JPH05339094A - Apparatus for producing oxide single crystal - Google Patents

Apparatus for producing oxide single crystal

Info

Publication number
JPH05339094A
JPH05339094A JP17000692A JP17000692A JPH05339094A JP H05339094 A JPH05339094 A JP H05339094A JP 17000692 A JP17000692 A JP 17000692A JP 17000692 A JP17000692 A JP 17000692A JP H05339094 A JPH05339094 A JP H05339094A
Authority
JP
Japan
Prior art keywords
single crystal
oxide single
raw material
crucible
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17000692A
Other languages
Japanese (ja)
Inventor
Seiji Sogo
清二 十河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP17000692A priority Critical patent/JPH05339094A/en
Publication of JPH05339094A publication Critical patent/JPH05339094A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the apparatus for producing an oxide single crystal which is suitable for growing the oxide single crystal of a relatively low melting temp., such as lithium tetraborate single crystal, provides a sufficiently high in-furnace temp. gradient and enables stable growth free from temp. fluctuation. CONSTITUTION:The apparatus for producing the oxide single crystal by a Czochralski method includes (a) a cylindrical crucible 1 with a bottom of an inside diameter D which houses a raw material melt 7, (b) a heater 4 for heating this crucible 1, (d) a pulling up shaft 2 which holds and vertically moves a seed crystal on the raw material melt, (d) a heat insulator 5 which has an aperture penetrated with this pulling up shaft 2 and hermetically seals the above-mentioned melt surface exclusive of this aperture. (e) The volume hermetically sealed by this heat insulator 5 is <=(0.45D)<3>pi and (f) the diameter of above- mentioned opening is 0.20D.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物単結晶、特に表
面弾性波デバイス用基板材料として用いられる四ほう酸
リチウム単結晶を製造する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing an oxide single crystal, particularly a lithium tetraborate single crystal used as a substrate material for a surface acoustic wave device.

【0002】[0002]

【従来の技術】酸化物単結晶を育成する場合、原料融液
に種結晶を接触させ、回転させながら引き上げることで
結晶を育成するチョクラルスキー法(結晶引上げ法)が多
く用いられている。チョクラルスキー法においては、原
料融液上の垂直方向に適切な温度勾配(炉内温度勾配)が
得られるように炉内構造を適切に配置することが重要と
なる。特に、四ほう酸リチウム単結晶などの比較的低融
点(1000℃以下)の酸化物単結晶を炉内温度勾配の低い状
態で育成すると、多結晶の発生などにより結晶の良好な
育成が困難であった。
2. Description of the Related Art When growing an oxide single crystal, the Czochralski method (crystal pulling method) in which a seed crystal is brought into contact with a raw material melt and pulled while rotating, is often used. In the Czochralski method, it is important to properly arrange the reactor internal structure so that an appropriate temperature gradient (temperature gradient in the furnace) can be obtained in the vertical direction on the raw material melt. Particularly, when an oxide single crystal having a relatively low melting point (1000 ° C. or less) such as a lithium tetraborate single crystal is grown in a state where the temperature gradient in the furnace is low, it is difficult to grow the crystal satisfactorily due to the generation of polycrystals. It was

【0003】この炉内温度勾配を高めるため、図1に示
ような製造装置が知られている。この装置は、原料融液
7を充填したるつぼ1の開口面上に、育成された結晶が
通過する開口を有する反射板8を設けたものである。こ
の反射板8により原料融液7の近傍のみを保温している
ため、その上部との温度差が拡大し、充分高い炉内温度
勾配を得ることができる。
A manufacturing apparatus as shown in FIG. 1 is known for increasing the temperature gradient in the furnace. In this apparatus, a reflecting plate 8 having an opening through which a grown crystal passes is provided on the opening surface of the crucible 1 filled with the raw material melt 7. Since only the vicinity of the raw material melt 7 is kept warm by the reflecting plate 8, the temperature difference from the upper part thereof is increased, and a sufficiently high temperature gradient in the furnace can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな反射板を用いた場合、炉内温度勾配を充分高くでき
るが、原料融液の表面での融液の温度揺らぎが大きくな
るという欠点があった。温度揺らぎの拡大は、結晶成長
界面での成長速度を変動させ、多結晶の発生を誘発する
など結晶成長に多大の悪影響を与えている。
However, when such a reflector is used, the temperature gradient in the furnace can be made sufficiently high, but there is a drawback that the temperature fluctuation of the melt on the surface of the raw material melt becomes large. It was The expansion of the temperature fluctuation has a great adverse effect on the crystal growth, such as changing the growth rate at the crystal growth interface and inducing the generation of polycrystals.

