JP4166316B2 - Single crystal manufacturing equipment - Google Patents

Single crystal manufacturing equipment Download PDF

Info

Publication number
JP4166316B2
JP4166316B2 JP06198098A JP6198098A JP4166316B2 JP 4166316 B2 JP4166316 B2 JP 4166316B2 JP 06198098 A JP06198098 A JP 06198098A JP 6198098 A JP6198098 A JP 6198098A JP 4166316 B2 JP4166316 B2 JP 4166316B2
Authority
JP
Japan
Prior art keywords
single crystal
cylindrical portion
surface side
heat
shielding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06198098A
Other languages
Japanese (ja)
Other versions
JPH11240790A (en
Inventor
敏朗 琴岡
芳行 島貫
誠 鴨川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Sumco Techxiv Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv Corp filed Critical Sumco Techxiv Corp
Priority to JP06198098A priority Critical patent/JP4166316B2/en
Publication of JPH11240790A publication Critical patent/JPH11240790A/en
Application granted granted Critical
Publication of JP4166316B2 publication Critical patent/JP4166316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、CZ法による単結晶製造装置に関する。
【0002】
【従来の技術】
単結晶シリコンは一般にCZ法を用いて製造されている。CZ法による単結晶製造装置では、図6に示すようにチャンバ31の中心にるつぼ5が昇降ならびに回転自在に設置されている。るつぼ5は、黒鉛るつぼ5aの中に石英るつぼ5bを収容したもので、石英るつぼ5bに塊状の多結晶シリコンを装填し、前記るつぼ5を取り囲むように設けられた円筒状のヒータ6によって原料を加熱溶解して融液3とする。そして、シードホルダ32に取り付けた種結晶を融液3に浸漬し、シードホルダ32およびるつぼ5を互いに同方向または逆方向に回転させながらシードホルダ32を引き上げて単結晶2を所定の直径および長さに成長させる。
【0003】
ヒータ6を取り囲む保温筒7の上端には環状リム8ガ取着され、環状リム8の内縁部に熱遮蔽板33が掛止されている。熱遮蔽板33は引き上げ中の単結晶2を取り囲む逆円錐台形状の筒で、炭素繊維等からなる断熱材34を内蔵している。また、前記環状リム8の外縁部には断熱材9が貼着されている。熱遮蔽板33は、単結晶2に対する融液3やるつぼ5、ヒータ6からの直接的な輻射熱を遮断する機能を有し、特に固液界面近傍における単結晶2の半径方向ならびに軸方向の温度勾配を大きくして単結晶2の冷却を促進することにより、引き上げ速度の向上を図っている。また、熱遮蔽板33は、チャンバ31の上方から導入される不活性ガスを単結晶2の周囲に誘導し、融液3から蒸発するSiO、SiO2 、Si やるつぼ5から発生する金属蒸気等、単結晶化を阻害する各種ガスを効果的に排出して無転位結晶化率を向上させる機能を備えている。
【0004】
【発明が解決しようとする課題】
しかしながら、図6に示した従来の熱遮蔽板では、融液3から放射される輻射熱や、高温下にある熱遮蔽板33の本体表面から放射される輻射熱によって単結晶2の冷却効果が低下するため、引き上げ速度が制約されてしまう。その対策として、従来にあっては図7に示すように、引き上げ中の単結晶2と対向する内面側を上端側から下端側に近づくにつれて縮径された逆円錐台形状に形成し、外面側を円筒状に形成した熱遮蔽板41が提案されている。この熱遮蔽板41は下端側に近づくにつれて厚さを増し、内部空間には断熱性に優れたフェルトが断熱材42として充填されているので、ヒータ、るつぼ及び融液等からの輻射熱を効果的に遮断し、単結晶2にその引き上げ方向に適当な温度勾配を与え、単結晶2の引き上げ速度を高め、製造効率の向上を図ることができる。
【0005】
しかしながら、図7に示した熱遮蔽板41は単結晶の全温度領域に対して冷却効果として作用するため、引き上げ速度は大きくなるがgrown−in欠陥形成温度領域(1150〜1000℃)付近の温度勾配も大きくなってしまう。そのため、図6に示した製造装置で引き上げた単結晶よりもgrown−in欠陥密度が増加し、その結果、酸化膜耐圧特性の劣化を招き、デバイスプロセス後の歩留り低下を引き起こす。
【0006】
本発明は上記従来の問題点に着目してなされたもので、固液界面近傍における単結晶の温度勾配を大きくして従来よりも高速で単結晶を引き上げることができるようにするとともに、grown−in欠陥密度は従来と同程度に抑えられるような単結晶製造装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る単結晶製造装置の第1は、引き上げ中の単結晶を取り巻く熱遮蔽板であって、前記単結晶と対向する内面側は、前記単結晶のうち温度がgrown−in欠陥形成温度である1150〜1000℃付近となる部分に平行するように配置された円筒部と、この円筒部の下方に接続され、融液面に近づくに従って縮径されたテーパ部とを備え、外面側は、環状リムの内縁から融液面に向かって垂下する円筒部を備え、前記内面側と外面側とに挟まれた内部空間に断熱材を充填した熱遮蔽板を設けたことを特徴とする。
