JP2000327479A - Single crystal production apparatus and single crystal production - Google Patents

Single crystal production apparatus and single crystal production

Info

Publication number
JP2000327479A
JP2000327479A JP11146313A JP14631399A JP2000327479A JP 2000327479 A JP2000327479 A JP 2000327479A JP 11146313 A JP11146313 A JP 11146313A JP 14631399 A JP14631399 A JP 14631399A JP 2000327479 A JP2000327479 A JP 2000327479A
Authority
JP
Japan
Prior art keywords
single crystal
heat
melt
heat insulating
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11146313A
Other languages
Japanese (ja)
Inventor
Toshiro Kotooka
敏朗 琴岡
Yoshiyuki Shimanuki
芳行 島貫
Hirotaka Nakajima
広貴 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP11146313A priority Critical patent/JP2000327479A/en
Publication of JP2000327479A publication Critical patent/JP2000327479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a single crystal production apparatus for production a high-quality single crystal which reduces the defect sizes of the defects (grown-in defects) generated in a temperature region of 1,150 to 1,080 deg.C passing at the time of pulling up of the single crystal by increasing the product of a pulling up speed and the temperature gradient in the defect forming temperature region described above and improves the yield of the device by decreasing the grown-in defect density after the heat treatment of a wafer and a process for producing the single crystal. SOLUTION: A radiation screen 40 of the single crystal production apparatus 20 having a crucible 26 which holds a melt 30 which is a single crystal material, a heater 28 which exists at the circumference of the crucible and heats the melt, a vertically movable supporting means 32 which exists above the melt in the crucible and the radiation screen 40 which is connected to the supporting means and encloses the single crystal 36 growing in the lower part of a seed crystal 34 is formed to an annular shape which is nearly a hollow triangular shape in its cross-sectional shape and encloses the single crystal. Thermally insulating materials of a prescribed thickness are installed to the inner side of a heat shielding plate disposed in such a manner that the inside surface side facing the single crystal gradually tapers to an inverted frustoconical shape, by which the spaces to decrease the radiation heat between the thermally insulating materials are disposed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は単結晶製造装置及び
単結晶製造方法に係り、特に、CZ法(チョコラルスキ
ー法)を用いた単結晶製造装置及びその製造方法に関す
る。
The present invention relates to a single crystal manufacturing apparatus and a single crystal manufacturing method, and more particularly, to a single crystal manufacturing apparatus using a CZ method (Czochralski method) and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、CZ法を用いて単結晶を引上げる
単結晶製造装置として、従来例1として、図11に示さ
れるように引上げ単結晶1の周囲に平たい環状リム2と
該環状輻射スクリーン3を配置する構成のものが提案さ
れている(特公昭57−40119号公報)。この単結
晶製造装置においては、単結晶1を取り囲むように配置
した輻射スクリーン3により、ルツボ4やヒータ5及び
融液表面6からの輻射熱を遮断し、単結晶の軸方向温度
勾配を大きくしたものとなっている。また、チャンバ7
上方より供給されるAr等の不活性ガスをルツボ4内に
誘導することにより、シリコン融液表面から生成される
SiOガス等を、ルツボ4からチャンバ7外部へスムー
ズに排出させるものである。
2. Description of the Related Art Conventionally, as a single crystal manufacturing apparatus for pulling a single crystal using the CZ method, as a conventional example 1, as shown in FIG. A configuration in which the screen 3 is disposed has been proposed (Japanese Patent Publication No. 57-40119). In this single crystal manufacturing apparatus, the radiant heat from the crucible 4, the heater 5, and the melt surface 6 is cut off by the radiation screen 3 arranged so as to surround the single crystal 1, thereby increasing the axial temperature gradient of the single crystal. It has become. Also, chamber 7
By guiding an inert gas such as Ar supplied from above into the crucible 4, SiO gas or the like generated from the surface of the silicon melt is smoothly discharged from the crucible 4 to the outside of the chamber 7.

【0003】しかしながら、図11に示した単結晶製造
装置にあっては、融液表面6から単結晶1に向けて放出
される反射熱や、ヒータ5及びルツボ4からの輻射熱を
十分に遮断することができない。その結果、単結晶1に
対する冷却効果が不足して、酸素誘起積層欠陥が生じや
すいとされる550〜850℃の温度領域を経る時間が
長くなり、結晶品質が低下するおそれがあった。
However, in the single crystal manufacturing apparatus shown in FIG. 11, the reflected heat emitted from the melt surface 6 toward the single crystal 1 and the radiant heat from the heater 5 and the crucible 4 are sufficiently shut off. Can not do. As a result, the cooling effect on the single crystal 1 is insufficient, so that the time required to pass through a temperature range of 550 to 850 ° C., which is liable to cause oxygen-induced stacking faults, becomes longer, and the crystal quality may be degraded.

【0004】特許第2562245号公報に示された単
結晶製造装置はこの問題を解決するためになされたもの
である。なお、以下では、上記と同部品には同一符号を
付して説明は省略する。この従来例2の単結晶製造装置
においては、図12に示すように第一スクリーン3aの
内側に、単結晶引上げ域を囲んで開口し、内側断面を放
物線形状とした第二スクリーン3bを設けたものとなっ
ている。前記第二スクリーン3bの放物線形状によっ
て、立体角の効果で吸収性輻射熱や固液界面6付近から
の輻射熱を上方に反射することができる。そして、固液
界面6よりさらに上方の軸方向温度勾配を大きくするこ
とができるため、前記酸素誘起積層欠陥の改善ととも
に、単結晶1の引上速度を増大できることが述べられて
いる。
A single crystal manufacturing apparatus disclosed in Japanese Patent No. 2562245 has been made to solve this problem. In the following, the same reference numerals are given to the same components as described above, and description thereof will be omitted. In the single crystal manufacturing apparatus of the second conventional example, as shown in FIG. 12, a second screen 3b is provided inside the first screen 3a so as to open around the single crystal pulling region and have a parabolic inner cross section. It has become something. Due to the parabolic shape of the second screen 3b, absorptive radiant heat and radiant heat from near the solid-liquid interface 6 can be reflected upward by the effect of the solid angle. It is described that the axial temperature gradient above the solid-liquid interface 6 can be increased, so that the oxygen-induced stacking faults can be improved and the pulling speed of the single crystal 1 can be increased.

【0005】また、従来例3の特公平5−35715号
公報に示された単結晶製造装置においては、図13に示
したように、支持板7により支持され、単結晶の引上域
と対向するスクリーン3の内面側を、上端側から下端側
に向かうに従って、縮径された逆円錐台形環状に形成
し、当該内面側と外面側の間に融液面側に行くに従っ
て、一部または全体に亘って厚さを大きくした断熱材9
を有し、さらにその内部に断熱性に優れたフェルトを用
いた構成となっている。これにより、ヒータ5やルツボ
4及び融液8等からの輻射熱を遮断して、単結晶1にそ
の引上方向に適当な温度勾配を形成し単結晶1の引上速
度を高める。そして、積層欠陥が生じ易いとされている
550〜850℃の温度領域を短時間で通過させること
で積層欠陥密度を低減し、また製造効率の向上を計れる
ことが述べられている。
Further, in the single crystal manufacturing apparatus disclosed in Japanese Patent Publication No. Hei 5-35715 of Conventional Example 3, as shown in FIG. 13, the single crystal manufacturing apparatus is supported by a support plate 7 and faces a single crystal pulling region. The inner surface side of the screen 3 to be formed is formed in an inverted frustoconical ring whose diameter is reduced from the upper end side toward the lower end side, and a part or the whole is formed between the inner surface side and the outer surface side toward the melt surface side. Insulation material 9 with increased thickness over
, And a structure using felt having excellent heat insulation inside. As a result, the radiant heat from the heater 5, the crucible 4, the melt 8, and the like is cut off, an appropriate temperature gradient is formed in the single crystal 1 in the pulling direction, and the pulling speed of the single crystal 1 is increased. In addition, it is described that stacking fault density can be reduced and manufacturing efficiency can be improved by passing through a temperature range of 550 to 850 ° C., which is considered to cause stacking faults, in a short time.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の単結晶
製造装置においては、以下のような問題があった。単結
晶において生じる結晶欠陥には、上記した550〜85
0℃の温度領域で生じる酸素誘起積層欠陥とは別に、単
結晶引上げ時に通過する1150〜1080℃の温度領
域で形成される欠陥(Grown−in欠陥)がある。
前記Grown−in欠陥の欠陥サイズは、引上速度と
前記欠陥形成温度領域での温度勾配との積(冷却速度)
により、ほぼ決定されることが実験の結果から既に明ら
かになっている。しかし、特公2562245号に示し
た単結晶製造装置においては、ヒーターとルツボ壁側に
熱吸収体を設けるとともに、この熱吸収体と断熱材とを
当接させているため断熱材の温度が上昇し、この上昇し
た断熱材の熱が単結晶に対向する第2スクリーンに輻射
して伝わる。また、第2スクリーンが板のみよりなるた
め断熱材および融液表面からの輻射熱を受けて温度が上
昇し、Grown−in欠陥の欠陥サイズに影響する前
記欠陥形成領域の温度勾配をあまり大きく出来ていなか
った。このため、Grown−in欠陥サイズの低減に
は、引上速度を速くした分の効果しか寄与していない。
However, the conventional single crystal manufacturing apparatus has the following problems. The crystal defects generated in the single crystal include the aforementioned 550 to 85
Apart from oxygen-induced stacking faults occurring in the temperature range of 0 ° C., there is a defect (Grown-in defect) formed in the temperature range of 1150 to 1080 ° C., which passes when pulling a single crystal.
The defect size of the grown-in defect is a product (cooling rate) of a pulling speed and a temperature gradient in the defect formation temperature region.
Has already been clarified from the results of experiments. However, in the single crystal manufacturing apparatus disclosed in Japanese Patent Publication No. 2562245, a heater and a heat absorber are provided on the crucible wall side, and the heat absorber is in contact with the heat insulator, so that the temperature of the heat insulator increases. Then, the heat of the raised heat insulating material is radiated and transmitted to the second screen facing the single crystal. In addition, since the second screen is formed only of the plate, the temperature rises due to radiant heat from the heat insulating material and the surface of the melt, and the temperature gradient of the defect forming region which affects the defect size of the grown-in defect can be made too large. Did not. Therefore, the effect of increasing the pulling speed only contributes to the reduction of the size of the grown-in defect.