【0005】本発明の目的は、充分高い炉内温度勾配が
得られ、かつ、温度揺らぎのない安定した成長が可能な
酸化物単結晶の製造装置を提供することにある。
An object of the present invention is to provide an apparatus for producing an oxide single crystal, which can obtain a sufficiently high temperature gradient in the furnace and can perform stable growth without temperature fluctuation.

【0006】[0006]

【課題を解決するための手段及び作用】本発明者は鋭意
検討した結果、以下の発明をなした。本発明は、チョク
ラルスキー法により酸化物単結晶を製造する装置におい
て、(a)原料融液を収容する内径Dの底付き円筒状る
つぼと、(b)前記るつぼを加熱するためのヒーター
と、(c)前記原料融液上に種結晶を保持し、上下動す
る引上軸と、(d)前記引上軸が貫通する開口を有し、
該開口以外では前記融液面を密封する保温体とを含有
し、(e)前記保温体により密封された体積が(0.4
5D)3π以下であり、かつ、(f)前記開口の直径が
0.20D以上であるものである。
Means for Solving the Problems and Actions The present inventors have made the following inventions as a result of extensive studies. The present invention is, in an apparatus for producing an oxide single crystal by the Czochralski method, (a) a cylindrical crucible with a bottom having an inner diameter D for containing a raw material melt, and (b) a heater for heating the crucible. , (C) has a pulling shaft that holds a seed crystal on the raw material melt and moves up and down, and (d) has an opening through which the pulling shaft penetrates,
A heat insulator for sealing the melt surface is included except for the opening, and (e) the volume sealed by the heat insulator is (0.4
5D) and the 3 [pi less, and is intended at (f) the diameter of the opening is 0.20D or more.

【0007】本発明によれば、保温体により融液面を狭
い空間(体積が(0.45D)3π以下)に密封してお
り、また、その保温体に大きな開口(直径が0.20D
以上)を設けているので、雰囲気ガスの対流による温度
揺らぎを抑えることができ、同時に、中心部の開口から
の輻射などにより高い炉内温度勾配を得ることができ
る。なお、保温体により密閉される空間の体積が(0.
45D)3πを超える場合、温度揺らぎが増大し、ま
た、保温体上部の開口の直径が0.20D未満の場合、
炉内温度勾配を高めることができない。
According to the present invention, the melt surface is sealed in a narrow space (volume is (0.45D) 3 π or less) by the heat insulator, and a large opening (diameter is 0.20D) is formed in the heat insulator.
Since the above is provided, it is possible to suppress temperature fluctuation due to convection of the atmospheric gas, and at the same time, it is possible to obtain a high temperature gradient in the furnace due to radiation from the opening in the central portion. The volume of the space sealed by the heat retaining body is (0.
45D) When it exceeds 3 π, the temperature fluctuation increases, and when the diameter of the opening in the upper part of the heat retaining body is less than 0.20D,
The temperature gradient in the furnace cannot be increased.

【0008】[0008]