本発明に係る単結晶製造装置の第2は、引き上げ中の単結晶を取り巻く熱遮蔽板であって、前記単結晶と対向する内面側は、前記単結晶のうち温度がgrown−in欠陥形成温度である1150〜1000℃付近となる部分に平行するように配置された円筒部と、この円筒部の下方に接続され、融液面に近づくに従って縮径されたテーパ部とを備え、外面側は、環状リムの内縁から融液面に向かって垂下する円筒部を備え、前記内面側のテーパ部と前記外面側とに挟まれた内部空間に断熱材を充填した熱遮蔽板を設けたことを特徴とする。
本発明に係る単結晶製造装置の第3は、引き上げ中の単結晶を取り巻く熱遮蔽板であって、前記単結晶と対向する内面側は、前記単結晶のうち温度がgrown−in欠陥形成温度である1150〜1000℃付近となる部分に平行するように配置された円筒部と、この円筒部の下方に接続され、融液面に近づくに従って縮径されたテーパ部とを備え、外面側は、環状リムの内縁から融液面に向かって垂下し前記内面側の円筒部に平行する円筒部と、この円筒部の下方に接続され、当該外周面側の円筒部の径よりも拡径された下端部とを備え、前記内面側のテーパ部と前記外面側の下端部とに挟まれた内部空間に断熱材を充填した熱遮蔽板を設けたことを特徴とする。
単結晶の高速引き上げを行う場合に最も重要な要素は、固液界面近傍における単結晶の軸方向温度勾配であり、前記温度勾配はヒータ、るつぼ及び融液等からの輻射熱の影響が大きいことがわかっている。軸方向温度勾配と引き上げ速度とは正相関の関係にあり、軸方向温度勾配を大きくすることにより引き上げ速度を上げることができる。上記構成によれば、熱遮蔽板の下端の厚さを最も厚くしたので、輻射熱の断熱性が向上して引き上げ中の単結晶が急冷され、固液界面近傍の結晶温度勾配が大きくなって単結晶の形状が安定しやすくなる。これにより、引き上げ速度を図7に示した従来例と同等に保つことができる。一方、熱遮蔽板の上部は内面側、外面側ともに円筒状で厚さが薄いため、単結晶の温度勾配は小さくなる。
【0008】
また上記構成によれば、引き上げ中の単結晶がgrown−in欠陥形成温度領域となる部分に対して熱遮蔽板の内面側及び外面側がともに円筒状で、熱遮蔽板の厚さが下部に比べて著しく薄いため、ホットゾーンからの輻射熱が遮断されにくい。この輻射熱は熱遮蔽板を介して単結晶に放射される。従って、grown−in欠陥形成温度領域は、前記厚さの薄い円筒部分に囲まれて単結晶からの放熱が抑制され、欠陥密度を低減させる。
【0009】
本発明に係る単結晶製造装置の第4は、上記第1乃至第3発明の単結晶製造装置に設けたヒータの上端位置を、融液面の上方200mmから融液面の下方50mmまでの間に設定したことを特徴とする。ヒータの上端位置が融液面より200mm以上高くなると、ヒータの輻射熱の影響を受けて単結晶の軸方向温度勾配が小さくなり過ぎてしまい、引き上げ速度を上げることができない。これとは逆にヒータの上端位置が融液面より50mm以上低くなると、横方向の温度勾配が小さくなり過ぎて石英るつぼから結晶が張り出すという不具合が発生する。上記構成によれば、ヒータの上端位置が前記数値の間に収まるように設定したので、これらの不具合発生を回避して結晶引き上げ速度を上げることができる。
【0010】
【発明の実施の形態および実施例】
次に、本発明に係る単結晶製造装置の実施例について図面を参照して説明する。なお、前記従来技術で説明した構成要素と同一の構成要素については、同一の符号を付してその説明を省略する。
【0011】
図1に第1実施例の単結晶製造装置の下部構造を示す。熱遮蔽板1の内面側は、引き上げ中の単結晶2に平行な円筒部1aと、この円筒部1aの下端に段差を介して接続され、融液面3aに近づくに従って縮径されるテーパ部1bとを備えている。前記内面側は、引き上げ中の単結晶2がgrown−in欠陥形成温度すなわち1150〜1000℃付近となる領域に対して円筒部1aが対向するように設定されている。一方、熱遮蔽板1の外面側は、引き上げ中の単結晶2に平行な円筒部1cのみからなり、前記内面、外面及び底面によって囲まれた空間には炭素繊維等からなる断熱材4が充填されている。この熱遮蔽板1の上端は、るつぼ5、ヒータ6、保温筒7の上方に設けられた環状リム8の内縁部に掛止されている。熱遮蔽板1の下端と融液面3aとの間隔を小さくすると、単結晶2への融液3からの輻射熱を低減させることができ、単結晶2の軸方向温度勾配が大きくなるが、単結晶化率に影響すると考えられている不活性ガスの流れを乱さないようするため、前記間隔を少なくとも10〜30mm程度とすることが望ましい。
【0012】
ヒータ6の上端は、融液面3aの上方200mmから融液面3aの下方50mmまでの間に位置するように設定されている。ヒータ6の上端位置に対して融液面3aが低くなると単結晶2の軸方向温度勾配は徐々に小さくなり、これとは逆に融液面3aが高くなると単結晶2の軸方向温度勾配は次第に大きくなる。そして、ヒータ6の上端が融液面3aより200mm以上高い位置にある場合、ヒータ6から放射される輻射熱により単結晶2の軸方向温度勾配が小さくなり過ぎてしまい、高速引き上げが困難となる。また、ヒータ6の上端が融液面3aより50mm以上低くなると、横方向の温度勾配が小さくなり過ぎて石英るつぼから結晶が張り出すという不具合が発生する。従って、前記数値の範囲内にヒータ6の上端位置を設定することが望ましい。
【0013】
上記第1実施例の単結晶製造装置に設置した熱遮蔽板1では、固液界面近傍(融点〜1300℃)の温度勾配G1 を、図7に示した第2従来例の単結晶製造装置と同じ程度まで大きくすることができるため、結晶引き上げ速度も従来と同程度まで上げることが可能である。また、結晶欠陥形成温度領域(1150〜1080℃付近)では単結晶の放熱が抑制されるため、前記温度領域の温度勾配G2 は第2従来例の単結晶製造装置使用時より小さくなり、結晶欠陥密度が低減される。
【0014】
