JP2023132268A - Apparatus and method for growing oxide single crystal - Google Patents

Apparatus and method for growing oxide single crystal Download PDF

Info

Publication number
JP2023132268A
JP2023132268A JP2022037492A JP2022037492A JP2023132268A JP 2023132268 A JP2023132268 A JP 2023132268A JP 2022037492 A JP2022037492 A JP 2022037492A JP 2022037492 A JP2022037492 A JP 2022037492A JP 2023132268 A JP2023132268 A JP 2023132268A
Authority
JP
Japan
Prior art keywords
crucible
oxide
cylindrical metal
single crystal
metal heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022037492A
Other languages
Japanese (ja)
Inventor
裕二 高塚
Yuji Takatsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2022037492A priority Critical patent/JP2023132268A/en
Publication of JP2023132268A publication Critical patent/JP2023132268A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide an apparatus and a method for growing an oxide single crystal, using an oxide crucible formed of the same material as a raw material melt as storing and holding means of the raw material melt.SOLUTION: An apparatus for growing an oxide single crystal includes: an oxide crucible 1 constituted of an oxide crystal material and capable of storing and holding a raw material melt 10; a high frequency induction coil 2 provided around a side wall of the oxide crucible; and a cylindrical metal heater 3 built in the oxide crucible, inductively heated by the coil and including an upper end part 3b held by fixing means provided above the oxide crucible and a lower end part 3a arranged to be separated upward from an inner bottom surface 1a of the oxide crucible. A lower end part 2a of the high frequency induction coil is arranged below from the lower end part 3a of the cylindrical metal heater, and prevention of the oxide crucible and cylindrical metal heater from deforming has an effect capable of repeatedly and stably an oxide single crystal having same quality and a long size.SELECTED DRAWING: Figure 1

Description

本発明は、引き上げ法によりタンタル酸リチウム等の酸化物単結晶を育成する育成装置と育成方法の改良に関する。 The present invention relates to improvements in a growth apparatus and method for growing oxide single crystals such as lithium tantalate by a pulling method.

酸化物単結晶の育成方法として、酸化物単結晶となる原料が充填された坩堝を高温に加熱して原料を熔融し、坩堝内の原料融液面に上方から種結晶を接触させた後、回転させながら上昇させることで種結晶と同一方位の酸化物単結晶を育成する引き上げ法(チョクラルスキー法とも称する)が広く利用されている。 As a method for growing an oxide single crystal, a crucible filled with raw materials to become an oxide single crystal is heated to a high temperature to melt the raw materials, and a seed crystal is brought into contact with the raw material melt surface in the crucible from above. A pulling method (also referred to as the Czochralski method) is widely used in which an oxide single crystal is grown in the same direction as the seed crystal by raising the crystal while rotating it.

引き上げ法による酸化物単結晶の育成装置においては、図7に示すように、坩堝100の側壁周囲に高周波誘導コイル101が配置されており、当該高周波誘導コイル101に高周波電流を流すことによって坩堝100に渦電流が生じ、これにより坩堝100が発熱して原料が熔融する。また、引き上げが進むにつれて酸化物単結晶の上部はシード棒(結晶引き上げ軸)102を伝わって冷却されるが、発熱体が坩堝100のみである場合、育成中における単結晶内の温度分布が大きくなるため、金属製のリング状リフレクタ103が坩堝100の開放端部に配置され、かつ、金属製のアフターヒータ104が坩堝100の上端部に配置されている。尚、図7中、符号105は種結晶、符号106は原料融液、符号107と符号108は断熱材、符号109はCP坩堝(多孔質アルミナ坩堝)、符号110は断熱性坩堝台をそれぞれ示す。 In the apparatus for growing an oxide single crystal using the pulling method, as shown in FIG. An eddy current is generated in the crucible 100, which causes the crucible 100 to generate heat and melt the raw material. Additionally, as the pulling progresses, the upper part of the oxide single crystal is cooled down through the seed rod (crystal pulling shaft) 102, but if the only heating element is the crucible 100, the temperature distribution within the single crystal during growth is large. Therefore, a metal ring-shaped reflector 103 is placed at the open end of the crucible 100, and a metal after-heater 104 is placed at the upper end of the crucible 100. In FIG. 7, 105 is a seed crystal, 106 is a raw material melt, 107 and 108 are heat insulating materials, 109 is a CP crucible (porous alumina crucible), and 110 is a heat insulating crucible stand. .

ところで、近年、酸化物単結晶、特にタンタル酸リチウムは表面弾性波デバイス材料として市場が拡大しており、生産量の確保のため単結晶の引き上げ長さや径が次第に大きくなっている。この大型化に伴い、結晶育成に使用する坩堝は大型化している。 Incidentally, in recent years, the market for oxide single crystals, particularly lithium tantalate, as a surface acoustic wave device material has been expanding, and the pulled length and diameter of single crystals are gradually increasing in order to secure production volume. Along with this increase in size, crucibles used for crystal growth are also becoming larger.

また、坩堝は、高周波電流を流すため導電性であることを要し、更に、結晶原料を熔融するため高温に耐えられる高融点かつ酸化性雰囲気で劣化しない材料を用いる必要があり、結晶育成に使用する坩堝は、イリジウム、白金、ロジウム等の貴金属やその合金で作られることが多い。 In addition, the crucible must be conductive to allow high-frequency current to flow through it, and in order to melt the crystal raw material, it must be made of a material with a high melting point that can withstand high temperatures and that will not deteriorate in an oxidizing atmosphere. The crucible used is often made of noble metals such as iridium, platinum, rhodium, etc., or alloys thereof.

しかし、貴金属坩堝を用いて単結晶の育成を行うと、坩堝が変形するという問題があった。これは、図8(A)に示す円筒形の貴金属坩堝100が原料熔融時に図8(B)に示すように膨張し、冷却すると原料融液106の固化した部分が伸びて図8(C)に示すように変形するためで、貴金属坩堝と酸化物融液の膨張率が異なることに起因する。 However, when a single crystal is grown using a noble metal crucible, there is a problem in that the crucible is deformed. This is because the cylindrical noble metal crucible 100 shown in FIG. 8(A) expands as shown in FIG. 8(B) when the raw material is melted, and when cooled, the solidified portion of the raw material melt 106 expands as shown in FIG. 8(C). This is because the noble metal crucible and the oxide melt have different expansion coefficients.

そこで、特許文献1においては、坩堝と同材質の貴金属にジルコニウム酸化物等が添加された材料から成る強化貴金属板を坩堝本体の外周部に密着させて補強した貴金属坩堝が提案され、特許文献2においては、坩堝周囲をアルミナ等の円筒成形断熱材で覆い、坩堝の変形を抑制した育成装置が提案されている。更に、特許文献3においては、坩堝側壁部の外周面にリング状フレームを嵌め込んで変形を防止した単結晶育成用坩堝が提案され、特許文献4においては、坩堝底面側の板厚を側面方向の板厚よりも薄くすることで底面側に変形を逃がす構造にしたイリジウム坩堝が提案されている。 Therefore, in Patent Document 1, a noble metal crucible is proposed in which a reinforced precious metal plate made of the same material as the crucible and to which zirconium oxide is added is reinforced by closely adhering to the outer periphery of the crucible body, and Patent Document 2 has proposed a growth device in which the crucible is covered with a cylindrical heat insulating material such as alumina to suppress deformation of the crucible. Further, in Patent Document 3, a crucible for single crystal growth is proposed in which a ring-shaped frame is fitted into the outer peripheral surface of the crucible side wall to prevent deformation, and in Patent Document 4, the plate thickness on the bottom side of the crucible is An iridium crucible has been proposed that has a structure that allows deformation to escape to the bottom side by making the crucible thinner than the plate thickness of .