【0007】また、特公平5−35715号公報に示し
た単結晶製造装置では、熱遮蔽板の内部が断面三角形状
の一部又は全部に亘って厚さを大きくした断熱材で充満
しているため、ヒータやルツボ及び融液に対向している
熱遮蔽板の熱が断熱材を介して単結晶に対向する熱遮蔽
板に熱伝導として伝わり、単結晶に対向する熱遮蔽板に
加算されるために熱放射による熱移動が多くなり冷却効
率が落ちる。このため、前記欠陥形成領域の温度勾配の
大きさが不十分であり、Grown−in欠陥のサイズ
を十分に低減することはできていなかった。
In the single crystal manufacturing apparatus disclosed in Japanese Patent Publication No. Hei 5-35715, the inside of the heat shield plate is filled with a heat insulating material having an increased thickness over a part or all of a triangular cross section. Therefore, the heat of the heat shield plate facing the heater, crucible and the melt is transmitted as heat conduction to the heat shield plate facing the single crystal via the heat insulating material, and is added to the heat shield plate facing the single crystal. As a result, heat transfer due to heat radiation increases and cooling efficiency decreases. For this reason, the magnitude of the temperature gradient in the defect formation region is insufficient, and the size of the grown-in defect cannot be sufficiently reduced.

【0008】本発明は、上記従来の問題点に着目し、単
結晶製造装置及び単結晶製造方法に係り、特に、単結晶
引上げ時に通過する1150〜1080℃の温度領域で
形成される欠陥(Grown−in欠陥)の欠陥サイズ
を引上速度と前記欠陥形成温度領域での温度勾配との積
(冷却速度)を大きくして低減させ、ウエハ熱処理後の
Grown−in欠陥サイズを効果的に消滅させること
により、デバイスにおける歩留まりの向上を図り、高品
質の単結晶を製造する単結晶製造装置及び単結晶製造方
法を提供することを目的とする。
The present invention is directed to a single crystal manufacturing apparatus and a single crystal manufacturing method, focusing on the above-described conventional problems. In particular, the present invention relates to a defect (Grown) formed in a temperature range of 1150 to 1080.degree. -In defect) is reduced by increasing the product (cooling rate) of the pulling rate and the temperature gradient in the defect formation temperature region, thereby effectively eliminating the grown-in defect size after the wafer heat treatment. Accordingly, an object of the present invention is to provide a single crystal manufacturing apparatus and a single crystal manufacturing method for improving the yield of devices and manufacturing high quality single crystals.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本発明における単結晶製造装置の発明では、単結晶
材料である融液を保持するルツボと、当該ルツボの周囲
にあって融液を加熱するヒータと、前記ルツボ内の融液
上方に位置した上下移動可能な支持手段と、支持手段に
連結された種結晶下部に成長する単結晶を取り囲む輻射
スクリーンとを有する単結晶製造装置において、輻射ス
クリーンは、断面形状が中空のほぼ三角形形状で単結晶
を取り囲む環状に形成されるとともに、単結晶に対向す
る内面側が逆円錐台形状に漸次縮小するように配設され
る熱遮蔽板の内側に所定の厚さの断熱材を付設し、断熱
材間の輻射熱を低減する空間を有する構成としている。
また、隣り合う断熱材の端面に伝導熱を遮断するスキマ
を設けると良い。
In order to achieve the above object, in the invention of a single crystal manufacturing apparatus according to the present invention, there is provided a crucible for holding a melt as a single crystal material, and a crucible around the crucible. A single crystal manufacturing apparatus comprising: a heater for heating a liquid crystal; a vertically movable support means positioned above the melt in the crucible; and a radiation screen surrounding the single crystal growing below the seed crystal connected to the support means. The radiation screen is formed in a ring shape surrounding the single crystal with a substantially triangular hollow cross section, and the inner surface facing the single crystal is gradually reduced to an inverted truncated cone shape. A heat insulating material having a predetermined thickness is provided on the inside, and a space for reducing radiant heat between the heat insulating materials is provided.
Further, it is preferable to provide a gap for blocking conduction heat on the end surface of the adjacent heat insulating material.

【0010】本発明における単結晶製造方法の発明で
は、単結晶材料を加熱溶融して融液となし、種結晶を当
該融液に浸して引上げることにより、単結晶を製造する
単結晶製造方法において、引上げるときに単結晶が通過
する1150〜1080℃の欠陥形成温度領域に、単結
晶に対向する内面側が逆円錐台形状で、断面形状が中空
の三角形形状よりなる熱遮蔽板の内部に付設された断熱
材間に空間を有する輻射スクリーンを配設して欠陥形成
温度領域の温度勾配を大きくする空間とし、この輻射ス
クリーンを用いて単結晶を速い引上速度で引上げて温度
勾配と引上速度との積(冷却速度)を大きくし、Gro
wn−in欠陥の欠陥サイズを微小にさせて単結晶棒を
作製し、この単結晶棒よりウエハを切断加工した後に、
ウエハを水素ガス又はアルゴンガス等を含む非酸化性雰
囲気中で熱処理を行ないウエハ内部まで無欠陥にする製
造方法としている。
In the invention of the method for producing a single crystal according to the present invention, the single crystal material is heated and melted to form a melt, and the seed crystal is immersed in the melt and pulled up to produce a single crystal. In the defect formation temperature region of 1150 to 1080 ° C. through which the single crystal passes when pulled, the inside surface facing the single crystal has an inverted truncated cone shape, and the inside of the heat shield plate has a hollow triangular cross section. A radiation screen having a space between the attached heat insulating materials is provided as a space for increasing the temperature gradient in the defect formation temperature region, and the single crystal is pulled up at a high pulling speed by using the radiation screen to reduce the temperature gradient. Growing the product (cooling rate) with the upper speed, Gro
After reducing the defect size of the wn-in defect to a minute size to produce a single crystal rod, and cutting the wafer from the single crystal rod,
In this manufacturing method, the wafer is heat-treated in a non-oxidizing atmosphere containing a hydrogen gas, an argon gas, or the like so that the inside of the wafer is defect-free.

【0011】[0011]

【作用】CZ法において、輻射スクリーンに取り囲まれ
た単結晶の温度は融液からの熱伝導、融液表面からの輻
射および熱遮蔽板からの輻射によりほぼ決定されてい
る。融液からの熱伝導量と、融液表面からの輻射量と
は、前記先行技術間で差がないとすると、単結晶表面の
温度は、対向している熱遮蔽板表面との熱の移動量のや
りとりでほぼ決定される。このため、単結晶表面の温度
勾配は、単結晶と熱の移動量のやりとりを行う熱遮蔽板
表面の熱量を出来るだけ小さくすることにより、大きく
することができる。
In the CZ method, the temperature of the single crystal surrounded by the radiation screen is substantially determined by heat conduction from the melt, radiation from the melt surface, and radiation from the heat shield plate. Assuming that there is no difference between the amount of heat conduction from the melt and the amount of radiation from the surface of the melt between the prior arts, the temperature of the single crystal surface is determined by the heat transfer between the surface of the heat shield plate and the surface of the single crystal. It is almost determined by the exchange of quantity. For this reason, the temperature gradient on the surface of the single crystal can be increased by minimizing the amount of heat on the surface of the heat shield plate for exchanging heat transfer with the single crystal.