上記第1実施例の単結晶製造装置を用いて単結晶を引き上げたときの単結晶の温度勾配と、図6、図7に示した従来の単結晶製造装置使用時の温度勾配との比較結果を図2に示す。図6に示した第1従来例では熱遮蔽板による熱遮蔽効果が一様に低いため、単結晶の軸方向温度勾配は全体的に小さい。特に固液界面近傍の温度勾配G1 が小さいため、高速引き上げが困難であることがわかる。しかし、結晶欠陥形成温度領域の温度勾配G2 が小さいので、結晶欠陥密度は低く抑えられる。また、図7に示した第2従来例では熱遮蔽板の下部に近づく程熱遮蔽効果が高くなるため、特に温度勾配G1 が大きく、それに対応して温度勾配G2 も大きくなって高密度の結晶欠陥が発生する。これに対し図1に示した第1実施例の単結晶製造装置を用いると、固液界面近傍の温度勾配G1 を図7に示した熱遮蔽板使用時と同じ程度まで大きくすることができるため、結晶引き上げ速度も図7の第2従来例と同程度まで上げることが可能である。また、温度勾配G2 は図6の第1従来例よりも小さくなり、結晶欠陥形成温度領域が急冷されない。以上を総合すると、本発明の単結晶製造装置に設置されている熱遮蔽板を用いると、温度勾配G1 を第2従来例なみに大きくし、温度勾配G2 を第1従来例よりも小さくすることが可能となる。
【0015】
上記第1実施例の単結晶製造装置を用いて製造した単結晶の欠陥密度と、図6、図7に示した従来の単結晶製造装置を用いて製造した単結晶の欠陥密度との比較結果を図3に示す。ただし、図3において第1実施例(図1)及び第2従来例(図7)は、単結晶の平均引き上げ速度を第1従来例(図6)よりも約20%増加したときのデータである。この図で明らかなように、図7の第2従来例では結晶欠陥形成温度領域が急冷されるため、LSTD密度が3×106 /cm3 を超える値になっているが、第1実施例の単結晶製造装置を用いると、2×106 /cm3 未満に低減させることができる。また、第1実施例の単結晶製造装置を用いて平均引き上げ速度を第1従来例と同等に維持した場合は、LSTD密度が更に低下する。
【0016】
図4に第2実施例の単結晶製造装置に設置する熱遮蔽板を示す。この熱遮蔽板11は図1に示した熱遮蔽板1と同一形状であるが、上部を構成する円筒部11aが内面側、外面側に共通の1層となっている。すなわち、内面側は、引き上げ中の単結晶2に平行な円筒部11aと、この円筒部11aの下端に段差を介して接続され、融液面3aに近づくに従って縮径されるテーパ部11bとを備え、外面側は前記円筒部11aのみからなる。断熱材12は、前記テーパ部11bと外面側の円筒部11aとに挟まれた部分に充填されている。
【0017】
上記熱遮蔽板11を用いると、固液界面付近の温度勾配G1 が第1実施例の熱遮蔽板1とほぼ同一になるため、結晶引き上げ速度も同じ程度まで上げることが可能である。また、結晶欠陥形成温度領域では熱遮蔽板11が1層となっているため、断熱性能が小さく、ヒータから単結晶2に放射される熱量が大きくなる。従って、第1実施例の熱遮蔽板よりも温度勾配G2 が更に小さくなり、結晶欠陥密度が更に低減される。
【0018】
図5に第3実施例の単結晶製造装置に設置する熱遮蔽板を示す。この熱遮蔽板21の内面側は、引き上げ中の単結晶2に平行な円筒部21aと、円筒部21aの下端に接続され、融液面3aに近づくに従って縮径されるテーパ部21bとを備えている。前記内面側は、引き上げ中の単結晶2がgrown−in欠陥形成温度すなわち1150〜1000℃付近となる領域に対して円筒部21aが対向するように設定されている。一方、熱遮蔽板21の外面側は、引き上げ中の単結晶2に平行な円筒部21cと、その下端に接続され、融液面3aに近づくに従って拡径されるテーパ部21dと、これに続く円筒部21eとを備えている。熱遮蔽板21の底面幅は図1に示した熱遮蔽板1、図4に示した熱遮蔽板11と同一であり、内面側の円筒部21aとテーパ部21bとの接続部に段差を設けていないため、前記円筒部21aは図1、図4に示した熱遮蔽板よりも単結晶2に近接した位置に設置されている。また、熱遮蔽板21の内部空間には炭素繊維等からなる断熱材22が充填されている。
【0019】
熱遮蔽板21を用いると、固液界面近傍の温度勾配G1 は第1実施例とほぼ同一になり、結晶引き上げ速度も同じ程度まで上げることができる。また、結晶欠陥形成温度領域では単結晶2と熱遮蔽板21との間隔が狭くなることにより、単結晶2からの熱放射が抑制され、第1実施例よりも温度勾配G2 が更に小さくなり、結晶欠陥密度が更に低減される。また、第2実施例と同様に結晶欠陥形成温度領域にあたる部分の熱遮蔽板を1層構造とすれば温度勾配G2 が更に小さくなるため、第2実施例よりも欠陥密度が低減される。
【0020】
【発明の効果】
以上説明したように本発明によれば、次の効果が得られる。
(1)固液界面近傍ではヒータ、るつぼ及び融液等からの輻射熱を効果的に遮断し、単結晶の軸方向温度勾配を大きくすることができるので、引き上げ速度を従来技術(第2従来例)と同等以上のレベルに維持することが可能で、単結晶の生産性向上に寄与する。
(2)その反面、結晶欠陥形成温度領域ではヒータ、るつぼ及び融液等からの輻射熱を従来技術(第1従来例)と同等以上に受けるとともに、単結晶からの放熱を抑制するようにしたので、高速引き上げを行ってもgrown−in欠陥密度は従来技術(第1従来例)と同程度に低減され、結晶品質を維持することができる。
【図面の簡単な説明】
【図1】第1実施例の単結晶製造装置の下部構造を示す模式的縦断面図である。
【図2】単結晶の温度勾配を示す図である。
【図3】単結晶の欠陥密度の軸方向分布を示す図である。
【図4】第2実施例の単結晶製造装置の熱遮蔽板を示す模式的縦断面図である。
【図5】第3実施例の単結晶製造装置の熱遮蔽板を示す模式的縦断面図である。
【図6】第1従来例の単結晶製造装置の下部構造を示す模式的縦断面図である。
【図7】第2従来例の単結晶製造装置の熱遮蔽板を示す模式的縦断面図である。
【符号の説明】
1,11,21,33,41 熱遮蔽板
1a,1c,11a,21a,21c,21e 円筒部
1b,11b,21b,21d テーパ部
2 単結晶
3a 融液面
4,9,12,22,34,42 断熱材
5 るつぼ
6 ヒータ
8 環状リム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for producing a single crystal by the CZ method.