【実施例】以下、本発明を実施例により説明する。図2
は本発明の一実施例である酸化物単結晶の製造装置の断
面図を示している。直径Dの円筒状で平坦な底部を有す
る白金製るつぼ1(直径200mm、深さ200mm)上には、下
端に種結晶が取りつけられ回転しながら上下動する引上
軸2が設けられている。るつぼ1は、るつぼ台3上に置
かれており、Fe−Cr−Al系金属発熱体による円筒状のヒ
ータ4でかこまれている。このヒータ4は、その内部に
設置された熱電対の温度によりフィードバック制御され
ている。るつぼ1上には、厚さ3mmの石英ガラスから
なる保温体5が設置されており、保温体5上は炉内保温
材6により保温されている。炉内雰囲気は大気圧の空気
であり、ヒータ4およびるつぼ台3は保温材(図示せ
ず)により保温されている。
EXAMPLES The present invention will be described below with reference to examples. Figure 2
FIG. 3 shows a cross-sectional view of an oxide single crystal manufacturing apparatus that is an embodiment of the present invention. On a platinum crucible 1 (diameter 200 mm, depth 200 mm) having a cylindrical and flat bottom with a diameter D, a pulling shaft 2 having a seed crystal attached to the lower end and moving up and down while rotating is provided. The crucible 1 is placed on a crucible stand 3 and is surrounded by a cylindrical heater 4 made of a Fe—Cr—Al-based metal heating element. The heater 4 is feedback-controlled by the temperature of the thermocouple installed inside. A heat insulator 5 made of quartz glass having a thickness of 3 mm is installed on the crucible 1, and the heat insulator 5 is kept warm by an in-furnace heat insulator 6. The atmosphere in the furnace is air at atmospheric pressure, and the heater 4 and the crucible stand 3 are kept warm by a heat retaining material (not shown).

【0009】保温体5は、図3にその断面図を示すよう
に、融液面に平行に対向し外径Daが230mmのリン
グ状部分5aと、リング状部分5aの開口に接続してい
る円筒部分5bとからなり、円筒部分5bの上部に円錐
台状部分5cが接続され、上方向に向かって開口が狭く
なっている。それぞれの寸法は、円筒部分5bの直径D
bは120mm(0.6D)、その高さHbは50m
m、円錐台状部分5cの上端部の直径Dcが40mm
(0.2D)、その高さHcは50mmである。るつぼ
1の上面から20mm下がったところに融液面がくるよ
うに原料をいれると、円錐台状部分5cの上部開口を一
平面により閉じた場合の体積(保温体5と融液面で密閉
された体積)は、1725cm3((0.41D)3π)
となる。なお、Dは、るつぼ1の直径を表わしている。
なお、保温体5は、材質としてアルミナなどの焼結セラ
ミックスを用いることもできるが、その厚さは雰囲気の
対流を抑制できる程度であればよく5mm以下と薄くす
ることが望ましい。
As shown in the cross-sectional view of FIG. 3, the heat retaining body 5 is connected to the ring-shaped portion 5a having an outer diameter Da of 230 mm and an opening of the ring-shaped portion 5a which face each other in parallel with the melt surface. It is composed of a cylindrical portion 5b, a frustoconical portion 5c is connected to the upper portion of the cylindrical portion 5b, and the opening is narrowed upward. Each dimension is the diameter D of the cylindrical portion 5b.
b is 120 mm (0.6D) and its height Hb is 50 m
m, the diameter Dc of the upper end of the truncated cone portion 5c is 40 mm
(0.2D) and its height Hc is 50 mm. When the raw material was put in such a manner that the melt surface came 20 mm below the upper surface of the crucible 1, the volume when the upper opening of the truncated cone part 5c was closed by one plane (the heat insulator 5 and the melt surface were closed) Volume) is 1725 cm 3 ((0.41D) 3 π)
Becomes In addition, D represents the diameter of the crucible 1.
The heat retaining body 5 may be made of sintered ceramics such as alumina as a material, but the thickness thereof is sufficient as long as the convection of the atmosphere can be suppressed, and it is desirable to make the thickness as thin as 5 mm or less.

【0010】次に、本装置を用いた単結晶育成について
説明する。るつぼ1に高純度四ほう酸リチウム原料を入
れヒータ4を約1100℃に昇温して原料融液7とし
た。このとき保温体5の下端と原料融液7の表面の間隔
は20mmであり、炉内温度勾配(すなわち、融液表面
の中心部における融液表面の温度とその直上20mm間
の平均温度勾配)は25℃/cmであり、温度揺らぎ
(すなわち、融液表面の中心部における融液表面とその
直上100mm間での時間的温度変動)は8℃以下とな
った。ひきつづき種づけを行い、引上げ速度0.7mm
/時、引上げ方位<110>の条件で育成を行った。こ
の条件で、直径100mm、長さ100mmの四ほう酸
リチウム単結晶を再現性よく育成することが可能となっ
た。なお、炉内温度勾配を高めるためには、保温体5の
下端と原料融液7の表面の間隔は0.05D〜0.2D
とすることが望ましい。
Next, single crystal growth using this apparatus will be described. A high-purity lithium tetraborate raw material was placed in the crucible 1 and the heater 4 was heated to about 1100 ° C. to obtain a raw material melt 7. At this time, the distance between the lower end of the heat retaining body 5 and the surface of the raw material melt 7 is 20 mm, and the temperature gradient in the furnace (that is, the average temperature gradient between the temperature of the melt surface at the center of the melt surface and 20 mm directly above it) Was 25 ° C./cm, and the temperature fluctuation (that is, the temporal temperature fluctuation between the melt surface at the center of the melt surface and 100 mm directly above it) was 8 ° C. or less. Seeding is continued and pulling speed is 0.7mm
/ H, the growing direction was <110>. Under these conditions, a lithium tetraborate single crystal having a diameter of 100 mm and a length of 100 mm can be grown with good reproducibility. In order to increase the temperature gradient in the furnace, the distance between the lower end of the heat retaining body 5 and the surface of the raw material melt 7 is 0.05D to 0.2D.
Is desirable.

