JP2006041544A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2006041544A5 JP2006041544A5 JP2005229385A JP2005229385A JP2006041544A5 JP 2006041544 A5 JP2006041544 A5 JP 2006041544A5 JP 2005229385 A JP2005229385 A JP 2005229385A JP 2005229385 A JP2005229385 A JP 2005229385A JP 2006041544 A5 JP2006041544 A5 JP 2006041544A5
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- container
- processed
- single crystal
- heating chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 claims description 92
- 239000007789 gas Substances 0.000 claims description 11
- 239000011261 inert gas Substances 0.000 claims description 9
- 229910003465 moissanite Inorganic materials 0.000 description 81
- 229910010271 silicon carbide Inorganic materials 0.000 description 81
- 239000000758 substrate Substances 0.000 description 43
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000012535 impurity Substances 0.000 description 10
- 238000000859 sublimation Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atoms Chemical group C* 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 125000004429 atoms Chemical group 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000003028 elevating Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 210000001736 Capillaries Anatomy 0.000 description 1
- 210000002381 Plasma Anatomy 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N Silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910013379 TaC Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003628 erosive Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Description
本発明は、熱処理対象物である被処理物を圧力10-2Pa以下好ましくは10-5Pa以下の真空、又は予め圧力10-2Pa以下好ましくは10-5Pa以下の真空に到達した後に不活性ガスを導入した希薄ガス雰囲気下において、短時間で1200℃〜2300℃に加熱することができる熱処理装置及び熱処理方法に関するものである。 The present invention, the object to be treated the pressure 10 -2 Pa or less preferably 10 -5 Pa or less of vacuum is heat-treated object, or less preferably pre pressure 10 -2 Pa after reaching the following vacuum 10 -5 Pa The present invention relates to a heat treatment apparatus and a heat treatment method capable of heating to 1200 ° C. to 2300 ° C. in a short time in a rare gas atmosphere into which an inert gas is introduced.
従来より、半導体製造工程において使用される熱処理装置には、被処理物の熱履歴を減らし、スリップの発生を防止するために、被処理物を高速で熱処理する熱処理装置や(例えば、特許文献1参照)、短時間で高真空とし、低温でエピタキシャル成長を行うことができる熱処理装置(例えば、特許文献2参照)等が報告されている。 2. Description of the Related Art Conventionally, a heat treatment apparatus used in a semiconductor manufacturing process includes a heat treatment apparatus that heat-treats an object to be processed at a high speed in order to reduce the thermal history of the object to be processed and prevent occurrence of slip (for example, Patent Document 1). (See, for example, Patent Document 2) and the like that have been reported to be capable of high vacuum in a short time and epitaxial growth at a low temperature.
これら、従来の半導体製造工程に使用されていた熱処理装置は、主にSiエピタキシャル成長に用いられていたものである。そのため、使用温度が、例えば、特許文献1に記載の熱処理装置は、高温部の温度が950℃であり、特許文献2に記載の熱処理装置においても、800〜900℃となっている。 These heat treatment apparatuses used in the conventional semiconductor manufacturing process are mainly used for Si epitaxial growth. Therefore, for example, the heat treatment apparatus described in Patent Document 1 has a high temperature portion of 950 ° C., and the heat treatment apparatus described in Patent Document 2 has a temperature of 800 to 900 ° C.
ところが、近年になり、耐熱性及び機械的強度に優れているだけでなく、放射線にも強く、さらに不純物の添加によって電子や正孔の価電子制御が容易である上、広い禁制帯幅を持つ(因みに、6H型のSiC単結晶で約3.0eV、4H型のSiC単結晶で3.3eV)ために、シリコン(以下、Siという。)やガリウムヒ素(以下、GaAsという。)などの既存の半導体材料では実現することができない高温、高周波、耐電圧・耐環境性を実現することが可能である単結晶炭化ケイ素(以下、SiCという。)が、次世代のパワーデバイス、高周波デバイス用半導体材料として注目され、かつ期待されている。また、六方晶SiCは、窒化ガリウム(以下、GaNという。)と格子定数が近く、GaNの基板として期待されている。 However, in recent years, not only is it excellent in heat resistance and mechanical strength, but it is also resistant to radiation, and it is easy to control the valence electrons of electrons and holes by adding impurities, and has a wide band gap. (Incidentally, about 3.0 eV for a 6H-type SiC single crystal and 3.3 eV for a 4H-type SiC single crystal), there are existing ones such as silicon (hereinafter referred to as Si) and gallium arsenide (hereinafter referred to as GaAs). Single crystal silicon carbide (hereinafter referred to as SiC), which is capable of realizing high temperature, high frequency, withstand voltage and environmental resistance, which cannot be realized with any semiconductor material, is the next generation of power devices and semiconductors for high frequency devices. It is attracting attention and is expected as a material. Hexagonal SiC has a lattice constant close to that of gallium nitride (hereinafter referred to as GaN), and is expected as a GaN substrate.
この種の単結晶SiCは、例えば、特許文献3に記載されているように、ルツボ内の低温側に種結晶を固定配置し、高温側に原料となるSiを含む粉末を配置してルツボを不活性雰囲気中で1450〜2400℃の高温に加熱することによって、Siを含む粉末を昇華させて低温側の種結晶の表面上で再結晶させて単結晶の育成を行う昇華再結晶法(改良レーリー法)によって形成されているものがある。 For example, as described in Patent Document 3, this type of single-crystal SiC has a seed crystal fixedly arranged on the low temperature side in the crucible, and a powder containing Si as a raw material is arranged on the high temperature side. A sublimation recrystallization method in which a single crystal is grown by sublimating a powder containing Si by heating to a high temperature of 1450 to 2400 ° C. in an inert atmosphere and recrystallizing on the surface of the seed crystal on the low temperature side (improved) Some are formed by the Rayleigh method.
また、例えば、特許文献4に記載されているように、SiC単結晶基板とSi原子及びC原子により構成された板材とを微小隙間を隔てて互いに平行に対峙させた状態で大気圧以下の不活性ガス雰囲気、且つ、SiC飽和蒸気雰囲気下でSiC単結晶基板側が板材よりも低温となるように温度傾斜を持たせて熱処理することにより、微小隙間内でSi原子及びC原子を昇華再結晶させてSiC単結晶基板上に単結晶を析出させるものもある。 Further, as described in Patent Document 4, for example, a SiC single crystal substrate and a plate material composed of Si atoms and C atoms are opposed to each other in a state where they are opposed to each other in parallel with a minute gap therebetween. Si atoms and C atoms are sublimated and recrystallized in minute gaps by heat treatment in an active gas atmosphere and a SiC saturated vapor atmosphere with a temperature gradient so that the SiC single crystal substrate side is at a lower temperature than the plate material. In some cases, a single crystal is deposited on a SiC single crystal substrate.