[0002]
[Prior art]
Single crystal silicon is generally manufactured using the CZ method. In the single crystal manufacturing apparatus using the CZ method, as shown in FIG. 6, a crucible 5 is installed at the center of a chamber 31 so as to be movable up and down and rotatable. The crucible 5 contains a quartz crucible 5b in a graphite crucible 5a. The quartz crucible 5b is filled with massive polycrystalline silicon, and the raw material is supplied by a cylindrical heater 6 provided so as to surround the crucible 5. A melt 3 is obtained by heating and dissolving. Then, the seed crystal attached to the seed holder 32 is immersed in the melt 3, and the seed holder 32 is pulled up while rotating the seed holder 32 and the crucible 5 in the same direction or in the opposite direction, so that the single crystal 2 has a predetermined diameter and length. Let it grow.
[0003]
An annular rim 8 is attached to the upper end of the heat insulating cylinder 7 surrounding the heater 6, and a heat shielding plate 33 is hooked on the inner edge of the annular rim 8. The heat shielding plate 33 is an inverted frustoconical cylinder surrounding the single crystal 2 being pulled up, and incorporates a heat insulating material 34 made of carbon fiber or the like. A heat insulating material 9 is attached to the outer edge of the annular rim 8. The heat shielding plate 33 has a function of blocking direct radiant heat from the melt 3, the crucible 5, and the heater 6 with respect to the single crystal 2, and particularly the radial and axial temperatures of the single crystal 2 near the solid-liquid interface. By increasing the gradient and promoting the cooling of the single crystal 2, the pulling speed is improved. Further, the heat shielding plate 33 guides an inert gas introduced from above the chamber 31 to the periphery of the single crystal 2, and vaporizes from the melt 3, SiO 2 , Si, metal vapor generated from the crucible 5, etc. It has a function of effectively discharging various gases that inhibit single crystallization to improve the dislocation-free crystallization rate.
[0004]
[Problems to be solved by the invention]
However, in the conventional heat shielding plate shown in FIG. 6, the cooling effect of the single crystal 2 is reduced by the radiant heat radiated from the melt 3 or the radiant heat radiated from the main body surface of the heat shielding plate 33 at a high temperature. Therefore, the pulling speed is restricted. As a countermeasure, in the prior art, as shown in FIG. 7, the inner side facing the single crystal 2 being pulled is formed into an inverted truncated cone shape whose diameter is reduced from the upper end side toward the lower end side. A heat shield plate 41 having a cylindrical shape is proposed. The heat shielding plate 41 increases in thickness as it approaches the lower end side, and the inner space is filled with felt having excellent heat insulating properties as the heat insulating material 42, so that the radiant heat from the heater, the crucible, the melt, etc. is effective. Thus, the single crystal 2 can be given an appropriate temperature gradient in the pulling direction, the pulling speed of the single crystal 2 can be increased, and the production efficiency can be improved.
[0005]
However, since the heat shielding plate 41 shown in FIG. 7 acts as a cooling effect on the entire temperature region of the single crystal, the pulling speed is increased, but the temperature in the vicinity of the grown-in defect formation temperature region (1150 to 1000 ° C.). The gradient will also increase. Therefore, the grown-in defect density is higher than that of the single crystal pulled up by the manufacturing apparatus shown in FIG. 6, and as a result, the breakdown voltage characteristics of the oxide film are deteriorated and the yield is lowered after the device process.
[0006]
The present invention has been made by paying attention to the above-mentioned conventional problems. The temperature gradient of the single crystal in the vicinity of the solid-liquid interface can be increased so that the single crystal can be pulled at a higher speed than the conventional one. An object of the present invention is to provide a single crystal manufacturing apparatus in which the in defect density can be suppressed to the same level as in the past.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a first single crystal manufacturing apparatus according to the present invention is a heat shielding plate surrounding a single crystal being pulled, and an inner surface facing the single crystal has a temperature within the single crystal. Is a cylindrical portion arranged parallel to a portion near 1150 to 1000 ° C. which is a grown-in defect formation temperature, and a tapered portion which is connected to the lower portion of the cylindrical portion and is reduced in diameter as it approaches the melt surface. The outer surface side includes a cylindrical portion that hangs down from the inner edge of the annular rim toward the melt surface, and a heat shielding plate filled with a heat insulating material is provided in the inner space sandwiched between the inner surface side and the outer surface side. It is characterized by that.