しかし、特許文献1~4で提案された何れの対策を講じても坩堝の変形を防止することが難しく、特に、大型酸化物単結晶の育成では坩堝の変形量が大きくなるため、より効果的な対策が求められていた。 However, even if any of the measures proposed in Patent Documents 1 to 4 is taken, it is difficult to prevent crucible deformation, and in particular, when growing large oxide single crystals, the amount of crucible deformation becomes large, so it is difficult to prevent crucible deformation. countermeasures were required.

特開平10-338593号公報Japanese Patent Application Publication No. 10-338593 特開2020-164339号公報Japanese Patent Application Publication No. 2020-164339 特開2019-112240号公報JP2019-112240A 特開2012-250874号公報Japanese Patent Application Publication No. 2012-250874

原料融液の貯留保持手段として貴金属坩堝を利用するかぎり変形は抑えられないため、貴金属坩堝に代わる原料融液の貯留保持手段が必要となる。 As long as the noble metal crucible is used as a storage and holding means for the raw material melt, deformation cannot be suppressed, so a means for storing and holding the raw material melt in place of the noble metal crucible is required.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、貴金属坩堝に代わる原料融液の貯留保持手段として原料融液と同材質の酸化物坩堝を用いた酸化物単結晶の育成装置と育成方法を提供することにある。 The present invention has been made in view of these problems, and its object is to develop an oxidation method using an oxide crucible made of the same material as the raw material melt as a storage and holding means for the raw material melt in place of a precious metal crucible. An object of the present invention is to provide a growing device and method for growing single crystals.

すなわち、本発明に係る第1の発明は、
引上げ法により酸化物単結晶を育成する装置において、
上記結晶材料で構成されかつ原料融液を貯留保持可能な酸化物坩堝と、
上記酸化物坩堝の側壁周囲に設けられる高周波誘導コイルと、
上記酸化物坩堝内に組み込まれ、上記高周波誘導コイルにより誘導加熱されると共に、酸化物坩堝上方に設けられた固定手段により上端部が保持されかつ下端部が酸化物坩堝の内側底面から上方へ離れて配置される円筒状金属ヒータを備え、
かつ、上記高周波誘導コイルの下端部が上記円筒状金属ヒータの下端部より下側に位置していることを特徴とする。
That is, the first invention according to the present invention is
In an apparatus for growing oxide single crystals by the pulling method,
an oxide crucible made of the crystalline material and capable of storing and holding a raw material melt;
a high frequency induction coil provided around the side wall of the oxide crucible;
It is installed in the oxide crucible and is heated by induction by the high-frequency induction coil, and the upper end is held by a fixing means provided above the oxide crucible, and the lower end is separated upward from the inner bottom surface of the oxide crucible. Equipped with a cylindrical metal heater placed in
Further, the lower end of the high frequency induction coil is located below the lower end of the cylindrical metal heater.

また、本発明に係る第2の発明は、
第1の発明に記載の酸化物単結晶の育成装置において、
上記酸化物単結晶が、ニオブ酸リチウム単結晶、タンタル酸リチウム単結晶、イットリウムアルミニウムガーネット単結晶のいずれかであることを特徴とし、
第3の発明は、
第1の発明または第2の発明に記載の酸化物単結晶の育成装置において、
上記円筒状金属ヒータが、白金、イリジウム、ロジウムのいずれか、または、これらの合金で構成されることを特徴とし、
第4の発明は、
第1の発明~第3の発明のいずれかに記載の酸化物単結晶の育成装置において、
上記酸化物坩堝の外側底面を覆うセラミック容器、または、酸化物坩堝の外側底面と側壁周囲を覆うセラミック坩堝を備えることを特徴とする。
Moreover, the second invention according to the present invention is
In the oxide single crystal growth apparatus according to the first invention,
The oxide single crystal is any one of a lithium niobate single crystal, a lithium tantalate single crystal, and a yttrium aluminum garnet single crystal,
The third invention is
In the oxide single crystal growth apparatus according to the first invention or the second invention,
The cylindrical metal heater is made of platinum, iridium, rhodium, or an alloy thereof,
The fourth invention is
In the oxide single crystal growth apparatus according to any one of the first to third inventions,
It is characterized by comprising a ceramic container that covers the outer bottom surface of the oxide crucible, or a ceramic crucible that covers the outer bottom surface and side walls of the oxide crucible.

次に、本発明に係る第5の発明は、
第1の発明に記載の育成装置を用いて酸化物単結晶を育成する方法において、
円筒状金属ヒータが組み込まれた酸化物坩堝内に結晶原料を投入し、高周波誘導コイルにより円筒状金属ヒータを誘導加熱して円筒状金属ヒータ内の結晶原料および円筒状金属ヒータの側壁面と酸化物坩堝の内壁面間に存在する結晶原料を熔融させると共に、円筒状金属ヒータ内の原料融液面に種結晶を接触させて引き上げ法により酸化物単結晶を育成し、かつ、上記円筒状金属ヒータの側壁面と酸化物坩堝の内壁面間に存在する原料融液を円筒状金属ヒータの下端部と酸化物坩堝の内側底面との隙間を介し上記円筒状金属ヒータ内に補給可能にしたことを特徴とするものである。
Next, the fifth invention according to the present invention is:
In the method of growing an oxide single crystal using the growth apparatus according to the first invention,
A crystal raw material is put into an oxide crucible in which a cylindrical metal heater is incorporated, and the cylindrical metal heater is induction heated by a high frequency induction coil to oxidize the crystal raw material in the cylindrical metal heater and the side wall surface of the cylindrical metal heater. While melting the crystal raw material existing between the inner wall surfaces of the crucible, a seed crystal is brought into contact with the raw material melt surface in the cylindrical metal heater to grow an oxide single crystal by a pulling method, and the above-mentioned cylindrical metal The raw material melt present between the side wall surface of the heater and the inner wall surface of the oxide crucible can be supplied into the cylindrical metal heater through the gap between the lower end of the cylindrical metal heater and the inner bottom surface of the oxide crucible. It is characterized by:

本発明に係る酸化物単結晶の育成装置によれば、
原料融液の貯留保持手段として原料融液と同材質の酸化物坩堝が適用されるため坩堝の変形を抑制でき、また、酸化物単結晶の育成時、円筒状金属ヒータの内側に存在する原料融液と円筒状金属ヒータの外側に存在する原料融液により円筒状金属ヒータが挟まれた状態になるため円筒状金属ヒータの熱変形も抑制できることから、結晶育成を繰り返し行っても育成条件の変化を防止することが可能となる。
According to the oxide single crystal growth apparatus according to the present invention,
Since an oxide crucible made of the same material as the raw material melt is used as a means for storing and holding the raw material melt, deformation of the crucible can be suppressed, and when growing the oxide single crystal, the raw material existing inside the cylindrical metal heater Since the cylindrical metal heater is sandwiched between the melt and the raw material melt existing outside the cylindrical metal heater, thermal deformation of the cylindrical metal heater can be suppressed, so even if crystal growth is repeated, the growth conditions will not change. This makes it possible to prevent changes.

