 1 0- 2 P a or less, preferably about 10_ 5 Pa or less vacuum, or pre-pressure about 1 0 5 to introduce an inert gas after reaching below P a dilute The single crystal silicon carbide substrate and the polycrystalline silicon carbide substrate can be moved to a temperature of about 140 ° C. or more in a short time by moving to a heating chamber under a thin gas atmosphere. is heated to a predetermined temperature within a temperature range below not exist fine grain boundaries, microphone port pipe defect density of the surface to produce a single crystal carbonization Kei arsenide is about 1 Z cm 2 or less single crystal Heat treatment method in liquid phase epitaxial growth of silicon carbide.
3 . 前記密閉容器を、 前記加熱室に移動した際に、 前記密閉容器の軸 方向には温度差を設けず、 前記密閉容器の面内方向に温度勾配を設け、 前記温度勾配を任意に制御することによつて微結晶粒界の生成を抑制 する請求の範囲第 2項に記載の単結晶炭化ケィ素の液相ェピタキシャ ル成長法における熱処理方法。  3. When the closed container is moved to the heating chamber, no temperature difference is provided in the axial direction of the closed container, a temperature gradient is provided in the in-plane direction of the closed container, and the temperature gradient is arbitrarily controlled. 3. The heat treatment method in a liquid phase epitaxial growth method for single crystal silicon carbide according to claim 2, wherein the generation of fine crystal grain boundaries is suppressed by performing the method.
4 . 前記密閉容器が、 タンタル又は炭化タンタルのいずれかで形成さ れている請求の範囲第 2項に記載の単結晶炭化ケィ素の液相ェピタキ シャル成長法における熱処理方法。  4. The heat treatment method according to claim 2, wherein the closed container is formed of either tantalum or tantalum carbide in a liquid-phase epitaxial growth method of single-crystal silicon carbide.
5 . 前記密閉容器が上容器及び下容器で形成され、 前記上容器及び前 記下容器の嵌合部からシリコン蒸気が漏れ出す程度に前記密閉容器内 の圧力が前記加熱室内の圧力よりも高くなるように制御し、 前記密閉容 器内に不純物が混入するのを抑制する請求の範囲第 2項に記載の単結 晶炭化ケィ素の液相ェピタキシャル成長法における熱処理方法。 5. The closed container is formed of an upper container and a lower container, and the pressure in the closed container is higher than the pressure in the heating chamber to such an extent that silicon vapor leaks from the fitting portion of the upper container and the lower container. 3. The heat treatment method in a liquid-phase epitaxy method for growing single-crystal silicon carbide according to claim 2, wherein the control is performed so that impurities are mixed into the closed container.
6 . 前記加熱室内に、 前記密閉容器から漏出するシリコン蒸気を物理 吸着する汚染物除去機構が設けられている請求の範囲第 2項に記載の 単結晶炭化ケィ素の液相ェピタキシャル成長法における熱処理方法。  6. The liquid-phase epitaxial growth method for single-crystal silicon carbide according to claim 2, wherein a contaminant removal mechanism for physically adsorbing silicon vapor leaking from the closed vessel is provided in the heating chamber. Heat treatment method.
7 . 前記単結晶炭化ケィ素の表面が、 3分子層を最小単位とした原子 オーダーステップと、 幅広のテラスと、 を有し、 前記テラスの幅が約 1 0 μ ητ_以上である請求の範囲第 2項に記載の単結晶炭化ケィ素の液相 ェピタキシャル成長法における熱処理方法。 7. The surface of the single-crystal silicon carbide has an atomic order step having a minimum of three molecular layers, and a wide terrace, and the width of the terrace is about 10 μητ_ or more. 3. The heat treatment method according to claim 2, wherein the single crystal silicon carbide is a liquid phase epitaxial growth method.