A second aspect of the single crystal manufacturing apparatus according to the present invention is a heat shielding plate surrounding the single crystal being pulled, and the inner surface facing the single crystal has a grown-in defect formation temperature on the inner surface side of the single crystal. A cylindrical portion arranged so as to be parallel to a portion near 1150 to 1000 ° C., and a tapered portion connected to the lower portion of the cylindrical portion and having a diameter reduced toward the melt surface. A cylindrical portion that hangs down from the inner edge of the annular rim toward the melt surface, and a heat shielding plate filled with a heat insulating material is provided in an internal space sandwiched between the tapered portion on the inner surface side and the outer surface side. Features.
A third aspect of the apparatus for producing a single crystal according to the present invention is a heat shield plate surrounding the single crystal being pulled, and the inner surface facing the single crystal has a grown-in defect formation temperature on the inner side of the single crystal. A cylindrical portion arranged so as to be parallel to a portion near 1150 to 1000 ° C., and a tapered portion connected to the lower portion of the cylindrical portion and having a diameter reduced toward the melt surface. A cylindrical portion that hangs down from the inner edge of the annular rim toward the melt surface and is parallel to the cylindrical portion on the inner surface side, and is connected to the lower side of the cylindrical portion, and has a diameter larger than the diameter of the cylindrical portion on the outer peripheral surface side. And a heat shielding plate filled with a heat insulating material is provided in an internal space sandwiched between the tapered portion on the inner surface side and the lower end portion on the outer surface side.
The most important factor when pulling a single crystal at high speed is the axial temperature gradient of the single crystal in the vicinity of the solid-liquid interface, and the temperature gradient is greatly affected by radiant heat from the heater, crucible, melt, etc. know. There is a positive correlation between the axial temperature gradient and the pulling speed, and the pulling speed can be increased by increasing the axial temperature gradient. According to the above configuration, since the thickness of the lower end of the heat shielding plate is maximized, the heat insulation of the radiant heat is improved, the single crystal being pulled is rapidly cooled, and the crystal temperature gradient in the vicinity of the solid-liquid interface is increased. The crystal shape is likely to be stable. Thereby, the pulling-up speed can be kept equal to that of the conventional example shown in FIG. On the other hand, since the upper part of the heat shielding plate is cylindrical on both the inner surface side and the outer surface side and is thin, the temperature gradient of the single crystal is reduced.
[0008]
Further , according to the above configuration, the inner surface side and the outer surface side of the heat shield plate are both cylindrical with respect to the portion where the single crystal being pulled becomes a grown-in defect formation temperature region, and the thickness of the heat shield plate is smaller than that of the lower portion. Because it is extremely thin, the radiant heat from the hot zone is difficult to block. This radiant heat is radiated to the single crystal through the heat shielding plate. Therefore, the grown-in defect formation temperature region is surrounded by the thin cylindrical portion, and heat dissipation from the single crystal is suppressed, thereby reducing the defect density.
[0009]
In a fourth aspect of the single crystal manufacturing apparatus according to the present invention, the upper end position of the heater provided in the single crystal manufacturing apparatus according to the first to third aspects of the present invention is between 200 mm above the melt surface and 50 mm below the melt surface. It is characterized by being set to. If the upper end position of the heater is higher than the melt surface by 200 mm or more, the axial temperature gradient of the single crystal becomes too small due to the influence of the radiant heat of the heater, and the pulling speed cannot be increased. On the other hand, when the upper end position of the heater is 50 mm or more lower than the melt surface, the temperature gradient in the lateral direction becomes too small, causing a problem that crystals protrude from the quartz crucible. According to the above configuration, since the upper end position of the heater is set so as to fall within the numerical value, it is possible to avoid these problems and increase the crystal pulling speed.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the single crystal manufacturing apparatus according to the present invention will be described with reference to the drawings. Note that the same components as those described in the prior art are denoted by the same reference numerals and description thereof is omitted.
[0011]
FIG. 1 shows a lower structure of the single crystal manufacturing apparatus according to the first embodiment. The inner surface side of the heat shielding plate 1 is connected to a cylindrical portion 1a parallel to the single crystal 2 being pulled up, and a tapered portion that is connected to the lower end of the cylindrical portion 1a through a step and is reduced in diameter as it approaches the melt surface 3a. 1b. The inner surface side is set so that the cylindrical portion 1a faces a region where the single crystal 2 being pulled is at a growth-in defect formation temperature, that is, around 1150 to 1000 ° C. On the other hand, the outer surface side of the heat shielding plate 1 consists only of a cylindrical portion 1c parallel to the single crystal 2 being pulled up, and a space surrounded by the inner surface, outer surface and bottom surface is filled with a heat insulating material 4 made of carbon fiber or the like. Has been. The upper end of the heat shielding plate 1 is hooked on the inner edge of an annular rim 8 provided above the crucible 5, the heater 6 and the heat retaining cylinder 7. If the distance between the lower end of the heat shielding plate 1 and the melt surface 3a is reduced, the radiant heat from the melt 3 to the single crystal 2 can be reduced and the axial temperature gradient of the single crystal 2 increases. In order not to disturb the flow of the inert gas that is thought to affect the crystallization rate, it is desirable that the interval be at least about 10 to 30 mm.