また、例えば、特許文献5に記載されているように、液相エピタキシャル成長法によってSiC単結晶上に第1のエピタキシャル層を形成した後に、CVD法によって表面に第2のエピタキシャル層を形成して、マイクロパイプ欠陥を除去するものもある。 Further, for example, as described in Patent Document 5, after the first epitaxial layer is formed on the SiC single crystal by the liquid phase epitaxial growth method, the second epitaxial layer is formed on the surface by the CVD method, Some remove micropipe defects.
しかしながら、これら単結晶SiCの形成は、特許文献3乃至5に記載されているように、1450〜2400℃という高温で熱処理する必要がある。このため、特許文献1又は特許文献2に記載されているような従来の熱処理装置では、単結晶SiCの形成が困難となっている。また、例えば、特許文献3に記載の昇華再結晶法の場合は、成長速度が数100μm/hrと非常に早い反面、昇華の際にSiC粉末がいったんSi、SiC2、Si2Cに分解されて気化し、さらにルツボの一部と反応する。このために、温度変化によって種結晶の表面に到達するガスの種類が異なり、これらの分圧を化学量論的に正確に制御することが技術的に非常に困難である。また、不純物も混入しやすく、その混入した不純物や熱に起因する歪みの影響で結晶欠陥やマイクロパイプ欠陥等を発生しやすく、また、多くの核生成に起因する結晶粒界の発生など、性能的、品質的に安定した単結晶SiCが得られないという問題がある。 However, the formation of these single crystal SiCs requires heat treatment at a high temperature of 1450 to 2400 ° C. as described in Patent Documents 3 to 5. For this reason, in the conventional heat treatment apparatus as described in Patent Document 1 or Patent Document 2, it is difficult to form single crystal SiC. Further, for example, in the case of the sublimation recrystallization method described in Patent Document 3, the growth rate is very fast as several 100 μm / hr, but the SiC powder is once decomposed into Si, SiC 2 , and Si 2 C during sublimation. Vaporizes and reacts with part of the crucible. For this reason, the types of gases that reach the surface of the seed crystal differ depending on the temperature change, and it is technically very difficult to control these partial pressures stoichiometrically accurately. Impurities are also likely to be mixed in, and crystal defects and micropipe defects are likely to occur due to the influence of the mixed impurities and strain caused by heat. In addition, performance such as generation of crystal grain boundaries due to many nucleation There is a problem that single crystal SiC stable in quality and quality cannot be obtained.
一方、特許文献4や特許文献5に記載の液相エピタキシャル成長法(以下、LPE法という。)の場合は、昇華再結晶法で見られるようなマイクロパイプ欠陥や結晶欠陥などの発生が少なく、昇華再結晶法で製造されるものに比べて品質的に優れた単結晶SiCが得られる。その反面、成長過程が、Si融液中へのCの溶解度によって律速されるために、成長速度が10μm/hr以下と非常に遅くて単結晶SiCの生産性が低く、製造装置内の液相を精密に温度制御しなくてはならない。また、工程が複雑となり、単結晶SiCの製造コストが非常に高価なものになる。 On the other hand, in the case of the liquid phase epitaxial growth method (hereinafter referred to as LPE method) described in Patent Document 4 and Patent Document 5, the occurrence of micropipe defects and crystal defects as seen in the sublimation recrystallization method is small, and sublimation. Single crystal SiC superior in quality as compared with that manufactured by the recrystallization method can be obtained. On the other hand, since the growth process is rate-determined by the solubility of C in the Si melt, the growth rate is very slow, 10 μm / hr or less, and the productivity of single crystal SiC is low. The temperature must be precisely controlled. Further, the process becomes complicated, and the manufacturing cost of single crystal SiC becomes very expensive.
本発明は前記問題に鑑みてなされたもので、次世代の単結晶SiCの形成に好適な、圧力10-2Pa以下好ましくは10-5Pa以下の真空、又は予め圧力10-2Pa以下好ましくは10-5Pa以下の高真空に到達した後に若干の不活性ガスを導入した希薄ガス雰囲気下であっても短時間で1200℃〜2300℃に加熱することができる熱処理装置及びそれを用いて熱処理方法を提供することを目的とする。 The present invention has been made in view of the above problems, suitable for formation of the next generation of the single crystal SiC, pressure 10 -2 Pa or less preferably 10 -5 Pa or less of vacuum, or pre-pressure 10 -2 Pa or less preferably Is a heat treatment apparatus capable of heating to 1200 ° C. to 2300 ° C. in a short time even in a dilute gas atmosphere in which some inert gas is introduced after reaching a high vacuum of 10 −5 Pa or less and using the same An object is to provide a heat treatment method.
前記課題を解決するための本発明に係る熱処理装置は、以下のような構成としている。即ち、被処理物を1200℃〜2300℃に加熱可能な加熱室を備え、この加熱室は圧力10 -2 Pa以下の真空において前記被処理物を加熱できるように構成している。前記被処理物を収納した容器を覆うように、前記加熱室の内部には加熱ヒータが設けられており、その加熱ヒータの周囲に反射鏡が配置されている。前記容器は上容器と下容器とを嵌合してなり、前記被処理物はこの容器に収納された状態で前記加熱ヒータにより加熱される。
なお、前記加熱室は、圧力10 -5 以下の真空で前記被処理物を加熱するように構成されていることが好ましい。あるいは、前記加熱室は、前記圧力10 -2 Paの真空とすることに代えて、圧力10 -2 Pa以下の真空に到達した後に不活性ガスを導入した希薄ガス雰囲気下において前記被処理物を加熱するように構成されていることが好ましい。
A heat treatment apparatus according to the present invention for solving the above problems is configured as follows. That is, a heating chamber capable of heating the object to be processed to 1200 ° C. to 2300 ° C. is provided, and this heating chamber is configured to be able to heat the object to be processed in a vacuum of a pressure of 10 −2 Pa or less. A heater is provided inside the heating chamber so as to cover the container containing the object to be processed, and a reflecting mirror is disposed around the heater. The container is formed by fitting an upper container and a lower container, and the object to be processed is heated by the heater while being accommodated in the container.
