JPH05208891A - Single crystal growing apparatus - Google Patents

Single crystal growing apparatus

Info

Publication number
JPH05208891A
JPH05208891A JP16391692A JP16391692A JPH05208891A JP H05208891 A JPH05208891 A JP H05208891A JP 16391692 A JP16391692 A JP 16391692A JP 16391692 A JP16391692 A JP 16391692A JP H05208891 A JPH05208891 A JP H05208891A
Authority
JP
Japan
Prior art keywords
single crystal
melt
crucible
molten liquid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16391692A
Other languages
Japanese (ja)
Other versions
JPH0660080B2 (en
Inventor
Toshihiko Suzuki
利彦 鈴木
Kinji Hoshi
金治 星
Nobuyuki Izawa
伸幸 伊沢
Yasunori Okubo
安教 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16391692A priority Critical patent/JPH0660080B2/en
Publication of JPH05208891A publication Critical patent/JPH05208891A/en
Publication of JPH0660080B2 publication Critical patent/JPH0660080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a single crystal having little crystal defects at high growth speed by forming a temperature distribution of the surface region of a molten liquid in such a manner as to lower the temperature from the part contacting with a crucible toward the center using a selective heating means and a heat- shielding means. CONSTITUTION:A single crystal 6 is pulled up and grown while applying a magnetic field to a molten liquid 3 by an electromagnet 21 surrounding a water- cooling jacket 10a. The molten liquid 3 having electrical conductivity is subjected to an electromagnetic force by the magnetic field and, as a result, the thermal convection is suppressed. Since the temperature distribution caused by a heater 4 is precisely reflected to the temperature distribution of the molten liquid 3, the temperature becomes low at the center of the molten liquid and high at the circumferential part and, at the same time, the temperature difference becomes large between the center of the molten liquid 3 and the part contacting with the liquid surface of the molten liquid and the inner wall of the crucible 2. Accordingly, the growing speed of the single crystal 6 can be increased compared with the case free from the applied magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶原料の融液を収容
するるつぼと、前記融液を加熱するために前記るつぼの
周囲に配設された加熱手段と、前記融液から単結晶を引
上げる引上げ手段とをそれぞれ具備する単結晶成長装置
に関するものであって、棒状の単結晶を高速度で成長さ
せる装置に用いて最適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crucible for accommodating a melt of a crystal raw material, a heating means arranged around the crucible for heating the melt, and a single crystal from the melt. The present invention relates to a single crystal growth apparatus each equipped with a pulling means for pulling up, and is most suitable for an apparatus for growing a rod-shaped single crystal at a high speed.

【0002】[0002]

【従来の技術】シリコン単結晶を引上げ成長させるに
は、従来からチヨクラルスキー法(CZ法)が用いられ
ている。このCZ法によれば、図12に示すように、グ
ラファイト製のるつぼ1内に設けられている石英製のる
つぼ2内に収容した結晶原料の融液3を上記るつぼ1を
囲むように設けられている発熱体4により加熱しつつ、
種結晶5から棒状に成長した単結晶6を、この種結晶5
が保持されているチャック7により、融液3から引上げ
るようにしている。この引上げの際には、るつぼ1,2
および単結晶6をそれぞれ軸8およびチャック7によっ
て、例えば互いに逆方向に一定速度で回転させると共
に、融液3の液面に対して発熱体4が一定位置となるよ
うに、軸8によってるつぼ1を上昇させている。
2. Description of the Related Art The Czochralski method (CZ method) has been conventionally used for pulling and growing a silicon single crystal. According to the CZ method, as shown in FIG. 12, a melt 3 of a crystal raw material contained in a quartz crucible 2 provided in a graphite crucible 1 is provided so as to surround the crucible 1. While heating with the heating element 4
A single crystal 6 grown in a rod shape from the seed crystal 5 is
Is held by the chuck 7 and pulled from the melt 3. At the time of this pulling up, crucibles 1 and 2
And the single crystal 6 are rotated by the shaft 8 and the chuck 7, respectively, in opposite directions at a constant speed, and the crucible 1 is rotated by the shaft 8 so that the heating element 4 is at a constant position with respect to the liquid surface of the melt 3. Is rising.