更に、高周波誘導コイルの下端部が円筒状金属ヒータの下端部より下側に位置していることから円筒状金属ヒータの下端部も誘導加熱され、これにより円筒状金属ヒータの側壁面と酸化物坩堝の内壁面間に存在する原料融液を円筒状金属ヒータの下端部と酸化物坩堝の内側底面との隙間を介し円筒状金属ヒータ内に補給することが可能となる。 Furthermore, since the lower end of the high-frequency induction coil is located below the lower end of the cylindrical metal heater, the lower end of the cylindrical metal heater is also inductively heated, and as a result, the side wall surface of the cylindrical metal heater and the oxide are heated. It becomes possible to replenish the raw material melt present between the inner wall surfaces of the crucible into the cylindrical metal heater through the gap between the lower end of the cylindrical metal heater and the inner bottom surface of the oxide crucible.

従って、同品質で長さ寸法の大きい酸化物単結晶を繰り返し安定して育成することができる効果を有する。 Therefore, it has the effect that oxide single crystals of the same quality and large length can be repeatedly and stably grown.

本発明に係る育成装置の構成説明図。FIG. 1 is an explanatory diagram of the configuration of a growing device according to the present invention. 酸化物坩堝上方に設けられる固定手段の一例を示す説明図。FIG. 3 is an explanatory diagram showing an example of a fixing means provided above the oxide crucible. 第一実施形態に係る育成装置とこの装置を用いた育成方法の説明図。FIG. 1 is an explanatory diagram of a growing device according to a first embodiment and a growing method using this device. 第二実施形態に係る育成装置の製造工程を示す説明図。Explanatory diagram showing the manufacturing process of the growth device according to the second embodiment. 第二実施形態に係る育成装置の製造工程を示す説明図。Explanatory diagram showing the manufacturing process of the growth device according to the second embodiment. 第二実施形態に係る育成装置の説明図。An explanatory diagram of a growing device according to a second embodiment. 原料融液の貯留保持手段として貴金属坩堝を利用する従来の育成装置を用いた育成方法の説明図。FIG. 2 is an explanatory diagram of a growth method using a conventional growth apparatus that uses a noble metal crucible as a storage and holding means for a raw material melt. 図8(A)は貴金属坩堝の断面図、図8(B)は投入された結晶原料の熔融時における貴金属坩堝の断面図、図8(C)は原料融液が固化することで変形した貴金属坩堝の断面図。Figure 8 (A) is a cross-sectional view of the noble metal crucible, Figure 8 (B) is a cross-sectional view of the noble metal crucible when the input crystal raw material is melted, and Figure 8 (C) is the precious metal that has been deformed as the raw material melt solidifies. A cross-sectional view of a crucible.

以下、本発明の実施形態について図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail using the drawings.

1.従来の育成装置と育成方法
(1)従来の育成装置とこの装置を用いた育成方法
従来の育成装置として、上述したように、チャンバ200(図7参照)内に、CP坩堝(多孔質アルミナ坩堝)109と、坩堝100と、断熱性坩堝台110と、リング状リフレクタ103と、アフターヒータ104と、断熱材107、108と、シード棒(結晶引き上げ軸)102と、高周波誘導コイル101を備える装置が知られている。そして、高温の結晶育成に使用される坩堝100としては、タングステンやタンタルのような高融点金属坩堝、白金、ロジウムやイリジウム等の貴金属坩堝、アルミナやマグネシア、カーボンやPBN(Pyrolytic Boron Nitride)のような非金属性坩堝が知られている。
1. Conventional growth device and growth method (1) Conventional growth device and growth method using this device As described above, the conventional growth device includes a CP crucible (porous alumina crucible) in the chamber 200 (see FIG. 7). ) 109, a crucible 100, a heat-insulating crucible stand 110, a ring-shaped reflector 103, an after-heater 104, heat insulators 107 and 108, a seed rod (crystal pulling shaft) 102, and a high-frequency induction coil 101. It has been known. The crucible 100 used for high-temperature crystal growth is a high melting point metal crucible such as tungsten or tantalum, a noble metal crucible such as platinum, rhodium or iridium, or a crucible of alumina, magnesia, carbon or PBN (Pyrolytic Boron Nitride). Non-metallic crucibles are known.

ところで、ニオブ酸リチウム(LiNbO3:以下、LNと略称する)、タンタル酸リチウム(LiTaO3:以下、LTと略称する)、イットリウムアルミニウムガーネット(Y3Al512:以下、YAGと略称する)等の酸化物単結晶を育成する場合、酸素を含んだ育成雰囲気にするため、酸化され易いタングステン、タンタル、カーボンは使用できない。同様に、アルミナ、マグネシアは酸化物融液と反応するため使用することができず、また、PBNは高価でかつ大型坩堝の作成が難しいという問題がある。 By the way, lithium niobate (LiNbO 3 : hereinafter abbreviated as LN), lithium tantalate (LiTaO 3 : hereinafter abbreviated as LT), yttrium aluminum garnet (Y 3 Al 5 O 12 : hereinafter abbreviated as YAG) When growing oxide single crystals such as oxides, the growth atmosphere contains oxygen, so tungsten, tantalum, and carbon, which are easily oxidized, cannot be used. Similarly, alumina and magnesia cannot be used because they react with the oxide melt, and PBN is expensive and difficult to prepare in large crucibles.

このため、酸化物単結晶を育成する場合、酸化されず、割れて原料融液が流出することのない、白金、ロジウム、イリジウム等の貴金属坩堝が使用されている。 For this reason, when growing oxide single crystals, crucibles of noble metals such as platinum, rhodium, and iridium are used, which are not oxidized and do not crack and cause the raw material melt to flow out.

(2)従来の課題
しかし、貴金属坩堝は、図8(A)~(C)に示すように原料熔融時に熱膨張し、原料融液の残渣が固化するときに酸化物と貴金属で熱膨張率が異なるため変形する。この変形に起因して、高周波誘導加熱の場合、発熱状態が変わるため育成条件が変化し、坩堝の変形が進むと単結晶が得られなくなる課題が存在した。
(2) Conventional issues However, as shown in Figures 8 (A) to (C), noble metal crucibles thermally expand when raw materials are melted, and when the residue of the raw material melt solidifies, the thermal expansion coefficient of the oxide and precious metal increases. are deformed because they are different. Due to this deformation, in the case of high-frequency induction heating, the heat generation state changes, so the growth conditions change, and as the crucible deforms, a single crystal cannot be obtained.

2.本発明の育成装置と育成方法
引き上げ法(チョクラルスキー法)を用いる本発明の育成装置は、大気中または酸素を含んだ不活性ガス雰囲気中で育成されるLN、LT、YAG等の酸化物単結晶の製造に用いる装置である。チョクラルスキー法は、ある結晶方位に従って切り出された種結晶と呼ばれる、通常、棒状に加工された単結晶先端を、同一組成の原料融液に浸潤し、回転させながら徐々に引上げることによって種結晶の方位と同一の単結晶を育成する方法である。
2. Growth apparatus and growth method of the present invention The growth apparatus of the present invention using the pulling method (Czochralski method) is capable of growing oxides such as LN, LT, and YAG in the air or in an inert gas atmosphere containing oxygen. This is a device used to manufacture single crystals. In the Czochralski method, the tip of a single crystal, called a seed crystal, cut out along a certain crystal orientation and usually processed into a rod shape, is soaked in a raw material melt of the same composition and gradually pulled up while rotating. This is a method of growing a single crystal with the same crystal orientation.