The heating chamber is preferably configured to heat the object to be processed in a vacuum of a pressure of 10 −5 or less. Alternatively, the heating chamber, instead of a vacuum of the pressure 10 -2 Pa, the object to be processed in the lean gas atmosphere with an inert gas is introduced after reaching the following vacuum pressure 10 -2 Pa It is preferably configured to heat.
また、本発明に係る熱処理方法は、被処理物を1200℃〜2300℃に加熱可能な加熱室を備える熱処理装置による熱処理方法であって、以下のようにして行われる。即ち、前記加熱室は、圧力10 -2 Pa以下の真空下で、又は圧力10 -2 Pa以下の真空に到達した後に不活性ガスを導入した希薄ガス雰囲気下で、前記被処理物を加熱できるように構成している。前記被処理物を収納した容器を覆うように、前記加熱室の内部には加熱ヒータが設けられており、その加熱ヒータの周囲に反射鏡が配置されている。前記容器は上容器と下容器とを嵌合してなり、前記被処理物はこの容器に収納された状態で前記加熱ヒータにより加熱される。 Moreover, the heat processing method which concerns on this invention is a heat processing method with the heat processing apparatus provided with the heating chamber which can heat a to-be-processed object at 1200 to 2300 degreeC, Comprising: It performs as follows. That is, the heating chamber is under vacuum pressure of less than 10 -2 Pa, or under a lean gas atmosphere with an inert gas is introduced after reaching the following vacuum pressure 10 -2 Pa, it can heat the object to be processed It is configured as follows. A heater is provided inside the heating chamber so as to cover the container containing the object to be processed, and a reflecting mirror is disposed around the heater. The container is formed by fitting an upper container and a lower container, and the object to be processed is heated by the heater while being accommodated in the container.
本発明は以上のように構成されており、圧力10-2Pa以下好ましくは10-5Pa以下の高真空、又は予め圧力10-2Pa以下の真空に到達した後に不活性ガスを導入した希薄ガス雰囲気下の圧力下において、加熱ヒータを用いて、嵌合容器内の被処理物を短時間で1200℃〜2300℃という高温に加熱できるため、従来の熱処理装置や熱処理方法では得られなかった新規な材料を創作できる。 The present invention is configured as described above, and is diluted with an inert gas after reaching a high vacuum of 10 −2 Pa or less, preferably 10 −5 Pa or less, or a vacuum of 10 −2 Pa or less in advance. under a pressure of gas atmosphere, using a heating heater, it is possible to heat an object to be processed of the fitting in the container to high temperatures that short time 1 200 ° C. to 2300 ° C., could not be obtained in the conventional heat treatment apparatus and a heat treatment method and Ru can be created a new material.
以下、図面を参照しつつ、本発明に係る熱処理装置の一実施形態例を説明する。 Hereinafter, an embodiment of a heat treatment apparatus according to the present invention will be described with reference to the drawings.
図1は、本実施形態に係る熱処理装置の一例を示す断面概略図である。図1において、熱処理装置1は、加熱室2と、予備加熱室3と、予備加熱室3から加熱室2に続く前室4とで構成されている。そして、被処理物5が予備加熱室3から前室4、加熱室2へと順次移動することで、被処理物5を短時間で1200℃〜2300℃に加熱することができる。 FIG. 1 is a schematic cross-sectional view showing an example of a heat treatment apparatus according to this embodiment. In FIG. 1, the heat treatment apparatus 1 includes a heating chamber 2, a preheating chamber 3, and a front chamber 4 that extends from the preheating chamber 3 to the heating chamber 2. And the to-be-processed object 5 can be heated to 1200 to 2300 degreeC in a short time because the to-be-processed object 5 moves sequentially from the preheating chamber 3 to the front chamber 4 and the heating chamber 2. FIG.
図1に示すように、熱処理装置1は、加熱室2、予備加熱室3、前室4が連通している。このため、各室を予め所定の圧力下に制御することが可能となる。これによって被処理物5の移動時においても、外気に触れることなく、所定圧力下の炉内を図示しない移動手段によって移動させることができるため、不純物の混入等を抑制することができる。 As shown in FIG. 1, in the heat treatment apparatus 1, a heating chamber 2, a preheating chamber 3, and a front chamber 4 are in communication. For this reason, it becomes possible to control each chamber under a predetermined pressure in advance. As a result, even when the workpiece 5 is moved, the inside of the furnace under a predetermined pressure can be moved by a moving means (not shown) without touching the outside air, so that contamination of impurities and the like can be suppressed.
予備加熱室3は、ハロゲンランプ6が設けられ、急速に約800〜1000℃程度にまで加熱が可能なランプ式加熱炉になっている。また、予備加熱室3と前室4との接続部分には、ゲートバルブ7が設けられており、予備加熱室3及び前室4の圧力制御を容易なものとしている。被処理物5は、この予備加熱室3で、テーブル8に載置された状態で800℃以上に予め加熱された後、予備加熱室3と前室4との圧力調整が済み次第、前室4に設けられている昇降式のサセプタ9に設置するように移動させられる。 The preheating chamber 3 is provided with a halogen lamp 6 and is a lamp heating furnace capable of rapidly heating to about 800 to 1000 ° C. In addition, a gate valve 7 is provided at a connection portion between the preheating chamber 3 and the front chamber 4 to facilitate pressure control of the preheating chamber 3 and the front chamber 4. The object to be treated 5 is preheated to 800 ° C. or higher in the state of being placed on the table 8 in the preheating chamber 3, and then the pressure adjustment between the preheating chamber 3 and the front chamber 4 is completed. 4 is moved so as to be installed on an elevating type susceptor 9 provided in 4.