【0003】このCZ法により得られる単結晶6の最大
成長速度Vmax は、この単結晶6と融液3との固液界面
が平坦でかつこの単結晶6の半径方向の温度勾配が存在
しないと仮定した場合、 Vmax =k/(h・ρ)(dT/dx) で与えられる。ここで、kは単結晶6の熱伝導率、hは
その融解熱、ρはその密度、(dT/dx)は固液界面
における固相(単結晶6)中の温度勾配である。なお、
xは単結晶6の軸方向の座標である。上式において、
k、h、ρは物質によって決まる固有の値であるため
に、大きなVmax を得るためには、(dT/dx)を大
きくする必要がある。
The maximum growth rate V max of the single crystal 6 obtained by the CZ method is such that the solid-liquid interface between the single crystal 6 and the melt 3 is flat and there is no temperature gradient in the radial direction of the single crystal 6. Assuming that V max = k / (h · ρ) (dT / dx). Here, k is the thermal conductivity of the single crystal 6, h is its heat of fusion, ρ is its density, and (dT / dx) is the temperature gradient in the solid phase (single crystal 6) at the solid-liquid interface. In addition,
x is the coordinate of the single crystal 6 in the axial direction. In the above formula,
Since k, h, and ρ are unique values determined by the substance, it is necessary to increase (dT / dx) in order to obtain a large V max .

【0004】[0004]

【発明が解決しようとする課題】ところが、上述のCZ
法においては、引上げられた単結晶6は、融液3の表
面、るつぼ2の内壁、発熱体4などからの放射熱により
熱せられるために、上記の(dT/dx)はその分だけ
小さくなり、従って、実際に得られる成長速度も小さ
い。
However, the above-mentioned CZ
In the method, the pulled single crystal 6 is heated by the radiation heat from the surface of the melt 3, the inner wall of the crucible 2, the heating element 4, etc., so that the above (dT / dx) becomes smaller accordingly. Therefore, the growth rate actually obtained is also small.

【0005】この成長速度は、発熱体4の温度を全体的
に下げることによって大きくすることが可能である。し
かし、図9のAおよびBから理解されるように、融液3
の表面近傍の温度は中心部に比べてかなり低くなってい
るから、このようにすると、融液3のうちのこの融液3
の液面とるつぼ2とに隣接する部分3aにおいて固化が
起き、その結果、単結晶6の引上げを継続することが困
難になってしまうという欠点がある。このために、図1
2に示す単結晶成長装置で、なんら支障なく単結晶6の
引上げを継続することのできる成長速度は、最大でも1
mm/分程度であった。しかも、単結晶6が大口径にな
るに従って上述の固化が起こりやすくなるために、さら
に成長速度を低下させざるを得なかった。なお、図9の
A(図10のAおよび図11のAにおいても同様)にお
いて、T1 <T2 <T3 、T 2 5 、T 3 4 であ
る。
This growth rate can be increased by lowering the temperature of the heating element 4 as a whole. However, as can be seen from FIGS. 9A and 9B, melt 3
Since the temperature in the vicinity of the surface of the melt is much lower than that in the central part, if this is done, this melt 3
However, there is a drawback that solidification occurs in the portion 3a adjacent to the liquid surface and the crucible 2, and as a result, it becomes difficult to continue pulling up the single crystal 6. To this end, FIG.
With the single crystal growth apparatus shown in 2, the growth rate at which the pulling of the single crystal 6 can be continued without any hindrance is 1 at the maximum.
It was about mm / min. Moreover, the above-mentioned solidification is more likely to occur as the single crystal 6 has a larger diameter, so that the growth rate must be further reduced. Note that in A of FIG. 9 (the same applies to A of FIG. 10 and A of FIG. 11), T 1 <T 2 <T 3 , T 2 to T 5 , and T 3 to T 4 .

【0006】なお、本発明に関連する先行文献として
は、特公昭51−47153号公報、特公昭58−10
80号公報などが挙げられ、特に後者には、融液の上方
に輻射スクリーンを設けることにより2mm/分の成長
速度で単結晶を成長させた実施例が記載されている。
As prior art documents related to the present invention, Japanese Patent Publication No. 51-47153 and Japanese Patent Publication No. 58-10.
No. 80 and the like, and particularly the latter describes an example in which a radiant screen is provided above the melt to grow a single crystal at a growth rate of 2 mm / min.

【0007】本発明は、上述の問題にかんがみ、従来の
単結晶成長装置が有する上述のような欠点を是正した単
結晶成長装置を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a single crystal growth apparatus in which the above-mentioned drawbacks of the conventional single crystal growth apparatus are corrected.