【0011】[0011]

【比較例】保温体5の寸法のみを変更し、他は実施例と
同一の条件で結晶育成を行った。第1の比較例では、円
筒部分5bの直径Dbは160mm(0.8D)、その
高さHbは70mm、円錐台状部分5cは上端部の直径
Dcが70mm(0.35D)、高さHcは70mmで
あり、保温体5と融液面で密閉された体積は、2840
cm3((0.48D)3π)となる。また、第2の比較
例では、円筒部分5bの直径Dbは110mm(0.5
5D)、その高さHbは30mm、円錐台状部分5cは
上端部の直径Dcは30mm(0.15D)、高さHc
は30mmであり、保温体5と融液面で密閉された体積
は、1398cm3((0.38D)3π)となる。
[Comparative Example] Crystals were grown under the same conditions as in Example except that the dimensions of the heat retaining body 5 were changed. In the first comparative example, the diameter Db of the cylindrical portion 5b is 160 mm (0.8D), its height Hb is 70 mm, and the frustoconical portion 5c has an upper end diameter Dc of 70 mm (0.35 D) and a height Hc. Is 70 mm, and the volume sealed by the heat insulator 5 and the melt surface is 2840.
cm 3 ((0.48D) 3 π). Further, in the second comparative example, the diameter Db of the cylindrical portion 5b is 110 mm (0.5
5D), the height Hb is 30 mm, the frustoconical portion 5c has an upper end diameter Dc of 30 mm (0.15 D), and a height Hc.
Is 30 mm, and the volume sealed by the heat retaining body 5 and the melt surface is 1398 cm 3 ((0.38D) 3 π).

【0012】第1の比較例では、炉内温度勾配は32℃
/cmであり、温度揺らぎは最大で20℃となった。四
ほう酸リチウム単結晶を再現性よく育成することが可能
な20℃/cm以上の炉内温度勾配は得られるものの、
温度揺らぎが大きいため、結晶成長は不安定となり、結
晶育成中に多結晶を生じ、良好な結晶を得ることはでき
なかった。
In the first comparative example, the temperature gradient in the furnace is 32 ° C.
/ Cm, and the maximum temperature fluctuation was 20 ° C. Although it is possible to obtain a temperature gradient in the furnace of 20 ° C./cm or more, which allows the lithium tetraborate single crystal to be grown with good reproducibility,
Since the temperature fluctuation was large, the crystal growth became unstable, and polycrystals were generated during the crystal growth, and a good crystal could not be obtained.

【0013】他方、第2の比較例では、炉内温度勾配は
16℃/cmであり、温度揺らぎは最大で5℃となっ
た。温度揺らぎは5℃以下と充分低いものの、炉内温度
勾配が低過ぎるため、充分な結晶成長を行うことができ
ず、良好な結晶を得ることはできなかった。
On the other hand, in the second comparative example, the temperature gradient in the furnace was 16 ° C./cm, and the temperature fluctuation was 5 ° C. at maximum. Although the temperature fluctuation was sufficiently low at 5 ° C. or less, the temperature gradient in the furnace was too low, so that sufficient crystal growth could not be performed and good crystals could not be obtained.