[0012]
The upper end of the heater 6 is set to be located between 200 mm above the melt surface 3a and 50 mm below the melt surface 3a. When the melt surface 3a becomes lower than the upper end position of the heater 6, the axial temperature gradient of the single crystal 2 gradually decreases. On the contrary, when the melt surface 3a increases, the axial temperature gradient of the single crystal 2 becomes Gradually grows. When the upper end of the heater 6 is at a position higher than the melt surface 3a by 200 mm or more, the temperature gradient in the axial direction of the single crystal 2 becomes too small due to the radiant heat radiated from the heater 6, making it difficult to pull up at high speed. In addition, when the upper end of the heater 6 is lower than the melt surface 3a by 50 mm or more, the lateral temperature gradient becomes too small, causing a problem that crystals protrude from the quartz crucible. Therefore, it is desirable to set the upper end position of the heater 6 within the range of the numerical values.
[0013]
In the heat shielding plate 1 installed in the single crystal manufacturing apparatus of the first embodiment, the temperature gradient G1 near the solid-liquid interface (melting point to 1300 ° C.) is the same as that of the single crystal manufacturing apparatus of the second conventional example shown in FIG. Since it can be increased to the same level, the crystal pulling rate can be increased to the same level as before. Further, in the crystal defect formation temperature region (around 1150 to 1080 ° C.), the heat dissipation of the single crystal is suppressed, so that the temperature gradient G2 in the temperature region becomes smaller than that when the single crystal manufacturing apparatus of the second conventional example is used. Density is reduced.
[0014]
Comparison results of the temperature gradient of the single crystal when the single crystal is pulled up using the single crystal manufacturing apparatus of the first embodiment and the temperature gradient when using the conventional single crystal manufacturing apparatus shown in FIGS. Is shown in FIG. In the first conventional example shown in FIG. 6, since the heat shielding effect by the heat shielding plate is uniformly low, the axial temperature gradient of the single crystal is generally small. In particular, since the temperature gradient G1 in the vicinity of the solid-liquid interface is small, it can be seen that high-speed pulling is difficult. However, since the temperature gradient G2 in the crystal defect formation temperature region is small, the crystal defect density can be kept low. Further, in the second conventional example shown in FIG. 7, since the thermal shielding effect becomes higher as it approaches the lower part of the thermal shielding plate, the temperature gradient G1 is particularly large, and the temperature gradient G2 is also correspondingly increased, resulting in a high-density crystal. Defects occur. On the other hand, when the single crystal manufacturing apparatus of the first embodiment shown in FIG. 1 is used, the temperature gradient G1 near the solid-liquid interface can be increased to the same extent as when the heat shield plate shown in FIG. 7 is used. The crystal pulling speed can be increased to the same level as in the second conventional example of FIG. Further, the temperature gradient G2 becomes smaller than that of the first conventional example of FIG. 6, and the crystal defect formation temperature region is not rapidly cooled. In summary, when the heat shield plate installed in the single crystal manufacturing apparatus of the present invention is used, the temperature gradient G1 is increased as in the second conventional example, and the temperature gradient G2 is decreased as compared with the first conventional example. Is possible.
[0015]
Comparison result of defect density of single crystal manufactured using single crystal manufacturing apparatus of first embodiment and single crystal manufactured using conventional single crystal manufacturing apparatus shown in FIGS. Is shown in FIG. However, in FIG. 3, the first embodiment (FIG. 1) and the second conventional example (FIG. 7) are data when the average pulling rate of the single crystal is increased by about 20% compared to the first conventional example (FIG. 6). is there. As is apparent from this figure, in the second conventional example of FIG. 7, the crystal defect formation temperature region is rapidly cooled, so that the LSTD density exceeds 3 × 10 6 / cm 3. Can be reduced to less than 2 × 10 6 / cm 3 . In addition, when the average pulling rate is maintained equal to that of the first conventional example using the single crystal manufacturing apparatus of the first example, the LSTD density is further lowered.
[0016]
FIG. 4 shows a heat shielding plate installed in the single crystal manufacturing apparatus of the second embodiment. The heat shield plate 11 has the same shape as the heat shield plate 1 shown in FIG. 1, but the cylindrical portion 11a constituting the upper portion is a common layer on the inner surface side and the outer surface side. That is, the inner surface side includes a cylindrical portion 11a that is parallel to the single crystal 2 being pulled up, and a tapered portion 11b that is connected to the lower end of the cylindrical portion 11a through a step and is reduced in diameter as it approaches the melt surface 3a. Provided, and the outer surface side consists only of the cylindrical portion 11a. The heat insulating material 12 is filled in a portion sandwiched between the tapered portion 11b and the outer cylindrical portion 11a.
[0017]
When the heat shield plate 11 is used, the temperature gradient G1 in the vicinity of the solid-liquid interface becomes almost the same as that of the heat shield plate 1 of the first embodiment, so that the crystal pulling speed can be increased to the same level. In addition, since the heat shielding plate 11 has a single layer in the crystal defect formation temperature region, the heat insulation performance is small, and the amount of heat radiated from the heater to the single crystal 2 is large. Therefore, the temperature gradient G2 becomes smaller than that of the heat shield plate of the first embodiment, and the crystal defect density is further reduced.
[0018]
FIG. 5 shows a heat shielding plate installed in the single crystal manufacturing apparatus of the third embodiment. The inner surface side of the heat shielding plate 21 includes a cylindrical portion 21a parallel to the single crystal 2 being pulled up, and a tapered portion 21b that is connected to the lower end of the cylindrical portion 21a and is reduced in diameter as it approaches the melt surface 3a. ing. The inner surface side is set so that the cylindrical portion 21a faces a region where the single crystal 2 being pulled is at a grown-in defect formation temperature, that is, near 1150 to 1000 ° C. On the other hand, the outer surface side of the heat shielding plate 21 is connected to the cylindrical portion 21c parallel to the single crystal 2 being pulled up, the tapered portion 21d connected to the lower end thereof, and diameter-expanding as it approaches the melt surface 3a, and the following. And a cylindrical portion 21e. The bottom width of the heat shield plate 21 is the same as that of the heat shield plate 1 shown in FIG. 1 and the heat shield plate 11 shown in FIG. 4, and a step is provided at the connection portion between the cylindrical portion 21a and the tapered portion 21b on the inner surface side. Therefore, the cylindrical portion 21a is installed at a position closer to the single crystal 2 than the heat shielding plate shown in FIGS. In addition, a heat insulating material 22 made of carbon fiber or the like is filled in the internal space of the heat shielding plate 21.