本発明者は、従来の課題を解決するため、変形する貴金属坩堝に代わる原料融液の貯留保持手段として、原料融液と同材質の酸化物坩堝を用いた酸化物単結晶の育成装置と育成方法を見出した。 In order to solve the conventional problems, the present inventor developed an oxide single crystal growth device and a growth device using an oxide crucible made of the same material as the raw material melt as a storage and holding means for the raw material melt in place of the deformable noble metal crucible. I found a way.

すなわち、本発明に係る育成装置は、図1に示すように、
酸化物結晶材料で構成されかつ原料融液10を貯留保持可能な酸化物坩堝1と、
酸化物坩堝1の側壁周囲に設けられる高周波誘導コイル2と、
酸化物坩堝1内に組み込まれ、上記高周波誘導コイル2により誘導加熱されると共に、酸化物坩堝1上方に設けられた固定手段(図示せず)により上端部3bが保持されかつ下端部3aが酸化物坩堝1の内側底面1aから上方へ離れて配置される円筒状金属ヒータ3を備え、かつ、
高周波誘導コイル2の下端部2aが円筒状金属ヒータ3の下端部3aより下側に位置していることを特徴とするものである。
That is, the growing device according to the present invention, as shown in FIG.
An oxide crucible 1 made of an oxide crystal material and capable of storing and holding a raw material melt 10;
a high frequency induction coil 2 provided around the side wall of the oxide crucible 1;
It is incorporated into the oxide crucible 1 and is heated by induction by the high-frequency induction coil 2, while the upper end 3b is held by fixing means (not shown) provided above the oxide crucible 1 and the lower end 3a is oxidized. A cylindrical metal heater 3 is provided upwardly away from the inner bottom surface 1a of the crucible 1, and
The lower end 2a of the high frequency induction coil 2 is located below the lower end 3a of the cylindrical metal heater 3.

(1)第一実施形態に係る育成装置とこの装置を用いた育成方法
(1-1)第一実施形態に係る育成装置
第一実施形態に係る育成装置は、図3に示すように、底面側が支持台11で固定されかつ上記高周波誘導コイル2を除く本発明に係る育成装置(酸化物坩堝1と円筒状金属ヒータ3を備える)が収容されると共に上方側にシード棒(結晶引き上げ軸)20用の開口12を有する断熱性外筒13と、この断熱性外筒13内の略中央部に付設されかつ円筒状金属ヒータ3の上端部3bを保持するヒータ固定用棒材14(図2の固定手段参照)と、ヒータ固定用棒材14で保持された円筒状金属ヒータ3の上端部3bに載置されたリング状リフレクタ15と、このリング状リフレクタ15上に載置されたアフターヒータ16と、上記シード棒(結晶引き上げ軸)20の下端側に取り付けられた棒状の種結晶21とで主要部が構成されている。尚、図3中、符号4は酸化物坩堝1の外側底面1bを覆うセラミック容器を示す。
(1) Growing device according to the first embodiment and growing method using this device (1-1) Growing device according to the first embodiment The growing device according to the first embodiment has a bottom surface as shown in FIG. The side is fixed with a support stand 11, and the growth apparatus according to the present invention (comprising an oxide crucible 1 and a cylindrical metal heater 3) excluding the high-frequency induction coil 2 is accommodated, and a seed rod (crystal pulling shaft) is installed on the upper side. 20, and a heater fixing rod 14 (see FIG. ), a ring-shaped reflector 15 placed on the upper end 3b of the cylindrical metal heater 3 held by the heater fixing bar 14, and an after-heater placed on the ring-shaped reflector 15. 16 and a rod-shaped seed crystal 21 attached to the lower end side of the seed rod (crystal pulling shaft) 20. In FIG. 3, reference numeral 4 indicates a ceramic container that covers the outer bottom surface 1b of the oxide crucible 1.

(1-2)第一実施形態に係る育成方法
円筒状金属ヒータ3が組み込まれた酸化物坩堝1内に結晶原料を投入し、高周波誘導コイル2により円筒状金属ヒータ3を誘導加熱して円筒状金属ヒータ3内の結晶原料および円筒状金属ヒータ3の側壁面と酸化物坩堝1の内壁面間に存在する結晶原料を熔融させる。
(1-2) Growth method according to the first embodiment A crystal raw material is introduced into an oxide crucible 1 in which a cylindrical metal heater 3 is incorporated, and the cylindrical metal heater 3 is heated by induction using a high frequency induction coil 2 to form a cylindrical material. The crystal raw material in the cylindrical metal heater 3 and the crystal raw material existing between the side wall surface of the cylindrical metal heater 3 and the inner wall surface of the oxide crucible 1 are melted.

次いで、円筒状金属ヒータ3内の原料融液10面に種結晶21を接触させた後、シード棒(結晶引き上げ軸)20を回転させながら上昇させて酸化物単結晶30を育成する。 Next, after bringing the seed crystal 21 into contact with the surface of the raw material melt 10 in the cylindrical metal heater 3, the seed rod (crystal pulling shaft) 20 is raised while rotating to grow the oxide single crystal 30.

このとき、円筒状金属ヒータ3の側壁面と酸化物坩堝1の内壁面間に存在する原料融液10を円筒状金属ヒータの下端部3aと酸化物坩堝1の内側底面1aとの隙間を介し上記円筒状金属ヒータ内に補給することが可能となる。 At this time, the raw material melt 10 existing between the side wall surface of the cylindrical metal heater 3 and the inner wall surface of the oxide crucible 1 is passed through the gap between the lower end 3a of the cylindrical metal heater and the inner bottom surface 1a of the oxide crucible 1. It becomes possible to replenish the inside of the cylindrical metal heater.

(1-3)第一実施形態に係る育成方法の効果
第一実施形態に係る育成方法によれば、原料融液の貯留保持手段として原料融液と同材質の酸化物坩堝1が適用されるため坩堝の変形を抑制でき、かつ、酸化物単結晶の育成時、円筒状金属ヒータ3の内側に存在する原料融液10と円筒状金属ヒータ3の外側に存在する原料融液10により円筒状金属ヒータ3が挟まれた状態になるため円筒状金属ヒータ3の熱変形も抑制できることから、酸化物単結晶の育成を繰り返し行っても育成条件の変化を未然に防止することが可能となる。
(1-3) Effects of the growth method according to the first embodiment According to the growth method according to the first embodiment, the oxide crucible 1 made of the same material as the raw material melt is applied as a storage and holding means for the raw material melt. Therefore, deformation of the crucible can be suppressed, and when growing an oxide single crystal, the raw material melt 10 existing inside the cylindrical metal heater 3 and the raw material melt 10 existing outside the cylindrical metal heater 3 form a cylindrical shape. Since the metal heater 3 is in a sandwiched state, thermal deformation of the cylindrical metal heater 3 can also be suppressed, making it possible to prevent changes in the growth conditions even if the oxide single crystal is repeatedly grown.

更に、高周波誘導コイル2の下端部2aが円筒状金属ヒータ3の下端部3aより下側に位置していることから円筒状金属ヒータ3の下端部3aも誘導加熱されるため、上述したように円筒状金属ヒータ3の側壁面と酸化物坩堝1の内壁面間に存在する原料融液10を円筒状金属ヒータ3の下端部3aと酸化物坩堝1の内側底面1aとの隙間を介し円筒状金属ヒータ3内に補給することが可能となる。 Furthermore, since the lower end 2a of the high-frequency induction coil 2 is located below the lower end 3a of the cylindrical metal heater 3, the lower end 3a of the cylindrical metal heater 3 is also induction heated. The raw material melt 10 existing between the side wall surface of the cylindrical metal heater 3 and the inner wall surface of the oxide crucible 1 is passed through the gap between the lower end 3a of the cylindrical metal heater 3 and the inner bottom surface 1a of the oxide crucible 1 into a cylindrical shape. It becomes possible to replenish the inside of the metal heater 3.