8 . 前記表面が、 (0 0 0 1 ) S i面である請求の範囲第 7項に記載 の単結晶炭化ケィ素の液相ェピタキシャル成長法における熱処理方法。8. The heat treatment method according to claim 7, wherein the surface is a (001) Si plane.
9 . 前記極薄金属シリコン融液が、 約 5 0 /i m以下の厚みである請求 の範囲第 2項に記載の単結晶炭化ケィ素の液相ェピタキシャル成長法 における熱処理方法。 9. The heat treatment method according to claim 2, wherein said ultra-thin metal silicon melt has a thickness of about 50 / im or less.
1 0 . 被処理物を圧力約 1 CT2 P a以下、好ましくは約 1' 0—5 P a以 下の真空、又は予め圧力約 1 0— 2 P a以下に好ましくは約 1 0— 5 P a以 下の真空に到達した後に不活性ガスを導入した希薄ガス雰囲気下にお いて短時間で約 1 2 0 0 °C以上 2 3 0 0 °C以下の温度範囲に加熱する 加熱室と、 1 0. Treatment object below a pressure of about 1 CT 2 P a, preferably preferably to less than about 1 '0-5 P a hereinafter the vacuum, or pre-pressure of about 1 0 2 P a about 1 0 5 After reaching a vacuum of Pa or less, the mixture is heated to a temperature range of about 1200 to 230 ° C in a short time in a rare gas atmosphere in which an inert gas is introduced. ,
前記加熱室に連結され、 前記加熱室に被処理物を移動するための移動 手段が設けられている前室と、  A front chamber connected to the heating chamber and provided with a moving unit for moving an object to be processed into the heating chamber;
前記前室に連結され、 前記被処理物を約 1 0— 2 P a以下好ましくは約 1 CT5 P a以下の真空において予め約 8 0 0 °C以上に加熱する予備力口 熱室とを備える熱処理装置。 A reserve heat port, which is connected to the front chamber and heats the object to be heated to about 800 ° C. or more in advance in a vacuum of about 10 to 2 Pa or less, preferably about 1 CT 5 Pa or less. Equipped heat treatment equipment.
1 1 . 前記予備加熱室の加熱手段が、 ランプ式加熱手段である請求の 範囲第 1 0項に記載の熱処理装置。  11. The heat treatment apparatus according to claim 10, wherein the heating unit of the preheating chamber is a ramp-type heating unit.
1 2 . 真空高温炉の内部が 2槽以上の複数の分離された槽からなり、 その複数の槽内部が主加熱槽と予備加熱槽から構成され、前記予備加熱 槽が主に試料に吸着したガスと試料に内蔵するガスの脱ガスのため室 温から約 8 0 0 °Cに加熱され、脱ガス終了後、予め加熱真空排気されて、 清浄高温下に保持されている前記主加熱槽に速やかに移動され、また前 記主加熱槽は常に約 1 0 -3 P a以下の圧力、 または、 一度約 1 0 - 3 P a以下の圧力に到達した後、 若干の不活性ガスを導入し、 大気圧から約 1 0 -3 P aまでの任意の圧力の希薄ガス雰囲気下で約 8 0 0 °C以上 2 6 0 0 °C以下の範囲内で所定の高温に常に加熱されており、 前記予備加 熱槽が試料の出し入れのための大気圧から、前記主加熱槽との間で試料 を移動させるために必要な、前記主加熱槽と同等の圧力に排気可能な機 能を有し、 室温から約 8 0 0 °Cの温度に試料を予備加熱した後、 前記主 加熱槽に早く移動することにより、試料の最適処理温度約 8 0 0 °C以上 2 6 0 0 °C以下の温度範囲内で高温かつ高純度雰囲気を速やかに達成 する高温加熱炉を有することを特徴とする熱処理装置。 1 2. The interior of the vacuum high-temperature furnace is composed of two or more separate tanks, and the insides of the multiple tanks are composed of a main heating tank and a preheating tank, and the preheating tank is mainly adsorbed to the sample. It is heated from room temperature to about 800 ° C for degassing of gas and gas contained in the sample, and after degassing, it is heated and evacuated beforehand, and the main heating tank which is kept at a clean high temperature is The main heating tank is moved quickly, and the main heating tank always reaches a pressure of about 10 -3 Pa or less, or once reaches a pressure of about 10-3 Pa or less, and then introduces some inert gas. , Is constantly heated to a predetermined high temperature within a range of about 800 ° C. or more and 260 ° C. or less under a rare gas atmosphere at an arbitrary