【0008】[0008]

【問題点を解決するための手段】本発明は、結晶原料の
融液を収容するるつぼと、断面積が前記融液の液面近傍
に対向する部分よりもそれより下方に位置する部分で大
きくなっている発熱体から成り前記融液の液面近傍に対
向する部分ではそれより下方に位置する部分よりも高い
温度で加熱する加熱手段と、前記融液から単結晶を引き
上げる引上げ手段と、前記引上げ手段により引上げられ
る前記単結晶の側面と前記加熱手段のこの側面に対向す
る部分との間に介在させた熱遮蔽手段とをそれぞれ具備
し、前記加熱手段による選択的加熱作用と前記熱遮蔽手
段による熱遮蔽作用との共働作用によって、前記融液の
液面近傍が前記るつぼに接する部分から前記るつぼの中
心に向うに従って次第に低い温度となる温度分布を有す
るように構成されていることを特徴とする単結晶成長装
置に係るものである。
According to the present invention, a crucible for accommodating a melt of a crystal raw material and a portion whose cross-sectional area is located lower than a portion facing the vicinity of the liquid surface of the melt are large. A heating means for heating at a temperature higher than that of a portion located below it in a portion facing the vicinity of the liquid surface of the melt, and a pulling means for pulling a single crystal from the melt; The heat shield means is interposed between the side surface of the single crystal pulled by the pulling means and the portion of the heating means facing the side surface, and the selective heating action by the heating means and the heat shield means are provided. It is configured to have a temperature distribution in which the temperature near the liquid surface of the melt gradually decreases from the portion in contact with the crucible toward the center of the crucible by the synergistic action with the heat shielding effect by the. Those of the single crystal growth apparatus characterized by there.

【0009】[0009]

【実施例】以下、本発明に係る単結晶成長装置の一実施
例につき、図面を参照しながら説明する。なお、以下の
図面においては、図12と同一部分には同一の符号を付
し、必要に応じてその説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the single crystal growth apparatus according to the present invention will be described below with reference to the drawings. In the drawings below, the same parts as those in FIG. 12 are designated by the same reference numerals, and the description thereof will be omitted as necessary.

【0010】図1に示すように、本実施例による単結晶
成長装置においては、図12に示す従来の単結晶成長装
置と同様に、グラファイト製のるつぼ1内に設けられて
いる石英製のるつぼ2中にシリコンの融液3が収容さ
れ、さらに、上記るつぼ1を囲むようにグラファイト製
の発熱体4および保温材9がそれぞれ設けられている。
そして、これら全体を囲むように、水冷ジャケット10
a〜10cが設けられている。なお、この水冷ジャケッ
ト10bには、引上げられた単結晶6を観察するための
窓12が設けられ、また、水冷ジャケット10aの底面
には、上方から水冷ジャケット10a〜10cの内側に
導入される不活性ガス(雰囲気ガス)を排出するための
排出管13が設けられている。また、るつぼ1の下部に
は、このるつぼ1を回転および昇降させるための軸8が
水冷ジャケット10aの底面に設けられた開口10dを
通して設けられている。さらに、発熱体4の下端はリン
グ板14に固定され、このリング板14の下部には、発
熱体4を昇降させるための昇降軸15が水冷ジャケット
10aの底面に設けられた開口10e,10fを通して
設けられている。一方、融液3の上方には、その底面に
単結晶6よりも少し径の大きい開口を有する例えばモリ
ブデン製の円筒から成る熱遮蔽体16が設けられてい
る。さらにその上方には、引上げ軸17の下端に取付け
られているチャック7に保持された種結晶5が設けら
れ、この種結晶5から棒状の単結晶6が成長するように
なっている。
As shown in FIG. 1, in the single crystal growing apparatus according to the present embodiment, similarly to the conventional single crystal growing apparatus shown in FIG. 12, a quartz crucible provided in a graphite crucible 1 is used. A melt 3 of silicon is contained in the heating element 2, and a heating element 4 made of graphite and a heat insulating material 9 are provided so as to surround the crucible 1.
Then, the water cooling jacket 10 is provided so as to surround all of them.
a to 10c are provided. The water-cooling jacket 10b is provided with a window 12 for observing the pulled single crystal 6, and the bottom surface of the water-cooling jacket 10a is introduced into the water-cooling jackets 10a to 10c from above. A discharge pipe 13 for discharging the active gas (atmosphere gas) is provided. A shaft 8 for rotating and moving the crucible 1 up and down is provided in the lower portion of the crucible 1 through an opening 10d provided in the bottom surface of the water cooling jacket 10a. Further, the lower end of the heating element 4 is fixed to the ring plate 14, and an elevating shaft 15 for raising and lowering the heating element 4 is passed through the openings 10e and 10f provided on the bottom surface of the water cooling jacket 10a in the lower part of the ring plate 14. It is provided. On the other hand, above the melt 3, a heat shield 16 made of, for example, a molybdenum cylinder having an opening whose diameter is slightly larger than that of the single crystal 6 is provided on the bottom surface. Further, a seed crystal 5 held by a chuck 7 attached to the lower end of a pulling shaft 17 is provided above the seed crystal 5, and a rod-shaped single crystal 6 is grown from the seed crystal 5.