前室4に移動させられた被処理物5は、一部図示している昇降式の移動手段10によって前室4から加熱室2に移動させられる。このとき、加熱室2内は、図示しない真空ポンプで予め所定の圧力である10-1Pa以下、好ましくは圧力10-2Pa以下更に好ましくは10-5Pa以下の真空、又は予め圧力10-2Pa以下好ましくは10-5Pa以下の高真空に到達した後に若干の不活性ガスを導入し、10-1Pa以下、好ましくは10-2Pa以下の希薄ガス雰囲気下とし、加熱ヒータ11によって1200℃〜2300℃に設定されていることが好ましい。加熱室2内の状態をこのように設定しておくことで、被処理物5を前室4から加熱室2内に移動することによって、被処理物5を1200℃〜2300℃に急速に短時間で加熱することができる。また、加熱室2には、加熱ヒータ11の周囲に反射鏡12が配置されており、加熱ヒータ11の熱を反射して加熱ヒータ11の内部に位置する被処理物5側に集中するようにしている。この反射鏡12は、図1に示すような筐体状のものであっても、例えば、図5に示すようなドーム状の反射鏡12とすることもできる。このように、反射鏡12をドーム状とすることで、加熱ヒータ11に平板状のヒータを使用することも可能となり、平板状の加熱ヒータ11を使用した場合であっても、加熱ヒータ11からの熱を効率良く被処理物5に集中させることができる。 The workpiece 5 moved to the front chamber 4 is moved from the front chamber 4 to the heating chamber 2 by a lifting / lowering moving means 10 partially shown. At this time, the inside of the heating chamber 2 is a predetermined pressure of 10 −1 Pa or less, preferably a pressure of 10 −2 Pa or less, more preferably 10 −5 Pa or less, or a pressure of 10 − After reaching a high vacuum of 2 Pa or less, preferably 10 −5 Pa or less, a slight inert gas is introduced to form a dilute gas atmosphere of 10 −1 Pa or less, preferably 10 −2 Pa or less. It is preferable that the temperature is set to 1200 ° C to 2300 ° C. By setting the state in the heating chamber 2 in this way, the workpiece 5 is rapidly shortened to 1200 ° C. to 2300 ° C. by moving the workpiece 5 from the front chamber 4 into the heating chamber 2. Can be heated in time. In addition, a reflecting mirror 12 is disposed around the heater 11 in the heating chamber 2 so that the heat of the heater 11 is reflected and concentrated on the object 5 to be processed located inside the heater 11. ing. Even if the reflecting mirror 12 has a housing shape as shown in FIG. 1, for example, a dome-like reflecting mirror 12 as shown in FIG. 5 can be used. Thus, by making the reflecting mirror 12 into a dome shape, it is possible to use a flat heater as the heater 11, and even if the flat heater 11 is used, the heater 11 Can be efficiently concentrated on the workpiece 5.
移動手段10と加熱室2との嵌合部25は、移動手段10に設けられている凸状の段付き部21と、加熱室2に形成されている凹状の段付き部22とで構成されている。そして、移動手段10の段付き部21の各段部に設けられている図示しないOリング等のシール部材によって、加熱室2は密閉された状態となる。 The fitting portion 25 between the moving means 10 and the heating chamber 2 is composed of a convex stepped portion 21 provided in the moving means 10 and a concave stepped portion 22 formed in the heating chamber 2. ing. And the heating chamber 2 will be in the state sealed by sealing members, such as an O-ring which is not shown in figure provided in each step part of the step part 21 of the moving means 10. FIG.
また、加熱室2内の加熱ヒータ11の内側には、被処理物5から熱処理中に排出される不純物を、加熱ヒータ11と接触しないように除去する汚染物除去機構20が設けられている。これによって、加熱ヒータ11が被処理物5から排出される不純物と反応し劣化することを抑制できる。なお、この汚染物除去機構20は、被処理物5から排出する不純物を吸着するものであれば、特に限定されるものではない。 Further, a contaminant removal mechanism 20 that removes impurities discharged from the workpiece 5 during the heat treatment so as not to come into contact with the heater 11 is provided inside the heater 11 in the heating chamber 2. Thereby, it can suppress that the heater 11 reacts with the impurity discharged | emitted from the to-be-processed object 5, and deteriorates. The contaminant removal mechanism 20 is not particularly limited as long as it can adsorb impurities discharged from the workpiece 5.
加熱ヒータ11は、黒鉛製の抵抗加熱ヒータであり、サセプタ9に設置されているベースヒータ11aと、側部及び上部が一体に筒状に形成された上部ヒータ11bとで構成されている。このように、被処理物5を覆うように加熱ヒータ11が配置されているため、被処理物5を均等に加熱することが可能となる。なお、加熱室2の加熱方式は、本実施形態例に示す抵抗加熱ヒータに限定されるものではなく、例えば、高周波誘導加熱式であっても構わない。 The heater 11 is a resistance heater made of graphite, and includes a base heater 11a installed on the susceptor 9 and an upper heater 11b in which a side portion and an upper portion are integrally formed in a cylindrical shape. Thus, since the heater 11 is arrange | positioned so that the to-be-processed object 5 may be covered, it becomes possible to heat the to-be-processed object 5 equally. Note that the heating method of the heating chamber 2 is not limited to the resistance heater shown in the present embodiment, and may be a high frequency induction heating method, for example.
被処理物5として、単結晶SiCを処理する場合は、例えば、図2に示すような上容器5aと、下容器5bとで構成される密閉容器5’を用いることが好ましい。この密閉容器5’内に、後述するように、単結晶SiC基板16と多結晶SiC基板を積層、収納して熱処理を行う(図3参照)。 In the case of processing single crystal SiC as the object 5 to be processed, for example, it is preferable to use a sealed container 5 ′ composed of an upper container 5 a and a lower container 5 b as shown in FIG. 2. As will be described later, the single crystal SiC substrate 16 and the polycrystalline SiC substrate are stacked in this sealed container 5 ', and heat treatment is performed (see FIG. 3).