【0012】本発明の上記構成によれば、図7(図中の
符号は後述する図1と同一である)に示すように、輻射
スクリーン40は熱遮蔽板42の内部に断熱材44を付
設するとともに、断熱材44に囲まれる内面に空間Ma
を有しているため、単結晶表面に対向している熱遮蔽板
42の斜辺40aが受ける熱量は、熱遮蔽板42自身を
伝わる熱伝導による伝熱量と、断熱材44自身を伝わる
熱伝導による伝熱量と、および、断熱材44間の熱放射
による熱移動量との加算により決定される。本発明で
は、熱遮蔽板42の内部に所定厚さの断熱材44が配設
され、この断熱材44は熱遮蔽板42間の内部に設けら
れた空間Maを伝播する熱放射による熱移動を十分に遮
ることができ、熱遮蔽板42の斜辺40aが受ける熱量
を小さくすることができる。すなわち、物体が空間に放
射する熱は物体の温度が高くなると急激に増加するが、
本発明では、熱を放射する断熱材44の表面は熱遮蔽板
42からの熱伝導による熱を断熱材44で低下し、その
低下した断熱材44の表面の熱が空間Maに放射され、
対向する断熱材44の面に伝播するため熱放射による熱
移動を実質上遮ることになり、熱遮蔽板42の斜辺40
aが受ける熱量を小さくできる。
According to the above configuration of the present invention, as shown in FIG. 7 (the reference numerals in FIG. 7 are the same as those in FIG. 1 described later), the radiation screen 40 is provided with the heat insulating material 44 inside the heat shielding plate 42. And a space Ma on the inner surface surrounded by the heat insulating material 44.
Therefore, the amount of heat received by the oblique side 40a of the heat shielding plate 42 facing the single crystal surface depends on the amount of heat transferred by the heat conducting through the heat shielding plate 42 itself and the amount of heat transferred by the heat insulating material 44 itself. It is determined by adding the amount of heat transfer and the amount of heat transfer between the heat insulating materials 44 due to heat radiation. In the present invention, a heat insulating material 44 having a predetermined thickness is disposed inside the heat shielding plate 42, and the heat insulating material 44 prevents heat transfer due to heat radiation propagating through the space Ma provided between the heat shielding plates 42. The heat shielding plate 42 can be sufficiently shielded, and the amount of heat received by the oblique side 40a of the heat shielding plate 42 can be reduced. In other words, the heat radiated by the object into the space increases sharply as the temperature of the object increases,
In the present invention, the surface of the heat insulating material 44 that radiates heat reduces heat due to heat conduction from the heat shield plate 42 by the heat insulating material 44, and the reduced heat of the surface of the heat insulating material 44 is radiated to the space Ma.
Since the heat is transmitted to the surface of the heat insulating material 44, heat transfer due to heat radiation is substantially blocked.
The amount of heat received by a can be reduced.

【0013】熱遮蔽板42の斜辺40aが受ける熱量
は、メルトからの距離に比例して上方に行くほど熱遮蔽
板42の伝熱量が減少し低下するとともに、対向してい
る単結晶の温度も低下し、単結晶表面と熱遮蔽板42の
斜辺40aとの熱の移動量のやりとりも上方に行くほど
少なくなる。このため、図10の実線(A)に示すよう
に、熱遮蔽板42の斜辺40aの熱量はメルトからの距
離に比例して小さくなる。このように、本発明では、熱
遮蔽板42の斜辺40aは受ける熱量が小さく、上方に
行くほど熱遮蔽板42から単結晶表面に伝播する熱量が
少なくなるため、単結晶の温度領域G2(1150℃〜
1080℃)の温度勾配を大きくすることができる。こ
れにより、熱遮蔽板42の斜辺40aに対向する単結晶
の温度勾配を大きくすることができ、また、これに伴い
単結晶の引上速度を増加させることが可能となり、単結
晶のGrown−in欠陥の欠陥サイズをウエハ熱処理
の際に効果的に消滅し易いように微小にさせることがで
きる。
The amount of heat received by the oblique side 40a of the heat shield plate 42 decreases in proportion to the distance from the melt and increases as the distance from the melt increases, and the temperature of the opposed single crystal also decreases. The amount of heat transfer between the single crystal surface and the oblique side 40a of the heat shield plate 42 decreases as going upward. Therefore, as shown by the solid line (A) in FIG. 10, the amount of heat of the oblique side 40a of the heat shielding plate 42 decreases in proportion to the distance from the melt. As described above, in the present invention, the amount of heat received by the oblique side 40a of the heat shield plate 42 is small, and the amount of heat transmitted from the heat shield plate 42 to the single crystal surface decreases as going upward, so that the single crystal temperature region G2 (1150 ° C ~
1080 ° C.). Thereby, the temperature gradient of the single crystal facing the oblique side 40a of the heat shielding plate 42 can be increased, and the pulling speed of the single crystal can be increased accordingly. The defect size of the defect can be made small so that it can be effectively eliminated easily during the wafer heat treatment.

【0014】また、図7において、輻射スクリーンは、
内部に空間Maを有するとともに、熱遮蔽板42の内部
に断熱材44を付設し、かつ、断熱材44の端面間にス
キマを設けることにより熱伝導が遮断できるので、さら
に、単結晶表面に対向している熱遮蔽板42の斜辺40
aが受ける熱量を小さくできる。この結果、熱遮蔽板4
2の斜辺40aは、図10の実線(A)に示されるよう
に熱遮蔽板の軸方向温度勾配が大きくなり、その結果、
対向する単結晶の温度領域G2(1150℃〜1080
℃)の温度勾配を更に大きくすることができる。なお、
図10は横軸に融液から熱遮蔽板の距離Ln(図2に示
す)を、縦軸に熱遮蔽板の斜辺の受ける熱量を表す。ま
た、このとき熱遮蔽板の裏面と表面はほぼ同一の温度と
なっている。
In FIG. 7, the radiation screen is
A heat insulating material 44 is provided inside the heat shielding plate 42 and a gap is provided between the end surfaces of the heat insulating material 44, so that heat conduction can be cut off. Hypotenuse 40 of the heat shield plate 42
The amount of heat received by a can be reduced. As a result, the heat shielding plate 4
The oblique side 40a of No. 2 has a large temperature gradient in the axial direction of the heat shield plate as shown by the solid line (A) in FIG.
The temperature region G2 of the opposing single crystal (1150 ° C. to 1080
C) can be further increased. In addition,
In FIG. 10, the horizontal axis represents the distance Ln (shown in FIG. 2) from the melt to the heat shield, and the vertical axis represents the amount of heat received by the oblique side of the heat shield. At this time, the back surface and the front surface of the heat shield plate have substantially the same temperature.

【0015】これに対して、従来の特公平5−3571
5号公報の図8に示すような輻射スクリーン3(符号は
図13と同じものを用いている)では、単結晶表面に対
向している熱遮蔽板3aの受ける熱量は、前記のように
熱遮蔽板3a自身を伝わる熱伝導による伝熱量と、熱遮
蔽板3a以外の熱遮蔽板から断熱材9を経て熱遮蔽板3
aに伝わる熱伝導による伝熱量との加算により決定され
る。熱遮蔽板3aの表面の受ける熱量は、本発明の断熱
材44の面から空間を伝播して対向する断熱材44の面
に移動する熱の移動量よりも、熱遮蔽板の内部が断熱材
9により満たされており、断熱材9を経て熱遮蔽板3a
に伝わる熱伝導による伝熱量の方が多くなっている。し
たがって、単結晶表面に対向している熱遮蔽板3aの表
面の受ける熱量は、本発明の断熱材44の面から空間M
aを伝播した後に熱遮蔽板42の斜辺40aに熱伝導さ
れたものよりも大きくなっている。熱遮蔽板3aの表面
の受ける熱量は、メルトからの距離に比例して上方に行
くほど熱遮蔽板3aの伝熱量が減少するが、熱遮蔽板3
aの伝熱量は前記のように本発明より多くなっているい
るために、熱遮蔽板3aの熱量の低下量が少なくなる。
このため、図10の点線(B)に示すように、熱遮蔽板
3aの熱量はメルトからの距離に比例して小さくなる
が、本発明よりも大きくなっている。このように、この
従来の技術では、熱遮蔽板3aの受ける熱量は本発明よ
りも大きいため、熱遮蔽板3aから単結晶表面に伝播す
る熱量も大きくなり、単結晶の温度領域G2(1150
℃〜1080℃)の温度勾配は本発明よりも小さくなっ
ている。
On the other hand, the conventional Japanese Patent Publication No. 5-3571
In the radiation screen 3 as shown in FIG. 8 of Japanese Patent Publication No. 5 (the same reference numeral is used as in FIG. 13), the amount of heat received by the heat shielding plate 3a facing the single crystal surface is as described above. The amount of heat transferred by the heat conduction transmitted through the shield plate 3a itself, and the heat shield plate 3a through the heat insulating material 9 from the heat shield plates other than the heat shield plate 3a.
It is determined by adding the amount of heat transfer due to the heat conduction to a. The amount of heat received by the surface of the heat shielding plate 3a is smaller than the amount of heat transferred from the surface of the heat insulating material 44 of the present invention through the space to the opposing surface of the heat insulating material 44. 9 through the heat insulating material 9 and the heat shielding plate 3a.
The amount of heat transfer due to heat conduction transmitted to is larger. Therefore, the amount of heat received by the surface of the heat shield plate 3a facing the single crystal surface is equal to the space M from the surface of the heat insulating material 44 of the present invention.
a is larger than that which is thermally conducted to the oblique side 40a of the heat shielding plate 42 after propagating a. The amount of heat received on the surface of the heat shielding plate 3a decreases in proportion to the distance from the melt, and the amount of heat transfer of the heat shielding plate 3a decreases as going upward.
As described above, since the heat transfer amount of “a” is larger than that of the present invention, the decrease amount of the heat amount of the heat shielding plate 3a is reduced.
Therefore, as shown by the dotted line (B) in FIG. 10, the heat quantity of the heat shielding plate 3a decreases in proportion to the distance from the melt, but is larger than that of the present invention. As described above, in this conventional technique, since the amount of heat received by the heat shield plate 3a is larger than that of the present invention, the amount of heat that propagates from the heat shield plate 3a to the single crystal surface also increases, and the temperature region G2 (1150) of the single crystal.
C. to 1080 C.) is smaller than in the present invention.