【0011】上記発熱体4は、図2に示すように、その
上部にテーパ部4aが設けられている円筒状のグラファ
イトにその中心軸方向に延びる上部溝4bおよび下部溝
4cをその周方向に等間隔にかつ交互に設けたものであ
る。さらに、上記下部溝4cの一端には、この下部溝4
cの中心軸に対してほぼ45°をなす方向に延びる溝4
d,4eが形成されている。
As shown in FIG. 2, the heating element 4 has an upper groove 4b and a lower groove 4c extending in the central axis direction in a cylindrical graphite having an upper portion provided with a tapered portion 4a in the circumferential direction. It is provided at equal intervals and alternately. Further, at one end of the lower groove 4c, the lower groove 4c
Groove 4 extending in a direction forming an angle of about 45 ° with respect to the central axis of c
d and 4e are formed.

【0012】このように構成された単結晶成長装置を用
いて種結晶5にシリコンの融液3から単結晶6を成長さ
せるには、るつぼ1,2および単結晶6をそれぞれ軸8
および引上げ軸17により例えば互いに逆方向に回転さ
せつつ、図示を省略した駆動機構により引上げ軸17を
徐々に上昇させることによって単結晶6の引上げを行う
と共に、融液3の液面に対して発熱体4が一定位置とな
るようにるつぼ1,2を上昇させる。
In order to grow the single crystal 6 from the melt 3 of silicon on the seed crystal 5 using the single crystal growth apparatus configured as described above, the crucibles 1 and 2 and the single crystal 6 are respectively provided with axes 8.
And the single crystal 6 is pulled by gradually raising the pulling shaft 17 by a drive mechanism (not shown) while rotating the pulling shaft 17 in opposite directions, and heat is generated with respect to the liquid surface of the melt 3. The crucibles 1, 2 are raised so that the body 4 is at a fixed position.

【0013】上述の実施例によれば、次のように利点が
ある。すなわち、発熱体4の上部にはテーパ部4aが設
けられ、さらに下部溝4cの一端に溝4d,4eが設け
られているので、上記テーパ部4aにおける発熱体4の
断面積は、その下部に比べて小さく、特に溝4d,4e
の近傍においてはきわめて小さくなっている。従って、
電流通電時においては、この発熱体4のテーパ部4aが
下部に比べて高温に熱せられるので、このテーパ部4a
とほぼ同一の高さに位置する融液3の液面とるつぼ2の
内壁とにそれぞれ隣接する部分3aの温度と融液3中の
最高温度との差は、図10のAおよびBに示すように、
従来に比べて小さい(なお、発熱体4全体の電気抵抗は
テーパ部4aなどを設けた分だけ従来に比べて高く、従
って、同一通電量では従来に比べて温度が高くなるの
で、本実施例においては、従来よりも通電量を少し落と
しており、このために、融液3中の温度は従来よりも多
少低くなっていると考えられる)。ゆえに、既述の温度
勾配(dT/dx)を大きくするために発熱体4の温度
を下げた場合においても、上記温度差が従来に比べて小
さい分だけ、融液3のうちのこの融液3の液面とるつぼ
2の内壁とに隣接する部分3aの固化が起きにくくなる
ので、その分だけ発熱体4の温度を下げることができ
る。従って、単結晶6の成長速度を例えば2.0mm/
分と従来に比べてきわめて大きくすることができ、しか
も、単結晶6の成長を連続して行うことができる。その
結果、生産性が従来に比べて高く、従って、単結晶6の
成長コストを低減することができる。
The above embodiment has the following advantages. That is, since the tapered portion 4a is provided above the heating element 4 and the grooves 4d and 4e are provided at one end of the lower groove 4c, the cross-sectional area of the heating element 4 in the tapered portion 4a is lower than that. Smaller than others, especially grooves 4d, 4e
It is extremely small in the vicinity of. Therefore,
Since the tapered portion 4a of the heating element 4 is heated to a higher temperature than the lower portion when a current is applied, the tapered portion 4a is heated.
The difference between the temperature of the portion 3a adjacent to the liquid surface of the melt 3 and the inner wall of the crucible 2 and the maximum temperature in the melt 3 which are located at substantially the same height as is shown in A and B of FIG. like,
Smaller than the conventional one (Note that the electric resistance of the entire heating element 4 is higher than that of the conventional one due to the provision of the tapered portion 4a and the like. Therefore, at the same energization amount, the temperature becomes higher than that of the conventional one. In (1), the energization amount is slightly lower than in the prior art, and it is considered that the temperature in the melt 3 is somewhat lower than in the prior art). Therefore, even when the temperature of the heating element 4 is lowered in order to increase the above-mentioned temperature gradient (dT / dx), this melt of the melt 3 is reduced by the amount that the temperature difference is smaller than in the conventional case. Since the solidification of the portion 3a adjacent to the liquid surface of 3 and the inner wall of the crucible 2 is less likely to occur, the temperature of the heating element 4 can be reduced accordingly. Therefore, the growth rate of the single crystal 6 is, for example, 2.0 mm /
The size of the single crystal 6 can be significantly increased as compared with the conventional one, and the single crystal 6 can be continuously grown. As a result, the productivity is higher than in the past, and therefore the growth cost of the single crystal 6 can be reduced.