この密閉容器5’は、上容器5aと下容器5bとの嵌め合わせ時の嵌合部の遊びが2mm以下であることが好ましい。これによって、密閉容器5’内への不純物の混入を抑制することができる。また、遊びを2mm以下とすることによって、熱処理時に密閉容器5’内のSi分圧を10Pa以下とならないように制御することもできる。このため、密閉容器5’内のSiC分圧及びSi分圧を高め、単結晶SiC基板16及び多結晶SiC基板14,15、極薄金属Si融液17の昇華の防止に寄与するようになる。なお、この上容器5aと下容器5bとの嵌め合い時の嵌合部の遊びが2mmよりも大きい場合は、密閉容器5’内のSi分圧を所定圧に制御することが困難になるばかりでなく、不純物がこの嵌合部を介して密閉容器5’内に侵入することもあるため、好ましくない。この密閉容器5’は、図2に示すように、形状が四角のものに限らず、円形のものであっても良い。 In this sealed container 5 ′, it is preferable that the play of the fitting portion when fitting the upper container 5 a and the lower container 5 b is 2 mm or less. As a result, contamination of impurities into the sealed container 5 ′ can be suppressed. Further, by setting the play to 2 mm or less, it is possible to control the Si partial pressure in the sealed container 5 ′ at 10 Pa or less during the heat treatment. For this reason, the SiC partial pressure and the Si partial pressure in the sealed container 5 ′ are increased to contribute to prevention of sublimation of the single crystal SiC substrate 16, the polycrystalline SiC substrates 14, 15 and the ultrathin metal Si melt 17. . If the play of the fitting portion when the upper container 5a and the lower container 5b are fitted is larger than 2 mm, it is difficult to control the Si partial pressure in the sealed container 5 ′ to a predetermined pressure. In addition, impurities may enter the sealed container 5 ′ through the fitting portion, which is not preferable. As shown in FIG. 2, the sealed container 5 ′ is not limited to a square shape but may be a circular shape.
また、下容器5bには、図3及び図4に示すように、3本の支持部13が設けられている。この支持部13によって、後述する種結晶となる多結晶SiC基板14を支持している。なお、支持部13は、本実施形態例に示すようなピン状のものである必要はなく、例えば、SiCあるいは黒鉛等で形成されているリング状のものであってもよい。 Moreover, as shown in FIG.3 and FIG.4, the three support parts 13 are provided in the lower container 5b. This support portion 13 supports a polycrystalline SiC substrate 14 that becomes a seed crystal to be described later. In addition, the support part 13 does not need to be a pin-shaped thing as shown in this embodiment, For example, the ring-shaped thing formed with SiC, graphite, etc. may be sufficient.
図3は上容器5aと下容器5bとが嵌合した状態の密閉容器5’内に設置されている種結晶となる6H型の単結晶SiC基板16と、この単結晶SiC基板16を挟み込む多結晶SiC基板15と、これらの間に形成される極薄金属Si融液17の状態を示している。なお、極薄金属Si融液17は熱処理時に形成されるものであり、この極薄金属Si融液17のSi源となるのは、種結晶となる単結晶SiC基板16の表面に予め金属SiをCVD等によって10μmから50μmとなるよう膜を形成するか、Si粉末を置く等その方法は特に限定されない。 FIG. 3 shows a 6H-type single crystal SiC substrate 16 serving as a seed crystal installed in an airtight container 5 ′ in a state where the upper container 5 a and the lower container 5 b are fitted, and a plurality of sandwiching the single crystal SiC substrate 16. The state of the crystalline SiC substrate 15 and the ultrathin metal Si melt 17 formed therebetween is shown. The ultrathin metal Si melt 17 is formed at the time of heat treatment, and the Si source of the ultrathin metal Si melt 17 is preliminarily formed on the surface of the single crystal SiC substrate 16 to be a seed crystal on the surface of the metal Si. The method is not particularly limited, such as forming a film to 10 μm to 50 μm by CVD or placing Si powder.
図3に示すように、これら単結晶SiC基板16、多結晶SiC基板14,15及び極薄金属Si融液17は、密閉容器5’を構成する下容器5bに設けられている支持部13に載置されて、密閉容器5’内に収納されている。ここで、単結晶SiC基板16は、昇華法で作製された単結晶6H−SiCのウェハーより所望の大きさ(10×10〜20×20mm)に切り出されたものである。また、多結晶SiC基板14,15は、CVD法で作製されたSi半導体製造工程でダミーウェハーとして使用されるSiCから所望の大きさに切り出されたものを使用することができる。これら各基板16,14,15は表面が鏡面に研磨加工され、表面に付着した油類、酸化膜、金属等が洗浄等によって除去されている。ここで、下部側に位置する多結晶SiC基板14は単結晶SiC基板16の密閉容器5’からの侵食を防止するもので、単結晶SiC基板16上に液相エピタキシャル成長する単結晶SiCの品質向上に寄与するものである。 As shown in FIG. 3, the single crystal SiC substrate 16, the polycrystalline SiC substrates 14 and 15, and the ultrathin metal Si melt 17 are applied to the support portion 13 provided in the lower container 5 b constituting the sealed container 5 ′. It is placed and accommodated in the sealed container 5 ′. Here, the single crystal SiC substrate 16 is cut out to a desired size (10 × 10 to 20 × 20 mm) from a single crystal 6H—SiC wafer produced by a sublimation method. Further, the polycrystalline SiC substrates 14 and 15 can be made by cutting to a desired size from SiC used as a dummy wafer in the Si semiconductor manufacturing process manufactured by the CVD method. The surface of each of the substrates 16, 14, 15 is polished to a mirror surface, and oils, oxide films, metals, etc. adhering to the surface are removed by washing or the like. Here, the polycrystalline SiC substrate 14 located on the lower side prevents erosion of the single crystal SiC substrate 16 from the sealed container 5 ′, and improves the quality of the single crystal SiC that is liquid phase epitaxially grown on the single crystal SiC substrate 16. It contributes to.
また、密閉容器5’は、等方性黒鉛で形成されていることが好ましい。そうすると、Si蒸気に晒される内表面が均等にSiC化するようになり、処理時にSiC化に伴う割れ等を抑制することができる。また、この内表面のSiC化を予防するために、予め、密閉容器5’の内表面にSiC又は熱分解炭素あるいは炭化タンタルを被覆しておくこともできる。 The sealed container 5 'is preferably formed of isotropic graphite. If it does so, the inner surface exposed to Si vapor | steam will come to SiC equally, and the crack etc. accompanying SiC conversion at the time of a process can be suppressed. In order to prevent this inner surface from becoming SiC, SiC, pyrolytic carbon, or tantalum carbide can be coated on the inner surface of the sealed container 5 'in advance.