【0016】また、輻射スクリーンの熱遮蔽板42が前
記図7と同形状で、図9に示すように内部に断熱材44
が設けられていないで空間Mを有する場合には、単結晶
表面に対向している熱遮蔽板42の斜辺40aが受ける
熱量は、熱遮蔽板42自身を伝わる熱伝導による伝熱量
と、および、熱遮蔽板42間の空間Mを伝播する熱放射
による熱移動量との加算により決定される。前記のよう
に、物体が空間に放射する熱は物体の温度が高くなると
急激に増加することから、熱遮蔽板42間が断熱材44
で遮られることがない図9の場合には、高い熱が熱遮蔽
板42から空間Mに直接放射されて伝播されるため、対
向する熱遮蔽板42に移動する熱の移動量は、図10の
三点鎖線(C)に示すように、非常に多くなり、単結晶
表面に対向している熱遮蔽板42の斜辺40aが受ける
熱量は非常に大きくなる。さらに、前記の三点鎖線
(C)の熱量に、本発明と同じ熱遮蔽板42自身を伝わ
る熱伝導による伝熱量が加算され、熱遮蔽板42の斜辺
40aが受ける熱量は二点鎖線(D)に示すごとく更に
大きくなる。熱遮蔽板42の斜辺40aは受ける熱量が
更に大きくなった結果、図10の二点鎖線(D)に示す
ように、熱遮蔽板42の熱量はメルトからの距離に比例
して小さくなるが、前記従来の技術よりも更に大きくな
っている。このように、この先行技術では、熱遮蔽板4
2の受ける熱量は更に大きいため、熱遮蔽板3aから単
結晶表面に伝播する熱量が更に大きくなり、単結晶の温
度領域G2(1150℃〜1080℃)の温度勾配は本
発明よりも更に小さくなっている。
The heat shielding plate 42 of the radiation screen has the same shape as that of FIG. 7 and a heat insulating material 44 is provided inside as shown in FIG.
Is not provided, and has a space M, the amount of heat received by the oblique side 40a of the heat shield plate 42 facing the single crystal surface is the amount of heat transfer by heat conduction transmitted through the heat shield plate 42 itself, and It is determined by adding the heat transfer amount due to the heat radiation propagating in the space M between the heat shielding plates 42. As described above, the heat radiated from the object to the space rapidly increases as the temperature of the object increases, so that the heat insulating material 44 is provided between the heat shielding plates 42.
In the case of FIG. 9 in which the heat is not blocked by the heat shield plate 42, high heat is directly radiated from the heat shield plate 42 to the space M and propagated. As shown by the three-dot chain line (C), the amount of heat becomes extremely large, and the amount of heat received by the hypotenuse 40a of the heat shield plate 42 facing the single crystal surface becomes extremely large. Further, the amount of heat transferred by heat conduction through the heat shield plate 42 itself, which is the same as the present invention, is added to the heat amount of the three-dot chain line (C), and the amount of heat received by the oblique side 40a of the heat shield plate 42 is represented by the two-dot chain line (D). ). As a result of an increase in the amount of heat received by the oblique side 40a of the heat shielding plate 42, the amount of heat of the heat shielding plate 42 decreases in proportion to the distance from the melt as shown by the two-dot chain line (D) in FIG. It is even larger than the prior art. Thus, in this prior art, the heat shielding plate 4
2, the amount of heat transmitted from the heat shield plate 3a to the single crystal surface is further increased, and the temperature gradient of the single crystal temperature region G2 (1150 ° C. to 1080 ° C.) is smaller than that of the present invention. ing.

【0017】また、本発明における単結晶製造方法は、
1150〜1080℃の欠陥形成温度領域に、単結晶と
対向する内面側が逆円錐台形状で、断面形状が中空の三
角形形状からなる熱遮蔽板の内部に付設された断熱材間
に空間を有する輻射スクリーンに取り囲まれた温度勾配
の大きい空間を設けて、この輻射スクリーンを用いて融
液より単結晶を所定の冷却速度以上で引上げるため、G
rown−in欠陥の欠陥サイズを微小にさせることが
できる。この単結晶はウエハに切断加工した後に、ウエ
ハを水素ガスを含む非酸化性雰囲気中で熱処理を行なう
ことにより、水素熱処理で欠陥が効果的に消滅し易くな
り、ウエハ内部まで無欠陥領域が大幅に改善されて良好
な酸化膜耐圧良品率(GOI)が確保できる。
Further, the method for producing a single crystal according to the present invention comprises:
Radiation having a space between heat insulators provided inside a heat shield plate having an inverted truncated conical shape on the inner surface side facing the single crystal and a hollow triangular cross section in a defect formation temperature region of 1150 to 1080 ° C. In order to provide a space with a large temperature gradient surrounded by a screen and to pull a single crystal from the melt at a predetermined cooling rate or more using the radiation screen,
The defect size of the row-in defect can be reduced. After the single crystal is cut into wafers, the wafers are heat-treated in a non-oxidizing atmosphere containing hydrogen gas, so that the defects can be effectively eliminated by hydrogen heat treatment, and the defect-free area extends to the inside of the wafer. And a good oxide film breakdown voltage non-defective product ratio (GOI) can be secured.

【0018】[0018]

【発明の実施の形態】以下に、本発明に係る単結晶製造
装置及び単結晶製造方法の好ましい実施の形態を添付し
た図面に従って詳細に説明する。なお、従来と同一部品
には同一符号を付して説明は省略する。図1は本発明の
第一実施形態における単結晶製造装置20の全体概念側
面図である。図2は単結晶製造装置20の第1実施形態
の一部拡大側面図、図3は輻射スクリーン部の一部拡大
図である。本実施形態においては、多結晶をルツボにて
溶融して融液とし、種結晶を融液に浸して引上げること
により所定の大きさに単結晶を成長させるCZ法(チョ
コラルスキー法)を用いて単結晶を製造する場合につい
て述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a single crystal manufacturing apparatus and a single crystal manufacturing method according to the present invention will be described below in detail with reference to the accompanying drawings. The same parts as those in the related art are denoted by the same reference numerals, and description thereof will be omitted. FIG. 1 is an overall conceptual side view of a single crystal manufacturing apparatus 20 according to the first embodiment of the present invention. FIG. 2 is a partially enlarged side view of the first embodiment of the single crystal manufacturing apparatus 20, and FIG. 3 is a partially enlarged view of a radiation screen portion. In this embodiment, a CZ method (Czochralski method) is used in which a polycrystal is melted in a crucible to form a melt, and a seed crystal is immersed in the melt and pulled up to grow a single crystal to a predetermined size. The case where a single crystal is manufactured by the method will be described.

【0019】図1において、単結晶製造装置20のチャ
ンバ22は、上部に筒型のトップチャンバ24を組み込
んだ構成となっている。チャンバ22の内部には、単結
晶材料の融液30を保持するルツボ26が回転自在およ
び昇降自在に配設されている。前記ルツボ26は、融液
30側を石英ルツボ26aで形成するとともに、当該石
英ルツボ26aを黒鉛ルツボ26bで覆った形状となっ
ている。また、ルツボ26の周囲には融液30を加熱溶
融させるヒータ28が、さらに当該ヒータ28の周囲に
は保温壁29がそれぞれ同心円状に配置されている。
In FIG. 1, the chamber 22 of the single crystal manufacturing apparatus 20 has a configuration in which a cylindrical top chamber 24 is incorporated in the upper part. A crucible 26 for holding a melt 30 of a single crystal material is rotatably and vertically movable inside the chamber 22. The crucible 26 has a shape in which the melt 30 side is formed of a quartz crucible 26a and the quartz crucible 26a is covered with a graphite crucible 26b. A heater 28 for heating and melting the melt 30 is disposed around the crucible 26, and a heat insulating wall 29 is disposed concentrically around the heater 28.

【0020】ルツボ26内には、上記したように多結晶
を加熱溶融した融液30が保持されている。そして、ト
ップチャンバ24の中心軸上部に配置され上下移動可能
な支持手段32には種結晶34が連結され、種結晶34
を融液30に浸して引上げることにより棒状の単結晶3
6が製造できる。前記融液30の上面30aの上側近傍
には、単結晶36を囲んで断面形状が中空のほぼ三角形
形状で環状に形成された輻射スクリーン40が配置され
ている。
In the crucible 26, the melt 30 obtained by heating and melting the polycrystal as described above is held. A seed crystal 34 is connected to the support means 32 which is arranged above the center axis of the top chamber 24 and which can move up and down.
Is dipped in the melt 30 and pulled up to obtain a rod-shaped single crystal 3.
6 can be manufactured. In the vicinity of the upper side of the upper surface 30a of the melt 30, a radiation screen 40 is formed, which surrounds the single crystal 36 and has a substantially triangular annular cross section and is formed in a ring shape.

【0021】輻射スクリーン40はチャンバ22に固設
された支持スクリーン60,62と連結されている。ト
ップチャンバ24の上方からは、不活性ガス64を単結
晶36の軸方向に流入させ、種結晶34と輻射スクリー
ン40の斜辺40aとの間、融液30の上面30aと輻
射スクリーン40の底辺40bとの間、および、輻射ス
クリーン40の側辺40cとルツボ26の内壁26cと
の間を経て、ルツボ26の外周から下方に流れている。
The radiation screen 40 is connected to supporting screens 60 and 62 fixed to the chamber 22. From above the top chamber 24, an inert gas 64 is caused to flow in the axial direction of the single crystal 36, and between the seed crystal 34 and the oblique side 40a of the radiation screen 40, the upper surface 30a of the melt 30 and the bottom 40b of the radiation screen 40. , And between the side 40c of the radiation screen 40 and the inner wall 26c of the crucible 26, and flows downward from the outer periphery of the crucible 26.