【0014】また、従来のように1mm/分程度の成長
速度で単結晶6を成長させる場合に得られる単結晶6中
の積層欠陥密度は、図3に示すようにきわめて大きいの
に対して、上述の実施例のように高速、例えば2mm/
分程度の成長速度で単結晶6を成長させた場合に得られ
る単結晶6中の積層欠陥密度は、この図3に示すように
きわめて小さいから、単結晶6の品質はきわめて良好で
ある。
Further, as shown in FIG. 3, the stacking fault density in the single crystal 6 obtained when the single crystal 6 is grown at a growth rate of about 1 mm / min as in the prior art is extremely large. High speed as in the above embodiment, eg 2 mm /
Since the stacking fault density in the single crystal 6 obtained when the single crystal 6 is grown at a growth rate of about a minute is extremely small as shown in FIG. 3, the quality of the single crystal 6 is very good.

【0015】また、融液3の上方には、既述のように、
その底面に単結晶6よりも少し径の大きい開口を有する
円筒から成る熱遮蔽体16を設けているので、この融液
3、発熱体4などからの放射熱により単結晶6が加熱さ
れるのを防止することができる。このために、この分だ
け温度勾配(dT/dx)を大きくすることができるか
ら、これによっても単結晶6の成長速度を大きくするこ
とができる。
Above the melt 3, as described above,
Since the heat shield 16 made of a cylinder having an opening having a diameter slightly larger than that of the single crystal 6 is provided on the bottom surface, the single crystal 6 is heated by the radiant heat from the melt 3, the heating element 4 and the like. Can be prevented. For this reason, since the temperature gradient (dT / dx) can be increased by this amount, the growth rate of the single crystal 6 can also be increased by this.

【0016】さらに、発熱体4の上部の断面積は従来に
比べて小さいので、この発熱体4全体の電気抵抗もその
分だけ高く、従って、従来に比べて低い電力で融液3を
従来と同程度の温度に加熱することができる。このため
に、発熱体4による消費電力を従来に比べて低減するこ
とができる。
Further, since the cross-sectional area of the upper part of the heating element 4 is smaller than that of the conventional one, the electric resistance of the entire heating element 4 is correspondingly higher, and therefore, the melt 3 is required to have a lower electric power than the conventional one. It can be heated to about the same temperature. Therefore, the power consumption of the heating element 4 can be reduced as compared with the conventional one.

【0017】本発明は、上述の実施例に限定されるもの
ではなく、本発明の技術的思想に基づく種々の変形が可
能である。例えば、上述の実施例においては、発熱体4
の上部にテーパ部4aを設けると共に、下部溝4cの一
端に溝4d,4eを設けたが、テーパ部4aのみを設け
てもよい。さらに、例えば図4に示すように発熱体4を
上部が薄肉となるようにテーパ状としたり、図5に示す
ように発熱体4の上部に凹部4fを設けたり、図6に示
すように発熱体4の上部に例えばそれぞれ深さの異なる
多数の溝4gを設けたりしてもよい。さらにまた、図7
に示すように発熱体4の上部の幅t1 を下部の幅t2
比べて小さくしてもよい。
The present invention is not limited to the above-mentioned embodiments, but various modifications can be made based on the technical idea of the present invention. For example, in the above embodiment, the heating element 4
Although the tapered portion 4a is provided on the upper part of the above and the grooves 4d and 4e are provided on one end of the lower groove 4c, only the tapered portion 4a may be provided. Further, for example, as shown in FIG. 4, the heating element 4 is tapered so that the upper portion has a thin wall, or as shown in FIG. 5, a concave portion 4f is provided in the upper portion of the heating element 4, and as shown in FIG. For example, a large number of grooves 4g having different depths may be provided on the upper portion of the body 4. Furthermore, FIG.
As shown in, the width t 1 of the upper part of the heating element 4 may be made smaller than the width t 2 of the lower part.