このため、第一実施形態に係る育成方法は、同品質で長さ寸法の大きい酸化物単結晶を繰り返し安定して育成できる効果を有している。 Therefore, the growth method according to the first embodiment has the effect of repeatedly and stably growing oxide single crystals of the same quality and large length.

(2)第二実施形態に係る育成装置とこの育成装置の製造法
(2-1)第二実施形態に係る育成装置
第二実施形態に係る育成装置は、図6に示すように、底面側が支持台11で固定されかつ高周波誘導コイル2を除く本発明に係る育成装置(酸化物坩堝1と円筒状金属ヒータ3を備える)が収容されると共に上方側に図示外のシード棒(結晶引き上げ軸)用の開口12を有する断熱性外筒13と、この断熱性外筒13内の略中央部に付設されかつ円筒状金属ヒータ3の上端部3bを保持するヒータ固定用棒材14と、ヒータ固定用棒材14で保持された円筒状金属ヒータ3の上端部3bに載置されたリング状リフレクタ15と、このリング状リフレクタ15上に載置されたアフターヒータ16と、図示外の上記シード棒(結晶引き上げ軸)の下端側に取り付けられた棒状の種結晶(図示せず)とで主要部が構成されている。尚、図6中、符号40は酸化物坩堝1の外側底面1bと側壁周囲を覆うセラミック容器(CP坩堝)を示す。
(2) Growing device according to second embodiment and manufacturing method of this growing device (2-1) Growing device according to second embodiment As shown in FIG. 6, the growing device according to the second embodiment has a bottom side. The growth apparatus (comprising an oxide crucible 1 and a cylindrical metal heater 3) according to the present invention is fixed on a support stand 11 and excludes the high-frequency induction coil 2, and a seed rod (not shown) is installed on the upper side. ), a heater fixing rod 14 attached to the approximate center of the insulating outer cylinder 13 and holding the upper end 3b of the cylindrical metal heater 3; A ring-shaped reflector 15 placed on the upper end 3b of the cylindrical metal heater 3 held by a fixing bar 14, an after-heater 16 placed on this ring-shaped reflector 15, and the above-mentioned seeds (not shown). The main part consists of a rod-shaped seed crystal (not shown) attached to the lower end side of the rod (crystal pulling shaft). In FIG. 6, reference numeral 40 indicates a ceramic container (CP crucible) that covers the outer bottom surface 1b and side walls of the oxide crucible 1.

そして、この育成装置を用いて第一実施形態に係る育成方法と同様に酸化物単結晶を育成することができ、かつ、第一実施形態に係る育成方法と同様に同品質で長さ寸法の大きい酸化物単結晶を繰り返し安定して育成できる効果を有する。 Using this growth apparatus, an oxide single crystal can be grown in the same manner as in the growth method according to the first embodiment, and the same quality and length dimension as in the growth method according to the first embodiment can be grown. It has the effect of repeatedly and stably growing large oxide single crystals.

(2-2)第二実施形態に係る育成装置の製造法
第二実施形態に係る育成装置は、例えば、以下のようにして製造することができる。
(2-2) Method of manufacturing the growth device according to the second embodiment The growth device according to the second embodiment can be manufactured, for example, as follows.

まず、図4に示すように断熱性外筒13内に組み込まれたセラミック坩堝(CP坩堝)40内に、その上方側空間部41を残して結晶材料10aを投入する。尚、結晶材料10aとしては結晶材料粉あるいは結晶材料塊が例示される。 First, as shown in FIG. 4, a crystal material 10a is placed into a ceramic crucible (CP crucible) 40 built into a heat insulating outer cylinder 13, leaving an upper space 41. Incidentally, the crystal material 10a is exemplified by crystal material powder or crystal material lump.

次いで、セラミック坩堝(CP坩堝)40の上方側空間部41に円筒状金属ヒータ3を組み込み、かつ、断熱性外筒13内の略中央部に付設されたヒータ固定用棒材14(図2の固定手段参照)により円筒状金属ヒータ3の上端部3bを固定する。 Next, the cylindrical metal heater 3 is assembled into the upper space 41 of the ceramic crucible (CP crucible) 40, and the heater fixing rod 14 (see FIG. The upper end 3b of the cylindrical metal heater 3 is fixed by means of fixing means (see fixing means).

そして、図5に示すように円筒状金属ヒータ3が組み込まれたセラミック坩堝(CP坩堝)40の上方側空間部41に結晶材料10aを投入し、円筒状金属ヒータ3の内部とセラミック坩堝(CP坩堝)40の上方側空間部41に結晶材料10aを充填する。 Then, as shown in FIG. 5, the crystal material 10a is put into the upper space 41 of the ceramic crucible (CP crucible) 40 in which the cylindrical metal heater 3 is incorporated, and the crystal material 10a is placed inside the cylindrical metal heater 3 and the ceramic crucible (CP crucible) The upper space 41 of the crucible 40 is filled with the crystal material 10a.

次いで、図6に示すようにヒータ固定用棒材14で保持された円筒状金属ヒータ3の上端部3bにリング状リフレクタ15を載置し、かつ、リング状リフレクタ15上にアフターヒータ16を載置する。 Next, as shown in FIG. 6, a ring-shaped reflector 15 is placed on the upper end 3b of the cylindrical metal heater 3 held by the heater fixing bar 14, and an after-heater 16 is placed on the ring-shaped reflector 15. place

そして、セラミック坩堝(CP坩堝)40の側壁周囲に設けられた高周波誘導コイル2により円筒状金属ヒータ3を誘導加熱し、円筒状金属ヒータ3内の結晶材料10aおよび円筒状金属ヒータ3側壁近傍と下端部3a近傍の結晶材料10aを熔融させて原料融液10とし、かつ、円筒状金属ヒータ3側壁から離れた部位と下端部3aから離れた部位の結晶材料10a間に原料融液10を流入させて連続した酸化物層1cを形成し、該酸化物層1cを内表面に有しかつ原料融液10を貯留保持可能な酸化物坩堝1を形成して第二実施形態に係る育成装置を製造することができる。 Then, the cylindrical metal heater 3 is inductively heated by the high frequency induction coil 2 provided around the side wall of the ceramic crucible (CP crucible) 40, and the crystal material 10a inside the cylindrical metal heater 3 and the vicinity of the side wall of the cylindrical metal heater 3 are heated. The crystal material 10a near the lower end 3a is melted to form a raw material melt 10, and the raw material melt 10 is flowed between a portion of the crystal material 10a located away from the side wall of the cylindrical metal heater 3 and a portion away from the lower end 3a. A continuous oxide layer 1c is formed, and an oxide crucible 1 having the oxide layer 1c on the inner surface and capable of storing and holding the raw material melt 10 is formed to provide a growth apparatus according to the second embodiment. can be manufactured.