【0022】図2において、前記輻射スクリーン40は
ほぼ直角三角形状により構成され、その斜辺40a、底
辺40b、および、側辺40cとからなる所定の厚さの
熱遮蔽板42と、熱遮蔽板42の各辺に付設された所定
の厚さの断熱材44とからなっている。輻射スクリーン
40の斜辺40aの斜辺用熱遮蔽板42aは、単結晶3
6に対向する内面側の斜辺40aが逆円錐台形状で、融
液30側に向かうに従って単結晶36に近づくよう漸次
縮小するように形成されている。また、底辺40bの底
辺用熱遮蔽板42bは融液30の近傍の位置で、かつ、
融液30の上面30aに対して所定間隔離間してほぼ平
行に形成されている。側辺40cの側辺用熱遮蔽板42
cはルツボ26の内壁26cに沿って所定間隔離間して
ほぼ平行に配設されている。
In FIG. 2, the radiation screen 40 is formed in a substantially right-angled triangular shape, and has a heat shield plate 42 having a predetermined thickness comprising an oblique side 40a, a bottom side 40b, and a side side 40c. And a heat insulating material 44 of a predetermined thickness attached to each side of the above. The oblique side heat shield plate 42a of the oblique side 40a of the radiation screen 40 is a single crystal 3
The oblique side 40a on the inner surface side facing 6 has an inverted truncated cone shape, and is formed so as to gradually decrease toward the single crystal 36 toward the melt 30 side. Further, the bottom side heat shield plate 42b of the bottom side 40b is located near the melt 30 and
It is formed substantially parallel to the upper surface 30a of the melt 30 at a predetermined interval. Side heat shield plate 42 of side 40c
“c” is disposed substantially parallel to the inner wall 26c of the crucible 26 at predetermined intervals.

【0023】断熱材44は、斜辺用熱遮蔽板42aに付
設された斜辺用断熱材44aと、底辺用熱遮蔽板42b
に付設された底辺用断熱材44bと、および、側辺用熱
遮蔽板42cに付設された側辺用断熱材44cとから構
成されている。
The heat insulating material 44 includes a heat insulating material 44a for the hypotenuse attached to the heat shielding plate 42a for the oblique side and a heat insulating plate 42b for the bottom side.
And a side heat insulating material 44c attached to the side heat shield plate 42c.

【0024】そして、本実施形態においては、熱遮蔽板
42は、所定の厚さ、例えば、本実施例では約5mmの
厚さよりなり、材料としては耐熱性の高い高密度の黒鉛
を使用している。断熱材44は、所定の厚さ、例えば、
本実施例では約20mmの厚さよりなり、材料としては
熱伝導性の低い黒鉛フェルトを使用している。断熱材4
4の斜辺用断熱材44aおよび底辺用断熱材44bのそ
れぞれの両端面は隣り合う断熱材44と接触させてい
る。側辺用断熱材44cは、中間部が斜辺用断熱材44
aの端面に、また、側辺用断熱材44cの一端面は底辺
用断熱材44bの端面に接触させている。輻射スクリー
ン40の内部には、斜辺用断熱材44a、底辺用断熱材
44b、および、側辺用断熱材44cの内面に囲まれた
所定面積以上の空間Maを有している。
In this embodiment, the heat shield plate 42 has a predetermined thickness, for example, a thickness of about 5 mm in this embodiment, and is made of high-density graphite having high heat resistance. I have. The heat insulating material 44 has a predetermined thickness, for example,
In this embodiment, graphite felt having a thickness of about 20 mm and having low thermal conductivity is used as a material. Insulation material 4
Both end surfaces of the oblique side heat insulating material 44a and the bottom side heat insulating material 44b are in contact with the adjacent heat insulating materials 44. The heat insulating material 44c for the side is a heat insulating material 44 for the oblique side in the middle part.
a, and one end surface of the side heat insulating material 44c is in contact with an end surface of the bottom heat insulating material 44b. Inside the radiation screen 40, there is a space Ma having a predetermined area or more surrounded by the inner surfaces of the heat insulating material 44a for the oblique side, the heat insulating material 44b for the bottom side, and the heat insulating material 44c for the side side.

【0025】図3は、第1実施形態の輻射スクリーン4
0の変形例の一部拡大図であり、上記の図2では、断熱
材44の斜辺用断熱材44aおよび底辺用断熱材44b
のそれぞれの両端面は隣り合う断熱材44と接触させ、
また、側辺用断熱材44cは中間部で斜辺用断熱材44
aの端面に、他の端面は底辺用断熱材44bの端面と接
触させている。しかし、変形例では、斜辺用断熱材44
aと底辺用断熱材44bとの間にスマキSaを有して形
成されている。
FIG. 3 shows the radiation screen 4 of the first embodiment.
FIG. 2 is a partially enlarged view of a modification example of FIG. 0. In FIG. 2 described above, the heat insulating material 44a for the oblique side and the heat insulating material 44b for the bottom side of the heat insulating material 44 are shown.
Each end face of each is brought into contact with the adjacent heat insulating material 44,
In addition, the heat insulating material for side 44c is a heat insulating material for oblique side 44c in the middle part.
The other end face is in contact with the end face of the bottom heat insulating material 44b. However, in the modified example, the heat insulating material for hypotenuse 44
a and a heat insulating material 44b for the bottom side.

【0026】底辺用断熱材44bは、融液30の上面3
0aの高い溶融温度からの輻射熱を底辺用熱遮蔽板42
bで受けた後、底辺用熱遮蔽板42bから熱伝導で伝導
熱を受けている。この底辺用断熱材44bは、斜辺用断
熱材44aよりも融液30の近傍に配置されているため
に、斜辺用断熱材44aよりも高い熱量を有している。
この底辺用断熱材44bの熱量は、斜辺用断熱材44a
と底辺用断熱材44bとの間に設けられたスマキSaに
より、斜辺用断熱材44aに熱伝導しないで遮断され
る。これにより、底辺用断熱材44bの伝熱量が斜辺用
断熱材44aに熱伝導されることがなくなり、斜辺用断
熱材44aは低い熱量を維持することができる。
The bottom heat insulating material 44b is provided on the upper surface 3 of the melt 30.
Radiant heat from a high melting temperature of 0a.
b, the conductive heat is received from the bottom heat shield plate 42b by heat conduction. Since the bottom-side heat insulating material 44b is disposed closer to the melt 30 than the oblique-side heat insulating material 44a, it has a higher heat quantity than the oblique-side heat insulating material 44a.
The amount of heat of the bottom side heat insulating material 44b is equal to that of the hypotenuse side heat insulating material 44a.
Smaki Sa provided between the heat insulating material 44b and the bottom heat insulating material 44b blocks the heat without conducting heat to the heat insulating material 44a for the oblique side. Accordingly, the heat transfer amount of the bottom side heat insulating material 44b is not conducted to the oblique side heat insulating material 44a, and the oblique side heat insulating material 44a can maintain a low heat amount.

【0027】上記により、斜辺用断熱材44aの下側
は、底辺用断熱材44bからの高い熱量を熱伝導される
ことがなくなり、斜辺用断熱材44aから単結晶36に
高い熱放射が伝播することがなくなり、単結晶36の温
度勾配を大きくすることができる。
As described above, the lower side of the heat insulating material 44a for the oblique side does not conduct a high amount of heat from the heat insulating material 44b for the bottom side, and high heat radiation propagates from the heat insulating material 44a for the oblique side to the single crystal 36. And the temperature gradient of the single crystal 36 can be increased.

【0028】また、上側の斜辺用断熱材44aの中間部
と側辺用断熱材44cとの端面は、側辺用断熱材44c
の上側がヒータ28の熱放射を受けるときにはスキマを
設けて伝導熱を遮断し、側辺用断熱材44cの上側がヒ
ータ28の熱放射を受けないときには接触させて斜辺用
断熱材44aの熱量を側辺用断熱材44cに熱伝導によ
り伝えて逃がし温度勾配を大きくするようにしても良
い。
The end face of the middle portion of the upper oblique side heat insulating material 44a and the end surface of the side heat insulating material 44c are connected to the side heat insulating material 44c.
When the upper side receives the heat radiation of the heater 28, a gap is provided to block the conduction heat, and when the upper side of the side heat insulating material 44c does not receive the heat radiation of the heater 28, the upper side of the side heat insulating material 44c is brought into contact to reduce the heat amount of the oblique side heat insulating material 44a. The escape temperature may be increased by transmitting the heat to the side heat insulating material 44c by heat conduction.

【0029】以上により、側辺用熱遮蔽板42cに対向
する単結晶36の温度勾配を大きくすることができ、単
結晶36のGrown−in欠陥の欠陥サイズをアニー
ルの際に消滅し易いように微小にさせることができる。
As described above, the temperature gradient of the single crystal 36 facing the side heat shield plate 42c can be increased, and the size of the grown-in defect of the single crystal 36 can be easily eliminated during annealing. It can be made minute.