【0018】さらに、図8に示す別の実施例のように、
上述の実施例または上述の種々の変形例において水冷ジ
ャケット10aの周囲に電磁石21を設けて、融液3に
磁場を印加しつつ単結晶6の引上げ成長を行うようにし
てもよい。このようにすれば、電気伝導性を有する融液
3は上記磁場により電磁気的な力を受け、その結果、熱
対流が抑制される。このように熱対流が抑制された状態
では、発熱体4における温度分布が融液3の温度分布に
忠実に反映されるので、図11のAおよびBに示すよう
に、融液3の中心部では温度が低く周辺では温度が高く
なると共に、融液3の液面とるつぼ2の内壁とにそれぞ
れ隣接する部分とその中心部との温度差が上述の実施例
よりもさらに大きくなる。その結果、磁場を印加しない
場合に比べて単結晶6の成長速度をさらに大きくするこ
とができる。なお磁場の印加方向は垂直方向であっても
よい。
Further, as in another embodiment shown in FIG.
An electromagnet 21 may be provided around the water cooling jacket 10a in the above-described embodiment or the various modifications described above, and pull-up growth of the single crystal 6 may be performed while applying a magnetic field to the melt 3. By doing so, the melt 3 having electrical conductivity is subjected to an electromagnetic force by the magnetic field, and as a result, thermal convection is suppressed. In such a state where the thermal convection is suppressed, the temperature distribution in the heating element 4 is faithfully reflected in the temperature distribution of the melt 3, and therefore, as shown in A and B of FIG. The temperature is low and the temperature is high in the surroundings, and the temperature difference between the central portion and the portions adjacent to the liquid surface of the melt 3 and the inner wall of the crucible 2 becomes larger than that in the above-described embodiment. As a result, the growth rate of the single crystal 6 can be further increased as compared with the case where no magnetic field is applied. The magnetic field may be applied in the vertical direction.

【0019】具体例1 12インチ径のるつぼ2に原料として20kgの多結晶
シリコンを装填し、次いで、これを融解させた後、単結
晶6を引上げ成長させた。第12図に示す従来の場合
は、1.2mm/分の成長速度で融液3のうちのるつぼ
2と液面とに隣接する部分3aで固化が起きたのに対し
て、融液3の上方に熱遮蔽体16を設けた場合には、
1.5mm/分の成長速度で単結晶6の成長を行うこと
ができた。さらに、上述の実施例のように熱遮蔽体16
を設けると共に、発熱体4にテーパ4aおよび溝4d,
4eを設けた場合には、2.0mm/分の成長速度で直
径4インチの単結晶6を成長させることができた。
Concrete Example 1 A crucible 2 having a diameter of 12 inches was charged with 20 kg of polycrystalline silicon as a raw material, which was then melted and then a single crystal 6 was pulled and grown. In the conventional case shown in FIG. 12, the solidification occurred in the portion 3a of the melt 3 adjacent to the crucible 2 and the liquid surface at the growth rate of 1.2 mm / min, whereas the melt 3 When the heat shield 16 is provided above,
The single crystal 6 could be grown at a growth rate of 1.5 mm / min. Further, as in the above-described embodiment, the heat shield 16
And the heating element 4 has a taper 4a and a groove 4d,
4e was provided, the single crystal 6 having a diameter of 4 inches could be grown at a growth rate of 2.0 mm / min.

【0020】具体例2 具体例1の場合と同様に、12インチ径のるつぼ2に2
0kgの多結晶シリコン原料を装填して融解させ、次い
で、単結晶6の引上げを行った。上述の実施例のように
熱遮蔽体16とテーパ部4aおよび溝4d,4eが設け
られた発熱体4とを設置した場合、成長速度2.0mm
/分で単結晶6を成長させることができた。さらに、図
8に示すように磁場を印加して単結晶6の成長を行った
場合には、成長速度2.3mm/分を達成することがで
きた。
Concrete Example 2 As in the case of Concrete Example 1, two crucibles having a diameter of 12 inches are provided.
0 kg of polycrystalline silicon raw material was loaded and melted, and then the single crystal 6 was pulled up. When the heat shield 16 and the heating element 4 provided with the tapered portion 4a and the grooves 4d and 4e are installed as in the above-described embodiment, the growth rate is 2.0 mm.
It was possible to grow the single crystal 6 at the speed of 1 / min. Further, when the single crystal 6 was grown by applying a magnetic field as shown in FIG. 8, a growth rate of 2.3 mm / min could be achieved.