[0019]
When the heat shielding plate 21 is used, the temperature gradient G1 in the vicinity of the solid-liquid interface becomes almost the same as that in the first embodiment, and the crystal pulling speed can be increased to the same level. Further, in the crystal defect formation temperature region, the distance between the single crystal 2 and the heat shielding plate 21 is narrowed, so that the heat radiation from the single crystal 2 is suppressed, and the temperature gradient G2 is further reduced as compared with the first embodiment. The crystal defect density is further reduced. Similarly to the second embodiment, if the portion of the heat shield plate corresponding to the crystal defect formation temperature region has a single-layer structure, the temperature gradient G2 is further reduced, so that the defect density is reduced as compared with the second embodiment.
[0020]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
(1) In the vicinity of the solid-liquid interface, the radiant heat from the heater, crucible, melt, etc. can be effectively blocked, and the temperature gradient in the axial direction of the single crystal can be increased. ) And can be maintained at a level equal to or higher than that of (1), which contributes to the improvement of single crystal productivity.
(2) On the other hand, in the crystal defect formation temperature range, the radiation heat from the heater, crucible, melt, etc. is received at the same level or higher as that of the prior art (first conventional example), and the heat radiation from the single crystal is suppressed. Even when high-speed pulling is performed, the grown-in defect density is reduced to the same level as in the conventional technique (first conventional example), and the crystal quality can be maintained.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing a lower structure of a single crystal manufacturing apparatus according to a first embodiment.
FIG. 2 is a diagram showing a temperature gradient of a single crystal.
FIG. 3 is a diagram showing an axial distribution of defect density of a single crystal.
FIG. 4 is a schematic longitudinal sectional view showing a heat shielding plate of a single crystal manufacturing apparatus according to a second embodiment.
FIG. 5 is a schematic longitudinal sectional view showing a heat shielding plate of a single crystal manufacturing apparatus according to a third embodiment.
FIG. 6 is a schematic longitudinal sectional view showing a lower structure of a single crystal manufacturing apparatus according to a first conventional example.
FIG. 7 is a schematic longitudinal sectional view showing a heat shielding plate of a single crystal manufacturing apparatus of a second conventional example.
[Explanation of symbols]
1,11,21,33,41 Heat shield plates 1a, 1c, 11a, 21a, 21c, 21e Cylindrical portions 1b, 11b, 21b, 21d Tapered portion 2 Single crystal 3a Melt surface 4, 9, 12, 22, 34 , 42 Insulation material 5 Crucible 6 Heater 8 Annular rim

Claims (4)

引き上げ中の単結晶を取り巻く熱遮蔽板であって、
前記単結晶と対向する内面側は、前記単結晶のうち温度がgrown−in欠陥形成温度である1150〜1000℃付近となる部分に平行するように配置された円筒部と、この円筒部の下方に接続され、融液面に近づくに従って縮径されたテーパ部とを備え、
外面側は、環状リムの内縁から融液面に向かって垂下する円筒部を備え、
前記内面側と外面側とに挟まれた内部空間に断熱材を充填した熱遮蔽板を設けたこと
を特徴とする単結晶製造装置。
A heat shield surrounding the single crystal being pulled,
The inner surface facing the single crystal has a cylindrical portion disposed so as to be parallel to a portion of the single crystal whose temperature is around 1150 to 1000 ° C. which is a growth-in defect formation temperature, and a lower portion of the cylindrical portion. And a tapered portion that is reduced in diameter as it approaches the melt surface,
The outer surface side includes a cylindrical portion depending from the inner edge of the annular rim toward the melt surface,
A single crystal manufacturing apparatus, wherein a heat shielding plate filled with a heat insulating material is provided in an internal space sandwiched between the inner surface side and the outer surface side.
引き上げ中の単結晶を取り巻く熱遮蔽板であって、  A heat shield surrounding the single crystal being pulled,
前記単結晶と対向する内面側は、前記単結晶のうち温度がgrown−in欠陥形成温度である1150〜1000℃付近となる部分に平行するように配置された円筒部と、この円筒部の下方に接続され、融液面に近づくに従って縮径されたテーパ部とを備え、  The inner surface facing the single crystal has a cylindrical portion disposed so as to be parallel to a portion of the single crystal whose temperature is around 1150 to 1000 ° C. which is a growth-in defect formation temperature, and a lower portion of the cylindrical portion. And a tapered portion that is reduced in diameter as it approaches the melt surface,
外面側は、環状リムの内縁から融液面に向かって垂下する円筒部を備え、  The outer surface side includes a cylindrical portion depending from the inner edge of the annular rim toward the melt surface,
前記内面側のテーパ部と前記外面側とに挟まれた内部空間に断熱材を充填した熱遮蔽板を設けたこと  A heat shielding plate filled with a heat insulating material was provided in an internal space sandwiched between the tapered portion on the inner surface side and the outer surface side.
を特徴とする単結晶製造装置。  A single crystal manufacturing apparatus characterized by the above.