また、この密閉容器5’内には、熱処理時におけるSiCの昇華、Siの蒸発を制御するためのSi片と共に設置することもできる。Si片を同時に設置することによって、熱処理時に昇華して密閉容器5’内のSiC分圧及びSi分圧を高め、単結晶SiC基板16及び多結晶SiC基板14,15、極薄金属Si融液17の昇華の防止に寄与するようになる。また、密閉容器5’内の圧力を加熱室2内の圧力よりも高くなるように調整でき、これによって、上容器5aと下容器5bとの嵌合部から常にSi蒸気を放出でき、不純物の密閉容器5’内への侵入を防止できる。 Further, in this sealed container 5 ′, it can be installed together with Si pieces for controlling SiC sublimation and Si evaporation during heat treatment. By simultaneously installing the Si pieces, the SiC partial pressure and the Si partial pressure in the sealed container 5 'are increased by sublimation during the heat treatment, so that the single crystal SiC substrate 16 and the polycrystalline SiC substrates 14 and 15, ultrathin metal Si melt 17 contributes to prevention of sublimation. In addition, the pressure in the sealed container 5 ′ can be adjusted to be higher than the pressure in the heating chamber 2, and thereby, it is possible to always release Si vapor from the fitting portion between the upper container 5a and the lower container 5b. Intrusion into the sealed container 5 ′ can be prevented.
このように構成された密閉容器5’は、予備加熱室3内に設置された後、10-5Pa以下に設定され、予備加熱室3に設けられているランプ6によって800℃以上、好ましくは1000℃以上に加熱される。この際、加熱室2内も同様に、10-2Pa以下好ましくは10-5Pa以下の真空に設定された後、1200℃〜2300℃となるように加熱しておくことが好ましい。 The airtight container 5 ′ thus configured is set to 10 −5 Pa or less after being installed in the preheating chamber 3, and is preferably 800 ° C. or more, preferably by the lamp 6 provided in the preheating chamber 3. Heated to 1000 ° C. or higher. At this time, the inside of the heating chamber 2 is similarly set to a vacuum of 10 −2 Pa or less, preferably 10 −5 Pa or less, and then preferably heated to 1200 to 2300 ° C.
そして、前述したように、予備加熱室3内で予備加熱された密閉容器5’は、ゲートバルブ7を開き、前室4のサセプタ9に移動して、昇降手段10によって、1200℃〜2300℃に加熱されている加熱室2内に移動される。これによって、密閉容器5’は、30分以内の短時間で急速に1200℃〜2300℃に加熱される。加熱室2での熱処理温度は、密閉容器5’内に同時に設置している金属Si片が溶融する温度であれば良いが、1200℃〜2300℃とする。処理温度を高温で行うほど、溶融SiとSiCとの濡れ性が上昇し、溶融Siが毛細管現象によって、単結晶SiC基板16と多結晶SiC基板14,15との間に浸透しやすくなる。これによって、単結晶SiC基板16と多結晶SiC基板14,15との間に厚み50μm以下の極薄金属Si融液17を介在させることができる。 As described above, the sealed container 5 ′ preheated in the preheating chamber 3 opens the gate valve 7, moves to the susceptor 9 in the front chamber 4, and is raised to 1200 ° C. to 2300 ° C. by the elevating means 10. It is moved into the heating chamber 2 that is being heated. As a result, the sealed container 5 ′ is rapidly heated to 1200 ° C. to 2300 ° C. in a short time within 30 minutes. Although the heat processing temperature in the heating chamber 2 should just be a temperature which the metal Si piece currently installed in the airtight container 5 'melts simultaneously, it shall be 1200 to 2300 degreeC. As the processing temperature is increased, the wettability between the molten Si and SiC increases, and the molten Si easily penetrates between the single crystal SiC substrate 16 and the polycrystalline SiC substrates 14 and 15 by capillary action. Thereby, an ultrathin metal Si melt 17 having a thickness of 50 μm or less can be interposed between the single crystal SiC substrate 16 and the polycrystalline SiC substrates 14 and 15.
また、本実施形態に係る熱処理装置によると、短時間で1200℃〜2300℃とすることが可能であるため、結晶成長を短時間で終了することができ結晶成長の効率化が可能となる。 In addition, according to the heat treatment apparatus according to the present embodiment, the temperature can be set to 1200 ° C. to 2300 ° C. in a short time, so that the crystal growth can be completed in a short time and the efficiency of the crystal growth can be improved.
ところで、単結晶SiCの成長メカニズムについて簡単に説明すると、熱処理に伴い単結晶SiC基板16と上部の多結晶SiC基板15との間に溶融したSiが侵入して、両基板16,15の界面に厚さ約30μm〜50μmの金属Si融液層17を形成する。この金属Si融液層17は、熱処理温度が高温になるにしたがって、薄くなり、30μm程度となる。そして、多結晶SiC基板2から流れ出したC原子はSi融液層を通して単結晶SiC基板16に供給され、この単結晶SiC基板1上に6H−SiC単結晶として液相エピタキシャル成長(LPE)する。このように、種結晶となる単結晶SiC基板16と多結晶SiC基板14との間が小さいため、熱処理時に熱対流が生成しない。このため、形成される単結晶SiCと、種結晶となる単結晶SiC基板16と界面が非常に滑らかとなり、この界面に歪み等が形成されない。したがって、非常に平滑な単結晶SiCが形成される。また、熱処理時にSiCの核生成が抑制されるため、形成される単結晶SiCの微小結晶粒界の生成を抑制することができる。本実施形態に係る単結晶SiCの育成方法においては、溶融したSiが単結晶SiC基板16と多結晶SiC基板15との間にのみ侵入することから、他の不純物が成長する単結晶SiC中に侵入することがないため、バッググランド5×1015/cm3以下の高純度の単結晶SiCを生成することが可能となる。 By the way, the growth mechanism of single crystal SiC will be briefly described. As a result of the heat treatment, molten Si enters between the single crystal SiC substrate 16 and the upper polycrystalline SiC substrate 15 and enters the interface between the substrates 16 and 15. A metal Si melt layer 17 having a thickness of about 30 μm to 50 μm is formed. The metal Si melt layer 17 becomes thinner as the heat treatment temperature becomes higher, and becomes about 30 μm. The C atoms flowing out of the polycrystalline SiC substrate 2 are supplied to the single crystal SiC substrate 16 through the Si melt layer, and liquid phase epitaxial growth (LPE) is performed on the single crystal SiC substrate 1 as 6H—SiC single crystal. Thus, since the space between the single-crystal SiC substrate 16 serving as the seed crystal and the polycrystalline SiC substrate 14 is small, thermal convection is not generated during the heat treatment. Therefore, the interface between the formed single crystal SiC and the single crystal SiC substrate 16 serving as a seed crystal becomes very smooth, and no distortion or the like is formed at the interface. Therefore, very smooth single crystal SiC is formed. Moreover, since the nucleation of SiC is suppressed during the heat treatment, the generation of the fine crystal grain boundaries of the formed single crystal SiC can be suppressed. In the method for growing single crystal SiC according to the present embodiment, melted Si enters only between the single crystal SiC substrate 16 and the polycrystalline SiC substrate 15, and therefore, in the single crystal SiC where other impurities grow. Since it does not enter, high-purity single crystal SiC having a background of 5 × 10 15 / cm 3 or less can be produced.