尚、第一実施形態に係る育成装置においては、図3に示すように酸化物坩堝1の外側底面1bを覆うセラミック容器4が使用され、上記セラミック坩堝(CP坩堝)40を用いた製造法により育成装置を製造することができない。このような場合、結晶材料粉あるいは結晶材料塊を用いて図3に示すような酸化物坩堝の形状に加圧成形し、該成形体の底面側に上記セラミック容器4を組み込んだ構造体を上記断熱性外筒13内に収容した後、上記製造法を応用して第一実施形態に係る育成装置を製造することは可能である。このとき、加圧成形される坩堝の壁厚を大きく設定しておき、円筒状金属ヒータ3を誘導加熱した際に壁全体が熔融されないようにすることを要する。 In addition, in the growth apparatus according to the first embodiment, as shown in FIG. 3, a ceramic container 4 that covers the outer bottom surface 1b of the oxide crucible 1 is used, and the manufacturing method using the above-mentioned ceramic crucible (CP crucible) 40 is used. Unable to manufacture growth equipment. In such a case, a crystal material powder or a crystal material lump is pressure-molded into the shape of an oxide crucible as shown in FIG. After being housed in the heat insulating outer cylinder 13, it is possible to manufacture the growth apparatus according to the first embodiment by applying the above manufacturing method. At this time, it is necessary to set the wall thickness of the crucible for pressure molding to be large so that the entire wall does not melt when the cylindrical metal heater 3 is heated by induction.

(3)酸化物坩堝を構成する結晶材料
上記酸化物層1cを内表面に有しかつ結晶材料で構成される酸化物坩堝1について、坩堝全体が一つの結晶で構成される必要はない。焼結体や多結晶体で坩堝全体が構成されることが好ましいが一部粉末の状態であってもよい。尚、酸化物坩堝の一部が粉末状態である場合、粉末を保持する上述のセラミック容器を設けることが望ましい。尚、酸化物坩堝1の酸化物層1cから離れている結晶材料の未熔融部分は、図7に示した従来の育成装置における断熱材108や断熱性坩堝台110と同様に機能する。
(3) Crystal material constituting the oxide crucible Regarding the oxide crucible 1 having the oxide layer 1c on the inner surface and being made of a crystal material, the entire crucible does not need to be made of one crystal. It is preferable that the entire crucible is composed of a sintered body or a polycrystalline body, but a part of the crucible may be in a powder state. Note that when a part of the oxide crucible is in a powder state, it is desirable to provide the above-mentioned ceramic container for holding the powder. Incidentally, the unmelted portion of the crystal material that is away from the oxide layer 1c of the oxide crucible 1 functions similarly to the heat insulating material 108 and the heat insulating crucible stand 110 in the conventional growth apparatus shown in FIG.

また、酸化物坩堝1の外側底面1bを覆う上記セラミック容器、または、酸化物坩堝1の外側底面1bと側壁周囲を覆うセラミック坩堝を構成する材料としては、アルミナやジルコニア、マグネシア、カルシア等の焼結体耐火物が好ましい。 The ceramic container that covers the outer bottom surface 1b of the oxide crucible 1 or the ceramic crucible that covers the outer bottom surface 1b and side walls of the oxide crucible 1 may be made of sintered materials such as alumina, zirconia, magnesia, and calcia. Solid refractories are preferred.

(4)金属ヒータ
上記金属ヒータの形状は高周波誘導加熱が可能であれば任意であるが、チョクラルスキー法で良質な結晶を育成する場合、原料融液がシード(種結晶)に対し回転対称性を持つことが望ましい。このため、金属ヒータも回転対称の形状を持つことが好ましく円筒状であることを要する。
(4) Metal heater The shape of the metal heater mentioned above can be arbitrary as long as high-frequency induction heating is possible, but when growing high-quality crystals using the Czochralski method, the raw material melt is rotationally symmetrical with respect to the seed (seed crystal). It is desirable to have sex. For this reason, it is preferable that the metal heater also have a rotationally symmetrical shape, and it is required that the metal heater has a cylindrical shape.

また、金属ヒータは、酸素を含む雰囲気で酸化されず、割れない高周波加熱が可能な材料で構成することが好ましく、具体的には、白金、イリジウム、ロジウムの単体またはこれらの合金で構成することが望ましい。 In addition, the metal heater is preferably made of a material that can be subjected to high-frequency heating without being oxidized or cracked in an oxygen-containing atmosphere. Specifically, it is preferably made of platinum, iridium, rhodium alone or an alloy thereof. is desirable.

また、金属ヒータの上端部を固定する固定手段としては、図3に示す断熱性外筒13内の略中央部に付設されたヒータ固定用棒材14(図2の固定手段参照)が例示され、金属ヒータの上端部を棒材14に通すことで固定され、ヒータ固定用棒材14の本数は2本から6本程度が好ましい。 Further, as a fixing means for fixing the upper end of the metal heater, a heater fixing rod 14 (see fixing means in FIG. 2) attached to the approximate center of the heat insulating outer cylinder 13 shown in FIG. 3 is exemplified. The metal heater is fixed by passing the upper end thereof through a bar 14, and the number of heater fixing bars 14 is preferably about 2 to 6.

また、金属ヒータ上端部に載置されるリング状リフレクタ、および、リング状リフレクタ上に載置されたアフターヒータの材料は、金属ヒータと同様の材料を用いることが好ましい。 Further, it is preferable that the same material as the metal heater be used for the ring-shaped reflector placed on the upper end of the metal heater and the after-heater placed on the ring-shaped reflector.

以下、本発明の実施例について比較例(従来例)を挙げて具体的に説明する。 Hereinafter, examples of the present invention will be specifically explained by citing comparative examples (conventional examples).

[実施例1]
1.実施例1に係る育成装置の製造
図4に示す断熱性外筒13内に組み込んだ内径270mm、内部高さ340mmのセラミック坩堝(CP坩堝)40内に、上方側空間部41を残して、タンタル酸リチウム粉末(結晶材料)10aを投入した。
[Example 1]
1. Manufacturing of the growth device according to Example 1
Lithium tantalate powder (crystalline material) 10a is placed in a ceramic crucible (CP crucible) 40 with an inner diameter of 270 mm and an inner height of 340 mm, which is incorporated into a heat insulating outer cylinder 13 shown in FIG. 4, leaving an upper space 41. I put it in.

次いで、セラミック坩堝(CP坩堝)40の上方側空間部41に、内径170mm、高さ170mm、厚さ2mmのイリジウム製円筒状金属ヒータ3を組み込み、かつ、断熱性外筒13内の略中央部に付設したヒータ固定用棒材14により円筒状金属ヒータ3の上端部3bを固定した。 Next, a cylindrical metal heater 3 made of iridium with an inner diameter of 170 mm, a height of 170 mm, and a thickness of 2 mm is installed in the upper space 41 of the ceramic crucible (CP crucible) 40, and the approximately central portion of the insulating outer cylinder 13 is installed. The upper end 3b of the cylindrical metal heater 3 was fixed by a heater fixing rod 14 attached to the heater fixing rod 14.

そして、図5に示すように上記円筒状金属ヒータ3が組み込まれたセラミック坩堝(CP坩堝)40の上方側空間部41にタンタル酸リチウム粉末(結晶材料)10aを投入し、円筒状金属ヒータ3の内部とセラミック坩堝(CP坩堝)40の上方側空間部41にタンタル酸リチウム粉末(結晶材料)10aを充填した。 Then, as shown in FIG. 5, lithium tantalate powder (crystal material) 10a is put into the upper space 41 of the ceramic crucible (CP crucible) 40 in which the cylindrical metal heater 3 is installed, and the cylindrical metal heater 3 and the upper space 41 of the ceramic crucible (CP crucible) 40 were filled with lithium tantalate powder (crystalline material) 10a.