【0021】[0021]

【発明の効果】本発明に係る単結晶成長装置は、断面積
が融液の液面近傍に対向する部分よりもそれより下方に
位置する部分で大きくなっている発熱体から成り前記融
液の液面近傍に対向する部分ではそれより下方に位置す
る部分よりも高い温度で加熱する加熱手段と、引上げ手
段により引上げられる単結晶の側面と前記加熱手段のこ
の側面に対向する部分との間に介在させた熱遮蔽手段と
をそれぞれ具備し、前記加熱手段による選択的加熱作用
と前記熱遮蔽手段による熱遮蔽作用との共働作用によっ
て、前記融液の液面近傍がるつぼに接する部分からるつ
ぼの中心に向うに従って次第に低い温度となる温度分布
を有するように構成されている。従って、前記融液の液
面近傍をるつぼに接する部分よりも中心部分で充分に低
温にすることができると共に、るつぼに接する融液の液
面近傍よりも単結晶部分を充分低温にすることができる
から、加熱手段の発熱量を比較的低くした場合に、るつ
ぼに接する融液の液面近傍で固化が起きるのを効果的に
防止することができ、このために、従来の装置に比べ
て、大きな成長速度で、しかも、結晶欠陥が少なくて高
品質の単結晶を成長させることができる。
The single crystal growth apparatus according to the present invention comprises a heating element having a cross-sectional area which is larger at a portion located below the portion facing the vicinity of the liquid surface of the melt. Between the heating means for heating at a temperature higher than that of the portion located below the liquid surface and the side surface of the single crystal pulled by the pulling means, and the portion of the heating means facing the side surface. And a heat shield means interposed between the crucible and the crucible in which the vicinity of the liquid surface of the melt is in contact with the crucible by the cooperative action of the selective heating effect of the heating means and the heat shield effect of the heat shield means. The temperature distribution is such that the temperature gradually decreases toward the center of the. Therefore, the temperature near the liquid surface of the melt can be made sufficiently lower in the central portion than in the portion in contact with the crucible, and the temperature of the single crystal portion can be made sufficiently lower than in the vicinity of the liquid surface of the melt in contact with the crucible. Therefore, when the heating value of the heating means is made relatively low, it is possible to effectively prevent solidification from occurring in the vicinity of the liquid surface of the melt in contact with the crucible. A high-quality single crystal can be grown at a high growth rate and with few crystal defects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る単結晶成長装置の一実施例を示す
断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of a single crystal growth apparatus according to the present invention.

【図2】図1に示す単結晶成長装置における発熱体の拡
大斜視図である。
FIG. 2 is an enlarged perspective view of a heating element in the single crystal growth apparatus shown in FIG.

【図3】成長された単結晶中の積層欠陥密度と酸素濃度
と引上げ速度との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between stacking fault density, oxygen concentration, and pulling rate in a grown single crystal.

【図4】本発明の一変形例を示す断面図である。FIG. 4 is a sectional view showing a modified example of the present invention.

【図5】本発明の別の変形例を示す断面図である。FIG. 5 is a sectional view showing another modification of the present invention.

【図6】本発明のさらに別の変形例を示す断面図であ
る。
FIG. 6 is a sectional view showing still another modified example of the present invention.

【図7】本発明のさらに別の変形例を示す正面図であ
る。
FIG. 7 is a front view showing still another modification of the present invention.

【図8】本発明の別の実施例を示す断面図である。FIG. 8 is a sectional view showing another embodiment of the present invention.

【図9】AおよびBは、それぞれ従来の融液中の温度分
布を等温線で示す模式図および融液の中心軸方向の温度
分布を示すグラフである。
9A and 9B are a schematic diagram showing a temperature distribution in a conventional melt by an isotherm and a graph showing a temperature distribution in the central axis direction of the melt, respectively.

【図10】AおよびBは、本発明の実施例についての図
9のAおよびBと同様な模式図およびグラフである。
10A and 10B are schematic diagrams and graphs similar to FIGS. 9A and 9B for an embodiment of the present invention.

【図11】AおよびBは、融液に磁場を印加した図8に
示す本発明の別の実施例についての図9のAおよびBと
同様な模式図およびグラフである。
11A and 11B are schematic diagrams and graphs similar to FIGS. 9A and 9B for another embodiment of the present invention shown in FIG. 8 in which a magnetic field is applied to the melt.

【図12】CZ法による従来の単結晶成長装置の要部を
示す断面図である。
FIG. 12 is a cross-sectional view showing a main part of a conventional single crystal growth apparatus by the CZ method.

【符号の説明】[Explanation of symbols]