以上のように、本実施形態に係る熱処理装置によると、圧力10-2Pa以下好ましくは10-5Pa以下の高真空、又は予め圧力10-2Pa以下好ましくは10-5Pa以下の高真空に到達した後に若干の不活性ガスを導入し、10-1Pa以下、好ましくは10-2Pa以下の希薄ガス雰囲気下において、加熱ヒータを用いて嵌合容器内の被処理物を短時間で1200℃〜2300℃に加熱することができるため、被処理物として単結晶SiCを形成する場合、従来の単結晶SiCの液相成長法(LPE法)では困難であった、表面に10μm以上の幅広のテラスを有した単結晶SiCを形成することが可能となる。 As described above, according to the heat treatment apparatus of the present embodiment, the pressure 10 -2 Pa or less preferably 10 -5 Pa or less high vacuum, or pre-pressure 10 -2 Pa or less preferably 10 -5 Pa or less high vacuum A slight amount of inert gas is introduced after reaching a temperature of 10 −1 Pa or less, preferably 10 −2 Pa or less in a dilute gas atmosphere. it is possible to heat the 1200 ° C. to 2300 ° C., the case of forming a single crystal SiC as an object to be treated was a flame-frame in the liquid phase growth method of a conventional single crystal SiC (LPE method), 10 [mu] m on the surface It becomes possible to form single crystal SiC having the above wide terrace.
なお、本発明に係る熱処理装置は、上述の実施形態例に限定されるものでなく、上述の単結晶SiCの液相成長法以外にも使用することが可能であり、短時間で1200℃〜2300℃に加熱する特徴を利用して、例えば、半導体基板表面にイオンを注入した後、本装置によって短時間で、高温に加熱することで、イオンを注入した部分を確実に且つ効率良く結晶化等することが可能となる。なお、本発明に係る熱処理装置は、小型で、構造が比較的簡易であるため、イオン注入装置等他の装置との連結を容易に行うことができる。 In addition, the heat treatment apparatus according to the present invention is not limited to the above-described embodiment example, and can be used other than the above-described liquid crystal growth method of single crystal SiC, and can be performed at 1200 ° C. in a short time. Utilizing the feature of heating to 2300 ° C, for example, after implanting ions on the surface of the semiconductor substrate, the device is heated to a high temperature in a short time to crystallize the ion-implanted portion reliably and efficiently. And so on. Since the heat treatment apparatus according to the present invention is small and has a relatively simple structure, it can be easily connected to another apparatus such as an ion implantation apparatus.
また、従来、高速加熱を行う場合は、レーザやプラズマ等の特殊な方法が用いられていた。ところが、本発明に係る熱処理装置は、構造が簡易であると共に、他の装置、例えば、電子顕微鏡やイオン注入装置等と連結することが可能である。このため、従来の方法では、得られなかった新規な材料を創作できる可能性がある。 Conventionally, when high-speed heating is performed, a special method such as laser or plasma has been used. However, the heat treatment apparatus according to the present invention has a simple structure and can be connected to other apparatuses such as an electron microscope and an ion implantation apparatus. For this reason, there is a possibility that a novel material that cannot be obtained by the conventional method can be created.
1 熱処理炉
2 加熱室
3 予備加熱室
4 前室
5 被処理物
5’ 密閉容器
5a 上容器
5b 下容器
6 ランプ
7 ゲートバルブ
8 テーブル
9 サセプタ
10 移動手段
11 加熱ヒータ
12 反射鏡
25 嵌合部
1 Heat treatment furnace 2 Heating chamber 3 Preheating chamber 4 Front chamber
5 Workpiece 5 'Sealed container 5a Upper container 5b Lower container 6 Lamp 7 Gate valve 8 Table 9 Susceptor 10 Moving means 11 Heater 12 Reflecting mirror 25 Fitting part
Claims (4)
前記被処理物を収納した容器を覆うように、前記加熱室の内部には加熱ヒータが設けられており、その加熱ヒータの周囲に反射鏡が配置されており、
前記容器は上容器と下容器とを嵌合してなり、前記被処理物はこの容器に収納された状態で前記加熱ヒータにより加熱されることを特徴とする、熱処理装置。 A heating chamber capable of heating the object to be processed to 1200 ° C. to 2300 ° C. is provided , and this heating chamber is configured to heat the object to be processed in a vacuum of a pressure of 10 −2 Pa or less,
A heater is provided inside the heating chamber so as to cover the container containing the object to be processed, and a reflecting mirror is disposed around the heater ,
The heat treatment apparatus , wherein the container is formed by fitting an upper container and a lower container, and the object to be processed is heated by the heater in a state of being accommodated in the container .