【0014】以上述べたように、本実施例によれば、保
温体により密封された体積を(0.40D)3π以上、
(0.45D)3π以下とし、その開口の直径を0.2
0D以上、0.30D以下に設定しているので、炉内温
度勾配を20℃/cm以上とし、温度揺らぎを8℃以下
とすることができる。このため、育成中の多結晶の発生
を防止でき、表面弾性波デバイス用基板材料である四ほ
う酸リチウム単結晶をチョクラルスキー法により再現性
よく育成することができる。なお、保温体の円筒部の内
径が、0.5D未満の場合、育成される結晶の外径が小
さく生産性に劣る、他方、0.7Dを超えた場合、保温
体5と融液面で密閉された体積を本発明の範囲に設定し
た場合、育成される結晶の長さを長くできず生産性に劣
る。
As described above, according to this embodiment, the volume sealed by the heat retaining body is (0.40D) 3 π or more,
(0.45D) 3 π or less and the diameter of the opening is 0.2
Since it is set to 0D or more and 0.30D or less, the temperature gradient in the furnace can be set to 20 ° C / cm or more and the temperature fluctuation can be set to 8 ° C or less. Therefore, it is possible to prevent the generation of polycrystals during the growth, and it is possible to grow the lithium tetraborate single crystal, which is the substrate material for the surface acoustic wave device, with good reproducibility by the Czochralski method. In addition, when the inner diameter of the cylindrical portion of the heat retaining body is less than 0.5D, the outer diameter of the grown crystal is small and the productivity is poor. On the other hand, when it exceeds 0.7D, the heat retaining body 5 and the melt surface When the sealed volume is set within the range of the present invention, the length of the grown crystal cannot be increased, resulting in poor productivity.

【0015】[0015]

【発明の効果】以上説明したように、本発明は、チョク
ラルスキー法により酸化物単結晶を製造する装置におい
て、(a)原料融液を収容する内径Dの底付き円筒状る
つぼと、(b)前記るつぼを加熱するためのヒーター
と、(c)前記原料融液上に種結晶を保持し、上下動す
る引上軸と、(d)前記引上軸が貫通する開口を有し、
該開口以外では前記融液面を密封する保温体とを含有
し、(e)前記保温体により密封された体積が(0.4
5D)3π以下であり、かつ、(f)前記開口の直径が
0.20D以上であるものである。
As described above, according to the present invention, in an apparatus for producing an oxide single crystal by the Czochralski method, (a) a cylindrical crucible with a bottom having an inner diameter D for containing a raw material melt, b) a heater for heating the crucible, (c) a pulling shaft that holds a seed crystal on the raw material melt and moves up and down, and (d) an opening through which the pulling shaft passes,
A heat insulator for sealing the melt surface is included except for the opening, and (e) the volume sealed by the heat insulator is (0.4
5D) and the 3 [pi less, and is intended at (f) the diameter of the opening is 0.20D or more.

【0016】本発明によれば、保温体により融液面を狭
い空間に密封しており、また、その保温体に大きな開口
を設けているので、雰囲気ガスの対流による温度揺らぎ
を押さえることができ、同時に、中心部の開口からの輻
射などにより高い炉内温度勾配を得ることができる。し
たがって、四ほう酸リチウム単結晶などの酸化物単結晶
の良好な結晶を高い生産性で得ることが可能となる。
According to the present invention, since the melt surface is sealed in a narrow space by the heat retaining body and the heat retaining body is provided with a large opening, temperature fluctuation due to convection of atmospheric gas can be suppressed. At the same time, a high temperature gradient in the furnace can be obtained by radiation from the opening in the center. Therefore, a good crystal of an oxide single crystal such as a lithium tetraborate single crystal can be obtained with high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来技術による酸化物単結晶の製造装置を説明
するための断面図である。
FIG. 1 is a cross-sectional view illustrating a conventional oxide single crystal manufacturing apparatus.

【図2】本発明の実施例である酸化物単結晶の製造装置
を説明するための断面図である。
FIG. 2 is a cross-sectional view for explaining an oxide single crystal manufacturing apparatus that is an embodiment of the present invention.