1,2 るつぼ 3 融液 4 発熱体(加熱手段) 4a テーパ部 5 種結晶 6 単結晶 16 熱遮蔽体(熱遮蔽手段) 17 引上げ軸(引上げ手段) 1, crucible 3 melt 4 heating element (heating means) 4a tapered portion 5 seed crystal 6 single crystal 16 heat shield (heat shield means) 17 pulling shaft (pulling means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大久保 安教 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ankyo Okubo 6-735 Kitashinagawa, Shinagawa-ku, Tokyo Sony Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】結晶原料の融液を収容するるつぼと、 断面積が前記融液の液面近傍に対向する部分よりもそれ
より下方に位置する部分で大きくなっている発熱体から
成り前記融液の液面近傍に対向する部分ではそれより下
方に位置する部分よりも高い温度で加熱する加熱手段
と、 前記融液から単結晶を引き上げる引上げ手段と、 前記引上げ手段により引上げられる前記単結晶の側面と
前記加熱手段のこの側面に対向する部分との間に介在さ
せた熱遮蔽手段とをそれぞれ具備し、 前記加熱手段による選択的加熱作用と前記熱遮蔽手段に
よる熱遮蔽作用との共働作用によって、前記融液の液面
近傍が前記るつぼに接する部分から前記るつぼの中心に
向うに従って次第に低い温度となる温度分布を有するよ
うに構成されていることを特徴とする単結晶成長装置。
1. A crucible for accommodating a melt of a crystal raw material, and a heating element having a cross-sectional area which is larger in a portion located below the portion facing the vicinity of the liquid surface of the melt. A heating means for heating at a temperature higher than a portion located below it in a portion facing the vicinity of the liquid surface of the liquid, a pulling means for pulling a single crystal from the melt, and a pulling means for pulling the single crystal A heat shield means interposed between a side surface and a portion of the heating means opposed to the side surface, respectively, and a cooperative action of a selective heating effect of the heating means and a heat shield effect of the heat shielding means. The single bond is characterized by having a temperature distribution in which the vicinity of the liquid surface of the melt gradually decreases from the portion in contact with the crucible toward the center of the crucible. Crystal growth equipment.
JP16391692A 1992-05-29 1992-05-29 Single crystal growth equipment Expired - Lifetime JPH0660080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16391692A JPH0660080B2 (en) 1992-05-29 1992-05-29 Single crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16391692A JPH0660080B2 (en) 1992-05-29 1992-05-29 Single crystal growth equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59176420A Division JPS6153187A (en) 1984-08-24 1984-08-24 Device for growing single crystal

Publications (2)

Publication Number Publication Date
JPH05208891A true JPH05208891A (en) 1993-08-20
JPH0660080B2 JPH0660080B2 (en) 1994-08-10

Family

ID=15783263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16391692A Expired - Lifetime JPH0660080B2 (en) 1992-05-29 1992-05-29 Single crystal growth equipment

Country Status (1)

Country Link
JP (1) JPH0660080B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522086A (en) * 1998-06-26 2003-07-22 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Electric resistance heater for crystal growth apparatus and method of using the same
JP2010254487A (en) * 2009-04-21 2010-11-11 Sumco Corp Method for growing single crystal
JP2017506206A (en) * 2014-02-21 2017-03-02 モーメンティブ・パフォーマンス・マテリアルズ・インク Multi-zone variable power density heater, apparatus including the heater and method of using the heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522086A (en) * 1998-06-26 2003-07-22 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Electric resistance heater for crystal growth apparatus and method of using the same
JP2010254487A (en) * 2009-04-21 2010-11-11 Sumco Corp Method for growing single crystal
JP2017506206A (en) * 2014-02-21 2017-03-02 モーメンティブ・パフォーマンス・マテリアルズ・インク Multi-zone variable power density heater, apparatus including the heater and method of using the heater

Also Published As

Publication number Publication date
JPH0660080B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
JP2804505B2 (en) Apparatus and method for growing large single crystals in plate / slab form
JP6302192B2 (en) Single crystal growth apparatus and method
KR101574749B1 (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
JPS6153187A (en) Device for growing single crystal
EP0798404B1 (en) Apparatus for manufacturing single crystal of silicon
JPH0412083A (en) Production of silicon single crystal
JPS6168389A (en) Apparatus for growing single crystal
EP1076120A1 (en) Method for producing silicon single crystal
US5268063A (en) Method of manufacturing single-crystal silicon
JPH05208891A (en) Single crystal growing apparatus
JPH09221380A (en) Device for producing crystal by czochralski method, production of crystal and crystal produced thereby
JPH0315550Y2 (en)
JPH11240790A (en) Apparatus for producing single crystal
JP2000327479A (en) Single crystal production apparatus and single crystal production
US5935327A (en) Apparatus for growing silicon crystals
JP3079991B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP3018738B2 (en) Single crystal manufacturing equipment
KR930007852B1 (en) Monocrystal growing apparatus
JPS6389488A (en) Production of single crystal
JP3241518B2 (en) Silicon single crystal manufacturing equipment
EP0511663A1 (en) Method of producing silicon single crystal
JPH08325090A (en) Device for pulling up single crystal
JPH07115984B2 (en) Single crystal pulling device
JP2939603B2 (en) Manufacturing method of semiconductor single crystal
JPH10251090A (en) Oxide single crystal and its growth method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term