【0030】図4は、輻射スクリーン40Aが不等辺三
角形の実施例の一例である。輻射スクリーン40Aの上
部には環状リム46を介して、図1と同様に、チャンバ
22に固設された支持スクリーン60,62と連結され
ている。前記輻射スクリーン40A、その斜辺50a、
底辺50b、および、側辺50cとからなる所定の厚さ
の熱遮蔽板52と、熱遮蔽板52の各辺に付設された所
定の厚さの断熱材54とからなっている。輻射スクリー
ン40Aの斜辺50aの斜辺用熱遮蔽板52aは、単結
晶36に対向する内面側の斜辺50aが逆円錐台形状
で、融液30側に向かうに従って単結晶36に近づくよ
う漸次縮小するように形成されている。また、底辺50
bの底辺用熱遮蔽板52bは、単結晶36に近い内側で
融液30の近傍に、また、外側のルツボ26の近傍で融
液30の上面30aから大きく所定間隔離間した漸次拡
大するよう傾斜して形成されている。側辺50cの側辺
用熱遮蔽板52cはルツボ26の内壁26aに沿って所
定間隔離間してほぼ平行に配設されている。
FIG. 4 shows an example of an embodiment in which the radiation screen 40A is a scalene triangle. The upper portion of the radiation screen 40A is connected to support screens 60 and 62 fixed to the chamber 22 via an annular rim 46, as in FIG. The radiation screen 40A, its hypotenuse 50a,
The heat shield plate 52 includes a heat shield plate 52 having a predetermined thickness including a bottom side 50b and a side edge 50c, and a heat insulator 54 having a predetermined thickness attached to each side of the heat shield plate 52. The oblique side heat shield plate 52a of the oblique side 50a of the radiation screen 40A is formed such that the oblique side 50a on the inner surface side facing the single crystal 36 has an inverted truncated cone shape, and gradually decreases toward the single crystal 36 toward the melt 30 side. Is formed. Also, the bottom 50
The heat shield plate 52b for the bottom of b is inclined so as to gradually expand at a predetermined distance from the upper surface 30a of the melt 30 near the melt 30 on the inner side near the single crystal 36 and near the outer crucible 26. It is formed. The side heat shielding plate 52c of the side 50c is disposed substantially in parallel with a predetermined interval along the inner wall 26a of the crucible 26.

【0031】これにより、輻射スクリーン40Aが不等
辺三角形の場合には、不活性ガス64が内部を流れると
き、融液30と底辺50bとの間の流れがスムースにな
り、融液30の上面30aを波出させることがなくな
り、融液の表面が安定し、単結晶36の安定した成長界
面が得られる。また、輻射スクリーン40Aの内部には
所定面積以上の空間Mbを有している。また、熱遮蔽板
52および断熱材54の材料あるいは厚さ等は、前記の
図1の実施例とほぼ同じため説明は省略する。
Thus, when the radiation screen 40A is a scalene triangle, when the inert gas 64 flows inside, the flow between the melt 30 and the bottom 50b becomes smooth, and the upper surface 30a of the melt 30 Does not wave out, the surface of the melt is stabilized, and a stable growth interface of the single crystal 36 is obtained. Further, the radiation screen 40A has a space Mb having a predetermined area or more inside. Further, the materials, thicknesses, and the like of the heat shield plate 52 and the heat insulating material 54 are substantially the same as those in the embodiment of FIG.

【0032】上記構成においては、以下のように単結晶
36の製造が行なわれる。まず、ルツボ26内には、単
結晶材料であるシリコン多結晶をヒータ28により加熱
溶融して融液30となす。そして、支持手段32に連結
された種結晶34は、ルツボ26内の融液30に一旦浸
した後、当該融液30から種結晶34を回転させつつ引
上げることにより、種結晶34の下部に棒状の単結晶3
6を製造する。融液30から引上げられる単結晶36
は、融液30の近傍の第1温度領域G1(シリコン融点
1412℃〜1350℃)を通過した後、欠陥形成に影
響するといわれる第2温度領域G2(1150℃〜10
80℃)を通過する。前記融液30の近傍の温度領域の
第1温度勾配をG1(℃/min)、前記結晶欠陥形成
温度領域の第2温度勾配をG2(℃/min)、単結晶
36の引上速度をVとする。
In the above configuration, a single crystal 36 is manufactured as follows. First, in a crucible 26, a silicon polycrystal, which is a single crystal material, is heated and melted by a heater 28 to form a melt 30. Then, the seed crystal 34 connected to the support means 32 is once immersed in the melt 30 in the crucible 26 and then pulled up while rotating the seed crystal 34 from the melt 30, so that the seed crystal 34 Rod-shaped single crystal 3
6 is manufactured. Single crystal 36 pulled from melt 30
After passing through a first temperature region G1 (silicon melting point 1412 ° C. to 1350 ° C.) near the melt 30, a second temperature region G 2 (1150 ° C. to 10
80 ° C). The first temperature gradient in the temperature region near the melt 30 is G1 (° C./min), the second temperature gradient in the crystal defect formation temperature region is G2 (° C./min), and the pulling speed of the single crystal 36 is V And

【0033】上記したように、単結晶36に発生する結
晶欠陥サイズは、結晶欠陥形成温度領域の第2温度勾配
G2と単結晶の引上速度Vとの積である冷却速度Cv
(Cv=G2×V)でほぼ決定されることが実験からわ
かっている。
As described above, the size of the crystal defect generated in the single crystal 36 is determined by the cooling rate Cv, which is the product of the second temperature gradient G2 in the crystal defect formation temperature region and the pulling rate V of the single crystal.
It is known from experiments that it is almost determined by (Cv = G2 × V).

【0034】本実施形態においては、輻射スクリーン4
0、40Aは、断面形状が中空のほぼ三角形形状で、単
結晶36に対向する内面側の斜辺40a、50aが逆円
錐台形状の熱遮蔽板42、52と、熱遮蔽板42、52
の内側に付設された断熱材44、54とからなる。各辺
に付設されている断熱材44、54の内面には、断熱材
44、54に囲まれた所定面積以上の空間Ma、Mbを
有しているため、作用の欄で記述しているように、単結
晶36に対向する熱遮蔽板42、52の斜辺40a、5
0aは受ける熱量が小さく、上方に行くほど熱遮蔽板4
2から単結晶36の表面に伝播する熱量が少なくなるた
め、単結晶36の融液30の近傍の第1温度領域G1お
よび結晶欠陥形成温度領域の第2温度勾配G2を大きく
させることができる。
In this embodiment, the radiation screen 4
Reference numerals 0 and 40A denote heat shield plates 42 and 52 having a substantially triangular hollow cross-section and having oblique sides 40a and 50a on the inner surface facing the single crystal 36 having an inverted truncated cone shape.
And heat insulating materials 44 and 54 attached to the inside. Since the inner surfaces of the heat insulating materials 44 and 54 attached to each side have spaces Ma and Mb of a predetermined area or more surrounded by the heat insulating materials 44 and 54, they are described in the column of operation. The oblique sides 40a, 5a of the heat shielding plates 42, 52 facing the single crystal 36
0a indicates that the amount of heat received is small.
Since the amount of heat that propagates from 2 to the surface of the single crystal 36 is reduced, the first temperature region G1 near the melt 30 of the single crystal 36 and the second temperature gradient G2 in the crystal defect formation temperature region can be increased.

【0035】これに伴って、引上速度Vは大きくさせる
ことができ、これにより第2温度勾配G2と引上速度V
との積である冷却速度Cvも大きくさせることができ
る。表1には、従来例と本実施形態における結果を示
す。なお、表1において、限界引上速度V、結晶軸方向
第1温度勾配G1、結晶軸方向第2温度勾配G2、およ
び、冷却速度Cvを示している。なお、引上速度Vは結
晶育成時に結晶軸方向第1温度勾配G1に対して大きす
ぎると曲がり、または変形が発生する。ここで、示した
引上速度Vは曲がり、変形が起こらない引上限界速度を
表している。
Accordingly, the pulling speed V can be increased, whereby the second temperature gradient G2 and the pulling speed V
Can be increased. Table 1 shows the results of the conventional example and the present embodiment. In Table 1, the critical pulling speed V, the first temperature gradient G1 in the crystal axis direction, the second temperature gradient G2 in the crystal axis direction, and the cooling speed Cv are shown. If the pulling speed V is too large with respect to the first temperature gradient G1 in the crystal axis direction during crystal growth, bending or deformation occurs. Here, the pulling speed V shown represents a pulling limit speed at which no bending or deformation occurs.

【0036】[0036]

【表1】 [Table 1]

【0037】本実施形態における単結晶製造装置20に
おいては、融液30の近傍の第1温度領域G1が大きく
なることにより引上速度Vを上昇させることができ、ま
た、第2温度勾配G2をも大きくさせることができる。
このため、冷却速度Cvをも大きくさせることにより、
第2温度勾配G2の温度領域で形成されるGrown−
in欠陥の欠陥サイズを図5に示すように低減させるこ
とができる。図5は、横軸に熱遮蔽板の水準を、縦軸に
Grown−in欠陥の欠陥サイズを取っており、本発
明と従来とのGrown−in欠陥サイズ(nm)を示
している。図中、白丸は平均値を示し、本発明の平均欠
陥サイズは従来と比べて平均で少なくとも約20nm以
上低減させることができている。
In the single crystal manufacturing apparatus 20 according to the present embodiment, the pulling speed V can be increased by increasing the first temperature region G1 near the melt 30, and the second temperature gradient G2 can be reduced. Can also be increased.
Therefore, by increasing the cooling rate Cv,
Grown- formed in the temperature region of the second temperature gradient G2.
The defect size of the in defect can be reduced as shown in FIG. FIG. 5 shows the level of the heat shield plate on the horizontal axis and the defect size of the grown-in defect on the vertical axis, and shows the grown-in defect size (nm) of the present invention and the related art. In the figure, the white circles indicate the average value, and the average defect size of the present invention can be reduced by at least about 20 nm or more on average compared with the prior art.