pressure from atmospheric pressure to about 10 −3 Pa, The preliminary The heat tank has a function that can be evacuated from the atmospheric pressure for loading and unloading the sample to the same pressure as the main heating tank required to move the sample to and from the main heating tank. After preheating the sample to a temperature of about 800 ° C, it is moved to the main heating tank quickly, so that the optimal processing temperature of the sample is within the temperature range of about 800 ° C or more and 260 ° C or less. A heat treatment apparatus characterized by having a high-temperature heating furnace that quickly achieves a high-temperature and high-purity atmosphere.
1 3 . 前記主加熱槽の処理温度が約 1 2 0 0 °C以上 2 6 0 0 °C以下の 高純度雰囲気の高温加熱炉で、 高温炉の発熱部が Wまたは T aの高融点 金属からなり、高温領域を取り卷く、熱反射及び保温領域の構成材料が、 W, T a , M oの中から選択した高融点金属材料からなる複合構造にな つており、 熱遮断領域の構成材料の高融点金属の表面に発熱部の発光波 長領域を反射する波長が約 0 . 4以上約 3 . 5 /z m以下の範囲の中の任 意の波長領域の赤外反射膜が形成されている高温加熱炉を有すること を特徴とする請求の範囲第 1 2項に記載の熱処理装置。  1 3. A high-purity high-temperature furnace with a processing temperature of the above-mentioned main heating tank of about 1200 ° C or more and 260 ° C or less, and the heating part of the high-temperature furnace is a high melting point metal of W or Ta. The heat-reflecting and heat-retaining region surrounding the high-temperature region has a composite structure composed of a refractory metal selected from W, Ta, and Mo. An infrared reflective film having an arbitrary wavelength range within a range of about 0.4 or more and about 3.5 / zm or less is formed on the surface of the refractory metal of the material, the wavelength reflecting the emission wavelength range of the heat generating portion being about 0.4 to about 3.5 / zm. The heat treatment apparatus according to claim 12, further comprising a high-temperature heating furnace.
1 4 . 前記主加熱槽のヒータ部を取り卷く高融点金属板で構成される 保温領域が、 保温層と熱線反射層からなる複合構造になっており、 各層 が高温保持および熱線反射する機能を有し、保温領域を構成する高融点 金属板表面が、 WC、 T a C、 M o C、 Z r C、 H f C、 B Nなどの高 耐熱性金属炭化物、 または、 金属窒化物が単独、 もしくは、 複合で被覆 されることで、 高融点金属の劣化、 変形を防止する機能を有し、 かつ、 熱線反射層となる高融点金属表面が A uなどの赤外線反射膜で被覆さ れることで、 約 0 . 4以上 3 . 5 m以下の範囲の任意の発光波長領域 を高効率で反射する機能を有する高温加熱炉を備えることを特徴とす る請求の範囲第 1 2項に記載の熱処理装置。  14. The heat insulation area composed of a high melting point metal plate surrounding the heater part of the main heating tank has a composite structure consisting of a heat insulation layer and a heat ray reflection layer, and each layer has a function of holding high temperature and reflecting heat rays. The surface of the high melting point metal plate that constitutes the heat retaining area is made of a highly heat-resistant metal carbide such as WC, TaC, MoC, ZrC, HfC, BN, or metal nitride alone , Or a composite that has the function of preventing deterioration and deformation of the refractory metal, and that the surface of the refractory metal serving as the heat ray reflective layer is covered with an infrared reflective film such as Au. The method according to claim 12, further comprising a high-temperature heating furnace having a function of efficiently reflecting an arbitrary emission wavelength range in a range of about 0.4 to 3.5 m. Heat treatment equipment.