引き上げ中の単結晶を取り巻く熱遮蔽板であって、  A heat shield surrounding the single crystal being pulled,
前記単結晶と対向する内面側は、前記単結晶のうち温度がgrown−in欠陥形成温度である1150〜1000℃付近となる部分に平行するように配置された円筒部と、この円筒部の下方に接続され、融液面に近づくに従って縮径されたテーパ部とを備え、  The inner surface facing the single crystal has a cylindrical portion disposed so as to be parallel to a portion of the single crystal whose temperature is around 1150 to 1000 ° C. which is a growth-in defect formation temperature, and a lower portion of the cylindrical portion. And a tapered portion that is reduced in diameter as it approaches the melt surface,
外面側は、環状リムの内縁から融液面に向かって垂下し前記内面側の円筒部に平行する円筒部と、この円筒部の下方に接続され、当該外周面側の円筒部の径よりも拡径された下端部とを備え、  The outer surface side hangs from the inner edge of the annular rim toward the melt surface and is connected to a cylindrical portion parallel to the cylindrical portion on the inner surface side, and below the cylindrical portion. An enlarged lower end,
前記内面側のテーパ部と前記外面側の下端部とに挟まれた内部空間に断熱材を充填した熱遮蔽板を設けたこと  A heat shielding plate filled with a heat insulating material was provided in an internal space sandwiched between the tapered portion on the inner surface side and the lower end portion on the outer surface side.
を特徴とする単結晶製造装置。  A single crystal manufacturing apparatus characterized by the above.
ヒータの上端位置を、融液面の上方200mmから融液面の下方50mmまでの間に設定したこと
を特徴とする請求項1乃至3の何れかに記載の単結晶製造装置。
The single crystal manufacturing apparatus according to any one of claims 1 to 3, wherein the upper end position of the heater is set between 200 mm above the melt surface and 50 mm below the melt surface.
JP06198098A 1998-02-27 1998-02-27 Single crystal manufacturing equipment Expired - Lifetime JP4166316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06198098A JP4166316B2 (en) 1998-02-27 1998-02-27 Single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06198098A JP4166316B2 (en) 1998-02-27 1998-02-27 Single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH11240790A JPH11240790A (en) 1999-09-07
JP4166316B2 true JP4166316B2 (en) 2008-10-15

Family

ID=13186847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06198098A Expired - Lifetime JP4166316B2 (en) 1998-02-27 1998-02-27 Single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4166316B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3709494B2 (en) * 1999-02-26 2005-10-26 株式会社Sumco Heat shielding member of silicon single crystal pulling device
KR100378184B1 (en) * 1999-11-13 2003-03-29 삼성전자주식회사 Silicon wafer having controlled distribution of defects, process for the preparation of the same and czochralski puller for manufacturing monocrystalline silicon ingot
US6632280B2 (en) * 2000-01-31 2003-10-14 Shin-Etsu Handotai Co., Ltd. Apparatus for growing single crystal, method for producing single crystal utilizing the apparatus and single crystal
MY131022A (en) * 2000-09-29 2007-07-31 Samsung Electronics Co Ltd Silicon wafers having controlled distribution of defects, and methods of preparing the same
KR100847700B1 (en) * 2001-04-20 2008-07-23 신에쯔 한도타이 가부시키가이샤 Device for preparing silicon single crystal and method for preparing silicon single crystal using the same
CN104213190B (en) * 2014-08-20 2017-05-10 浙江晶盛机电股份有限公司 Mounting plate assembly for monocrystalline silicon growth furnace
CN109930198A (en) * 2017-12-18 2019-06-25 上海新昇半导体科技有限公司 Heat shielding and monocrystalline silicon growing furnace structure
CN111321458A (en) * 2018-12-13 2020-06-23 上海新昇半导体科技有限公司 Heating type guide cylinder

Also Published As

Publication number Publication date
JPH11240790A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
JP3944879B2 (en) Single crystal ingot production equipment
US4981549A (en) Method and apparatus for growing silicon crystals
US5264189A (en) Apparatus for growing silicon crystals
US3798007A (en) Method and apparatus for producing large diameter monocrystals
JPH1192272A (en) Single crystal production apparatus and production of single crystal
JP4567192B2 (en) Electric resistance heater for crystal growth apparatus and method of using the same
JPH11292684A (en) Single crystal production apparatus
JP2007261846A (en) Method for manufacturing defect-free silicon single crystal
KR101105950B1 (en) Manufacturing device for crystal ingot
JP4097729B2 (en) Semiconductor single crystal manufacturing equipment
JP3128795B2 (en) Crystal manufacturing apparatus and manufacturing method by Czochralski method
JP4166316B2 (en) Single crystal manufacturing equipment
US5824152A (en) Semiconductor single-crystal pulling apparatus
KR100571573B1 (en) Apparatus for producing silicon single crystal ingot, manufacturing method using the apparatus, silicon single crystal ingot and silicon wafer produced therefrom
JP2007284260A (en) Method for manufacturing silicon single crystal
JPS63315589A (en) Single crystal production apparatus
JP3533812B2 (en) Crystal manufacturing apparatus by Czochralski method, crystal manufacturing method, and crystal manufactured by this method
JPS6153187A (en) Device for growing single crystal
KR101756687B1 (en) Single crystal manufacturing device and single crystal manufacturing method
JPH0416589A (en) Device for producing single crystal
JP2005231969A (en) Apparatus for growing silicon single crystal
JPH0761889A (en) Semiconductor single crystal pull device and method fir pulling semiconductor single crystal
CN114929951A (en) Single crystal manufacturing apparatus
JP2000327479A (en) Single crystal production apparatus and single crystal production
KR100690959B1 (en) An apparatus of growing single crystal ingot

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term