【0038】上記したように単結晶36を製造した後
に、その単結晶36より図示しないウエハを作製し、水
素雰囲気中で1200℃の温度で30分の熱処理を行な
い酸化膜耐圧良品率(GOI)の確認を実施した。その
結果、表2に示すように、酸化膜耐圧良品率(GOI)
は、as−grownでは悪くなるものの、水素熱処理
後では、従来例とほぼ同等の良品率が得られるととも
に、特に、3μm研磨後では、大幅に改善されウエハ内
部まで無欠陥領域が確保できたことが確認された。
After the single crystal 36 is manufactured as described above, a wafer (not shown) is manufactured from the single crystal 36, and a heat treatment is performed at a temperature of 1200 ° C. for 30 minutes in a hydrogen atmosphere, and the oxide film withstand voltage ratio (GOI). Was confirmed. As a result, as shown in Table 2, the oxide film breakdown voltage non-defective rate (GOI)
Means that although it is poor in as-grown, after the hydrogen heat treatment, the yield rate is almost the same as that of the conventional example, and especially after the polishing of 3 μm, it is greatly improved and the defect-free region can be secured to the inside of the wafer. Was confirmed.

【0039】[0039]

【表2】 [Table 2]

【0040】これは、冷却速度Cvが大きくできるた
め、欠陥サイズ(nm)が小さくなり、as−grow
n時では酸化膜耐圧良品率(GOI)は悪くなるもの
の、欠陥サイズ(nm)が小さいため、水素熱処理でウ
エハ表層の欠陥が効果的に消滅し、同等の良品率が得ら
れるとともに、3μm研磨後では、ウエハ内部まで無欠
陥領域が大幅に改善されて良好な酸化膜耐圧良品率(G
OI)が確保できるものである。上記では、水素雰囲気
中で行ったが、アルゴン雰囲気中でも同様な効果を得る
ことができる。
This is because the cooling rate Cv can be increased, so that the defect size (nm) becomes smaller and the as-grow
At the time of n, the oxide film breakdown voltage non-defective rate (GOI) is deteriorated, but the defect size (nm) is small, so that the defects in the surface layer of the wafer are effectively eliminated by the hydrogen heat treatment, the same non-defective rate is obtained, and 3 μm polishing is performed. Later, the defect-free area is greatly improved to the inside of the wafer, and a good oxide film breakdown voltage non-defective rate (G
OI) can be secured. Although the above description is made in a hydrogen atmosphere, a similar effect can be obtained in an argon atmosphere.

【0041】図6は本発明の第二実施形態における単結
晶製造装置20Aの説明図である。なお、第二実施形態
と同一部品には同一符号を付して説明は省略する。図6
に示されるように、棒状の保持手段66をチャンバ22
に設けて輻射スクリーン40Aを支持することによって
も前記実施形態と同等の効果が得られる。また、保持手
段66として円筒状のものを用いれば、整流作用により
ガス流れを改善させることができる。この場合には、棒
状の保持手段66を用いる場合よりもDFC化率(Di
slocation Free Crystal)を向
上させることができる。
FIG. 6 is an explanatory view of a single crystal manufacturing apparatus 20A according to the second embodiment of the present invention. The same components as those in the second embodiment are denoted by the same reference numerals, and description thereof will be omitted. FIG.
As shown in FIG.
And supporting the radiation screen 40 </ b> A, the same effect as in the above embodiment can be obtained. If a cylindrical member is used as the holding means 66, the gas flow can be improved by the rectifying action. In this case, the DFC conversion ratio (Di) is higher than when the rod-shaped holding unit 66 is used.
location free crystal).

【0042】[0042]

【発明の効果】以上説明したように、本発明における単
結晶製造装置及び単結晶製造方法においては、単結晶引
上げにおける引上げ界面近傍及び欠陥形成温度領域の軸
方向温度勾配を大きくするとともに、結晶引上速度を上
げることによって、Grown−in欠陥の欠陥サイズ
を低減させた単結晶棒を作製できる。この単結晶棒より
切断加工したウエハは、水素ガスを含む非酸化性雰囲気
中で熱処理を行なうことにより、水素熱処理で欠陥が効
果的に消滅し易くなり、水素熱処理で同等の良品率が得
られるとともに、ウエハ内部では無欠陥領域が大幅に改
善された良好な酸化膜耐圧良品率(GOI)のウエハが
確保でき、デバイスにおける歩留まりの向上をはかるこ
とができ、高品質な単結晶を製造することができる。
As described above, in the single crystal manufacturing apparatus and the single crystal manufacturing method according to the present invention, the axial temperature gradient in the vicinity of the pulling interface and the defect forming temperature region in single crystal pulling is increased, and the crystal pulling is performed. By increasing the upper speed, a single crystal rod having a reduced defect size of the grown-in defect can be manufactured. By subjecting the wafer cut from this single crystal rod to heat treatment in a non-oxidizing atmosphere containing hydrogen gas, defects can be effectively eliminated by the hydrogen heat treatment, and an equivalent yield can be obtained by the hydrogen heat treatment. At the same time, it is possible to secure a wafer having a good oxide film withstanding voltage ratio (GOI) in which the defect-free region is significantly improved inside the wafer, to improve the yield in devices, and to manufacture a high-quality single crystal. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施形態における単結晶製造装置
の全体概念側面図である。
FIG. 1 is an overall conceptual side view of a single crystal manufacturing apparatus according to a first embodiment of the present invention.

【図2】本発明の単結晶製造装置の第1実施形態の一部
拡大側面図である。
FIG. 2 is a partially enlarged side view of the first embodiment of the single crystal manufacturing apparatus of the present invention.

【図3】本発明の単結晶製造装置の輻射スクリーン部の
一部拡大図である。
FIG. 3 is a partially enlarged view of a radiation screen section of the single crystal manufacturing apparatus of the present invention.

【図4】本発明の輻射スクリーンの不等辺三角形の実施
形態の側面図である。
FIG. 4 is a side view of a trapezoidal embodiment of the radiation screen of the present invention.

【図5】従来例と本発明とにおける欠陥サイズを示すグ
ラフ図である。
FIG. 5 is a graph showing defect sizes in a conventional example and the present invention.

【図6】本発明の第二実施形態における単結晶製造装置
の全体概念側面図である。
FIG. 6 is an overall conceptual side view of a single crystal manufacturing apparatus according to a second embodiment of the present invention.

【図7】本発明の単結晶製造装置の作用を説明する一部
概念側面図である。
FIG. 7 is a partial conceptual side view for explaining the operation of the single crystal manufacturing apparatus of the present invention.

【図8】従来の単結晶製造装置の作用を説明する一部概
念側面図である。
FIG. 8 is a partial conceptual side view for explaining the operation of a conventional single crystal manufacturing apparatus.

【図9】従来の他の単結晶製造装置の作用を説明する一
部概念側面図である。
FIG. 9 is a partial conceptual side view for explaining the operation of another conventional single crystal manufacturing apparatus.

【図10】従来と本発明の融液からの距離に応じて遮蔽
板の受ける熱量を示す説明図である。
FIG. 10 is an explanatory diagram showing the amount of heat received by the shielding plate according to the distance from the melt of the related art and the present invention.

【図11】従来における第1例の単結晶製造装置の側面
図である。
FIG. 11 is a side view of a first example of a conventional single crystal manufacturing apparatus.

【図12】従来における第2例の単結晶製造装置の側面
図である。
FIG. 12 is a side view of a second example of a conventional single crystal manufacturing apparatus.

【図13】従来における第3例の単結晶製造装置の側面
図である。
FIG. 13 is a side view of a third example of a conventional single crystal manufacturing apparatus.

【符号の説明】[Explanation of symbols]

20、20A 単結晶製造装置 22 チャンバ 24 トップチャンバ 26 ルツボ 28 ヒータ 29 保温壁 30 融液 32 支持手段 34 種結晶 36 単結晶 40、40A 輻射スクリーン 42、52 熱遮蔽板 42a、52a 斜辺用熱遮蔽板 42b、52b 底辺用熱遮蔽板 42c、52c 側辺用熱遮蔽板 44、54 断熱材 44a、54a 斜辺用断熱材 44b、54b 底辺用熱遮蔽板 44c、54c 側辺用熱遮蔽板 64 不活性ガス V 引上速度 G1 第1温度勾配 G2 第2温度勾配 Cv 冷却速度(Cv=V*G2) Ma、Mb 空間 Sa スキマ 20, 20A Single crystal manufacturing apparatus 22 Chamber 24 Top chamber 26 Crucible 28 Heater 29 Warm wall 30 Melt 32 Support means 34 Seed crystal 36 Single crystal 40, 40A Radiation screen 42, 52 Heat shield plate 42a, 52a Oblique heat shield plate 42b, 52b Bottom heat shield 42c, 52c Side heat shield 44, 54 Insulation 44a, 54a Oblique heat insulation 44b, 54b Bottom heat shield 44c, 54c Side heat shield 64 Inert gas V Lifting speed G1 First temperature gradient G2 Second temperature gradient Cv Cooling speed (Cv = V * G2) Ma, Mb Space Sa Clearance

フロントページの続き (72)発明者 中島 広貴 神奈川県平塚市四之宮2612番地 コマツ電 子金属株式会社 Fターム(参考) 4G077 AA02 BA04 CF10 EG19 EG20 EG25 FE02 PE22 Continued on the front page (72) Inventor Hiroki Nakajima 2612 Yonomiya, Hiratsuka-shi, Kanagawa F-term (reference) 4G077 AA02 BA04 CF10 EG19 EG20 EG25 FE02 PE22