前記加熱室は、圧力10 The heating chamber has a pressure of 10 -2-2 Pa以下の真空下で、又は圧力10Under vacuum of Pa or less or pressure 10 -2-2 Pa以下の真空に到達した後に不活性ガスを導入した希薄ガス雰囲気下で、前記被処理物を加熱できるように構成しており、It is configured so that the object to be processed can be heated in a rare gas atmosphere into which an inert gas is introduced after reaching a vacuum of Pa or less,
前記被処理物を収納した容器を覆うように、前記加熱室の内部には加熱ヒータが設けられており、その加熱ヒータの周囲に反射鏡が配置されており、 A heater is provided inside the heating chamber so as to cover the container containing the object to be processed, and a reflecting mirror is disposed around the heater,
前記容器は上容器と下容器とを嵌合してなり、前記被処理物はこの容器に収納された状態で前記加熱ヒータにより加熱されることを特徴とする、熱処理方法。 The container is formed by fitting an upper container and a lower container, and the object to be processed is heated by the heater while being accommodated in the container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005229385A JP4418879B2 (en) | 2003-03-10 | 2005-08-08 | Heat treatment apparatus and heat treatment method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003063271 | 2003-03-10 | ||
JP2005229385A JP4418879B2 (en) | 2003-03-10 | 2005-08-08 | Heat treatment apparatus and heat treatment method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003333266A Division JP3741283B2 (en) | 2003-03-10 | 2003-09-25 | Heat treatment apparatus and heat treatment method using the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006041544A JP2006041544A (en) | 2006-02-09 |
JP2006041544A5 true JP2006041544A5 (en) | 2006-03-23 |
JP4418879B2 JP4418879B2 (en) | 2010-02-24 |
Family
ID=35906112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005229385A Expired - Lifetime JP4418879B2 (en) | 2003-03-10 | 2005-08-08 | Heat treatment apparatus and heat treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4418879B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5251015B2 (en) * | 2007-06-27 | 2013-07-31 | 学校法人関西学院 | Heat treatment apparatus and heat treatment method |
JP2017071519A (en) * | 2015-10-06 | 2017-04-13 | 東洋炭素株式会社 | Liquid-phase epitaxial growth method and crucible used therefor |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63153388A (en) * | 1986-08-23 | 1988-06-25 | 東レ株式会社 | Heat treating furnace |
JP2744934B2 (en) * | 1989-07-25 | 1998-04-28 | 東京エレクトロン株式会社 | Vertical processing equipment |
JP2759368B2 (en) * | 1990-01-23 | 1998-05-28 | 東京エレクトロン株式会社 | Vertical heat treatment equipment |
JPH0715352B2 (en) * | 1990-06-30 | 1995-02-22 | 助川電気工業株式会社 | Vacuum heating device |
JPH0573936U (en) * | 1992-03-12 | 1993-10-08 | 国際電気株式会社 | Single-wafer CVD equipment |
JP3466673B2 (en) * | 1993-09-24 | 2003-11-17 | 東海高熱工業株式会社 | Vacuum furnace with movable heat reflector |
JPH09263498A (en) * | 1996-03-29 | 1997-10-07 | Denso Corp | Production of silicon carbide single crystal |
JP3296998B2 (en) * | 1997-05-23 | 2002-07-02 | 日本ピラー工業株式会社 | Single crystal SiC and method for producing the same |
JP3794816B2 (en) * | 1998-03-09 | 2006-07-12 | 株式会社アルバック | Vacuum heat treatment method |
JP2936479B1 (en) * | 1998-08-06 | 1999-08-23 | 日本ピラー工業株式会社 | Method and apparatus for growing single crystal SiC |
JP4228444B2 (en) * | 1998-12-25 | 2009-02-25 | 住友電気工業株式会社 | Silicon carbide based composite material and method for producing the same |
JP3551106B2 (en) * | 1999-11-04 | 2004-08-04 | 日新電機株式会社 | Method for producing single crystal SiC |
JP4224908B2 (en) * | 1999-11-29 | 2009-02-18 | 株式会社デンソー | Method for producing silicon carbide single crystal |
US6488778B1 (en) * | 2000-03-16 | 2002-12-03 | International Business Machines Corporation | Apparatus and method for controlling wafer environment between thermal clean and thermal processing |
JP3541789B2 (en) * | 2000-07-31 | 2004-07-14 | 日新電機株式会社 | Method for growing single crystal SiC |
JP2002261148A (en) * | 2001-03-05 | 2002-09-13 | Tokyo Electron Ltd | Treating system and preheating method of object to be treated |
US7527869B2 (en) * | 2001-06-04 | 2009-05-05 | Kwansei Gakuin Educational Foundation | Single crystal silicon carbide and method for producing the same |
-
2005
- 2005-08-08 JP JP2005229385A patent/JP4418879B2/en not_active Expired - Lifetime
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5152887B2 (en) | Surface modification method for single crystal silicon carbide substrate, method for forming single crystal silicon carbide thin film, ion implantation annealing method, single crystal silicon carbide substrate, single crystal silicon carbide semiconductor substrate | |
JP5053993B2 (en) | Seed-forming growth method for preparing aluminum nitride single crystals | |
JP4593099B2 (en) | Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor | |
US11600704B2 (en) | Nitride semiconductor laminate, semiconductor device, method of manufacturing nitride semiconductor laminate, method of manufacturing nitride semiconductor free-standing substrate and method of manufacturing semiconductor device | |
JP3741283B2 (en) | Heat treatment apparatus and heat treatment method using the same | |
JP6232329B2 (en) | Method for removing work-affected layer of SiC seed crystal, method for producing SiC seed crystal and SiC substrate | |
US20060249073A1 (en) | Method of heat treatment and heat treatment apparatus | |
JP2006339396A (en) | Ion implantation annealing method, method of manufacturing semiconductor element, and semiconductor element | |
JP4431647B2 (en) | Method for improving surface of single crystal silicon carbide substrate and method for growing single crystal silicon carbide | |
EP2400528B1 (en) | Method for manufacturing silicon carbide semiconductor device | |
JP2008037684A (en) | Liquid phase generation method of single crystal silicon carbide seed crystal, single crystal silicon carbide seed crystal, liquid phase epitaxial generation method of single crystal silicon carbide seed crystal plate, single crystal silicon carbide seed crystal plate, generation method of single crystal silicon carbide seed crystal substrate and single crystal silicon carbide seed crystal substrate | |
JP4431643B2 (en) | Single crystal silicon carbide growth method | |
JP4840841B2 (en) | Method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate produced by this method | |
KR20230169109A (en) | How to Grow High-Quality Single Crystal Silicon Carbide | |
JP5224256B2 (en) | Single crystal silicon carbide substrate processing method, semiconductor device manufacturing method | |
JP5875143B2 (en) | Manufacturing method of semiconductor wafer | |
JP4418879B2 (en) | Heat treatment apparatus and heat treatment method | |
JP4482642B2 (en) | Single crystal silicon carbide growth method | |
JP2006041544A5 (en) | ||
JP2006232669A (en) | Low nitrogen concentration graphite material, low nitrogen concentration carbon fiber reinforced carbon composite material, low nitrogen concentration expanded graphite sheet | |
JP5164121B2 (en) | Single crystal silicon carbide growth method | |
TW202143303A (en) | Method for producing semiconductor substrate, semiconductor substrate, and method for preventing crack occurrence in growth layer | |
WO2004088734A1 (en) | Method of heat treatment and heat treatment apparatus | |
JP7181321B2 (en) | nitride semiconductor laminate | |
JP5545268B2 (en) | SiC multichip substrate |