次いで、図6に示すようにヒータ固定用棒材14で保持された円筒状金属ヒータ3の上端部3bにリング状リフレクタ15を載置し、かつ、リング状リフレクタ15上にアフターヒータ16を載置した。 Next, as shown in FIG. 6, a ring-shaped reflector 15 is placed on the upper end 3b of the cylindrical metal heater 3 held by the heater fixing bar 14, and an after-heater 16 is placed on the ring-shaped reflector 15. I placed it.

そして、セラミック坩堝(CP坩堝)40の側壁周囲に設けられた高周波誘導コイル2により円筒状金属ヒータ3を誘導加熱し、円筒状金属ヒータ3内のタンタル酸リチウム粉末(結晶材料)10aおよび円筒状金属ヒータ3側壁近傍と下端部3a近傍のタンタル酸リチウム粉末(結晶材料)10aを熔融させて原料融液10とし、かつ、円筒状金属ヒータ3側壁から離れた部位と下端部3aから離れた部位のタンタル酸リチウム粉末(結晶材料)10a間に原料融液10を流入させて連続した酸化物層1cを形成し、該酸化物層1cを内表面に有しかつ原料融液10を貯留保持可能な酸化物坩堝1を形成して実施例1に係る育成装置を製造した。 Then, the cylindrical metal heater 3 is inductively heated by the high-frequency induction coil 2 provided around the side wall of the ceramic crucible (CP crucible) 40, and the lithium tantalate powder (crystal material) 10a in the cylindrical metal heater 3 and the cylindrical The lithium tantalate powder (crystalline material) 10a near the side wall of the metal heater 3 and the bottom end 3a is melted to form a raw material melt 10, and a part away from the side wall of the cylindrical metal heater 3 and a part away from the bottom end 3a The raw material melt 10 is made to flow between the lithium tantalate powder (crystalline material) 10a to form a continuous oxide layer 1c, which has the oxide layer 1c on the inner surface and is capable of storing and holding the raw material melt 10. A growth apparatus according to Example 1 was manufactured by forming an oxide crucible 1.

尚、タンタル酸リチウム粉末(結晶材料)10aを熔融させて酸化物層1cを形成する際、上記円筒状金属ヒータ3外側の融液量を増やすため、高周波誘導コイル2の投入パワーを以下の育成時より10%多く設定している。これによりタンタル酸リチウム粉末(結晶材料)10a間に原料融液が流入して連続した酸化物層1cが形成される。 When melting the lithium tantalate powder (crystalline material) 10a to form the oxide layer 1c, in order to increase the amount of melt outside the cylindrical metal heater 3, the input power of the high-frequency induction coil 2 is adjusted as follows. It is set 10% higher than before. As a result, the raw material melt flows between the lithium tantalate powders (crystalline materials) 10a, forming a continuous oxide layer 1c.

2.タンタル酸リチウム単結晶の育成
(1)次いで、上記断熱性外筒13の開口12(図6参照)から、先端に種結晶(図示せず)が取り付けられた図示外のシード棒(結晶引き上げ軸)を下して引き上げ法(チョクラルスキー法)により結晶育成を行い、径4インチで直胴長が約130mmのタンタル酸リチウム単結晶を育成することができた。
2. Growth of lithium tantalate single crystal (1) Next, a seed rod (not shown) with a seed crystal (not shown) attached to the tip (crystal pulling shaft ), and crystal growth was performed by the pulling method (Czochralski method), and it was possible to grow a lithium tantalate single crystal with a diameter of 4 inches and a straight body length of about 130 mm.

(2)上記タンタル酸リチウム単結晶を育成した後、円筒状金属ヒータ3が組み込まれた酸化物坩堝1内にタンタル酸リチウム粉末(結晶原料)を投入し、高周波誘導コイル2により円筒状金属ヒータ3を誘導加熱し、円筒状金属ヒータ3内のタンタル酸リチウム粉末(結晶原料)および円筒状金属ヒータ3の側壁面と酸化物坩堝1の内壁面間に存在するタンタル酸リチウム粉末(結晶原料)を熔融させた。 (2) After growing the lithium tantalate single crystal, lithium tantalate powder (crystal raw material) is put into the oxide crucible 1 in which the cylindrical metal heater 3 is installed, and the cylindrical metal heater is heated by the high frequency induction coil 2. 3 is induction heated, and the lithium tantalate powder (crystal raw material) in the cylindrical metal heater 3 and the lithium tantalate powder (crystal raw material) present between the side wall surface of the cylindrical metal heater 3 and the inner wall surface of the oxide crucible 1 are heated by induction heating. was melted.

次いで、種結晶が取り付けられたシード棒(結晶引き上げ軸)を開口12から下して引き上げ法(チョクラルスキー法)により結晶育成を行い、上記同様、径4インチで直胴長が約130mmのタンタル酸リチウム単結晶を育成した。 Next, the seed rod (crystal pulling shaft) with the seed crystal attached was lowered from the opening 12 and crystal growth was performed by the pulling method (Czochralski method). A lithium tantalate single crystal was grown.

そして、同様の結晶育成を30回繰り返したところ、29回において同品質かつ径4インチで直胴長が約130mmのタンタル酸リチウム単結晶を育成することができた。 When the same crystal growth was repeated 30 times, it was possible to grow a lithium tantalate single crystal of the same quality, 4 inches in diameter, and about 130 mm in straight body length in 29 times.

[比較例(従来例)]
図7に示す従来例の育成装置を用い、かつ、イリジウム製で径170mm、高さ170mmの坩堝100を用いて引き上げ法(チョクラルスキー法)により径4インチで直胴長が約130mmのタンタル酸リチウム単結晶を育成した。
[Comparative example (conventional example)]
Tantalum with a diameter of 4 inches and a straight body length of about 130 mm is produced by the pulling method (Czochralski method) using the conventional growth apparatus shown in FIG. A lithium oxide single crystal was grown.

そして、実施例1と同様、結晶育成を30回繰り返したところ、同品質のタンタル酸リチウム単結晶が得られた回数は21回であり、23回以降は単結晶が得らなかった。 Then, as in Example 1, when crystal growth was repeated 30 times, a lithium tantalate single crystal of the same quality was obtained 21 times, and no single crystal was obtained after the 23rd time.

23回目以降、上記坩堝100が大きく変形したためであった。 This was because the crucible 100 was significantly deformed after the 23rd time.

本発明によれば、同品質で長さ寸法の大きい酸化物単結晶を繰り返し安定して育成できるため、表面弾性波デバイス材料として用いられるタンタル酸リチウム単結晶等酸化物単結晶の育成装置として利用される産業上の利用可能性を有している。 According to the present invention, since oxide single crystals of the same quality and large length can be repeatedly and stably grown, it can be used as a growth device for oxide single crystals such as lithium tantalate single crystals used as surface acoustic wave device materials. It has industrial applicability.