1 5 . 試料を急速に加熱するため、 真空高温炉が主加熱槽と予備加熱 槽の二つに分かれ、 かつ、 高純度な雰囲気を維持するため、 各々の室内 が個々の独立した真空排気系と、 あるいは個々の独立したガス導入系、 及び大気圧雰囲気に維持可能で、 かつ、 主加熱槽と予備加熱槽が、 遮断 バルブの開閉によって、 一体化と分離を相互に維持されている高速な高 温加熱炉を有する熱処理装置において、 15 5. The vacuum high-temperature furnace is divided into a main heating tank and a preheating tank in order to rapidly heat the sample, and each room is maintained in order to maintain a high-purity atmosphere. Can be maintained in an independent vacuum evacuation system, or in an independent gas introduction system, and at atmospheric pressure, and the main heating tank and preheating tank can be integrated and separated by opening and closing the shutoff valve. In a heat treatment apparatus with a high-speed high-temperature heating furnace maintained mutually,
前記主加熱槽が常用時に常に約 1 0 -3 P a以下の圧力、 または、 一度 約 1 0 -3 P a以下の圧力に到達した後、 若干の不活性ガスを導入し、 大 気圧から約 1 0 - 3 P aまでの任意の圧力の希薄ガス雰囲気下に約 8 0 0 °C以上 2 6 0 0 °C以下の温度範囲内で高温状態に保持されており、 前 記予備加熱槽が約室温以上 1 0 0 o °c以下の温度範囲に保持されてい る状態において、試料等から発生する内蔵ガスを吸着するためのコール ドトラップが内蔵され、加熱終了後の高温から室温に速やかに冷却する 為の急冷用ガス循環装置が内蔵されている高温加熱炉を有することを 特徴とする熱処理装置。  When the main heating tank reaches a pressure of about 10 -3 Pa or less during normal use, or once reaches a pressure of about 10 -3 Pa or less, a small amount of inert gas is introduced, and the pressure is reduced from atmospheric pressure to about 10 -3 Pa. It is maintained at a high temperature within a temperature range of about 800 ° C or more and 260 ° C or less in a rare gas atmosphere at an arbitrary pressure up to 10-3 Pa. Built-in cold trap for adsorbing built-in gas generated from samples, etc., when the temperature is maintained in the temperature range of about room temperature or more and 100 ° C. or less, quickly cooling from high temperature after heating to room temperature A heat treatment apparatus comprising a high-temperature heating furnace having a built-in quenching gas circulation device for performing the cooling.
1 6 . 前記予備加熱槽の加熱源が、短時間に急速に加熱するために 、 試料に近赤外線を集光するための反射鏡を持つ、ハロゲン及び X eラン プまたはランプの風袋外面に赤外線発生機能膜を付加した赤外線加熱 ランプである高温加熱炉を有することを特徴とする請求の範囲 1 5項 に記載の熱処理装置。 '  16. The heating source of the preheating tank has a reflecting mirror to focus near infrared rays on the sample in order to rapidly heat it in a short time. The heat treatment apparatus according to claim 15, further comprising a high-temperature heating furnace that is an infrared heating lamp to which a generation function film is added. '
1 7 . 前記主加熱槽の加熱部が高融点金属からなる円筒状の主ヒー タと平面状の補助ヒータとからなる高温加熱炉を有することを特徴と する請求の範囲 1 5項に記載の熱処理装置。  17. The method according to claim 15, wherein the heating portion of the main heating tank has a high-temperature heating furnace including a cylindrical main heater made of a high-melting-point metal and a planar auxiliary heater. Heat treatment equipment.
PCT/JP2004/003152 2003-03-10 2004-03-10 Method of heat treatment and heat treatment apparatus WO2004088734A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/548,825 US20060249073A1 (en) 2003-03-10 2004-03-10 Method of heat treatment and heat treatment apparatus