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 単結晶材料である融液を保持するルツボ
と、当該ルツボの周囲にあって融液を加熱するヒータ
と、前記ルツボ内の融液上方に位置した上下移動可能な
支持手段と、支持手段に連結された種結晶下部に成長す
る単結晶を取り囲む輻射スクリーンとを有する単結晶製
造装置において、輻射スクリーンは、断面形状が中空の
ほぼ三角形形状で単結晶を取り囲む環状に形成されると
ともに、単結晶に対向する内面側が逆円錐台形状に漸次
縮小するように配設される熱遮蔽板の内側に所定の厚さ
の断熱材を付設し、断熱材間の輻射熱を低減する空間を
有することを特徴とする単結晶製造装置。
1. A crucible for holding a melt as a single crystal material, a heater around the crucible for heating the melt, and a vertically movable support means positioned above the melt in the crucible. A radiation screen surrounding the single crystal growing below the seed crystal connected to the support means, wherein the radiation screen is formed in an annular shape surrounding the single crystal with a substantially triangular cross section in a hollow shape. At the same time, a heat insulating material of a predetermined thickness is attached inside the heat shield plate that is disposed so that the inner surface facing the single crystal is gradually reduced to an inverted truncated cone shape, and a space that reduces radiant heat between the heat insulating materials is provided. An apparatus for producing a single crystal, comprising:
【請求項2】請求項1記載の単結晶製造装置において、 隣り合う断熱材の端面に伝導熱を遮断するスキマを設け
ることを特徴とする単結晶製造装置。
2. The single crystal manufacturing apparatus according to claim 1, wherein a gap for blocking conduction heat is provided on an end surface of the adjacent heat insulating material.
【請求項3】 単結晶材料を加熱溶融して融液となし、
種結晶を当該融液に浸して引上げることにより、単結晶
を製造する単結晶製造方法において、引上げるときに単
結晶が通過する1150〜1080℃の欠陥形成温度領
域に、単結晶に対向する内面側が逆円錐台形状で、断面
形状が中空の三角形形状よりなる熱遮蔽板の内部に付設
された断熱材間に空間を有する輻射スクリーンを配設し
て欠陥形成温度領域の温度勾配を大きくする空間とし、
この輻射スクリーンを用いて単結晶を速い引上速度で引
上げて温度勾配と引上速度との積を大きくし、Grow
n−in欠陥の欠陥サイズを微小にさせて単結晶棒を作
製し、この単結晶棒よりウエハを切断加工した後に、ウ
エハを水素ガス又はアルゴンガス等を含む非酸化性雰囲
気中で熱処理を行ないウエハ内部まで無欠陥にすること
を特徴とする単結晶製造方法。
3. A single crystal material is heated and melted to form a melt,
In a single crystal manufacturing method for manufacturing a single crystal by dipping a seed crystal in the melt and pulling the same, the single crystal faces a single crystal in a defect formation temperature region of 1150 to 1080 ° C. through which the single crystal passes when pulled. A radiation screen having a space between heat insulating materials provided inside a heat shield plate having a hollow triangular cross section on the inner surface side having an inverted truncated cone shape and having a hollow triangular cross section is provided to increase a temperature gradient in a defect forming temperature region. Space
Using this radiation screen, the single crystal is pulled at a high pulling speed to increase the product of the temperature gradient and the pulling speed, and
A single crystal rod is manufactured by making the defect size of the n-in defect minute, and the wafer is cut from the single crystal rod, and then the wafer is heat-treated in a non-oxidizing atmosphere containing hydrogen gas or argon gas. A method for producing a single crystal, characterized in that the inside of a wafer is free from defects.
JP11146313A 1999-05-26 1999-05-26 Single crystal production apparatus and single crystal production Pending JP2000327479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11146313A JP2000327479A (en) 1999-05-26 1999-05-26 Single crystal production apparatus and single crystal production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11146313A JP2000327479A (en) 1999-05-26 1999-05-26 Single crystal production apparatus and single crystal production

Publications (1)

Publication Number Publication Date
JP2000327479A true JP2000327479A (en) 2000-11-28

Family

ID=15404858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11146313A Pending JP2000327479A (en) 1999-05-26 1999-05-26 Single crystal production apparatus and single crystal production

Country Status (1)

Country Link
JP (1) JP2000327479A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847700B1 (en) * 2001-04-20 2008-07-23 신에쯔 한도타이 가부시키가이샤 Device for preparing silicon single crystal and method for preparing silicon single crystal using the same
JP2010037135A (en) * 2008-08-04 2010-02-18 Sumco Corp Apparatus for manufacturing silicon single crystal
JP2016538226A (en) * 2013-12-03 2016-12-08 エルジー・シルトロン・インコーポレーテッド Single crystal growth equipment
JP6304424B1 (en) * 2017-04-05 2018-04-04 株式会社Sumco Heat shielding member, single crystal pulling apparatus, and method for manufacturing single crystal silicon ingot
CN111926380A (en) * 2020-07-01 2020-11-13 中国科学院上海微系统与信息技术研究所 Heat shield device for single crystal production furnace, control method and single crystal production furnace
US20220170176A1 (en) * 2020-11-30 2022-06-02 Globalwafers Co., Ltd. Ingot puller apparatus having heat shields with voids therein
US12031229B2 (en) 2022-11-21 2024-07-09 Globalwafers Co., Ltd. Ingot puller apparatus having heat shields with feet having an apex

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847700B1 (en) * 2001-04-20 2008-07-23 신에쯔 한도타이 가부시키가이샤 Device for preparing silicon single crystal and method for preparing silicon single crystal using the same
JP2010037135A (en) * 2008-08-04 2010-02-18 Sumco Corp Apparatus for manufacturing silicon single crystal
US10066315B2 (en) 2013-12-03 2018-09-04 Sk Siltron Co., Ltd. Single crystal growing apparatus
JP2016538226A (en) * 2013-12-03 2016-12-08 エルジー・シルトロン・インコーポレーテッド Single crystal growth equipment
CN110573662A (en) * 2017-04-05 2019-12-13 胜高股份有限公司 Heat shield member, single crystal pulling apparatus, and method for manufacturing single crystal silicon ingot
WO2018186150A1 (en) * 2017-04-05 2018-10-11 株式会社Sumco Heat-blocking member, single-crystal-pulling device, and method for producing single crystal silicon ingot
JP6304424B1 (en) * 2017-04-05 2018-04-04 株式会社Sumco Heat shielding member, single crystal pulling apparatus, and method for manufacturing single crystal silicon ingot
US11473210B2 (en) 2017-04-05 2022-10-18 Sumco Corporation Heat shielding member, single crystal pulling apparatus, and method of producing single crystal silicon ingot
CN111926380A (en) * 2020-07-01 2020-11-13 中国科学院上海微系统与信息技术研究所 Heat shield device for single crystal production furnace, control method and single crystal production furnace
CN111926380B (en) * 2020-07-01 2021-10-19 中国科学院上海微系统与信息技术研究所 Heat shield device for single crystal production furnace, control method and single crystal production furnace
US20220170176A1 (en) * 2020-11-30 2022-06-02 Globalwafers Co., Ltd. Ingot puller apparatus having heat shields with voids therein
WO2022115668A1 (en) * 2020-11-30 2022-06-02 Globalwafers Co., Ltd. Ingot puller apparatus having heat shields with voids therein
US20230083235A1 (en) * 2020-11-30 2023-03-16 Globalwafers Co., Ltd. Ingot puller apparatus having heat shields with feet having an apex
US11873575B2 (en) * 2020-11-30 2024-01-16 Globalwafers Co., Ltd. Ingot puller apparatus having heat shields with voids therein
US12031229B2 (en) 2022-11-21 2024-07-09 Globalwafers Co., Ltd. Ingot puller apparatus having heat shields with feet having an apex

Similar Documents

Publication Publication Date Title
US4981549A (en) Method and apparatus for growing silicon crystals
KR100415860B1 (en) Single Crystal Manufacturing Equipment and Manufacturing Method
US5264189A (en) Apparatus for growing silicon crystals
TWI231318B (en) Apparatus for growing a single crystalline ingot
KR101105950B1 (en) Manufacturing device for crystal ingot
JP2004511410A (en) Heat shield assembly for crystal puller
JP4097729B2 (en) Semiconductor single crystal manufacturing equipment
US20050120944A1 (en) Single-crystal silicon ingot and wafer having homogeneous vacancy defects, and method and apparatus for making same
JPH09227276A (en) Method for pulling up single crystal and device for pulling up single crystal
JPS63315589A (en) Single crystal production apparatus
JP2000327479A (en) Single crystal production apparatus and single crystal production
JP3533812B2 (en) Crystal manufacturing apparatus by Czochralski method, crystal manufacturing method, and crystal manufactured by this method
KR101756687B1 (en) Single crystal manufacturing device and single crystal manufacturing method
JP4166316B2 (en) Single crystal manufacturing equipment
KR102381325B1 (en) Heat shield device for low oxygen single crystal growth of single crystal ingot growth device
JPH0733587A (en) Production of single crystal and apparatus for pulling up single crystal
JPH0761889A (en) Semiconductor single crystal pull device and method fir pulling semiconductor single crystal
CN114929951A (en) Single crystal manufacturing apparatus
JPH06211589A (en) Semiconductor single crystal rod producing device
JPH11209193A (en) Device for pulling up single crystal
JP3079991B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH09278581A (en) Apparatus for producing single crystal and production of single crystal
JP2000327481A (en) Production of single crystal and its apparatus
JP3052831B2 (en) Silicon single crystal manufacturing method
WO2022123957A1 (en) Monocrystal-manufacturing device