1 酸化物坩堝
1a 内側底面
1b 外側底面
2 高周波誘導コイル
2a 下端部
3 円筒状金属ヒータ
3a 下端部
3b 上端部
4 セラミック容器
10 原料融液
10a 結晶材料粉
11 支持台
12 開口
13 断熱性外筒
14 ヒータ固定用棒材
15 リング状リフレクタ
16 アフターヒータ
20 シード棒(結晶引き上げ軸)
21 種結晶
30 酸化物単結晶
40 セラミック坩堝
41 上方側空間部
100 坩堝
101 高周波誘導コイル
102 シード棒(結晶引き上げ軸)
103 リング状リフレクタ
104 アフターヒータ
105 種結晶
106 原料融液
107 断熱材
108 断熱材
109 CP坩堝(多孔質アルミナ坩堝)
110 断熱性坩堝台
1 Oxide crucible 1a Inner bottom surface 1b Outer bottom surface 2 High frequency induction coil 2a Lower end 3 Cylindrical metal heater 3a Lower end 3b Upper end 4 Ceramic container 10 Raw material melt 10a Crystal material powder 11 Support stand 12 Opening 13 Insulating outer cylinder 14 Heater fixing rod 15 Ring-shaped reflector 16 After heater 20 Seed rod (crystal pulling shaft)
21 Seed crystal 30 Oxide single crystal 40 Ceramic crucible 41 Upper space 100 Crucible 101 High frequency induction coil 102 Seed rod (crystal pulling axis)
103 Ring-shaped reflector 104 After heater 105 Seed crystal 106 Raw material melt 107 Insulating material 108 Insulating material 109 CP crucible (porous alumina crucible)
110 Insulating crucible stand

Claims (5)

引上げ法により酸化物単結晶を育成する装置において、
上記結晶材料で構成されかつ原料融液を貯留保持可能な酸化物坩堝と、
上記酸化物坩堝の側壁周囲に設けられる高周波誘導コイルと、
上記酸化物坩堝内に組み込まれ、上記高周波誘導コイルにより誘導加熱されると共に、酸化物坩堝上方に設けられた固定手段により上端部が保持されかつ下端部が酸化物坩堝の内側底面から上方へ離れて配置される円筒状金属ヒータを備え、
かつ、上記高周波誘導コイルの下端部が上記円筒状金属ヒータの下端部より下側に位置していることを特徴とする酸化物単結晶の育成装置。
In an apparatus for growing oxide single crystals by the pulling method,
an oxide crucible made of the crystalline material and capable of storing and holding a raw material melt;
a high frequency induction coil provided around the side wall of the oxide crucible;
It is installed in the oxide crucible and is heated by induction by the high-frequency induction coil, and the upper end is held by a fixing means provided above the oxide crucible, and the lower end is separated upward from the inner bottom surface of the oxide crucible. Equipped with a cylindrical metal heater placed in
An apparatus for growing an oxide single crystal, wherein the lower end of the high-frequency induction coil is located below the lower end of the cylindrical metal heater.
上記酸化物単結晶が、ニオブ酸リチウム単結晶、タンタル酸リチウム単結晶、イットリウムアルミニウムガーネット単結晶のいずれかであることを特徴とする請求項1に記載の酸化物単結晶の育成装置。 2. The oxide single crystal growth apparatus according to claim 1, wherein the oxide single crystal is any one of lithium niobate single crystal, lithium tantalate single crystal, and yttrium aluminum garnet single crystal. 上記円筒状金属ヒータが、白金、イリジウム、ロジウムのいずれか、または、これらの合金で構成されることを特徴とする請求項1または2に記載の酸化物単結晶の育成装置。 3. The oxide single crystal growth apparatus according to claim 1, wherein the cylindrical metal heater is made of platinum, iridium, rhodium, or an alloy thereof. 上記酸化物坩堝の外側底面を覆うセラミック容器、または、酸化物坩堝の外側底面と側壁周囲を覆うセラミック坩堝を備えることを特徴とする請求項1~3のいずれかに記載の酸化物単結晶の育成装置。 The oxide single crystal according to any one of claims 1 to 3, further comprising a ceramic container that covers the outer bottom surface of the oxide crucible, or a ceramic crucible that covers the outer bottom surface and side walls of the oxide crucible. Cultivation equipment. 請求項1に記載の育成装置を用いて酸化物単結晶を育成する方法において、
円筒状金属ヒータが組み込まれた酸化物坩堝内に結晶原料を投入し、高周波誘導コイルにより円筒状金属ヒータを誘導加熱して円筒状金属ヒータ内の結晶原料および円筒状金属ヒータの側壁面と酸化物坩堝の内壁面間に存在する結晶原料を熔融させると共に、円筒状金属ヒータ内の原料融液面に種結晶を接触させて引き上げ法により酸化物単結晶を育成し、かつ、上記円筒状金属ヒータの側壁面と酸化物坩堝の内壁面間に存在する原料融液を円筒状金属ヒータの下端部と酸化物坩堝の内側底面との隙間を介し上記円筒状金属ヒータ内に補給可能にしたことを特徴とする酸化物単結晶の育成方法。
A method for growing an oxide single crystal using the growth apparatus according to claim 1,
A crystal raw material is put into an oxide crucible in which a cylindrical metal heater is incorporated, and the cylindrical metal heater is induction heated by a high frequency induction coil to oxidize the crystal raw material in the cylindrical metal heater and the side wall surface of the cylindrical metal heater. While melting the crystal raw material existing between the inner wall surfaces of the crucible, a seed crystal is brought into contact with the raw material melt surface in the cylindrical metal heater to grow an oxide single crystal by a pulling method, and the above-mentioned cylindrical metal The raw material melt present between the side wall surface of the heater and the inner wall surface of the oxide crucible can be supplied into the cylindrical metal heater through the gap between the lower end of the cylindrical metal heater and the inner bottom surface of the oxide crucible. A method for growing an oxide single crystal characterized by:
JP2022037492A 2022-03-10 2022-03-10 Apparatus and method for growing oxide single crystal Pending JP2023132268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022037492A JP2023132268A (en) 2022-03-10 2022-03-10 Apparatus and method for growing oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022037492A JP2023132268A (en) 2022-03-10 2022-03-10 Apparatus and method for growing oxide single crystal

Publications (1)

Publication Number Publication Date
JP2023132268A true JP2023132268A (en) 2023-09-22

Family

ID=88065875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022037492A Pending JP2023132268A (en) 2022-03-10 2022-03-10 Apparatus and method for growing oxide single crystal

Country Status (1)

Country Link
JP (1) JP2023132268A (en)

Similar Documents

Publication Publication Date Title
JP6606638B2 (en) Method and apparatus for growing Fe-Ga based alloy single crystal
JP6302192B2 (en) Single crystal growth apparatus and method
JP2007076928A (en) Method and device for manufacturing single crystal
WO2011062092A1 (en) Single crystal pulling apparatus
CN108531990A (en) Single-crystal manufacturing apparatus
JP2013060352A (en) Crucible furnace
JP2019147698A (en) Apparatus and method for growing crystal
KR101842487B1 (en) Glowing equipment and methods for lithium tantalate single crystal by crucible structure
JP2002226299A (en) Apparatus and method for manufacturing single crystal
JP2023132268A (en) Apparatus and method for growing oxide single crystal
JP2019163187A (en) Single crystal growth method of iron gallium alloy
JP2023132269A (en) Apparatus and method for growing oxide single crystal
JP2023132267A (en) Apparatus and method for growing oxide single crystal
JP2018052783A (en) Heater insulation structure, and single crystal production apparatus
JP2023132266A (en) Apparatus and method for growing oxide single crystal
JP5359845B2 (en) Single crystal growth equipment
JP2023147617A (en) Method and apparatus for growing oxide single crystal
CN107858753A (en) The manufacture device of lithium tantalate and the manufacture method of lithium tantalate
JP6958854B2 (en) Manufacturing method of magnetostrictive material
JP2023147618A (en) Method and apparatus for growing oxide single crystal
JP2019167282A (en) Crystal growth apparatus
JP2017193469A (en) After-heater and sapphire single crystal production apparatus
JPH11189487A (en) Production apparatus for oxide single crystal
JP6992488B2 (en) Crucible for growing single crystals
KR102301822B1 (en) Single crystal growth apparatus using solution growth method