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2003-63275 2003-03-10
JP2003-63324 2003-03-10
JP2003063271 2003-03-10
JP2003063324 2003-03-10
JP2003063275A JP2004271072A (en) 2003-03-10 2003-03-10 High temperature heating furnace
JP2003-63271 2003-03-10
JP2003333266A JP3741283B2 (en) 2003-03-10 2003-09-25 Heat treatment apparatus and heat treatment method using the same
JP2003-333266 2003-09-25
JP2003-333255 2003-09-25
JP2003333255A JP4593099B2 (en) 2003-03-10 2003-09-25 Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor

Publications (1)

Publication Number Publication Date
WO2004088734A1 true WO2004088734A1 (en) 2004-10-14

Family

ID=33136253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003152 WO2004088734A1 (en) 2003-03-10 2004-03-10 Method of heat treatment and heat treatment apparatus

Country Status (1)

Country Link
WO (1) WO2004088734A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006043530A1 (en) * 2004-10-19 2008-05-22 キヤノンアネルバ株式会社 Substrate heat treatment apparatus and substrate transfer tray used for substrate heat treatment
US8044567B2 (en) * 2006-03-31 2011-10-25 General Electric Company Light source incorporating a high temperature ceramic composite and gas phase for selective emission
WO2017115466A1 (en) * 2015-12-28 2017-07-06 東洋炭素株式会社 METHOD FOR MANUFACTURING SINGLE-CRYSTAL SiC, AND HOUSING CONTAINER
CN107748134A (en) * 2017-11-30 2018-03-02 北京科技大学 A kind of asphalt mixture hydrodynamic pressure choice and creation of healthy environment system and test method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053500A (en) * 1998-08-06 2000-02-22 Nippon Pillar Packing Co Ltd METHOD AND DEVICE FOR GROWING SINGLE CRYSTAL SiC
JP2000302599A (en) * 1999-04-23 2000-10-31 New Japan Radio Co Ltd Epitaxial growth method of silicon carbide
JP2002047100A (en) * 2000-07-31 2002-02-12 Nippon Pillar Packing Co Ltd METHOD FOR GROWING SINGLE CRYSTAL SiC

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053500A (en) * 1998-08-06 2000-02-22 Nippon Pillar Packing Co Ltd METHOD AND DEVICE FOR GROWING SINGLE CRYSTAL SiC
JP2000302599A (en) * 1999-04-23 2000-10-31 New Japan Radio Co Ltd Epitaxial growth method of silicon carbide
JP2002047100A (en) * 2000-07-31 2002-02-12 Nippon Pillar Packing Co Ltd METHOD FOR GROWING SINGLE CRYSTAL SiC

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006043530A1 (en) * 2004-10-19 2008-05-22 キヤノンアネルバ株式会社 Substrate heat treatment apparatus and substrate transfer tray used for substrate heat treatment
JP4599363B2 (en) * 2004-10-19 2010-12-15 キヤノンアネルバ株式会社 Substrate heat treatment apparatus and substrate transfer tray used for substrate heat treatment
KR101049730B1 (en) * 2004-10-19 2011-07-19 캐논 아네르바 가부시키가이샤 Substrate transfer tray used for substrate heat treatment device and substrate heat treatment
US8044567B2 (en) * 2006-03-31 2011-10-25 General Electric Company Light source incorporating a high temperature ceramic composite and gas phase for selective emission
WO2017115466A1 (en) * 2015-12-28 2017-07-06 東洋炭素株式会社 METHOD FOR MANUFACTURING SINGLE-CRYSTAL SiC, AND HOUSING CONTAINER
CN107748134A (en) * 2017-11-30 2018-03-02 北京科技大学 A kind of asphalt mixture hydrodynamic pressure choice and creation of healthy environment system and test method

Similar Documents

Publication Publication Date Title
JP5152887B2 (en) Surface modification method for single crystal silicon carbide substrate, method for forming single crystal silicon carbide thin film, ion implantation annealing method, single crystal silicon carbide substrate, single crystal silicon carbide semiconductor substrate
US20060249073A1 (en) Method of heat treatment and heat treatment apparatus
JP7244116B2 (en) nitride semiconductor substrate
JP4593099B2 (en) Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor
JP5053993B2 (en) Seed-forming growth method for preparing aluminum nitride single crystals
US7056383B2 (en) Tantalum based crucible
JP4848495B2 (en) Single crystal silicon carbide and method for producing the same
JP3741283B2 (en) Heat treatment apparatus and heat treatment method using the same
JP4431647B2 (en) Method for improving surface of single crystal silicon carbide substrate and method for growing single crystal silicon carbide
JP4431643B2 (en) Single crystal silicon carbide growth method
TWI567867B (en) Semiconductor wafer manufacturing method and semiconductor wafer
JP5224256B2 (en) Single crystal silicon carbide substrate processing method, semiconductor device manufacturing method
JP2006298722A (en) Method for manufacturing single crystal silicon carbide substrate
WO2004088734A1 (en) Method of heat treatment and heat treatment apparatus
JP4482642B2 (en) Single crystal silicon carbide growth method
JP4418879B2 (en) Heat treatment apparatus and heat treatment method
JP2024508945A (en) How to grow high quality single crystal silicon carbide
JP5164121B2 (en) Single crystal silicon carbide growth method
JP2006041544A5 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2006249073

Country of ref document: US

Ref document number: 10548825

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10548825

Country of ref document: US