【図3】本発明の実施例に用いる保温体の詳細を示す断
面図である。
FIG. 3 is a cross-sectional view showing details of a heat retaining body used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1…るつぼ、 2…引上軸、 3…るつぼ台、 4…ヒ−タ、 5…保温体、 6…炉内保温材、 7…原料融液、 8…反射板。 DESCRIPTION OF SYMBOLS 1 ... Crucible, 2 ... Pull-up shaft, 3 ... Crucible stand, 4 ... Heater, 5 ... Insulator, 6 ... In-furnace heat insulating material, 7 ... Raw material melt, 8 ... Reflector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】チョクラルスキー法により酸化物単結晶を
製造する装置において、 (a)原料融液を収容する内径Dの底付き円筒状るつぼ
と、 (b)前記るつぼを加熱するためのヒーターと、 (c)前記原料融液上に種結晶を保持し、上下動する引
上軸と、 (d)前記引上軸が貫通する開口を有し、該開口以外で
は前記融液面を密封する保温体とを含有し、 (e)前記保温体により密封された体積が(0.45
D)3π以下であり、かつ、 (f)前記開口の直径が0.20D以上であることを特
徴とした酸化物単結晶の製造装置。
1. An apparatus for producing an oxide single crystal by the Czochralski method, comprising: (a) a cylindrical crucible with a bottom having an inner diameter D for containing a raw material melt, and (b) a heater for heating the crucible. And (c) a pulling shaft that holds a seed crystal on the raw material melt and moves up and down, and (d) has an opening through which the pulling shaft penetrates, and seals the melt surface other than the opening. (E) The volume sealed by the heat retaining body is (0.45
D) 3 π or less, and (f) the diameter of the opening is 0.20 D or more, an apparatus for producing an oxide single crystal.
JP17000692A 1992-06-05 1992-06-05 Apparatus for producing oxide single crystal Pending JPH05339094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17000692A JPH05339094A (en) 1992-06-05 1992-06-05 Apparatus for producing oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17000692A JPH05339094A (en) 1992-06-05 1992-06-05 Apparatus for producing oxide single crystal

Publications (1)

Publication Number Publication Date
JPH05339094A true JPH05339094A (en) 1993-12-21

Family

ID=15896845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17000692A Pending JPH05339094A (en) 1992-06-05 1992-06-05 Apparatus for producing oxide single crystal

Country Status (1)

Country Link
JP (1) JPH05339094A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015102161A1 (en) 2014-02-27 2015-08-27 Denso Corporation Angle detecting device and power steering device using these
DE102016208425A1 (en) 2015-05-20 2016-11-24 Denso Corporation Rotation angle detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015102161A1 (en) 2014-02-27 2015-08-27 Denso Corporation Angle detecting device and power steering device using these
DE102016208425A1 (en) 2015-05-20 2016-11-24 Denso Corporation Rotation angle detector

Similar Documents

Publication Publication Date Title
JP2012126644A (en) Method and apparatus for growing semiconductor crystal with a rigid support with carbon doping, resistivity control and thermal gradient control
JPS61247683A (en) Pulling device for single crystal sapphire
JPH05339094A (en) Apparatus for producing oxide single crystal
JPS6168389A (en) Apparatus for growing single crystal
JPH054895A (en) Production of single crystal and apparatus therefor
JP2005231958A (en) Apparatus for growing sapphire single crystal
US3929556A (en) Nucleating growth of lead-tin-telluride single crystal with an oriented barium fluoride substrate
JPH0920596A (en) Device for producing lithium tetraborate single crystal
JP2686662B2 (en) Oxide single crystal manufacturing equipment
JPS6389488A (en) Production of single crystal
JPH10251090A (en) Oxide single crystal and its growth method
JP2705832B2 (en) Single crystal pulling device
JPS6077195A (en) Apparatus for producing compound semiconductor single crystal
JPH05208891A (en) Single crystal growing apparatus
JPH06135800A (en) Production of single crystal
JPH0449185Y2 (en)
JP4316183B2 (en) Single crystal growth method
JP2665778B2 (en) Semiconductor single crystal pulling equipment
JPH0742194B2 (en) Single crystal manufacturing equipment
JPH05262596A (en) Production of single crystal of lithium tetraborate
JPH01133993A (en) Vessel for producing single crystal
JPH0825834B2 (en) Single crystal pulling device
JPH01264989A (en) Device for growing single crystal
JPS63107887A (en) Crucible for pulling up single crystal
JPS60122791A (en) Pulling up method of crystal under liquid sealing